1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8#include <uapi/drm/habanalabs_accel.h>
9#include "habanalabs.h"
10#include "../include/hw_ip/mmu/mmu_general.h"
11
12#include <linux/uaccess.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15#include <linux/pci-p2pdma.h>
16
17MODULE_IMPORT_NS(DMA_BUF);
18
19#define HL_MMU_DEBUG	0
20
21/* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
22#define DRAM_POOL_PAGE_SIZE	SZ_8M
23
24#define MEM_HANDLE_INVALID	ULONG_MAX
25
26static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
27			struct hl_mem_in *args, u64 *handle);
28
29static int set_alloc_page_size(struct hl_device *hdev, struct hl_mem_in *args, u32 *page_size)
30{
31	struct asic_fixed_properties *prop = &hdev->asic_prop;
32	u64 psize;
33
34	/*
35	 * for ASIC that supports setting the allocation page size by user we will address
36	 * user's choice only if it is not 0 (as 0 means taking the default page size)
37	 */
38	if (prop->supports_user_set_page_size && args->alloc.page_size) {
39		psize = args->alloc.page_size;
40
41		if (!is_power_of_2(psize)) {
42			dev_err(hdev->dev, "user page size (%#llx) is not power of 2\n", psize);
43			return -EINVAL;
44		}
45	} else {
46		psize = prop->device_mem_alloc_default_page_size;
47	}
48
49	*page_size = psize;
50
51	return 0;
52}
53
54/*
55 * The va ranges in context object contain a list with the available chunks of
56 * device virtual memory.
57 * There is one range for host allocations and one for DRAM allocations.
58 *
59 * On initialization each range contains one chunk of all of its available
60 * virtual range which is a half of the total device virtual range.
61 *
62 * On each mapping of physical pages, a suitable virtual range chunk (with a
63 * minimum size) is selected from the list. If the chunk size equals the
64 * requested size, the chunk is returned. Otherwise, the chunk is split into
65 * two chunks - one to return as result and a remainder to stay in the list.
66 *
67 * On each Unmapping of a virtual address, the relevant virtual chunk is
68 * returned to the list. The chunk is added to the list and if its edges match
69 * the edges of the adjacent chunks (means a contiguous chunk can be created),
70 * the chunks are merged.
71 *
72 * On finish, the list is checked to have only one chunk of all the relevant
73 * virtual range (which is a half of the device total virtual range).
74 * If not (means not all mappings were unmapped), a warning is printed.
75 */
76
77/*
78 * alloc_device_memory() - allocate device memory.
79 * @ctx: pointer to the context structure.
80 * @args: host parameters containing the requested size.
81 * @ret_handle: result handle.
82 *
83 * This function does the following:
84 * - Allocate the requested size rounded up to 'dram_page_size' pages.
85 * - Return unique handle for later map/unmap/free.
86 */
87static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
88				u32 *ret_handle)
89{
90	struct hl_device *hdev = ctx->hdev;
91	struct hl_vm *vm = &hdev->vm;
92	struct hl_vm_phys_pg_pack *phys_pg_pack;
93	u64 paddr = 0, total_size, num_pgs, i;
94	u32 num_curr_pgs, page_size;
95	bool contiguous;
96	int handle, rc;
97
98	num_curr_pgs = 0;
99
100	rc = set_alloc_page_size(hdev, args, &page_size);
101	if (rc)
102		return rc;
103
104	num_pgs = DIV_ROUND_UP_ULL(args->alloc.mem_size, page_size);
105	total_size = num_pgs * page_size;
106
107	if (!total_size) {
108		dev_err(hdev->dev, "Cannot allocate 0 bytes\n");
109		return -EINVAL;
110	}
111
112	contiguous = args->flags & HL_MEM_CONTIGUOUS;
113
114	if (contiguous) {
115		if (is_power_of_2(page_size))
116			paddr = (uintptr_t) gen_pool_dma_alloc_align(vm->dram_pg_pool,
117								     total_size, NULL, page_size);
118		else
119			paddr = gen_pool_alloc(vm->dram_pg_pool, total_size);
120		if (!paddr) {
121			dev_err(hdev->dev,
122				"Cannot allocate %llu contiguous pages with total size of %llu\n",
123				num_pgs, total_size);
124			return -ENOMEM;
125		}
126	}
127
128	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
129	if (!phys_pg_pack) {
130		rc = -ENOMEM;
131		goto pages_pack_err;
132	}
133
134	phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
135	phys_pg_pack->asid = ctx->asid;
136	phys_pg_pack->npages = num_pgs;
137	phys_pg_pack->page_size = page_size;
138	phys_pg_pack->total_size = total_size;
139	phys_pg_pack->flags = args->flags;
140	phys_pg_pack->contiguous = contiguous;
141
142	phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
143	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
144		rc = -ENOMEM;
145		goto pages_arr_err;
146	}
147
148	if (phys_pg_pack->contiguous) {
149		for (i = 0 ; i < num_pgs ; i++)
150			phys_pg_pack->pages[i] = paddr + i * page_size;
151	} else {
152		for (i = 0 ; i < num_pgs ; i++) {
153			if (is_power_of_2(page_size))
154				phys_pg_pack->pages[i] =
155					(uintptr_t)gen_pool_dma_alloc_align(vm->dram_pg_pool,
156									    page_size, NULL,
157									    page_size);
158			else
159				phys_pg_pack->pages[i] = gen_pool_alloc(vm->dram_pg_pool,
160									page_size);
161
162			if (!phys_pg_pack->pages[i]) {
163				dev_err(hdev->dev,
164					"Cannot allocate device memory (out of memory)\n");
165				rc = -ENOMEM;
166				goto page_err;
167			}
168
169			num_curr_pgs++;
170		}
171	}
172
173	spin_lock(&vm->idr_lock);
174	handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
175				GFP_ATOMIC);
176	spin_unlock(&vm->idr_lock);
177
178	if (handle < 0) {
179		dev_err(hdev->dev, "Failed to get handle for page\n");
180		rc = -EFAULT;
181		goto idr_err;
182	}
183
184	for (i = 0 ; i < num_pgs ; i++)
185		kref_get(&vm->dram_pg_pool_refcount);
186
187	phys_pg_pack->handle = handle;
188
189	atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
190	atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);
191
192	*ret_handle = handle;
193
194	return 0;
195
196idr_err:
197page_err:
198	if (!phys_pg_pack->contiguous)
199		for (i = 0 ; i < num_curr_pgs ; i++)
200			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
201					page_size);
202
203	kvfree(phys_pg_pack->pages);
204pages_arr_err:
205	kfree(phys_pg_pack);
206pages_pack_err:
207	if (contiguous)
208		gen_pool_free(vm->dram_pg_pool, paddr, total_size);
209
210	return rc;
211}
212
213/**
214 * dma_map_host_va() - DMA mapping of the given host virtual address.
215 * @hdev: habanalabs device structure.
216 * @addr: the host virtual address of the memory area.
217 * @size: the size of the memory area.
218 * @p_userptr: pointer to result userptr structure.
219 *
220 * This function does the following:
221 * - Allocate userptr structure.
222 * - Pin the given host memory using the userptr structure.
223 * - Perform DMA mapping to have the DMA addresses of the pages.
224 */
225static int dma_map_host_va(struct hl_device *hdev, u64 addr, u64 size,
226				struct hl_userptr **p_userptr)
227{
228	struct hl_userptr *userptr;
229	int rc;
230
231	userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
232	if (!userptr) {
233		rc = -ENOMEM;
234		goto userptr_err;
235	}
236
237	rc = hl_pin_host_memory(hdev, addr, size, userptr);
238	if (rc)
239		goto pin_err;
240
241	userptr->dma_mapped = true;
242	userptr->dir = DMA_BIDIRECTIONAL;
243	userptr->vm_type = VM_TYPE_USERPTR;
244
245	*p_userptr = userptr;
246
247	rc = hdev->asic_funcs->asic_dma_map_sgtable(hdev, userptr->sgt, DMA_BIDIRECTIONAL);
248	if (rc) {
249		dev_err(hdev->dev, "failed to map sgt with DMA region\n");
250		goto dma_map_err;
251	}
252
253	return 0;
254
255dma_map_err:
256	hl_unpin_host_memory(hdev, userptr);
257pin_err:
258	kfree(userptr);
259userptr_err:
260
261	return rc;
262}
263
264/**
265 * dma_unmap_host_va() - DMA unmapping of the given host virtual address.
266 * @hdev: habanalabs device structure.
267 * @userptr: userptr to free.
268 *
269 * This function does the following:
270 * - Unpins the physical pages.
271 * - Frees the userptr structure.
272 */
273static void dma_unmap_host_va(struct hl_device *hdev,
274				struct hl_userptr *userptr)
275{
276	hl_unpin_host_memory(hdev, userptr);
277	kfree(userptr);
278}
279
280/**
281 * dram_pg_pool_do_release() - free DRAM pages pool
282 * @ref: pointer to reference object.
283 *
284 * This function does the following:
285 * - Frees the idr structure of physical pages handles.
286 * - Frees the generic pool of DRAM physical pages.
287 */
288static void dram_pg_pool_do_release(struct kref *ref)
289{
290	struct hl_vm *vm = container_of(ref, struct hl_vm,
291			dram_pg_pool_refcount);
292
293	/*
294	 * free the idr here as only here we know for sure that there are no
295	 * allocated physical pages and hence there are no handles in use
296	 */
297	idr_destroy(&vm->phys_pg_pack_handles);
298	gen_pool_destroy(vm->dram_pg_pool);
299}
300
301/**
302 * free_phys_pg_pack() - free physical page pack.
303 * @hdev: habanalabs device structure.
304 * @phys_pg_pack: physical page pack to free.
305 *
306 * This function does the following:
307 * - For DRAM memory only
308 *   - iterate over the pack, free each physical block structure by
309 *     returning it to the general pool.
310 * - Free the hl_vm_phys_pg_pack structure.
311 */
312static void free_phys_pg_pack(struct hl_device *hdev,
313				struct hl_vm_phys_pg_pack *phys_pg_pack)
314{
315	struct hl_vm *vm = &hdev->vm;
316	u64 i;
317
318	if (phys_pg_pack->created_from_userptr)
319		goto end;
320
321	if (phys_pg_pack->contiguous) {
322		gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
323			phys_pg_pack->total_size);
324
325		for (i = 0; i < phys_pg_pack->npages ; i++)
326			kref_put(&vm->dram_pg_pool_refcount,
327				dram_pg_pool_do_release);
328	} else {
329		for (i = 0 ; i < phys_pg_pack->npages ; i++) {
330			gen_pool_free(vm->dram_pg_pool,
331				phys_pg_pack->pages[i],
332				phys_pg_pack->page_size);
333			kref_put(&vm->dram_pg_pool_refcount,
334				dram_pg_pool_do_release);
335		}
336	}
337
338end:
339	kvfree(phys_pg_pack->pages);
340	kfree(phys_pg_pack);
341
342	return;
343}
344
345/**
346 * free_device_memory() - free device memory.
347 * @ctx: pointer to the context structure.
348 * @args: host parameters containing the requested size.
349 *
350 * This function does the following:
351 * - Free the device memory related to the given handle.
352 */
353static int free_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args)
354{
355	struct hl_device *hdev = ctx->hdev;
356	struct hl_vm *vm = &hdev->vm;
357	struct hl_vm_phys_pg_pack *phys_pg_pack;
358	u32 handle = args->free.handle;
359
360	spin_lock(&vm->idr_lock);
361	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
362	if (!phys_pg_pack) {
363		spin_unlock(&vm->idr_lock);
364		dev_err(hdev->dev, "free device memory failed, no match for handle %u\n", handle);
365		return -EINVAL;
366	}
367
368	if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
369		spin_unlock(&vm->idr_lock);
370		dev_err(hdev->dev, "handle %u is mapped, cannot free\n", handle);
371		return -EINVAL;
372	}
373
374	/* must remove from idr before the freeing of the physical pages as the refcount of the pool
375	 * is also the trigger of the idr destroy
376	 */
377	idr_remove(&vm->phys_pg_pack_handles, handle);
378	spin_unlock(&vm->idr_lock);
379
380	atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
381	atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);
382
383	free_phys_pg_pack(hdev, phys_pg_pack);
384
385	return 0;
386}
387
388/**
389 * clear_va_list_locked() - free virtual addresses list.
390 * @hdev: habanalabs device structure.
391 * @va_list: list of virtual addresses to free.
392 *
393 * This function does the following:
394 * - Iterate over the list and free each virtual addresses block.
395 *
396 * This function should be called only when va_list lock is taken.
397 */
398static void clear_va_list_locked(struct hl_device *hdev,
399		struct list_head *va_list)
400{
401	struct hl_vm_va_block *va_block, *tmp;
402
403	list_for_each_entry_safe(va_block, tmp, va_list, node) {
404		list_del(&va_block->node);
405		kfree(va_block);
406	}
407}
408
409/**
410 * print_va_list_locked() - print virtual addresses list.
