1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8#include <linux/slab.h>
9
10#include "../habanalabs.h"
11
12#include <trace/events/habanalabs.h>
13
14/**
15 * hl_mmu_get_funcs() - get MMU functions structure
16 * @hdev: habanalabs device structure.
17 * @pgt_residency: page table residency.
18 * @is_dram_addr: true if we need HMMU functions
19 *
20 * @return appropriate MMU functions structure
21 */
22static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency,
23									bool is_dram_addr)
24{
25	return &hdev->mmu_func[pgt_residency];
26}
27
28bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr)
29{
30	struct asic_fixed_properties *prop = &hdev->asic_prop;
31
32	return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
33					prop->dmmu.start_addr,
34					prop->dmmu.end_addr);
35}
36
37/**
38 * hl_mmu_init() - initialize the MMU module.
39 * @hdev: habanalabs device structure.
40 *
41 * Return: 0 for success, non-zero for failure.
42 */
43int hl_mmu_init(struct hl_device *hdev)
44{
45	int rc = -EOPNOTSUPP;
46
47	if (hdev->mmu_disable)
48		return 0;
49
50	mutex_init(&hdev->mmu_lock);
51
52	if (hdev->mmu_func[MMU_DR_PGT].init != NULL) {
53		rc = hdev->mmu_func[MMU_DR_PGT].init(hdev);
54		if (rc)
55			return rc;
56	}
57
58	if (hdev->mmu_func[MMU_HR_PGT].init != NULL) {
59		rc = hdev->mmu_func[MMU_HR_PGT].init(hdev);
60		if (rc)
61			goto fini_dr_mmu;
62	}
63
64	return 0;
65
66fini_dr_mmu:
67	if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
68		hdev->mmu_func[MMU_DR_PGT].fini(hdev);
69
70	return rc;
71}
72
73/**
74 * hl_mmu_fini() - release the MMU module.
75 * @hdev: habanalabs device structure.
76 *
77 * This function does the following:
78 * - Disable MMU in H/W.
79 * - Free the pgt_infos pool.
80 *
81 * All contexts should be freed before calling this function.
82 */
83void hl_mmu_fini(struct hl_device *hdev)
84{
85	if (hdev->mmu_disable)
86		return;
87
88	if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
89		hdev->mmu_func[MMU_DR_PGT].fini(hdev);
90
91	if (hdev->mmu_func[MMU_HR_PGT].fini != NULL)
92		hdev->mmu_func[MMU_HR_PGT].fini(hdev);
93
94	mutex_destroy(&hdev->mmu_lock);
95}
96
97/**
98 * hl_mmu_ctx_init() - initialize a context for using the MMU module.
99 * @ctx: pointer to the context structure to initialize.
100 *
101 * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all
102 * page tables hops related to this context.
103 * Return: 0 on success, non-zero otherwise.
104 */
105int hl_mmu_ctx_init(struct hl_ctx *ctx)
106{
107	struct hl_device *hdev = ctx->hdev;
108	int rc = -EOPNOTSUPP;
109
110	if (hdev->mmu_disable)
111		return 0;
112
113	if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) {
114		rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx);
115		if (rc)
116			return rc;
117	}
118
119	if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) {
120		rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx);
121		if (rc)
122			goto fini_dr_ctx;
123	}
124
125	return 0;
126
127fini_dr_ctx:
128	if (hdev->mmu_func[MMU_DR_PGT].fini != NULL)
129		hdev->mmu_func[MMU_DR_PGT].fini(hdev);
130
131	return rc;
132}
133
134/*
135 * hl_mmu_ctx_fini - disable a ctx from using the mmu module
136 *
137 * @ctx: pointer to the context structure
138 *
139 * This function does the following:
140 * - Free any pgts which were not freed yet
141 * - Free the mutex
142 * - Free DRAM default page mapping hops
143 */
144void hl_mmu_ctx_fini(struct hl_ctx *ctx)
145{
146	struct hl_device *hdev = ctx->hdev;
147
148	if (hdev->mmu_disable)
149		return;
150
151	if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL)
152		hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx);
153
154	if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL)
155		hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx);
156}
157
158/*
159 * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation
160 *
161 * @hdev: pointer to device data.
162 * @mmu_prop: MMU properties.
163 * @page_size: page size
164 * @real_page_size: set here the actual page size to use for the operation
165 * @is_dram_addr: true if DRAM address, otherwise false.