411 * @hdev: habanalabs device structure.
412 * @va_list: list of virtual addresses to print.
413 *
414 * This function does the following:
415 * - Iterate over the list and print each virtual addresses block.
416 *
417 * This function should be called only when va_list lock is taken.
418 */
419static void print_va_list_locked(struct hl_device *hdev,
420		struct list_head *va_list)
421{
422#if HL_MMU_DEBUG
423	struct hl_vm_va_block *va_block;
424
425	dev_dbg(hdev->dev, "print va list:\n");
426
427	list_for_each_entry(va_block, va_list, node)
428		dev_dbg(hdev->dev,
429			"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
430			va_block->start, va_block->end, va_block->size);
431#endif
432}
433
434/**
435 * merge_va_blocks_locked() - merge a virtual block if possible.
436 * @hdev: pointer to the habanalabs device structure.
437 * @va_list: pointer to the virtual addresses block list.
438 * @va_block: virtual block to merge with adjacent blocks.
439 *
440 * This function does the following:
441 * - Merge the given blocks with the adjacent blocks if their virtual ranges
442 *   create a contiguous virtual range.
443 *
444 * This Function should be called only when va_list lock is taken.
445 */
446static void merge_va_blocks_locked(struct hl_device *hdev,
447		struct list_head *va_list, struct hl_vm_va_block *va_block)
448{
449	struct hl_vm_va_block *prev, *next;
450
451	prev = list_prev_entry(va_block, node);
452	if (&prev->node != va_list && prev->end + 1 == va_block->start) {
453		prev->end = va_block->end;
454		prev->size = prev->end - prev->start + 1;
455		list_del(&va_block->node);
456		kfree(va_block);
457		va_block = prev;
458	}
459
460	next = list_next_entry(va_block, node);
461	if (&next->node != va_list && va_block->end + 1 == next->start) {
462		next->start = va_block->start;
463		next->size = next->end - next->start + 1;
464		list_del(&va_block->node);
465		kfree(va_block);
466	}
467}
468
469/**
470 * add_va_block_locked() - add a virtual block to the virtual addresses list.
471 * @hdev: pointer to the habanalabs device structure.
472 * @va_list: pointer to the virtual addresses block list.
473 * @start: start virtual address.
474 * @end: end virtual address.
475 *
476 * This function does the following:
477 * - Add the given block to the virtual blocks list and merge with other blocks
478 *   if a contiguous virtual block can be created.
479 *
480 * This Function should be called only when va_list lock is taken.
481 */
482static int add_va_block_locked(struct hl_device *hdev,
483		struct list_head *va_list, u64 start, u64 end)
484{
485	struct hl_vm_va_block *va_block, *res = NULL;
486	u64 size = end - start + 1;
487
488	print_va_list_locked(hdev, va_list);
489
490	list_for_each_entry(va_block, va_list, node) {
491		/* TODO: remove upon matureness */
492		if (hl_mem_area_crosses_range(start, size, va_block->start,
493				va_block->end)) {
494			dev_err(hdev->dev,
495				"block crossing ranges at start 0x%llx, end 0x%llx\n",
496				va_block->start, va_block->end);
497			return -EINVAL;
498		}
499
500		if (va_block->end < start)
501			res = va_block;
502	}
503
504	va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
505	if (!va_block)
506		return -ENOMEM;
507
508	va_block->start = start;
509	va_block->end = end;
510	va_block->size = size;
511
512	if (!res)
513		list_add(&va_block->node, va_list);
514	else
515		list_add(&va_block->node, &res->node);
516
517	merge_va_blocks_locked(hdev, va_list, va_block);
518
519	print_va_list_locked(hdev, va_list);
520
521	return 0;
522}
523
524/**
525 * add_va_block() - wrapper for add_va_block_locked.
526 * @hdev: pointer to the habanalabs device structure.
527 * @va_range: pointer to the virtual addresses range object.
528 * @start: start virtual address.
529 * @end: end virtual address.
530 *
531 * This function does the following:
532 * - Takes the list lock and calls add_va_block_locked.
533 */
534static inline int add_va_block(struct hl_device *hdev,
535		struct hl_va_range *va_range, u64 start, u64 end)
536{
537	int rc;
538
539	mutex_lock(&va_range->lock);
540	rc = add_va_block_locked(hdev, &va_range->list, start, end);
541	mutex_unlock(&va_range->lock);
542
543	return rc;
544}
545
546/**
547 * is_hint_crossing_range() - check if hint address crossing specified reserved.
548 * @range_type: virtual space range type.
549 * @start_addr: start virtual address.
550 * @size: block size.
551 * @prop: asic properties structure to retrieve reserved ranges from.
552 */
553static inline bool is_hint_crossing_range(enum hl_va_range_type range_type,
554		u64 start_addr, u32 size, struct asic_fixed_properties *prop) {
555	bool range_cross;
556
557	if (range_type == HL_VA_RANGE_TYPE_DRAM)
558		range_cross =
559			hl_mem_area_crosses_range(start_addr, size,
560			prop->hints_dram_reserved_va_range.start_addr,
561			prop->hints_dram_reserved_va_range.end_addr);
562	else if (range_type == HL_VA_RANGE_TYPE_HOST)
563		range_cross =
564			hl_mem_area_crosses_range(start_addr,	size,
565			prop->hints_host_reserved_va_range.start_addr,
566			prop->hints_host_reserved_va_range.end_addr);
567	else
568		range_cross =
569			hl_mem_area_crosses_range(start_addr, size,
570			prop->hints_host_hpage_reserved_va_range.start_addr,
571			prop->hints_host_hpage_reserved_va_range.end_addr);
572
573	return range_cross;
574}
575
576/**
577 * get_va_block() - get a virtual block for the given size and alignment.
578 *
579 * @hdev: pointer to the habanalabs device structure.
580 * @va_range: pointer to the virtual addresses range.
581 * @size: requested block size.
582 * @hint_addr: hint for requested address by the user.
583 * @va_block_align: required alignment of the virtual block start address.
584 * @range_type: va range type (host, dram)
585 * @flags: additional memory flags, currently only uses HL_MEM_FORCE_HINT
586 *
587 * This function does the following:
588 * - Iterate on the virtual block list to find a suitable virtual block for the
589 *   given size, hint address and alignment.
590 * - Reserve the requested block and update the list.
591 * - Return the start address of the virtual block.
592 */
593static u64 get_va_block(struct hl_device *hdev,
594				struct hl_va_range *va_range,
595				u64 size, u64 hint_addr, u32 va_block_align,
596				enum hl_va_range_type range_type,
597				u32 flags)
598{
599	struct hl_vm_va_block *va_block, *new_va_block = NULL;
600	struct asic_fixed_properties *prop = &hdev->asic_prop;
601	u64 tmp_hint_addr, valid_start, valid_size, prev_start, prev_end,
602		align_mask, reserved_valid_start = 0, reserved_valid_size = 0,
603		dram_hint_mask = prop->dram_hints_align_mask;
604	bool add_prev = false;
605	bool is_align_pow_2  = is_power_of_2(va_range->page_size);
606	bool is_hint_dram_addr = hl_is_dram_va(hdev, hint_addr);
607	bool force_hint = flags & HL_MEM_FORCE_HINT;
608	int rc;
609
610	if (is_align_pow_2)
611		align_mask = ~((u64)va_block_align - 1);
612	else
613		/*
614		 * with non-power-of-2 range we work only with page granularity
615		 * and the start address is page aligned,
616		 * so no need for alignment checking.
617		 */
618		size = DIV_ROUND_UP_ULL(size, va_range->page_size) *
619							va_range->page_size;
620
621	tmp_hint_addr = hint_addr & ~dram_hint_mask;
622
623	/* Check if we need to ignore hint address */
624	if ((is_align_pow_2 && (hint_addr & (va_block_align - 1))) ||
625			(!is_align_pow_2 && is_hint_dram_addr &&
626			do_div(tmp_hint_addr, va_range->page_size))) {
627
628		if (force_hint) {
629			/* Hint must be respected, so here we just fail */
630			dev_err(hdev->dev,
631				"Hint address 0x%llx is not page aligned - cannot be respected\n",
632				hint_addr);
633			return 0;
634		}
635
636		dev_dbg(hdev->dev,
637			"Hint address 0x%llx will be ignored because it is not aligned\n",
638			hint_addr);
639		hint_addr = 0;
640	}
641
642	mutex_lock(&va_range->lock);
643
644	print_va_list_locked(hdev, &va_range->list);
645
646	list_for_each_entry(va_block, &va_range->list, node) {
647		/* Calc the first possible aligned addr */
648		valid_start = va_block->start;
649
650		if (is_align_pow_2 && (valid_start & (va_block_align - 1))) {
651			valid_start &= align_mask;
652			valid_start += va_block_align;
653			if (valid_start > va_block->end)
654				continue;
655		}
656
657		valid_size = va_block->end - valid_start + 1;
658		if (valid_size < size)
659			continue;
660
661		/*
662		 * In case hint address is 0, and hints_range_reservation
663		 * property enabled, then avoid allocating va blocks from the
664		 * range reserved for hint addresses
665		 */
666		if (prop->hints_range_reservation && !hint_addr)
667			if (is_hint_crossing_range(range_type, valid_start,
668					size, prop))
669				continue;
670
671		/* Pick the minimal length block which has the required size */
672		if (!new_va_block || (valid_size < reserved_valid_size)) {
673			new_va_block = va_block;
674			reserved_valid_start = valid_start;
675			reserved_valid_size = valid_size;
676		}
677
678		if (hint_addr && hint_addr >= valid_start &&
679					(hint_addr + size) <= va_block->end) {
680			new_va_block = va_block;
681			reserved_valid_start = hint_addr;
682			reserved_valid_size = valid_size;
683			break;
684		}
685	}
686
687	if (!new_va_block) {
688		dev_err(hdev->dev, "no available va block for size %llu\n",
689								size);
690		goto out;
691	}
692
693	if (force_hint && reserved_valid_start != hint_addr) {
694		/* Hint address must be respected. If we are here - this means
695		 * we could not respect it.
696		 */
697		dev_err(hdev->dev,
698			"Hint address 0x%llx could not be respected\n",
699			hint_addr);
700		reserved_valid_start = 0;
701		goto out;
702	}
703
704	/*
705	 * Check if there is some leftover range due to reserving the new
706	 * va block, then return it to the main virtual addresses list.
707	 */
708	if (reserved_valid_start > new_va_block->start) {
709		prev_start = new_va_block->start;
710		prev_end = reserved_valid_start - 1;
711
712		new_va_block->start = reserved_valid_start;
713		new_va_block->size = reserved_valid_size;
714
715		add_prev = true;
716	}
717
718	if (new_va_block->size > size) {
719		new_va_block->start += size;
720		new_va_block->size = new_va_block->end - new_va_block->start + 1;
721	} else {
722		list_del(&new_va_block->node);
723		kfree(new_va_block);
724	}
725
726	if (add_prev) {
727		rc = add_va_block_locked(hdev, &va_range->list, prev_start, prev_end);
728		if (rc) {
729			reserved_valid_start = 0;
730			goto out;
731		}
732	}
733
734	print_va_list_locked(hdev, &va_range->list);
735out:
736	mutex_unlock(&va_range->lock);
737
738	return reserved_valid_start;
739}
740
741/*
742 * hl_reserve_va_block() - reserve a virtual block of a given size.
743 * @hdev: pointer to the habanalabs device structure.
744 * @ctx: current context
745 * @type: virtual addresses range type.
746 * @size: requested block size.
747 * @alignment: required alignment in bytes of the virtual block start address,
748 *             0 means no alignment.
749 *
750 * This function does the following:
751 * - Iterate on the virtual block list to find a suitable virtual block for the
752 *   given size and alignment.
753 * - Reserve the requested block and update the list.
754 * - Return the start address of the virtual block.
755 */
756u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
757		enum hl_va_range_type type, u64 size, u32 alignment)
758{
759	return get_va_block(hdev, ctx->va_range[type], size, 0,
760			max(alignment, ctx->va_range[type]->page_size),
761			type, 0);
762}
763
764/**
765 * hl_get_va_range_type() - get va_range type for the given address and size.
766 * @ctx: context to fetch va_range from.
767 * @address: the start address of the area we want to validate.
768 * @size: the size in bytes of the area we want to validate.
769 * @type: returned va_range type.
770 *
771 * Return: true if the area is inside a valid range, false otherwise.
772 */
773static int hl_get_va_range_type(struct hl_ctx *ctx, u64 address, u64 size,
774			enum hl_va_range_type *type)
775{
776	int i;
777
778	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX; i++) {
779		if (hl_mem_area_inside_range(address, size,
780				ctx->va_range[i]->start_addr,
781				ctx->va_range[i]->end_addr)) {
782			*type = i;
783			return 0;
784		}
785	}
786
787	return -EINVAL;
788}
789
790/**
791 * hl_unreserve_va_block() - wrapper for add_va_block to unreserve a va block.
792 * @hdev: pointer to the habanalabs device structure
793 * @ctx: pointer to the context structure.
794 * @start_addr: start virtual address.
795 * @size: number of bytes to unreserve.
796 *
797 * This function does the following:
798 * - Takes the list lock and calls add_va_block_locked.
799 */
800int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
801		u64 start_addr, u64 size)
802{
803	enum hl_va_range_type type;
804	int rc;
805
806	rc = hl_get_va_range_type(ctx, start_addr, size, &type);
807	if (rc) {
808		dev_err(hdev->dev,
809			"cannot find va_range for va %#llx size %llu",
810			start_addr, size);
811		return rc;
812	}
813
814	rc = add_va_block(hdev, ctx->va_range[type], start_addr,
815						start_addr + size - 1);
816	if (rc)
817		dev_warn(hdev->dev,
818			"add va block failed for vaddr: 0x%llx\n", start_addr);
819
820	return rc;
821}
822
823/**
824 * init_phys_pg_pack_from_userptr() - initialize physical page pack from host
825 *                                    memory
826 * @ctx: pointer to the context structure.
827 * @userptr: userptr to initialize from.
828 * @pphys_pg_pack: result pointer.
829 * @force_regular_page: tell the function to ignore huge page optimization,
830 *                      even if possible. Needed for cases where the device VA
831 *                      is allocated before we know the composition of the
832 *                      physical pages
833 *
834 * This function does the following:
835 * - Pin the physical pages related to the given virtual block.
836 * - Create a physical page pack from the physical pages related to the given
837 *   virtual block.
838 */
839static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
840				struct hl_userptr *userptr,
841				struct hl_vm_phys_pg_pack **pphys_pg_pack,
842				bool force_regular_page)
843{
844	u32 npages, page_size = PAGE_SIZE,
845		huge_page_size = ctx->hdev->asic_prop.pmmu_huge.page_size;
846	u32 pgs_in_huge_page = huge_page_size >> __ffs(page_size);
847	struct hl_vm_phys_pg_pack *phys_pg_pack;
848	bool first = true, is_huge_page_opt;
849	u64 page_mask, total_npages;
850	struct scatterlist *sg;
851	dma_addr_t dma_addr;
852	int rc, i, j;
853
854	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
855	if (!phys_pg_pack)
856		return -ENOMEM;
857
858	phys_pg_pack->vm_type = userptr->vm_type;
859	phys_pg_pack->created_from_userptr = true;
860	phys_pg_pack->asid = ctx->asid;
861	atomic_set(&phys_pg_pack->mapping_cnt, 1);
862
863	is_huge_page_opt = (force_regular_page ? false : true);
864
865	/* Only if all dma_addrs are aligned to 2MB and their
866	 * sizes is at least 2MB, we can use huge page mapping.
867	 * We limit the 2MB optimization to this condition,
868	 * since later on we acquire the related VA range as one
869	 * consecutive block.
870	 */
871	total_npages = 0;
872	for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
873		npages = hl_get_sg_info(sg, &dma_addr);
874
875		total_npages += npages;
876
877		if ((npages % pgs_in_huge_page) ||
878					(dma_addr & (huge_page_size - 1)))
879			is_huge_page_opt = false;
880	}
881
882	if (is_huge_page_opt) {
883		page_size = huge_page_size;
884		do_div(total_npages, pgs_in_huge_page);
885	}
886
887	page_mask = ~(((u64) page_size) - 1);
888
889	phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
890						GFP_KERNEL);
891	if (ZERO_OR_NULL_PTR(phys_pg_pack->pages)) {
892		rc = -ENOMEM;
893		goto page_pack_arr_mem_err;
894	}
895
896	phys_pg_pack->npages = total_npages;
897	phys_pg_pack->page_size = page_size;
898	phys_pg_pack->total_size = total_npages * page_size;
899
900	j = 0;
901	for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
902		npages = hl_get_sg_info(sg, &dma_addr);
903
904		/* align down to physical page size and save the offset */
905		if (first) {
906			first = false;
907			phys_pg_pack->offset = dma_addr & (page_size - 1);
908			dma_addr &= page_mask;
909		}
910
911		while (npages) {
912			phys_pg_pack->pages[j++] = dma_addr;
913			dma_addr += page_size;
914
915			if (is_huge_page_opt)
916				npages -= pgs_in_huge_page;
917			else
918				npages--;
919		}
920	}
921
922	*pphys_pg_pack = phys_pg_pack;
923
924	return 0;
925
926page_pack_arr_mem_err:
927	kfree(phys_pg_pack);
928
929	return rc;
930}
931
932/**
933 * map_phys_pg_pack() - maps the physical page pack..
934 * @ctx: pointer to the context structure.
935 * @vaddr: start address of the virtual area to map from.
936 * @phys_pg_pack: the pack of physical pages to map to.
937 *
938 * This function does the following:
939 * - Maps each chunk of virtual memory to matching physical chunk.
940 * - Stores number of successful mappings in the given argument.
941 * - Returns 0 on success, error code otherwise.
942 */
943static int map_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
944				struct hl_vm_phys_pg_pack *phys_pg_pack)
945{
946	struct hl_device *hdev = ctx->hdev;
947	u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
948	u32 page_size = phys_pg_pack->page_size;
949	int rc = 0;
950	bool is_host_addr;
951
952	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
953		paddr = phys_pg_pack->pages[i];
954
955		rc = hl_mmu_map_page(ctx, next_vaddr, paddr, page_size,
956				(i + 1) == phys_pg_pack->npages);
957		if (rc) {
958			dev_err(hdev->dev,
959				"map failed for handle %u, npages: %llu, mapped: %llu",
960				phys_pg_pack->handle, phys_pg_pack->npages,
961				mapped_pg_cnt);
962			goto err;
963		}
964
965		mapped_pg_cnt++;
966		next_vaddr += page_size;
967	}
968
969	return 0;
970
971err:
972	is_host_addr = !hl_is_dram_va(hdev, vaddr);
973
974	next_vaddr = vaddr;
975	for (i = 0 ; i < mapped_pg_cnt ; i++) {
976		if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
977					(i + 1) == mapped_pg_cnt))
978			dev_warn_ratelimited(hdev->dev,
979				"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
980					phys_pg_pack->handle, next_vaddr,
981					phys_pg_pack->pages[i], page_size);
982
983		next_vaddr += page_size;
984
985		/*
986		 * unmapping on Palladium can be really long, so avoid a CPU
987		 * soft lockup bug by sleeping a little between unmapping pages
988		 *
989		 * In addition, on host num of pages could be huge,
990		 * because page size could be 4KB, so when unmapping host
991		 * pages sleep every 32K pages to avoid soft lockup
992		 */
993		if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
994			usleep_range(50, 200);
995	}
996
997	return rc;
998}
999
1000/**
1001 * unmap_phys_pg_pack() - unmaps the physical page pack.
1002 * @ctx: pointer to the context structure.
1003 * @vaddr: start address of the virtual area to unmap.
1004 * @phys_pg_pack: the pack of physical pages to unmap.
1005 */
1006static void unmap_phys_pg_pack(struct hl_ctx *ctx, u64 vaddr,
1007				struct hl_vm_phys_pg_pack *phys_pg_pack)
1008{
1009	struct hl_device *hdev = ctx->hdev;
1010	u64 next_vaddr, i;
1011	bool is_host_addr;
1012	u32 page_size;
1013
1014	is_host_addr = !hl_is_dram_va(hdev, vaddr);
1015	page_size = phys_pg_pack->page_size;
1016	next_vaddr = vaddr;
1017
1018	for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1019		if (hl_mmu_unmap_page(ctx, next_vaddr, page_size,
1020				       (i + 1) == phys_pg_pack->npages))
1021			dev_warn_ratelimited(hdev->dev,
1022			"unmap failed for vaddr: 0x%llx\n", next_vaddr);
1023
1024		/*
1025		 * unmapping on Palladium can be really long, so avoid a CPU
1026		 * soft lockup bug by sleeping a little between unmapping pages
1027		 *
1028		 * In addition, on host num of pages could be huge,
1029		 * because page size could be 4KB, so when unmapping host
1030		 * pages sleep every 32K pages to avoid soft lockup
1031		 */
1032		if (hdev->pldm || (is_host_addr && (i & 0x7FFF) == 0))
1033			usleep_range(50, 200);
1034	}
1035}
1036
1037/**
1038 * map_device_va() - map the given memory.
1039 * @ctx: pointer to the context structure.
1040 * @args: host parameters with handle/host virtual address.
1041 * @device_addr: pointer to result device virtual address.
1042 *
1043 * This function does the following:
1044 * - If given a physical device memory handle, map to a device virtual block
1045 *   and return the start address of this block.
1046 * - If given a host virtual address and size, find the related physical pages,
1047 *   map a device virtual block to this pages and return the start address of
1048 *   this block.