166 *
167 * @return 0 on success, otherwise non 0 error code
168 *
169 * note that this is general implementation that can fit most MMU arch. but as this is used as an
170 * MMU function:
171 * 1. it shall not be called directly- only from mmu_func structure instance
172 * 2. each MMU may modify the implementation internally
173 */
174int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
175				u32 page_size, u32 *real_page_size, bool is_dram_addr)
176{
177	/*
178	 * The H/W handles mapping of specific page sizes. Hence if the page
179	 * size is bigger, we break it to sub-pages and map them separately.
180	 */
181	if ((page_size % mmu_prop->page_size) == 0) {
182		*real_page_size = mmu_prop->page_size;
183		return 0;
184	}
185
186	dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n",
187						page_size, mmu_prop->page_size >> 10);
188
189	return -EFAULT;
190}
191
192static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size,
193							bool is_dram_addr)
194{
195	struct asic_fixed_properties *prop = &hdev->asic_prop;
196
197	if (is_dram_addr)
198		return &prop->dmmu;
199	else if ((page_size % prop->pmmu_huge.page_size) == 0)
200		return &prop->pmmu_huge;
201
202	return &prop->pmmu;
203}
204
205/*
206 * hl_mmu_unmap_page - unmaps a virtual addr
207 *
208 * @ctx: pointer to the context structure
209 * @virt_addr: virt addr to map from
210 * @page_size: size of the page to unmap
211 * @flush_pte: whether to do a PCI flush
212 *
213 * This function does the following:
214 * - Check that the virt addr is mapped
215 * - Unmap the virt addr and frees pgts if possible
216 * - Returns 0 on success, -EINVAL if the given addr is not mapped
217 *
218 * Because this function changes the page tables in the device and because it
219 * changes the MMU hash, it must be protected by a lock.
220 * However, because it maps only a single page, the lock should be implemented
221 * in a higher level in order to protect the entire mapping of the memory area
222 *
223 * For optimization reasons PCI flush may be requested once after unmapping of
224 * large area.
225 */
226int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte)
227{
228	struct hl_device *hdev = ctx->hdev;
229	struct hl_mmu_properties *mmu_prop;
230	struct hl_mmu_funcs *mmu_funcs;
231	int i, pgt_residency, rc = 0;
232	u32 real_page_size, npages;
233	u64 real_virt_addr;
234	bool is_dram_addr;
235
236	if (hdev->mmu_disable)
237		return 0;
238
239	is_dram_addr = hl_is_dram_va(hdev, virt_addr);
240	mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
241
242	pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
243	mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
244
245	rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
246							is_dram_addr);
247	if (rc)
248		return rc;
249
250	npages = page_size / real_page_size;
251	real_virt_addr = virt_addr;
252
253	for (i = 0 ; i < npages ; i++) {
254		rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr);
255		if (rc)
256			break;
257
258		real_virt_addr += real_page_size;
259	}
260
261	if (flush_pte)
262		mmu_funcs->flush(ctx);
263
264	if (trace_habanalabs_mmu_unmap_enabled() && !rc)
265		trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte);
266
267	return rc;
268}
269
270/*
271 * hl_mmu_map_page - maps a virtual addr to physical addr
272 *
273 * @ctx: pointer to the context structure
274 * @virt_addr: virt addr to map from
275 * @phys_addr: phys addr to map to
276 * @page_size: physical page size
277 * @flush_pte: whether to do a PCI flush
278 *
279 * This function does the following:
280 * - Check that the virt addr is not mapped
281 * - Allocate pgts as necessary in order to map the virt addr to the phys
282 * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM.
283 *
284 * Because this function changes the page tables in the device and because it
285 * changes the MMU hash, it must be protected by a lock.
286 * However, because it maps only a single page, the lock should be implemented
287 * in a higher level in order to protect the entire mapping of the memory area
288 *
289 * For optimization reasons PCI flush may be requested once after mapping of
290 * large area.