1049 */
1050static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args, u64 *device_addr)
1051{
1052	struct hl_vm_phys_pg_pack *phys_pg_pack;
1053	enum hl_va_range_type va_range_type = 0;
1054	struct hl_device *hdev = ctx->hdev;
1055	struct hl_userptr *userptr = NULL;
1056	u32 handle = 0, va_block_align;
1057	struct hl_vm_hash_node *hnode;
1058	struct hl_vm *vm = &hdev->vm;
1059	struct hl_va_range *va_range;
1060	bool is_userptr, do_prefetch;
1061	u64 ret_vaddr, hint_addr;
1062	enum vm_type *vm_type;
1063	int rc;
1064
1065	/* set map flags */
1066	is_userptr = args->flags & HL_MEM_USERPTR;
1067	do_prefetch = hdev->supports_mmu_prefetch && (args->flags & HL_MEM_PREFETCH);
1068
1069	/* Assume failure */
1070	*device_addr = 0;
1071
1072	if (is_userptr) {
1073		u64 addr = args->map_host.host_virt_addr,
1074			size = args->map_host.mem_size;
1075		u32 page_size = hdev->asic_prop.pmmu.page_size,
1076			huge_page_size = hdev->asic_prop.pmmu_huge.page_size;
1077
1078		rc = dma_map_host_va(hdev, addr, size, &userptr);
1079		if (rc)
1080			return rc;
1081
1082		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
1083				&phys_pg_pack, false);
1084		if (rc) {
1085			dev_err(hdev->dev,
1086				"unable to init page pack for vaddr 0x%llx\n",
1087				addr);
1088			goto init_page_pack_err;
1089		}
1090
1091		vm_type = (enum vm_type *) userptr;
1092		hint_addr = args->map_host.hint_addr;
1093		handle = phys_pg_pack->handle;
1094
1095		/* get required alignment */
1096		if (phys_pg_pack->page_size == page_size) {
1097			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1098			va_range_type = HL_VA_RANGE_TYPE_HOST;
1099			/*
1100			 * huge page alignment may be needed in case of regular
1101			 * page mapping, depending on the host VA alignment
1102			 */
1103			if (addr & (huge_page_size - 1))
1104				va_block_align = page_size;
1105			else
1106				va_block_align = huge_page_size;
1107		} else {
1108			/*
1109			 * huge page alignment is needed in case of huge page
1110			 * mapping
1111			 */
1112			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1113			va_range_type = HL_VA_RANGE_TYPE_HOST_HUGE;
1114			va_block_align = huge_page_size;
1115		}
1116	} else {
1117		handle = lower_32_bits(args->map_device.handle);
1118
1119		spin_lock(&vm->idr_lock);
1120		phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
1121		if (!phys_pg_pack) {
1122			spin_unlock(&vm->idr_lock);
1123			dev_err(hdev->dev,
1124				"no match for handle %u\n", handle);
1125			return -EINVAL;
1126		}
1127
1128		/* increment now to avoid freeing device memory while mapping */
1129		atomic_inc(&phys_pg_pack->mapping_cnt);
1130
1131		spin_unlock(&vm->idr_lock);
1132
1133		vm_type = (enum vm_type *) phys_pg_pack;
1134
1135		hint_addr = args->map_device.hint_addr;
1136
1137		/* DRAM VA alignment is the same as the MMU page size */
1138		va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1139		va_range_type = HL_VA_RANGE_TYPE_DRAM;
1140		va_block_align = hdev->asic_prop.dmmu.page_size;
1141	}
1142
1143	/*
1144	 * relevant for mapping device physical memory only, as host memory is
1145	 * implicitly shared
1146	 */
1147	if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
1148			phys_pg_pack->asid != ctx->asid) {
1149		dev_err(hdev->dev,
1150			"Failed to map memory, handle %u is not shared\n",
1151			handle);
1152		rc = -EPERM;
1153		goto shared_err;
1154	}
1155
1156	hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
1157	if (!hnode) {
1158		rc = -ENOMEM;
1159		goto hnode_err;
1160	}
1161
1162	if (hint_addr && phys_pg_pack->offset) {
1163		if (args->flags & HL_MEM_FORCE_HINT) {
1164			/* Fail if hint must be respected but it can't be */
1165			dev_err(hdev->dev,
1166				"Hint address 0x%llx cannot be respected because source memory is not aligned 0x%x\n",
1167				hint_addr, phys_pg_pack->offset);
1168			rc = -EINVAL;
1169			goto va_block_err;
1170		}
1171		dev_dbg(hdev->dev,
1172			"Hint address 0x%llx will be ignored because source memory is not aligned 0x%x\n",
1173			hint_addr, phys_pg_pack->offset);
1174	}
1175
1176	ret_vaddr = get_va_block(hdev, va_range, phys_pg_pack->total_size,
1177					hint_addr, va_block_align,
1178					va_range_type, args->flags);
1179	if (!ret_vaddr) {
1180		dev_err(hdev->dev, "no available va block for handle %u\n",
1181				handle);
1182		rc = -ENOMEM;
1183		goto va_block_err;
1184	}
1185
1186	mutex_lock(&hdev->mmu_lock);
1187
1188	rc = map_phys_pg_pack(ctx, ret_vaddr, phys_pg_pack);
1189	if (rc) {
1190		dev_err(hdev->dev, "mapping page pack failed for handle %u\n", handle);
1191		mutex_unlock(&hdev->mmu_lock);
1192		goto map_err;
1193	}
1194
1195	rc = hl_mmu_invalidate_cache_range(hdev, false, *vm_type | MMU_OP_SKIP_LOW_CACHE_INV,
1196				ctx->asid, ret_vaddr, phys_pg_pack->total_size);
1197	mutex_unlock(&hdev->mmu_lock);
1198	if (rc)
1199		goto map_err;
1200
1201	/*
1202	 * prefetch is done upon user's request. it is performed in WQ as and so can
1203	 * be outside the MMU lock. the operation itself is already protected by the mmu lock
1204	 */
1205	if (do_prefetch) {
1206		rc = hl_mmu_prefetch_cache_range(ctx, *vm_type, ctx->asid, ret_vaddr,
1207							phys_pg_pack->total_size);
1208		if (rc)
1209			goto map_err;
1210	}
1211
1212	ret_vaddr += phys_pg_pack->offset;
1213
1214	hnode->ptr = vm_type;
1215	hnode->vaddr = ret_vaddr;
1216	hnode->handle = is_userptr ? MEM_HANDLE_INVALID : handle;
1217
1218	mutex_lock(&ctx->mem_hash_lock);
1219	hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
1220	mutex_unlock(&ctx->mem_hash_lock);
1221
1222	*device_addr = ret_vaddr;
1223
1224	if (is_userptr)
1225		free_phys_pg_pack(hdev, phys_pg_pack);
1226
1227	return rc;
1228
1229map_err:
1230	if (add_va_block(hdev, va_range, ret_vaddr,
1231				ret_vaddr + phys_pg_pack->total_size - 1))
1232		dev_warn(hdev->dev,
1233			"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
1234				handle, ret_vaddr);
1235
1236va_block_err:
1237	kfree(hnode);
1238hnode_err:
1239shared_err:
1240	atomic_dec(&phys_pg_pack->mapping_cnt);
1241	if (is_userptr)
1242		free_phys_pg_pack(hdev, phys_pg_pack);
1243init_page_pack_err:
1244	if (is_userptr)
1245		dma_unmap_host_va(hdev, userptr);
1246
1247	return rc;
1248}
1249
1250/* Should be called while the context's mem_hash_lock is taken */
1251static struct hl_vm_hash_node *get_vm_hash_node_locked(struct hl_ctx *ctx, u64 vaddr)
1252{
1253	struct hl_vm_hash_node *hnode;
1254
1255	hash_for_each_possible(ctx->mem_hash, hnode, node, vaddr)
1256		if (vaddr == hnode->vaddr)
1257			return hnode;
1258
1259	return NULL;
1260}
1261
1262/**
1263 * unmap_device_va() - unmap the given device virtual address.
1264 * @ctx: pointer to the context structure.
1265 * @args: host parameters with device virtual address to unmap.
1266 * @ctx_free: true if in context free flow, false otherwise.
1267 *
1268 * This function does the following:
1269 * - unmap the physical pages related to the given virtual address.
1270 * - return the device virtual block to the virtual block list.
1271 */
1272static int unmap_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
1273				bool ctx_free)
1274{
1275	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
1276	u64 vaddr = args->unmap.device_virt_addr;
1277	struct asic_fixed_properties *prop;
1278	struct hl_device *hdev = ctx->hdev;
1279	struct hl_userptr *userptr = NULL;
1280	struct hl_vm_hash_node *hnode;
1281	struct hl_va_range *va_range;
1282	enum vm_type *vm_type;
1283	bool is_userptr;
1284	int rc = 0;
1285
1286	prop = &hdev->asic_prop;
1287
1288	/* protect from double entrance */
1289	mutex_lock(&ctx->mem_hash_lock);
1290	hnode = get_vm_hash_node_locked(ctx, vaddr);
1291	if (!hnode) {
1292		mutex_unlock(&ctx->mem_hash_lock);
1293		dev_err(hdev->dev, "unmap failed, no mem hnode for vaddr 0x%llx\n", vaddr);
1294		return -EINVAL;
1295	}
1296
1297	if (hnode->export_cnt) {
1298		mutex_unlock(&ctx->mem_hash_lock);
1299		dev_err(hdev->dev, "failed to unmap %#llx, memory is exported\n", vaddr);
1300		return -EINVAL;
1301	}
1302
1303	hash_del(&hnode->node);
1304	mutex_unlock(&ctx->mem_hash_lock);
1305
1306	vm_type = hnode->ptr;
1307
1308	if (*vm_type == VM_TYPE_USERPTR) {
1309		is_userptr = true;
1310		userptr = hnode->ptr;
1311
1312		rc = init_phys_pg_pack_from_userptr(ctx, userptr, &phys_pg_pack,
1313							false);
1314		if (rc) {
1315			dev_err(hdev->dev,
1316				"unable to init page pack for vaddr 0x%llx\n",
1317				vaddr);
1318			goto vm_type_err;
1319		}
1320
1321		if (phys_pg_pack->page_size ==
1322					hdev->asic_prop.pmmu.page_size)
1323			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST];
1324		else
1325			va_range = ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE];
1326	} else if (*vm_type == VM_TYPE_PHYS_PACK) {
1327		is_userptr = false;
1328		va_range = ctx->va_range[HL_VA_RANGE_TYPE_DRAM];
1329		phys_pg_pack = hnode->ptr;
1330	} else {
1331		dev_warn(hdev->dev,
1332			"unmap failed, unknown vm desc for vaddr 0x%llx\n",
1333				vaddr);
1334		rc = -EFAULT;
1335		goto vm_type_err;
1336	}
1337
1338	if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
1339		dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
1340		rc = -EINVAL;
1341		goto mapping_cnt_err;
1342	}
1343
1344	if (!is_userptr && !is_power_of_2(phys_pg_pack->page_size))
1345		vaddr = prop->dram_base_address +
1346			DIV_ROUND_DOWN_ULL(vaddr - prop->dram_base_address,
1347						phys_pg_pack->page_size) *
1348							phys_pg_pack->page_size;
1349	else
1350		vaddr &= ~(((u64) phys_pg_pack->page_size) - 1);
1351
1352	mutex_lock(&hdev->mmu_lock);
1353
1354	unmap_phys_pg_pack(ctx, vaddr, phys_pg_pack);
1355
1356	/*
1357	 * During context free this function is called in a loop to clean all
1358	 * the context mappings. Hence the cache invalidation can be called once
1359	 * at the loop end rather than for each iteration
1360	 */
1361	if (!ctx_free)
1362		rc = hl_mmu_invalidate_cache_range(hdev, true, *vm_type, ctx->asid, vaddr,
1363							phys_pg_pack->total_size);
1364
1365	mutex_unlock(&hdev->mmu_lock);
1366
1367	/*
1368	 * If the context is closing we don't need to check for the MMU cache
1369	 * invalidation return code and update the VA free list as in this flow
1370	 * we invalidate the MMU cache outside of this unmap function and the VA
1371	 * free list will be freed anyway.
1372	 */
1373	if (!ctx_free) {
1374		int tmp_rc;
1375
1376		tmp_rc = add_va_block(hdev, va_range, vaddr,
1377					vaddr + phys_pg_pack->total_size - 1);
1378		if (tmp_rc) {
1379			dev_warn(hdev->dev,
1380					"add va block failed for vaddr: 0x%llx\n",
1381					vaddr);
1382			if (!rc)
1383				rc = tmp_rc;
1384		}
1385	}
1386
1387	atomic_dec(&phys_pg_pack->mapping_cnt);
1388	kfree(hnode);
1389
1390	if (is_userptr) {
1391		free_phys_pg_pack(hdev, phys_pg_pack);
1392		dma_unmap_host_va(hdev, userptr);
1393	}
1394
1395	return rc;
1396
1397mapping_cnt_err:
1398	if (is_userptr)
1399		free_phys_pg_pack(hdev, phys_pg_pack);
1400vm_type_err:
1401	mutex_lock(&ctx->mem_hash_lock);
1402	hash_add(ctx->mem_hash, &hnode->node, vaddr);
1403	mutex_unlock(&ctx->mem_hash_lock);
1404
1405	return rc;
1406}
1407
1408static int map_block(struct hl_device *hdev, u64 address, u64 *handle, u32 *size)
1409{
1410	u32 block_id;
1411	int rc;
1412
1413	*handle = 0;
1414	if (size)
1415		*size = 0;
1416
1417	rc = hdev->asic_funcs->get_hw_block_id(hdev, address, size, &block_id);
1418	if (rc)
1419		return rc;
1420
1421	*handle = block_id | HL_MMAP_TYPE_BLOCK;
1422	*handle <<= PAGE_SHIFT;
1423
1424	return 0;
1425}
1426
1427static void hw_block_vm_close(struct vm_area_struct *vma)
1428{
1429	struct hl_vm_hw_block_list_node *lnode =
1430		(struct hl_vm_hw_block_list_node *) vma->vm_private_data;
1431	struct hl_ctx *ctx = lnode->ctx;
1432	long new_mmap_size;
1433
1434	new_mmap_size = lnode->mapped_size - (vma->vm_end - vma->vm_start);
1435	if (new_mmap_size > 0) {
1436		lnode->mapped_size = new_mmap_size;
1437		return;
1438	}
1439
1440	mutex_lock(&ctx->hw_block_list_lock);
1441	list_del(&lnode->node);
1442	mutex_unlock(&ctx->hw_block_list_lock);
1443	hl_ctx_put(ctx);
1444	kfree(lnode);
1445	vma->vm_private_data = NULL;
1446}
1447
1448static const struct vm_operations_struct hw_block_vm_ops = {
1449	.close = hw_block_vm_close
1450};
1451
1452/**
1453 * hl_hw_block_mmap() - mmap a hw block to user.