291 */
292int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
293			bool flush_pte)
294{
295	int i, rc, pgt_residency, mapped_cnt = 0;
296	struct hl_device *hdev = ctx->hdev;
297	struct hl_mmu_properties *mmu_prop;
298	u64 real_virt_addr, real_phys_addr;
299	struct hl_mmu_funcs *mmu_funcs;
300	u32 real_page_size, npages;
301	bool is_dram_addr;
302
303
304	if (hdev->mmu_disable)
305		return 0;
306
307	is_dram_addr = hl_is_dram_va(hdev, virt_addr);
308	mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr);
309
310	pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
311	mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
312
313	rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size,
314							is_dram_addr);
315	if (rc)
316		return rc;
317
318	/*
319	 * Verify that the phys and virt addresses are aligned with the
320	 * MMU page size (in dram this means checking the address and MMU
321	 * after scrambling)
322	 */
323	if ((is_dram_addr &&
324			((hdev->asic_funcs->scramble_addr(hdev, phys_addr) &
325				(mmu_prop->page_size - 1)) ||
326			(hdev->asic_funcs->scramble_addr(hdev, virt_addr) &
327				(mmu_prop->page_size - 1)))) ||
328		(!is_dram_addr && ((phys_addr & (real_page_size - 1)) ||
329				(virt_addr & (real_page_size - 1)))))
330		dev_crit(hdev->dev,
331			"Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size",
332			phys_addr, virt_addr, real_page_size);
333
334	npages = page_size / real_page_size;
335	real_virt_addr = virt_addr;
336	real_phys_addr = phys_addr;
337
338	for (i = 0 ; i < npages ; i++) {
339		rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size,
340										is_dram_addr);
341		if (rc)
342			goto err;
343
344		real_virt_addr += real_page_size;
345		real_phys_addr += real_page_size;
346		mapped_cnt++;
347	}
348
349	if (flush_pte)
350		mmu_funcs->flush(ctx);
351
352	trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte);
353
354	return 0;
355
356err:
357	real_virt_addr = virt_addr;
358	for (i = 0 ; i < mapped_cnt ; i++) {
359		if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr))
360			dev_warn_ratelimited(hdev->dev,
361				"failed to unmap va: 0x%llx\n", real_virt_addr);
362
363		real_virt_addr += real_page_size;
364	}
365
366	mmu_funcs->flush(ctx);
367
368	return rc;
369}
370
371/*
372 * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page
373 *                         for mapping contiguous physical memory
374 *
375 * @ctx: pointer to the context structure
376 * @virt_addr: virt addr to map from
377 * @phys_addr: phys addr to map to
378 * @size: size to map
379 *
380 */
381int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
382					u64 phys_addr, u32 size)
383{
384	struct hl_device *hdev = ctx->hdev;
385	struct asic_fixed_properties *prop = &hdev->asic_prop;
386	u64 curr_va, curr_pa;
387	u32 page_size;
388	bool flush_pte;
389	int rc = 0, off;
390
391	if (hl_mem_area_inside_range(virt_addr, size,
392			prop->dmmu.start_addr, prop->dmmu.end_addr))
393		page_size = prop->dmmu.page_size;
394	else if (hl_mem_area_inside_range(virt_addr, size,
395			prop->pmmu.start_addr, prop->pmmu.end_addr))
396		page_size = prop->pmmu.page_size;
397	else if (hl_mem_area_inside_range(virt_addr, size,
398			prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
399		page_size = prop->pmmu_huge.page_size;
400	else
401		return -EINVAL;
402
403	for (off = 0 ; off < size ; off += page_size) {
404		curr_va = virt_addr + off;
405		curr_pa = phys_addr + off;
406		flush_pte = (off + page_size) >= size;
407		rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size,
408								flush_pte);
409		if (rc) {
410			dev_err(hdev->dev,
411				"Map failed for va 0x%llx to pa 0x%llx\n",
412				curr_va, curr_pa);
413			/* last mapping failed so don't try to unmap it - reduce off by page_size */
414			off -= page_size;
415			goto unmap;
416		}
417	}
418
419	return rc;
420
421unmap:
422	for (; off >= 0 ; off -= page_size) {
423		curr_va = virt_addr + off;
424		flush_pte = (off - (s32) page_size) < 0;
425		if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte))
426			dev_warn_ratelimited(hdev->dev,
427				"failed to unmap va 0x%llx\n", curr_va);
428	}
429
430	return rc;
431}
432
433/*
434 * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page
435 *                           for unmapping contiguous physical memory
436 *
437 * @ctx: pointer to the context structure
438 * @virt_addr: virt addr to unmap
439 * @size: size to unmap
440 *
441 */
442int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size)
443{
444	struct hl_device *hdev = ctx->hdev;
445	struct asic_fixed_properties *prop = &hdev->asic_prop;
446	u64 curr_va;
447	u32 page_size;
448	bool flush_pte;
449	int rc = 0, off;
450
451	if (hl_mem_area_inside_range(virt_addr, size,
452			prop->dmmu.start_addr, prop->dmmu.end_addr))
453		page_size = prop->dmmu.page_size;
454	else if (hl_mem_area_inside_range(virt_addr, size,