1454 * @hpriv: pointer to the private data of the fd
1455 * @vma: pointer to vm_area_struct of the process
1456 *
1457 * Driver increments context reference for every HW block mapped in order
1458 * to prevent user from closing FD without unmapping first
1459 */
1460int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
1461{
1462	struct hl_vm_hw_block_list_node *lnode;
1463	struct hl_device *hdev = hpriv->hdev;
1464	struct hl_ctx *ctx = hpriv->ctx;
1465	u32 block_id, block_size;
1466	int rc;
1467
1468	/* We use the page offset to hold the block id and thus we need to clear
1469	 * it before doing the mmap itself
1470	 */
1471	block_id = vma->vm_pgoff;
1472	vma->vm_pgoff = 0;
1473
1474	/* Driver only allows mapping of a complete HW block */
1475	block_size = vma->vm_end - vma->vm_start;
1476
1477	if (!access_ok((void __user *) (uintptr_t) vma->vm_start, block_size)) {
1478		dev_err(hdev->dev,
1479			"user pointer is invalid - 0x%lx\n",
1480			vma->vm_start);
1481
1482		return -EINVAL;
1483	}
1484
1485	lnode = kzalloc(sizeof(*lnode), GFP_KERNEL);
1486	if (!lnode)
1487		return -ENOMEM;
1488
1489	rc = hdev->asic_funcs->hw_block_mmap(hdev, vma, block_id, block_size);
1490	if (rc) {
1491		kfree(lnode);
1492		return rc;
1493	}
1494
1495	hl_ctx_get(ctx);
1496
1497	lnode->ctx = ctx;
1498	lnode->vaddr = vma->vm_start;
1499	lnode->block_size = block_size;
1500	lnode->mapped_size = lnode->block_size;
1501	lnode->id = block_id;
1502
1503	vma->vm_private_data = lnode;
1504	vma->vm_ops = &hw_block_vm_ops;
1505
1506	mutex_lock(&ctx->hw_block_list_lock);
1507	list_add_tail(&lnode->node, &ctx->hw_block_mem_list);
1508	mutex_unlock(&ctx->hw_block_list_lock);
1509
1510	vma->vm_pgoff = block_id;
1511
1512	return 0;
1513}
1514
1515static int set_dma_sg(struct scatterlist *sg, u64 bar_address, u64 chunk_size,
1516			struct device *dev, enum dma_data_direction dir)
1517{
1518	dma_addr_t addr;
1519	int rc;
1520
1521	addr = dma_map_resource(dev, bar_address, chunk_size, dir,
1522				DMA_ATTR_SKIP_CPU_SYNC);
1523	rc = dma_mapping_error(dev, addr);
1524	if (rc)
1525		return rc;
1526
1527	sg_set_page(sg, NULL, chunk_size, 0);
1528	sg_dma_address(sg) = addr;
1529	sg_dma_len(sg) = chunk_size;
1530
1531	return 0;
1532}
1533
1534static struct sg_table *alloc_sgt_from_device_pages(struct hl_device *hdev, u64 *pages, u64 npages,
1535						u64 page_size, u64 exported_size,
1536						struct device *dev, enum dma_data_direction dir)
1537{
1538	u64 chunk_size, bar_address, dma_max_seg_size, cur_size_to_export, cur_npages;
1539	struct asic_fixed_properties *prop;
1540	int rc, i, j, nents, cur_page;
1541	struct scatterlist *sg;
1542	struct sg_table *sgt;
1543
1544	prop = &hdev->asic_prop;
1545
1546	dma_max_seg_size = dma_get_max_seg_size(dev);
1547
1548	/* We would like to align the max segment size to PAGE_SIZE, so the
1549	 * SGL will contain aligned addresses that can be easily mapped to
1550	 * an MMU
1551	 */
1552	dma_max_seg_size = ALIGN_DOWN(dma_max_seg_size, PAGE_SIZE);
1553	if (dma_max_seg_size < PAGE_SIZE) {
1554		dev_err_ratelimited(hdev->dev,
1555				"dma_max_seg_size %llu can't be smaller than PAGE_SIZE\n",
1556				dma_max_seg_size);
1557		return ERR_PTR(-EINVAL);
1558	}
1559
1560	sgt = kzalloc(sizeof(*sgt), GFP_KERNEL);
1561	if (!sgt)
1562		return ERR_PTR(-ENOMEM);
1563
1564	/* remove export size restrictions in case not explicitly defined */
1565	cur_size_to_export = exported_size ? exported_size : (npages * page_size);
1566
1567	/* If the size of each page is larger than the dma max segment size,
1568	 * then we can't combine pages and the number of entries in the SGL
1569	 * will just be the
1570	 * <number of pages> * <chunks of max segment size in each page>
1571	 */
1572	if (page_size > dma_max_seg_size) {
1573		/* we should limit number of pages according to the exported size */
1574		cur_npages = DIV_ROUND_UP_SECTOR_T(cur_size_to_export, page_size);
1575		nents = cur_npages * DIV_ROUND_UP_SECTOR_T(page_size, dma_max_seg_size);
1576	} else {
1577		cur_npages = npages;
1578
1579		/* Get number of non-contiguous chunks */
1580		for (i = 1, nents = 1, chunk_size = page_size ; i < cur_npages ; i++) {
1581			if (pages[i - 1] + page_size != pages[i] ||
1582					chunk_size + page_size > dma_max_seg_size) {
1583				nents++;
1584				chunk_size = page_size;
1585				continue;
1586			}
1587
1588			chunk_size += page_size;
1589		}
1590	}
1591
1592	rc = sg_alloc_table(sgt, nents, GFP_KERNEL | __GFP_ZERO);
1593	if (rc)
1594		goto error_free;
1595
1596	cur_page = 0;
1597
1598	if (page_size > dma_max_seg_size) {
1599		u64 size_left, cur_device_address = 0;
1600
1601		size_left = page_size;
1602
1603		/* Need to split each page into the number of chunks of
1604		 * dma_max_seg_size
1605		 */
1606		for_each_sgtable_dma_sg(sgt, sg, i) {
1607			if (size_left == page_size)
1608				cur_device_address =
1609					pages[cur_page] - prop->dram_base_address;
1610			else
1611				cur_device_address += dma_max_seg_size;
1612
1613			/* make sure not to export over exported size */
1614			chunk_size = min3(size_left, dma_max_seg_size, cur_size_to_export);
1615
1616			bar_address = hdev->dram_pci_bar_start + cur_device_address;
1617
1618			rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1619			if (rc)
1620				goto error_unmap;
1621
1622			cur_size_to_export -= chunk_size;
1623
1624			if (size_left > dma_max_seg_size) {
1625				size_left -= dma_max_seg_size;
1626			} else {
1627				cur_page++;
1628				size_left = page_size;
1629			}
1630		}
1631	} else {
1632		/* Merge pages and put them into the scatterlist */
1633		for_each_sgtable_dma_sg(sgt, sg, i) {
1634			chunk_size = page_size;
1635			for (j = cur_page + 1 ; j < cur_npages ; j++) {
1636				if (pages[j - 1] + page_size != pages[j] ||
1637						chunk_size + page_size > dma_max_seg_size)
1638					break;
1639
1640				chunk_size += page_size;
1641			}
1642
1643			bar_address = hdev->dram_pci_bar_start +
1644					(pages[cur_page] - prop->dram_base_address);
1645
1646			/* make sure not to export over exported size */
1647			chunk_size = min(chunk_size, cur_size_to_export);
1648			rc = set_dma_sg(sg, bar_address, chunk_size, dev, dir);
1649			if (rc)
1650				goto error_unmap;
1651
1652			cur_size_to_export -= chunk_size;
1653			cur_page = j;
1654		}
1655	}
1656
1657	/* Because we are not going to include a CPU list we want to have some
1658	 * chance that other users will detect this by setting the orig_nents
1659	 * to 0 and using only nents (length of DMA list) when going over the
1660	 * sgl
1661	 */
1662	sgt->orig_nents = 0;
1663
1664	return sgt;
1665
1666error_unmap:
1667	for_each_sgtable_dma_sg(sgt, sg, i) {
1668		if (!sg_dma_len(sg))
1669			continue;
1670
1671		dma_unmap_resource(dev, sg_dma_address(sg),
1672					sg_dma_len(sg), dir,
1673					DMA_ATTR_SKIP_CPU_SYNC);
1674	}
1675
1676	sg_free_table(sgt);
1677
1678error_free:
1679	kfree(sgt);
1680	return ERR_PTR(rc);
1681}
1682
1683static int hl_dmabuf_attach(struct dma_buf *dmabuf,
1684				struct dma_buf_attachment *attachment)
1685{
1686	struct hl_dmabuf_priv *hl_dmabuf;
1687	struct hl_device *hdev;
1688	int rc;
1689
1690	hl_dmabuf = dmabuf->priv;
1691	hdev = hl_dmabuf->ctx->hdev;
1692
1693	rc = pci_p2pdma_distance(hdev->pdev, attachment->dev, true);
1694
1695	if (rc < 0)
1696		attachment->peer2peer = false;
1697	return 0;
1698}
1699
1700static struct sg_table *hl_map_dmabuf(struct dma_buf_attachment *attachment,
1701					enum dma_data_direction dir)
1702{
1703	struct dma_buf *dma_buf = attachment->dmabuf;
1704	struct hl_vm_phys_pg_pack *phys_pg_pack;
1705	struct hl_dmabuf_priv *hl_dmabuf;
1706	struct hl_device *hdev;
1707	struct sg_table *sgt;
1708
1709	hl_dmabuf = dma_buf->priv;
1710	hdev = hl_dmabuf->ctx->hdev;
1711	phys_pg_pack = hl_dmabuf->phys_pg_pack;
1712
1713	if (!attachment->peer2peer) {
1714		dev_dbg(hdev->dev, "Failed to map dmabuf because p2p is disabled\n");
1715		return ERR_PTR(-EPERM);
1716	}
1717
1718	if (phys_pg_pack)
1719		sgt = alloc_sgt_from_device_pages(hdev,
1720						phys_pg_pack->pages,
1721						phys_pg_pack->npages,
1722						phys_pg_pack->page_size,
1723						phys_pg_pack->exported_size,
1724						attachment->dev,
1725						dir);
1726	else
1727		sgt = alloc_sgt_from_device_pages(hdev,
1728						&hl_dmabuf->device_address,
1729						1,
1730						hl_dmabuf->dmabuf->size,
1731						0,
1732						attachment->dev,
1733						dir);
1734
1735	if (IS_ERR(sgt))
1736		dev_err(hdev->dev, "failed (%ld) to initialize sgt for dmabuf\n", PTR_ERR(sgt));
1737
1738	return sgt;
1739}
1740
1741static void hl_unmap_dmabuf(struct dma_buf_attachment *attachment,
1742				  struct sg_table *sgt,
1743				  enum dma_data_direction dir)
1744{
1745	struct scatterlist *sg;
1746	int i;
1747
1748	/* The memory behind the dma-buf has *always* resided on the device itself, i.e. it lives
1749	 * only in the 'device' domain (after all, it maps a PCI bar address which points to the
1750	 * device memory).
1751	 *
1752	 * Therefore, it was never in the 'CPU' domain and hence, there is no need to perform
1753	 * a sync of the memory to the CPU's cache, as it never resided inside that cache.
1754	 */
1755	for_each_sgtable_dma_sg(sgt, sg, i)
1756		dma_unmap_resource(attachment->dev, sg_dma_address(sg),
1757					sg_dma_len(sg), dir,
1758					DMA_ATTR_SKIP_CPU_SYNC);
1759
1760	/* Need to restore orig_nents because sg_free_table use that field */
1761	sgt->orig_nents = sgt->nents;
1762	sg_free_table(sgt);
1763	kfree(sgt);
1764}
1765
1766static struct hl_vm_hash_node *memhash_node_export_get(struct hl_ctx *ctx, u64 addr)
1767{
1768	struct hl_device *hdev = ctx->hdev;
1769	struct hl_vm_hash_node *hnode;
1770
1771	/* get the memory handle */
1772	mutex_lock(&ctx->mem_hash_lock);
1773	hnode = get_vm_hash_node_locked(ctx, addr);
1774	if (!hnode) {
1775		mutex_unlock(&ctx->mem_hash_lock);
1776		dev_dbg(hdev->dev, "map address %#llx not found\n", addr);
1777		return ERR_PTR(-EINVAL);
1778	}
1779
1780	if (upper_32_bits(hnode->handle)) {
1781		mutex_unlock(&ctx->mem_hash_lock);
1782		dev_dbg(hdev->dev, "invalid handle %#llx for map address %#llx\n",
1783				hnode->handle, addr);
1784		return ERR_PTR(-EINVAL);
1785	}
1786
1787	/*
1788	 * node found, increase export count so this memory cannot be unmapped
1789	 * and the hash node cannot be deleted.