455			prop->pmmu.start_addr, prop->pmmu.end_addr))
456		page_size = prop->pmmu.page_size;
457	else if (hl_mem_area_inside_range(virt_addr, size,
458			prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr))
459		page_size = prop->pmmu_huge.page_size;
460	else
461		return -EINVAL;
462
463	for (off = 0 ; off < size ; off += page_size) {
464		curr_va = virt_addr + off;
465		flush_pte = (off + page_size) >= size;
466		rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte);
467		if (rc)
468			dev_warn_ratelimited(hdev->dev,
469				"Unmap failed for va 0x%llx\n", curr_va);
470	}
471
472	return rc;
473}
474
475static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr,
476						struct hl_mmu_hop_info *hops,
477						u64 *phys_addr)
478{
479	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
480	u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr;
481	struct hl_mmu_properties *mmu_prop;
482
483	/* last hop holds the phys address and flags */
484	if (hops->unscrambled_paddr)
485		tmp_phys_addr = hops->unscrambled_paddr;
486	else
487		tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val;
488
489	if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE)
490		mmu_prop = &prop->pmmu_huge;
491	else if (hops->range_type == HL_VA_RANGE_TYPE_HOST)
492		mmu_prop = &prop->pmmu;
493	else /* HL_VA_RANGE_TYPE_DRAM */
494		mmu_prop = &prop->dmmu;
495
496	if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) &&
497			!is_power_of_2(prop->dram_page_size)) {
498		u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr,
499			page_id, page_start;
500		u32 page_off;
501
502		/*
503		 * Bit arithmetic cannot be used for non power of two page
504		 * sizes. In addition, since bit arithmetic is not used,
505		 * we cannot ignore dram base. All that shall be considered.
506		 */
507
508		dram_page_size = prop->dram_page_size;
509		dram_base = prop->dram_base_address;
510		abs_phys_addr = tmp_phys_addr - dram_base;
511		abs_virt_addr = virt_addr - dram_base;
512		page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size);
513		page_start = page_id * dram_page_size;
514		div_u64_rem(abs_virt_addr, dram_page_size, &page_off);
515
516		*phys_addr = page_start + page_off + dram_base;
517	} else {
518		/*
519		 * find the correct hop shift field in hl_mmu_properties
520		 * structure in order to determine the right masks
521		 * for the page offset.
522		 */
523		hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1];
524		offset_mask = (1ull << hop_shift) - 1;
525		addr_mask = ~(offset_mask);
526		*phys_addr = (tmp_phys_addr & addr_mask) |
527				(virt_addr & offset_mask);
528	}
529}
530
531int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr)
532{
533	struct hl_mmu_hop_info hops;
534	int rc;
535
536	memset(&hops, 0, sizeof(hops));
537
538	rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops);
539	if (rc)
540		return rc;
541
542	hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops,  phys_addr);
543
544	return 0;
545}
546
547int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
548			struct hl_mmu_hop_info *hops)
549{
550	struct hl_device *hdev = ctx->hdev;
551	struct asic_fixed_properties *prop;
552	struct hl_mmu_properties *mmu_prop;
553	struct hl_mmu_funcs *mmu_funcs;
554	int pgt_residency, rc;
555	bool is_dram_addr;
556
557	if (hdev->mmu_disable)
558		return -EOPNOTSUPP;
559
560	prop = &hdev->asic_prop;
561	hops->scrambled_vaddr = virt_addr;      /* assume no scrambling */
562
563	is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size,
564								prop->dmmu.start_addr,
565								prop->dmmu.end_addr);
566
567	/* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */
568	mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu;
569	pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT;
570	mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr);
571
572	mutex_lock(&hdev->mmu_lock);
573	rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops);
574	mutex_unlock(&hdev->mmu_lock);
575
576	if (rc)
577		return rc;
578
579	/* add page offset to physical address */
580	if (hops->unscrambled_paddr)
581		hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr);
582
583	return 0;
584}
585
586int hl_mmu_if_set_funcs(struct hl_device *hdev)
587{
588	if (hdev->mmu_disable)
589		return 0;
590
591	switch (hdev->asic_type) {
592	case ASIC_GOYA:
593	case ASIC_GAUDI:
594	case ASIC_GAUDI_SEC:
595		hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]);
596		break;
597	case ASIC_GAUDI2:
598	case ASIC_GAUDI2B:
599	case ASIC_GAUDI2C:
600		/* MMUs in Gaudi2 are always host resident */
601		hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]);
602		break;
603	default:
604		dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
605			hdev->asic_type);
606		return -EOPNOTSUPP;
607	}
608
609	return 0;
610}
611
612/**
613 * hl_mmu_scramble_addr() - The generic mmu address scrambling routine.
614 * @hdev: pointer to device data.
615 * @addr: The address to scramble.
616 *
617 * Return: The scrambled address.
618 */
619u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr)
620{
621	return addr;
622}
623
624/**
625 * hl_mmu_descramble_addr() - The generic mmu address descrambling
626 * routine.
627 * @hdev: pointer to device data.
628 * @addr: The address to descramble.
629 *
630 * Return: The un-scrambled address.
631 */
632u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr)
633{
634	return addr;
635}
636
637int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags)
638{
639	int rc;
640
641	rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags);
642	if (rc)
643		dev_err_ratelimited(hdev->dev,
644				"%s cache invalidation failed, rc=%d\n",
645				flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", rc);
646
647	return rc;
648}
649
650int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
651					u32 flags, u32 asid, u64 va, u64 size)
652{
653	int rc;
654
655	rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags,
656								asid, va, size);
657	if (rc)
658		dev_err_ratelimited(hdev->dev,
659				"%s cache range invalidation failed: va=%#llx, size=%llu, rc=%d",
660				flags == VM_TYPE_USERPTR ? "PMMU" : "HMMU", va, size, rc);
661
662	return rc;
663}
664
665static void hl_mmu_prefetch_work_function(struct work_struct *work)
666{
667	struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, prefetch_work);
668	struct hl_ctx *ctx = pfw->ctx;
669	struct hl_device *hdev = ctx->hdev;
670
671	if (!hl_device_operational(hdev, NULL))
672		goto put_ctx;
673
674	mutex_lock(&hdev->mmu_lock);
675
676	hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size);
677
678	mutex_unlock(&hdev->mmu_lock);
679
680put_ctx:
681	/*
682	 * context was taken in the common mmu prefetch function- see comment there about
683	 * context handling.
684	 */
685	hl_ctx_put(ctx);
686	kfree(pfw);
687}
688
689int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size)
690{
691	struct hl_prefetch_work *handle_prefetch_work;
692
693	handle_prefetch_work = kmalloc(sizeof(*handle_prefetch_work), GFP_KERNEL);
694	if (!handle_prefetch_work)
695		return -ENOMEM;
696
697	INIT_WORK(&handle_prefetch_work->prefetch_work, hl_mmu_prefetch_work_function);
698	handle_prefetch_work->ctx = ctx;
699	handle_prefetch_work->va = va;
700	handle_prefetch_work->size = size;
701	handle_prefetch_work->flags = flags;
702	handle_prefetch_work->asid = asid;
703
704	/*
705	 * as actual prefetch is done in a WQ we must get the context (and put it
706	 * at the end of the work function)
707	 */
708	hl_ctx_get(ctx);
709	queue_work(ctx->hdev->prefetch_wq, &handle_prefetch_work->prefetch_work);
710
711	return 0;
712}
713
714u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte)
715{
716	return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX;
717}
718
719/**
720 * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP
721 * @ctx: pointer to the context structure to initialize.
722 * @mmu_prop: MMU properties.
723 * @hop_idx: HOP index.
724 * @hop_addr: HOP address.
725 * @virt_addr: virtual address for the translation.
726 *
727 * @return the matching PTE value on success, otherwise U64_MAX.
728 */
729u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
730					u8 hop_idx, u64 hop_addr, u64 virt_addr)
731{
732	u64 mask, shift;
733
734	if (hop_idx >= mmu_prop->num_hops) {
735		dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx);
736		return U64_MAX;
737	}
738
739	shift = mmu_prop->hop_shifts[hop_idx];
740	mask = mmu_prop->hop_masks[hop_idx];
741
742	return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift);
743}
744
745static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool,
746					struct gen_pool_chunk *chunk,
747					void *data)
748{
749	struct hl_device *hdev = data;
750
751	hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1,
752					(void *)chunk->start_addr, chunk->phys_addr);
753}
754
755void hl_mmu_hr_flush(struct hl_ctx *ctx)
756{
757	/* a flush operation requires memory barrier */
758	mb();
759}
760
761/**
762 * hl_mmu_hr_pool_destroy() - destroy genpool
763 * @hdev: habanalabs device structure.
764 * @hr_priv: MMU HR private data.
765 * @hop_table_size: HOP table size.