1790	 */
1791	hnode->export_cnt++;
1792	mutex_unlock(&ctx->mem_hash_lock);
1793
1794	return hnode;
1795}
1796
1797static void memhash_node_export_put(struct hl_ctx *ctx, struct hl_vm_hash_node *hnode)
1798{
1799	mutex_lock(&ctx->mem_hash_lock);
1800	hnode->export_cnt--;
1801	mutex_unlock(&ctx->mem_hash_lock);
1802}
1803
1804static void hl_release_dmabuf(struct dma_buf *dmabuf)
1805{
1806	struct hl_dmabuf_priv *hl_dmabuf = dmabuf->priv;
1807	struct hl_ctx *ctx;
1808
1809	if (!hl_dmabuf)
1810		return;
1811
1812	ctx = hl_dmabuf->ctx;
1813
1814	if (hl_dmabuf->memhash_hnode)
1815		memhash_node_export_put(ctx, hl_dmabuf->memhash_hnode);
1816
1817	atomic_dec(&ctx->hdev->dmabuf_export_cnt);
1818	hl_ctx_put(ctx);
1819
1820	/* Paired with get_file() in export_dmabuf() */
1821	fput(ctx->hpriv->filp);
1822
1823	kfree(hl_dmabuf);
1824}
1825
1826static const struct dma_buf_ops habanalabs_dmabuf_ops = {
1827	.attach = hl_dmabuf_attach,
1828	.map_dma_buf = hl_map_dmabuf,
1829	.unmap_dma_buf = hl_unmap_dmabuf,
1830	.release = hl_release_dmabuf,
1831};
1832
1833static int export_dmabuf(struct hl_ctx *ctx,
1834				struct hl_dmabuf_priv *hl_dmabuf,
1835				u64 total_size, int flags, int *dmabuf_fd)
1836{
1837	DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
1838	struct hl_device *hdev = ctx->hdev;
1839	int rc, fd;
1840
1841	exp_info.ops = &habanalabs_dmabuf_ops;
1842	exp_info.size = total_size;
1843	exp_info.flags = flags;
1844	exp_info.priv = hl_dmabuf;
1845
1846	hl_dmabuf->dmabuf = dma_buf_export(&exp_info);
1847	if (IS_ERR(hl_dmabuf->dmabuf)) {
1848		dev_err(hdev->dev, "failed to export dma-buf\n");
1849		return PTR_ERR(hl_dmabuf->dmabuf);
1850	}
1851
1852	fd = dma_buf_fd(hl_dmabuf->dmabuf, flags);
1853	if (fd < 0) {
1854		dev_err(hdev->dev, "failed to get a file descriptor for a dma-buf, %d\n", fd);
1855		rc = fd;
1856		goto err_dma_buf_put;
1857	}
1858
1859	hl_dmabuf->ctx = ctx;
1860	hl_ctx_get(hl_dmabuf->ctx);
1861	atomic_inc(&ctx->hdev->dmabuf_export_cnt);
1862
1863	/* Get compute device file to enforce release order, such that all exported dma-buf will be
1864	 * released first and only then the compute device.
1865	 * Paired with fput() in hl_release_dmabuf().
1866	 */
1867	get_file(ctx->hpriv->filp);
1868
1869	*dmabuf_fd = fd;
1870
1871	return 0;
1872
1873err_dma_buf_put:
1874	hl_dmabuf->dmabuf->priv = NULL;
1875	dma_buf_put(hl_dmabuf->dmabuf);
1876	return rc;
1877}
1878
1879static int validate_export_params_common(struct hl_device *hdev, u64 device_addr, u64 size)
1880{
1881	if (!IS_ALIGNED(device_addr, PAGE_SIZE)) {
1882		dev_dbg(hdev->dev,
1883			"exported device memory address 0x%llx should be aligned to 0x%lx\n",
1884			device_addr, PAGE_SIZE);
1885		return -EINVAL;
1886	}
1887
1888	if (size < PAGE_SIZE) {
1889		dev_dbg(hdev->dev,
1890			"exported device memory size %llu should be equal to or greater than %lu\n",
1891			size, PAGE_SIZE);
1892		return -EINVAL;
1893	}
1894
1895	return 0;
1896}
1897
1898static int validate_export_params_no_mmu(struct hl_device *hdev, u64 device_addr, u64 size)
1899{
1900	struct asic_fixed_properties *prop = &hdev->asic_prop;
1901	u64 bar_address;
1902	int rc;
1903
1904	rc = validate_export_params_common(hdev, device_addr, size);
1905	if (rc)
1906		return rc;
1907
1908	if (device_addr < prop->dram_user_base_address ||
1909				(device_addr + size) > prop->dram_end_address ||
1910				(device_addr + size) < device_addr) {
1911		dev_dbg(hdev->dev,
1912			"DRAM memory range 0x%llx (+0x%llx) is outside of DRAM boundaries\n",
1913			device_addr, size);
1914		return -EINVAL;
1915	}
1916
1917	bar_address = hdev->dram_pci_bar_start + (device_addr - prop->dram_base_address);
1918
1919	if ((bar_address + size) > (hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1920			(bar_address + size) < bar_address) {
1921		dev_dbg(hdev->dev,
1922			"DRAM memory range 0x%llx (+0x%llx) is outside of PCI BAR boundaries\n",
1923			device_addr, size);
1924		return -EINVAL;
1925	}
1926
1927	return 0;
1928}
1929
1930static int validate_export_params(struct hl_device *hdev, u64 device_addr, u64 size, u64 offset,
1931					struct hl_vm_phys_pg_pack *phys_pg_pack)
1932{
1933	struct asic_fixed_properties *prop = &hdev->asic_prop;
1934	u64 bar_address;
1935	int i, rc;
1936
1937	rc = validate_export_params_common(hdev, device_addr, size);
1938	if (rc)
1939		return rc;
1940
1941	if ((offset + size) > phys_pg_pack->total_size) {
1942		dev_dbg(hdev->dev, "offset %#llx and size %#llx exceed total map size %#llx\n",
1943				offset, size, phys_pg_pack->total_size);
1944		return -EINVAL;
1945	}
1946
1947	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
1948
1949		bar_address = hdev->dram_pci_bar_start +
1950					(phys_pg_pack->pages[i] - prop->dram_base_address);
1951
1952		if ((bar_address + phys_pg_pack->page_size) >
1953				(hdev->dram_pci_bar_start + prop->dram_pci_bar_size) ||
1954				(bar_address + phys_pg_pack->page_size) < bar_address) {
1955			dev_dbg(hdev->dev,
1956				"DRAM memory range 0x%llx (+0x%x) is outside of PCI BAR boundaries\n",
1957					phys_pg_pack->pages[i],
1958					phys_pg_pack->page_size);
1959
1960			return -EINVAL;
1961		}
1962	}
1963
1964	return 0;
1965}
1966
1967static struct hl_vm_phys_pg_pack *get_phys_pg_pack_from_hash_node(struct hl_device *hdev,
1968							struct hl_vm_hash_node *hnode)
1969{
1970	struct hl_vm_phys_pg_pack *phys_pg_pack;
1971	struct hl_vm *vm = &hdev->vm;
1972
1973	spin_lock(&vm->idr_lock);
1974	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, (u32) hnode->handle);
1975	if (!phys_pg_pack) {
1976		spin_unlock(&vm->idr_lock);
1977		dev_dbg(hdev->dev, "no match for handle 0x%x\n", (u32) hnode->handle);
1978		return ERR_PTR(-EINVAL);
1979	}
1980
1981	spin_unlock(&vm->idr_lock);
1982
1983	if (phys_pg_pack->vm_type != VM_TYPE_PHYS_PACK) {
1984		dev_dbg(hdev->dev, "handle 0x%llx does not represent DRAM memory\n", hnode->handle);
1985		return ERR_PTR(-EINVAL);
1986	}
1987
1988	return phys_pg_pack;
1989}
1990
1991/**
1992 * export_dmabuf_from_addr() - export a dma-buf object for the given memory
1993 *                             address and size.
1994 * @ctx: pointer to the context structure.
1995 * @addr: device address.
1996 * @size: size of device memory to export.
1997 * @offset: the offset into the buffer from which to start exporting
1998 * @flags: DMA-BUF file/FD flags.
1999 * @dmabuf_fd: pointer to result FD that represents the dma-buf object.
2000 *
2001 * Create and export a dma-buf object for an existing memory allocation inside
2002 * the device memory, and return a FD which is associated with the dma-buf
2003 * object.
2004 *
2005 * Return: 0 on success, non-zero for failure.
2006 */
2007static int export_dmabuf_from_addr(struct hl_ctx *ctx, u64 addr, u64 size, u64 offset,
2008					int flags, int *dmabuf_fd)
2009{
2010	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
2011	struct hl_vm_hash_node *hnode = NULL;
2012	struct asic_fixed_properties *prop;
2013	struct hl_dmabuf_priv *hl_dmabuf;
2014	struct hl_device *hdev;
2015	u64 export_addr;
2016	int rc;
2017
2018	hdev = ctx->hdev;
2019	prop = &hdev->asic_prop;
2020
2021	/* offset must be 0 in devices without virtual memory support */
2022	if (!prop->dram_supports_virtual_memory && offset) {
2023		dev_dbg(hdev->dev, "offset is not allowed in device without virtual memory\n");
2024		return -EINVAL;
2025	}
2026
2027	export_addr = addr + offset;
2028
2029	hl_dmabuf = kzalloc(sizeof(*hl_dmabuf), GFP_KERNEL);
2030	if (!hl_dmabuf)
2031		return -ENOMEM;
2032
2033	if (prop->dram_supports_virtual_memory) {
2034		hnode = memhash_node_export_get(ctx, addr);
2035		if (IS_ERR(hnode)) {
2036			rc = PTR_ERR(hnode);
2037			goto err_free_dmabuf_wrapper;
2038		}
2039		phys_pg_pack = get_phys_pg_pack_from_hash_node(hdev, hnode);
2040		if (IS_ERR(phys_pg_pack)) {
2041			rc = PTR_ERR(phys_pg_pack);
2042			goto dec_memhash_export_cnt;
2043		}
2044		rc = validate_export_params(hdev, export_addr, size, offset, phys_pg_pack);
2045		if (rc)
2046			goto dec_memhash_export_cnt;
2047
2048		phys_pg_pack->exported_size = size;
2049		hl_dmabuf->phys_pg_pack = phys_pg_pack;
2050		hl_dmabuf->memhash_hnode = hnode;
2051	} else {
2052		rc = validate_export_params_no_mmu(hdev, export_addr, size);
2053		if (rc)
2054			goto err_free_dmabuf_wrapper;
2055	}
2056
2057	hl_dmabuf->device_address = export_addr;
2058
2059	rc = export_dmabuf(ctx, hl_dmabuf, size, flags, dmabuf_fd);
2060	if (rc)
2061		goto dec_memhash_export_cnt;
2062
2063	return 0;
2064
2065dec_memhash_export_cnt:
2066	if (prop->dram_supports_virtual_memory)
2067		memhash_node_export_put(ctx, hnode);
2068err_free_dmabuf_wrapper:
2069	kfree(hl_dmabuf);
2070	return rc;
2071}
2072
2073static void ts_buff_release(struct hl_mmap_mem_buf *buf)
2074{
2075	struct hl_ts_buff *ts_buff = buf->private;
2076
2077	vfree(ts_buff->kernel_buff_address);
2078	vfree(ts_buff->user_buff_address);
2079	kfree(ts_buff);
2080}
2081
2082static int hl_ts_mmap(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args)
2083{
2084	struct hl_ts_buff *ts_buff = buf->private;
2085
2086	vm_flags_set(vma, VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE);
2087	return remap_vmalloc_range(vma, ts_buff->user_buff_address, 0);
2088}
2089
2090static int hl_ts_alloc_buf(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args)
2091{
2092	struct hl_ts_buff *ts_buff = NULL;
2093	u32 num_elements;
2094	size_t size;
2095	void *p;
2096
2097	num_elements = *(u32 *)args;
2098
2099	ts_buff = kzalloc(sizeof(*ts_buff), gfp);
2100	if (!ts_buff)
2101		return -ENOMEM;
2102
2103	/* Allocate the user buffer */
2104	size = num_elements * sizeof(u64);
2105	p = vmalloc_user(size);
2106	if (!p)
2107		goto free_mem;
2108
2109	ts_buff->user_buff_address = p;
2110	buf->mappable_size = size;
2111
2112	/* Allocate the internal kernel buffer */
2113	size = num_elements * sizeof(struct hl_user_pending_interrupt);
2114	p = vzalloc(size);
2115	if (!p)
2116		goto free_user_buff;
2117
2118	ts_buff->kernel_buff_address = p;
2119	ts_buff->kernel_buff_size = size;
2120
2121	buf->private = ts_buff;
2122
2123	return 0;
2124
2125free_user_buff:
2126	vfree(ts_buff->user_buff_address);
2127free_mem:
2128	kfree(ts_buff);
2129	return -ENOMEM;
2130}
2131
2132static struct hl_mmap_mem_buf_behavior hl_ts_behavior = {
2133	.topic = "TS",
2134	.mem_id = HL_MMAP_TYPE_TS_BUFF,
2135	.mmap = hl_ts_mmap,
2136	.alloc = hl_ts_alloc_buf,
2137	.release = ts_buff_release,
2138};
2139
2140/**
2141 * allocate_timestamps_buffers() - allocate timestamps buffers
2142 * This function will allocate ts buffer that will later on be mapped to the user
2143 * in order to be able to read the timestamp.
2144 * in addition it'll allocate an extra buffer for registration management.
2145 * since we cannot fail during registration for out-of-memory situation, so
2146 * we'll prepare a pool which will be used as user interrupt nodes and instead
2147 * of dynamically allocating nodes while registration we'll pick the node from
2148 * this pool. in addition it'll add node to the mapping hash which will be used
2149 * to map user ts buffer to the internal kernel ts buffer.
2150 * @hpriv: pointer to the private data of the fd
2151 * @args: ioctl input
2152 * @handle: user timestamp buffer handle as an output
2153 */
2154static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
2155{
2156	struct hl_mem_mgr *mmg = &hpriv->mem_mgr;
2157	struct hl_mmap_mem_buf *buf;
2158
2159	if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
2160		dev_err(mmg->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
2161				args->num_of_elements, TS_MAX_ELEMENTS_NUM);
2162		return -EINVAL;
2163	}
2164
2165	buf = hl_mmap_mem_buf_alloc(mmg, &hl_ts_behavior, GFP_KERNEL, &args->num_of_elements);
2166	if (!buf)
2167		return -ENOMEM;
2168
2169	*handle = buf->handle;
2170
2171	return 0;
2172}
2173
2174int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
2175{
2176	enum hl_device_status status;
2177	union hl_mem_args *args = data;
2178	struct hl_device *hdev = hpriv->hdev;
2179	struct hl_ctx *ctx = hpriv->ctx;
2180	u64 block_handle, device_addr = 0;
2181	u32 handle = 0, block_size;
2182	int rc, dmabuf_fd = -EBADF;
2183
2184	if (!hl_device_operational(hdev, &status)) {
2185		dev_dbg_ratelimited(hdev->dev,
2186			"Device is %s. Can't execute MEMORY IOCTL\n",
2187			hdev->status[status]);
2188		return -EBUSY;
2189	}
2190
2191	switch (args->in.op) {
2192	case HL_MEM_OP_ALLOC:
2193		if (args->in.alloc.mem_size == 0) {
2194			dev_err(hdev->dev,
2195				"alloc size must be larger than 0\n");
2196			rc = -EINVAL;
2197			goto out;
2198		}
2199
2200		/* If DRAM does not support virtual memory the driver won't
2201		 * handle the allocation/freeing of that memory. However, for
2202		 * system administration/monitoring purposes, the driver will
2203		 * keep track of the amount of DRAM memory that is allocated
2204		 * and freed by the user. Because this code totally relies on
2205		 * the user's input, the driver can't ensure the validity
2206		 * of this accounting.
2207		 */
2208		if (!hdev->asic_prop.dram_supports_virtual_memory) {
2209			atomic64_add(args->in.alloc.mem_size,
2210					&ctx->dram_phys_mem);
2211			atomic64_add(args->in.alloc.mem_size,
2212					&hdev->dram_used_mem);
2213
2214			dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2215			rc = 0;
2216
2217			memset(args, 0, sizeof(*args));
2218			args->out.handle = 0;
2219			goto out;
2220		}
2221
2222		rc = alloc_device_memory(ctx, &args->in, &handle);
2223
2224		memset(args, 0, sizeof(*args));
2225		args->out.handle = (__u64) handle;
2226		break;
2227
2228	case HL_MEM_OP_FREE:
2229		/* If DRAM does not support virtual memory the driver won't
2230		 * handle the allocation/freeing of that memory. However, for
2231		 * system administration/monitoring purposes, the driver will
2232		 * keep track of the amount of DRAM memory that is allocated
2233		 * and freed by the user. Because this code totally relies on
2234		 * the user's input, the driver can't ensure the validity
2235		 * of this accounting.
2236		 */
2237		if (!hdev->asic_prop.dram_supports_virtual_memory) {
2238			atomic64_sub(args->in.alloc.mem_size,
2239					&ctx->dram_phys_mem);
2240			atomic64_sub(args->in.alloc.mem_size,
2241					&hdev->dram_used_mem);
2242
2243			dev_dbg(hdev->dev, "DRAM alloc is not supported\n");
2244			rc = 0;
2245
2246			goto out;
2247		}
2248
2249		rc = free_device_memory(ctx, &args->in);
2250		break;
2251
2252	case HL_MEM_OP_MAP:
2253		rc = map_device_va(ctx, &args->in, &device_addr);
2254
2255		memset(args, 0, sizeof(*args));
2256		args->out.device_virt_addr = device_addr;
2257		break;
2258
2259	case HL_MEM_OP_UNMAP:
2260		rc = unmap_device_va(ctx, &args->in, false);
2261		break;
2262
2263	case HL_MEM_OP_MAP_BLOCK:
2264		rc = map_block(hdev, args->in.map_block.block_addr,
2265				&block_handle, &block_size);
2266		args->out.block_handle = block_handle;
2267		args->out.block_size = block_size;
2268		break;
2269
2270	case HL_MEM_OP_EXPORT_DMABUF_FD:
2271		rc = export_dmabuf_from_addr(ctx,
2272				args->in.export_dmabuf_fd.addr,
2273				args->in.export_dmabuf_fd.mem_size,
2274				args->in.export_dmabuf_fd.offset,
2275				args->in.flags,
2276				&dmabuf_fd);
2277		memset(args, 0, sizeof(*args));
2278		args->out.fd = dmabuf_fd;
2279		break;
2280
2281	case HL_MEM_OP_TS_ALLOC:
2282		rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
2283		break;
2284	default:
2285		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
2286		rc = -EINVAL;
2287		break;
2288	}
2289
2290out:
2291	return rc;
2292}
2293
2294static int get_user_memory(struct hl_device *hdev, u64 addr, u64 size,
2295				u32 npages, u64 start, u32 offset,
2296				struct hl_userptr *userptr)
2297{
2298	int rc;
2299
2300	if (!access_ok((void __user *) (uintptr_t) addr, size)) {
2301		dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
2302		return -EFAULT;
2303	}
2304
2305	userptr->pages = kvmalloc_array(npages, sizeof(struct page *), GFP_KERNEL);
2306	if (!userptr->pages)
2307		return -ENOMEM;
2308
2309	rc = pin_user_pages_fast(start, npages, FOLL_WRITE | FOLL_LONGTERM,
2310				 userptr->pages);
2311
2312	if (rc != npages) {
2313		dev_err(hdev->dev,
2314			"Failed (%d) to pin host memory with user ptr 0x%llx, size 0x%llx, npages %d\n",
2315			rc, addr, size, npages);
2316		if (rc < 0)
2317			goto destroy_pages;
2318		npages = rc;
2319		rc = -EFAULT;
2320		goto put_pages;
2321	}
2322	userptr->npages = npages;
2323
2324	rc = sg_alloc_table_from_pages(userptr->sgt,
2325				       userptr->pages,
2326				       npages, offset, size, GFP_KERNEL);
2327	if (rc < 0) {
2328		dev_err(hdev->dev, "failed to create SG table from pages\n");
2329		goto put_pages;
2330	}
2331
2332	return 0;
2333
2334put_pages:
2335	unpin_user_pages(userptr->pages, npages);
2336destroy_pages:
2337	kvfree(userptr->pages);
2338	return rc;
2339}
2340
2341/**
2342 * hl_pin_host_memory() - pins a chunk of host memory.
2343 * @hdev: pointer to the habanalabs device structure.
2344 * @addr: the host virtual address of the memory area.
2345 * @size: the size of the memory area.
2346 * @userptr: pointer to hl_userptr structure.
2347 *
2348 * This function does the following:
2349 * - Pins the physical pages.
2350 * - Create an SG list from those pages.
2351 */
2352int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
2353					struct hl_userptr *userptr)
2354{
2355	u64 start, end;
2356	u32 npages, offset;
2357	int rc;
2358
2359	if (!size) {
2360		dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
2361		return -EINVAL;
2362	}
2363
2364	/*
2365	 * If the combination of the address and size requested for this memory
2366	 * region causes an integer overflow, return error.
2367	 */
2368	if (((addr + size) < addr) ||
2369			PAGE_ALIGN(addr + size) < (addr + size)) {
2370		dev_err(hdev->dev,
2371			"user pointer 0x%llx + %llu causes integer overflow\n",
2372			addr, size);
2373		return -EINVAL;
2374	}
2375
2376	userptr->pid = current->pid;
2377	userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_KERNEL);
2378	if (!userptr->sgt)
2379		return -ENOMEM;
2380
2381	start = addr & PAGE_MASK;
2382	offset = addr & ~PAGE_MASK;
2383	end = PAGE_ALIGN(addr + size);
2384	npages = (end - start) >> PAGE_SHIFT;
2385
2386	userptr->size = size;
2387	userptr->addr = addr;
2388	userptr->dma_mapped = false;
2389	INIT_LIST_HEAD(&userptr->job_node);
2390
2391	rc = get_user_memory(hdev, addr, size, npages, start, offset,
2392				userptr);
2393	if (rc) {
2394		dev_err(hdev->dev,
2395			"failed to get user memory for address 0x%llx\n",
2396			addr);
2397		goto free_sgt;
2398	}
2399
2400	hl_debugfs_add_userptr(hdev, userptr);
2401
2402	return 0;
2403
2404free_sgt:
2405	kfree(userptr->sgt);
2406	return rc;
2407}
2408
2409/*
2410 * hl_unpin_host_memory - unpins a chunk of host memory.
2411 * @hdev: pointer to the habanalabs device structure
2412 * @userptr: pointer to hl_userptr structure
2413 *
2414 * This function does the following:
2415 * - Unpins the physical pages related to the host memory
2416 * - Free the SG list
2417 */
2418void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
2419{
2420	hl_debugfs_remove_userptr(hdev, userptr);
2421
2422	if (userptr->dma_mapped)
2423		hdev->asic_funcs->hl_dma_unmap_sgtable(hdev, userptr->sgt, userptr->dir);
2424
2425	unpin_user_pages_dirty_lock(userptr->pages, userptr->npages, true);
2426	kvfree(userptr->pages);
2427
2428	list_del(&userptr->job_node);
2429
2430	sg_free_table(userptr->sgt);
2431	kfree(userptr->sgt);
2432}
2433
2434/**
2435 * hl_userptr_delete_list() - clear userptr list.
2436 * @hdev: pointer to the habanalabs device structure.
2437 * @userptr_list: pointer to the list to clear.
2438 *
2439 * This function does the following:
2440 * - Iterates over the list and unpins the host memory and frees the userptr
2441 *   structure.
2442 */
2443void hl_userptr_delete_list(struct hl_device *hdev,
2444				struct list_head *userptr_list)
2445{
2446	struct hl_userptr *userptr, *tmp;
2447
2448	list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
2449		hl_unpin_host_memory(hdev, userptr);
2450		kfree(userptr);
2451	}
2452
2453	INIT_LIST_HEAD(userptr_list);
2454}
2455
2456/**
2457 * hl_userptr_is_pinned() - returns whether the given userptr is pinned.
2458 * @hdev: pointer to the habanalabs device structure.
2459 * @addr: user address to check.
2460 * @size: user block size to check.
2461 * @userptr_list: pointer to the list to clear.
2462 * @userptr: pointer to userptr to check.
2463 *
2464 * This function does the following:
2465 * - Iterates over the list and checks if the given userptr is in it, means is
2466 *   pinned. If so, returns true, otherwise returns false.
2467 */
2468bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
2469				u32 size, struct list_head *userptr_list,
2470				struct hl_userptr **userptr)
2471{
2472	list_for_each_entry((*userptr), userptr_list, job_node) {
2473		if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
2474			return true;
2475	}
2476
2477	return false;
2478}
2479
2480/**
2481 * va_range_init() - initialize virtual addresses range.
2482 * @hdev: pointer to the habanalabs device structure.
2483 * @va_ranges: pointer to va_ranges array.
2484 * @range_type: virtual address range type.
2485 * @start: range start address, inclusive.
2486 * @end: range end address, inclusive.
2487 * @page_size: page size for this va_range.
2488 *
2489 * This function does the following:
2490 * - Initializes the virtual addresses list of the given range with the given
2491 *   addresses.
2492 */
2493static int va_range_init(struct hl_device *hdev, struct hl_va_range **va_ranges,
2494				enum hl_va_range_type range_type, u64 start,
2495				u64 end, u32 page_size)
2496{
2497	struct hl_va_range *va_range = va_ranges[range_type];
2498	int rc;
2499
2500	INIT_LIST_HEAD(&va_range->list);
2501
2502	/*
2503	 * PAGE_SIZE alignment
2504	 * it is the caller's responsibility to align the addresses if the
2505	 * page size is not a power of 2
2506	 */
2507
2508	if (is_power_of_2(page_size)) {
2509		start = round_up(start, page_size);
2510
2511		/*
2512		 * The end of the range is inclusive, hence we need to align it
2513		 * to the end of the last full page in the range. For example if
2514		 * end = 0x3ff5 with page size 0x1000, we need to align it to
2515		 * 0x2fff. The remaining 0xff5 bytes do not form a full page.
2516		 */
2517		end = round_down(end + 1, page_size) - 1;
2518	}
2519
2520	if (start >= end) {
2521		dev_err(hdev->dev, "too small vm range for va list\n");
2522		return -EFAULT;
2523	}
2524
2525	rc = add_va_block(hdev, va_range, start, end);
2526
2527	if (rc) {
2528		dev_err(hdev->dev, "Failed to init host va list\n");
2529		return rc;
2530	}
2531
2532	va_range->start_addr = start;
2533	va_range->end_addr = end;
2534	va_range->page_size = page_size;
2535
2536	return 0;
2537}
2538
2539/**
2540 * va_range_fini() - clear a virtual addresses range.