766 *
767 * This function does the following:
768 * - free entries allocated for shadow HOP0
769 * - free pool chunks
770 * - free pool
771 */
772static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv,
773					u32 hop_table_size)
774{
775	struct asic_fixed_properties *prop = &hdev->asic_prop;
776	struct gen_pool **pool = &hr_priv->mmu_pgt_pool;
777	struct pgt_info *hop0_pgt;
778	int asid;
779
780	if (ZERO_OR_NULL_PTR(*pool))
781		return;
782
783	/* Free the Fixed allocation of HOPs0 */
784	if (hr_priv->mmu_asid_hop0) {
785		for (asid = 0 ; asid < prop->max_asid ; asid++) {
786			hop0_pgt = &hr_priv->mmu_asid_hop0[asid];
787			if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr))
788				continue;
789
790			gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size);
791		}
792	}
793
794	gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev);
795	gen_pool_destroy(*pool);
796
797	/* Make sure that if we arrive here again without init was called we
798	 * won't cause kernel panic. This can happen for example if we fail
799	 * during hard reset code at certain points
800	 */
801	*pool = NULL;
802}
803
804/**
805 * hl_mmu_hr_init() - initialize the MMU module.
806 * @hdev: habanalabs device structure.
807 * @hr_priv: MMU HR private data.
808 * @hop_table_size: HOP table size.
809 * @pgt_size: memory size allocated for the page table
810 *
811 * @return 0 on success otherwise non-zero error code
812 *
813 * This function does the following:
814 * - Create a pool of pages for pgt_infos.
815 * - Create a shadow table for pgt
816 */
817int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
818			u64 pgt_size)
819{
820	struct asic_fixed_properties *prop = &hdev->asic_prop;
821	size_t pool_chunk_size = SZ_4M;
822	struct pgt_info *hop0_pgt;
823	dma_addr_t dma_addr;
824	u64 virt_addr;
825	int i, rc;
826
827	/*
828	 * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is
829	 * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment.
830	 * This way we can call "DMA alloc align" according to dma_alloc granularity and supply
831	 * allocations with higher-order alignment restrictions
832	 */
833	hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1);
834	if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) {
835		dev_err(hdev->dev, "Failed to create hr page pool\n");
836		return -ENOMEM;
837	}
838
839	hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL);
840	if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
841		dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n");
842		rc = -ENOMEM;
843		goto destroy_mmu_pgt_pool;
844	}
845
846	for (i = 0 ; i < pgt_size ; i += pool_chunk_size) {
847		virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size,
848									&dma_addr,
849									GFP_KERNEL | __GFP_ZERO);
850		if (ZERO_OR_NULL_PTR(virt_addr)) {
851			dev_err(hdev->dev,
852				"Failed to allocate memory for host-resident page pool\n");
853			rc = -ENOMEM;
854			goto destroy_mmu_pgt_pool;
855		}
856
857		rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr,
858						pool_chunk_size, -1);
859		if (rc) {
860			dev_err(hdev->dev, "Failed to fill host-resident page pool\n");
861			goto destroy_mmu_pgt_pool;
862		}
863	}
864
865	for (i = 0 ; i < prop->max_asid ; i++) {
866		hop0_pgt = &hr_priv->mmu_asid_hop0[i];
867		hop0_pgt->virt_addr = (uintptr_t)
868					gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
869								hop_table_size,
870								(dma_addr_t *) &hop0_pgt->phys_addr,
871								hop_table_size);
872		if (!hop0_pgt->virt_addr) {
873			dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n");
874			rc = -ENOMEM;
875			goto destroy_mmu_pgt_pool;
876		}
877	}
878
879	/* MMU H/W init will be done in device hw_init() */
880
881	return 0;
882
883destroy_mmu_pgt_pool:
884	hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
885	if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0))
886		kvfree(hr_priv->mmu_asid_hop0);
887
888	return rc;
889}
890
891/**
892 * hl_mmu_hr_fini() - release the MMU module.
893 * @hdev: habanalabs device structure.
894 * @hr_priv: MMU host resident private info.
895 * @hop_table_size: HOP table size
896 *
897 * This function does the following:
898 * - Disable MMU in H/W.
899 * - Free the pgt_infos pool.
900 *
901 * All contexts should be freed before calling this function.
902 */
903void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size)
904{
905	/* MMU H/W fini was already done in device hw_fini() */
906
907	hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size);
908
909	if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) {
910		kvfree(hr_priv->mmu_asid_hop0);
911
912		/* Make sure that if we arrive here again without init was
913		 * called we won't cause kernel panic. This can happen for
914		 * example if we fail during hard reset code at certain points
915		 */
916		hr_priv->mmu_asid_hop0 = NULL;
917	}
918}
919
920/**
921 * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash
922 * @pgt_info: page table info structure.
923 * @hr_priv: MMU HR private data.
924 * @hop_table_size: HOP table size.
925 */
926void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
927					u32 hop_table_size)
928{
929	gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size);
930	hash_del(&pgt_info->node);
931	kfree(pgt_info);
932}
933
934/**
935 * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr
936 * @ctx: pointer to the context structure
937 * @pgt: pgt_info for the HOP hosting the PTE
938 * @phys_pte_addr: phys address of the PTE
939 * @hop_table_size: HOP table size
940 *
941 * @return PTE virtual address
942 *
943 * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr
944 * by adding the PTE offset.
945 */
946u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt,
947							u64 phys_pte_addr, u32 hop_table_size)
948{
949	u64 page_mask = (hop_table_size - 1);
950	u64 pte_offset = phys_pte_addr & page_mask;
951
952	return pgt->virt_addr + pte_offset;
953}
954
955/**
956 * hl_mmu_hr_write_pte() - write HR PTE
957 * @ctx: pointer to the context structure
958 * @pgt_info: HOP's page table info structure
959 * @phys_pte_addr: phys PTE address
960 * @val: raw PTE data
961 * @hop_table_size: HOP table size
962 */
963void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
964								u64 val, u32 hop_table_size)
965{
966	/*
967	 * The value to write is the phys address of the next hop +
968	 * flags at the 12 LSBs.
969	 */
970	u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size);
971
972	*((u64 *) (uintptr_t) virt_addr) = val;
973}
974
975/**
976 * hl_mmu_hr_clear_pte() - clear HR PTE
977 * @ctx: pointer to the context structure
978 * @pgt_info: HOP's page table info structure
979 * @phys_pte_addr: phys PTE address
980 * @hop_table_size: HOP table size
981 */
982void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
983						u32 hop_table_size)
984{
985	/* no need to transform the value to physical address */
986	hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size);
987}
988
989/**
990 * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs)
991 * @ctx: pointer to the context structure
992 * @pgt_info: HOP's page table info structure
993 * @hr_priv: HR MMU private info
994 * @hop_table_size: HOP table size
995 *
996 * @return number of PTEs still in the HOP
997 */
998int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info,
999						struct hl_mmu_hr_priv *hr_priv,
1000						u32 hop_table_size)
1001{
1002	int num_of_ptes_left;
1003
1004	pgt_info->num_of_ptes--;
1005
1006	/*
1007	 * Need to save the number of ptes left because free_hop might free
1008	 * the pgt_info
1009	 */
1010	num_of_ptes_left = pgt_info->num_of_ptes;
1011	if (!num_of_ptes_left)
1012		hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size);
1013
1014	return num_of_ptes_left;
1015}
1016
1017/**
1018 * hl_mmu_hr_get_pte() - increase PGT PTE count
1019 * @ctx: pointer to the context structure
1020 * @hr_func: host resident functions
1021 * @phys_hop_addr: HOP phys address
1022 */
1023void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr)
1024{
1025	hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++;
1026}
1027
1028/**
1029 * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP
1030 * @ctx: pointer to the context structure.
1031 * @hr_func: host resident functions.
1032 * @curr_pte: current PTE value.
1033 *
1034 * @return pgt_info structure on success, otherwise NULL.
1035 */
1036struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
1037							struct hl_hr_mmu_funcs *hr_func,
1038							u64 curr_pte)
1039{
1040	u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1041
1042	if (next_hop_phys_addr == ULLONG_MAX)
1043		return NULL;
1044
1045	return hr_func->get_pgt_info(ctx, next_hop_phys_addr);
1046}
1047
1048/**
1049 * hl_mmu_hr_alloc_hop() - allocate HOP
1050 * @ctx: pointer to the context structure.
1051 * @hr_priv: host resident private info structure.
1052 * @hr_func: host resident functions.
1053 * @mmu_prop: MMU properties.
1054 *
1055 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1056 */
1057struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
1058							struct hl_hr_mmu_funcs *hr_func,
1059							struct hl_mmu_properties *mmu_prop)
1060{
1061	struct hl_device *hdev = ctx->hdev;
1062	struct pgt_info *pgt_info;
1063	dma_addr_t phys_addr;
1064	void *virt_addr;
1065	int i, retry = 1;
1066
1067	pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL);
1068	if (!pgt_info)
1069		return NULL;
1070
1071	for (i = 0; i <= retry; i++) {
1072		virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool,
1073							mmu_prop->hop_table_size,
1074							&phys_addr,
1075							mmu_prop->hop_table_size);
1076		if (virt_addr)
1077			break;
1078
1079		/* No memory in pool - get some and try again */
1080		virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr,
1081							GFP_KERNEL | __GFP_ZERO);
1082		if (ZERO_OR_NULL_PTR(virt_addr))
1083			break;
1084
1085		if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr,
1086								phys_addr, SZ_2M, -1)) {
1087			hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr);
1088			virt_addr = NULL;
1089			break;
1090		}
1091	}
1092
1093	if (ZERO_OR_NULL_PTR(virt_addr)) {
1094		dev_err(hdev->dev, "failed to allocate page\n");
1095		goto pool_alloc_err;
1096	}
1097
1098	pgt_info->phys_addr = phys_addr;
1099	pgt_info->shadow_addr = (unsigned long) NULL;
1100	pgt_info->virt_addr = (unsigned long)virt_addr;
1101	pgt_info->ctx = ctx;
1102	pgt_info->num_of_ptes = 0;
1103	hr_func->add_pgt_info(ctx, pgt_info, phys_addr);
1104
1105	return pgt_info;
1106
1107pool_alloc_err:
1108	kfree(pgt_info);
1109
1110	return NULL;
1111}
1112
1113/**
1114 * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist
1115 * @ctx: pointer to the context structure.
1116 * @hr_priv: host resident private info structure.
1117 * @hr_func: host resident functions.
1118 * @mmu_prop: MMU properties.
1119 * @curr_pte: current PTE value.
1120 * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false).
1121 *
1122 * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL.
1123 */
1124struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
1125							struct hl_mmu_hr_priv *hr_priv,
1126							struct hl_hr_mmu_funcs *hr_func,
1127							struct hl_mmu_properties *mmu_prop,
1128							u64 curr_pte, bool *is_new_hop)
1129{
1130	u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte);
1131
1132	if (hop_addr != ULLONG_MAX)
1133		return hr_func->get_pgt_info(ctx, hop_addr);
1134
1135	*is_new_hop = true;
1136	return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop);
1137}
1138
1139/**
1140 * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping)
1141 * @ctx: pointer to the context structure.
1142 * @virt_addr: the virt address for which to get info.
1143 * @hops: HOPs info structure.
1144 * @hr_func: host resident functions.
1145 *
1146 * @return 0 on success, otherwise non 0 error code..
1147 */
1148int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
1149								struct hl_hr_mmu_funcs *hr_func)
1150{
1151	/* using 6 HOPs as this is the maximum number of HOPs */
1152	struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL };
1153	struct hl_device *hdev = ctx->hdev;
1154	struct hl_mmu_properties *mmu_prop;
1155	int rc, i, used_hops;
1156	bool is_huge;
1157
1158	rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge);
1159	if (rc)
1160		return rc;
1161
1162	used_hops = mmu_prop->num_hops;
1163
1164	/* huge pages use one less hop */
1165	if (is_huge)
1166		used_hops--;
1167
1168	hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr);
1169
1170	for (i = 0 ; i < used_hops ; i++) {
1171		if (i == 0)
1172			hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx);
1173		else
1174			hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func,
1175								hops->hop_info[i - 1].hop_pte_val);
1176
1177		if (!hops_pgt_info[i])
1178			return -EFAULT;
1179
1180		hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr;
1181		hops->hop_info[i].hop_pte_addr =
1182				hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i,
1183								hops->hop_info[i].hop_addr,
1184								hops->scrambled_vaddr);
1185		hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t)
1186						hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i],
1187								hops->hop_info[i].hop_pte_addr,
1188								mmu_prop->hop_table_size);
1189
1190		if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK))
1191			return -EFAULT;
1192
1193		if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask)
1194			break;
1195	}
1196
1197	/* if passed over all hops then no last hop was found */
1198	if (i == mmu_prop->num_hops)
1199		return -EFAULT;
1200
1201	if (hops->scrambled_vaddr != virt_addr)
1202		hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr
1203				(hdev, hops->hop_info[i].hop_pte_val);
1204	else
1205		hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val;
1206
1207	hops->used_hops = i + 1;
1208
1209	return 0;
1210}
1211
1212