2541 * @hdev: pointer to the habanalabs structure.
2542 * @va_range: pointer to virtual addresses range.
2543 *
2544 * This function does the following:
2545 * - Frees the virtual addresses block list and its lock.
2546 */
2547static void va_range_fini(struct hl_device *hdev, struct hl_va_range *va_range)
2548{
2549	mutex_lock(&va_range->lock);
2550	clear_va_list_locked(hdev, &va_range->list);
2551	mutex_unlock(&va_range->lock);
2552
2553	mutex_destroy(&va_range->lock);
2554	kfree(va_range);
2555}
2556
2557/**
2558 * vm_ctx_init_with_ranges() - initialize virtual memory for context.
2559 * @ctx: pointer to the habanalabs context structure.
2560 * @host_range_start: host virtual addresses range start.
2561 * @host_range_end: host virtual addresses range end.
2562 * @host_page_size: host page size.
2563 * @host_huge_range_start: host virtual addresses range start for memory
2564 *                         allocated with huge pages.
2565 * @host_huge_range_end: host virtual addresses range end for memory allocated
2566 *                        with huge pages.
2567 * @host_huge_page_size: host huge page size.
2568 * @dram_range_start: dram virtual addresses range start.
2569 * @dram_range_end: dram virtual addresses range end.
2570 * @dram_page_size: dram page size.
2571 *
2572 * This function initializes the following:
2573 * - MMU for context.
2574 * - Virtual address to area descriptor hashtable.
2575 * - Virtual block list of available virtual memory.
2576 */
2577static int vm_ctx_init_with_ranges(struct hl_ctx *ctx,
2578					u64 host_range_start,
2579					u64 host_range_end,
2580					u32 host_page_size,
2581					u64 host_huge_range_start,
2582					u64 host_huge_range_end,
2583					u32 host_huge_page_size,
2584					u64 dram_range_start,
2585					u64 dram_range_end,
2586					u32 dram_page_size)
2587{
2588	struct hl_device *hdev = ctx->hdev;
2589	int i, rc;
2590
2591	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++) {
2592		ctx->va_range[i] =
2593			kzalloc(sizeof(struct hl_va_range), GFP_KERNEL);
2594		if (!ctx->va_range[i]) {
2595			rc = -ENOMEM;
2596			goto free_va_range;
2597		}
2598	}
2599
2600	rc = hl_mmu_ctx_init(ctx);
2601	if (rc) {
2602		dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
2603		goto free_va_range;
2604	}
2605
2606	mutex_init(&ctx->mem_hash_lock);
2607	hash_init(ctx->mem_hash);
2608
2609	mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2610
2611	rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_HOST,
2612			host_range_start, host_range_end, host_page_size);
2613	if (rc) {
2614		dev_err(hdev->dev, "failed to init host vm range\n");
2615		goto mmu_ctx_fini;
2616	}
2617
2618	if (hdev->pmmu_huge_range) {
2619		mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2620
2621		rc = va_range_init(hdev,
2622			ctx->va_range, HL_VA_RANGE_TYPE_HOST_HUGE,
2623			host_huge_range_start, host_huge_range_end,
2624			host_huge_page_size);
2625		if (rc) {
2626			dev_err(hdev->dev,
2627				"failed to init host huge vm range\n");
2628			goto clear_host_va_range;
2629		}
2630	} else {
2631		kfree(ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2632		ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE] =
2633				ctx->va_range[HL_VA_RANGE_TYPE_HOST];
2634	}
2635
2636	mutex_init(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2637
2638	rc = va_range_init(hdev, ctx->va_range, HL_VA_RANGE_TYPE_DRAM,
2639			dram_range_start, dram_range_end, dram_page_size);
2640	if (rc) {
2641		dev_err(hdev->dev, "failed to init dram vm range\n");
2642		goto clear_host_huge_va_range;
2643	}
2644
2645	hl_debugfs_add_ctx_mem_hash(hdev, ctx);
2646
2647	return 0;
2648
2649clear_host_huge_va_range:
2650	mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_DRAM]->lock);
2651
2652	if (hdev->pmmu_huge_range) {
2653		mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2654		clear_va_list_locked(hdev,
2655			&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->list);
2656		mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2657	}
2658clear_host_va_range:
2659	if (hdev->pmmu_huge_range)
2660		mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]->lock);
2661	mutex_lock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2662	clear_va_list_locked(hdev, &ctx->va_range[HL_VA_RANGE_TYPE_HOST]->list);
2663	mutex_unlock(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2664mmu_ctx_fini:
2665	mutex_destroy(&ctx->va_range[HL_VA_RANGE_TYPE_HOST]->lock);
2666	mutex_destroy(&ctx->mem_hash_lock);
2667	hl_mmu_ctx_fini(ctx);
2668free_va_range:
2669	for (i = 0 ; i < HL_VA_RANGE_TYPE_MAX ; i++)
2670		kfree(ctx->va_range[i]);
2671
2672	return rc;
2673}
2674
2675int hl_vm_ctx_init(struct hl_ctx *ctx)
2676{
2677	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
2678	u64 host_range_start, host_range_end, host_huge_range_start,
2679		host_huge_range_end, dram_range_start, dram_range_end;
2680	u32 host_page_size, host_huge_page_size, dram_page_size;
2681
2682	atomic64_set(&ctx->dram_phys_mem, 0);
2683
2684	/*
2685	 *   In case of DRAM mapping, the returned address is the physical
2686	 *   address of the memory related to the given handle.
2687	 */
2688	if (ctx->hdev->mmu_disable)
2689		return 0;
2690
2691	dram_range_start = prop->dmmu.start_addr;
2692	dram_range_end = prop->dmmu.end_addr - 1;
2693	dram_page_size = prop->dram_page_size ?
2694				prop->dram_page_size : prop->dmmu.page_size;
2695	host_range_start = prop->pmmu.start_addr;
2696	host_range_end = prop->pmmu.end_addr - 1;
2697	host_page_size = prop->pmmu.page_size;
2698	host_huge_range_start = prop->pmmu_huge.start_addr;
2699	host_huge_range_end = prop->pmmu_huge.end_addr - 1;
2700	host_huge_page_size = prop->pmmu_huge.page_size;
2701
2702	return vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
2703			host_page_size, host_huge_range_start,
2704			host_huge_range_end, host_huge_page_size,
2705			dram_range_start, dram_range_end, dram_page_size);
2706}
2707
2708/**
2709 * hl_vm_ctx_fini() - virtual memory teardown of context.
2710 * @ctx: pointer to the habanalabs context structure.
2711 *
2712 * This function perform teardown the following:
2713 * - Virtual block list of available virtual memory.
2714 * - Virtual address to area descriptor hashtable.
2715 * - MMU for context.
2716 *
2717 * In addition this function does the following:
2718 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
2719 *   hashtable should be empty as no valid mappings should exist at this
2720 *   point.
2721 * - Frees any existing physical page list from the idr which relates to the
2722 *   current context asid.
2723 * - This function checks the virtual block list for correctness. At this point
2724 *   the list should contain one element which describes the whole virtual
2725 *   memory range of the context. Otherwise, a warning is printed.
2726 */
2727void hl_vm_ctx_fini(struct hl_ctx *ctx)
2728{
2729	struct hl_vm_phys_pg_pack *phys_pg_list, *tmp_phys_node;
2730	struct hl_device *hdev = ctx->hdev;
2731	struct hl_vm_hash_node *hnode;
2732	struct hl_vm *vm = &hdev->vm;
2733	struct hlist_node *tmp_node;
2734	struct list_head free_list;
2735	struct hl_mem_in args;
2736	int i;
2737
2738	if (hdev->mmu_disable)
2739		return;
2740
2741	hl_debugfs_remove_ctx_mem_hash(hdev, ctx);
2742
2743	/*
2744	 * Clearly something went wrong on hard reset so no point in printing
2745	 * another side effect error
2746	 */
2747	if (!hdev->reset_info.hard_reset_pending && !hash_empty(ctx->mem_hash))
2748		dev_dbg(hdev->dev,
2749			"user released device without removing its memory mappings\n");
2750
2751	hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
2752		dev_dbg(hdev->dev,
2753			"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
2754			hnode->vaddr, ctx->asid);
2755		args.unmap.device_virt_addr = hnode->vaddr;
2756		unmap_device_va(ctx, &args, true);
2757	}
2758
2759	mutex_lock(&hdev->mmu_lock);
2760
2761	/* invalidate the cache once after the unmapping loop */
2762	hl_mmu_invalidate_cache(hdev, true, MMU_OP_USERPTR);
2763	hl_mmu_invalidate_cache(hdev, true, MMU_OP_PHYS_PACK);
2764
2765	mutex_unlock(&hdev->mmu_lock);
2766
2767	INIT_LIST_HEAD(&free_list);
2768
2769	spin_lock(&vm->idr_lock);
2770	idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
2771		if (phys_pg_list->asid == ctx->asid) {
2772			dev_dbg(hdev->dev,
2773				"page list 0x%px of asid %d is still alive\n",
2774				phys_pg_list, ctx->asid);
2775
2776			atomic64_sub(phys_pg_list->total_size, &hdev->dram_used_mem);
2777			idr_remove(&vm->phys_pg_pack_handles, i);
2778			list_add(&phys_pg_list->node, &free_list);
2779		}
2780	spin_unlock(&vm->idr_lock);
2781
2782	list_for_each_entry_safe(phys_pg_list, tmp_phys_node, &free_list, node)
2783		free_phys_pg_pack(hdev, phys_pg_list);
2784
2785	va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_DRAM]);
2786	va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST]);
2787
2788	if (hdev->pmmu_huge_range)
2789		va_range_fini(hdev, ctx->va_range[HL_VA_RANGE_TYPE_HOST_HUGE]);
2790
2791	mutex_destroy(&ctx->mem_hash_lock);
2792	hl_mmu_ctx_fini(ctx);
2793
2794	/* In this case we need to clear the global accounting of DRAM usage
2795	 * because the user notifies us on allocations. If the user is no more,
2796	 * all DRAM is available
2797	 */
2798	if (ctx->asid != HL_KERNEL_ASID_ID &&
2799			!hdev->asic_prop.dram_supports_virtual_memory)
2800		atomic64_set(&hdev->dram_used_mem, 0);
2801}
2802
2803/**
2804 * hl_vm_init() - initialize virtual memory module.
2805 * @hdev: pointer to the habanalabs device structure.
2806 *
2807 * This function initializes the following:
2808 * - MMU module.
2809 * - DRAM physical pages pool of 2MB.
2810 * - Idr for device memory allocation handles.
2811 */
2812int hl_vm_init(struct hl_device *hdev)
2813{
2814	struct asic_fixed_properties *prop = &hdev->asic_prop;
2815	struct hl_vm *vm = &hdev->vm;
2816	int rc;
2817
2818	if (is_power_of_2(prop->dram_page_size))
2819		vm->dram_pg_pool =
2820			gen_pool_create(__ffs(prop->dram_page_size), -1);
2821	else
2822		vm->dram_pg_pool =
2823			gen_pool_create(__ffs(DRAM_POOL_PAGE_SIZE), -1);
2824
2825	if (!vm->dram_pg_pool) {
2826		dev_err(hdev->dev, "Failed to create dram page pool\n");
2827		return -ENOMEM;
2828	}
2829
2830	kref_init(&vm->dram_pg_pool_refcount);
2831
2832	rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
2833			prop->dram_end_address - prop->dram_user_base_address,
2834			-1);
2835
2836	if (rc) {
2837		dev_err(hdev->dev,
2838			"Failed to add memory to dram page pool %d\n", rc);
2839		goto pool_add_err;
2840	}
2841
2842	spin_lock_init(&vm->idr_lock);
2843	idr_init(&vm->phys_pg_pack_handles);
2844
2845	atomic64_set(&hdev->dram_used_mem, 0);
2846
2847	vm->init_done = true;
2848
2849	return 0;
2850
2851pool_add_err:
2852	gen_pool_destroy(vm->dram_pg_pool);
2853
2854	return rc;
2855}
2856
2857/**
2858 * hl_vm_fini() - virtual memory module teardown.
2859 * @hdev: pointer to the habanalabs device structure.
2860 *
2861 * This function perform teardown to the following:
2862 * - Idr for device memory allocation handles.
2863 * - DRAM physical pages pool of 2MB.
2864 * - MMU module.
2865 */
2866void hl_vm_fini(struct hl_device *hdev)
2867{
2868	struct hl_vm *vm = &hdev->vm;
2869
2870	if (!vm->init_done)
2871		return;
2872
2873	/*
2874	 * At this point all the contexts should be freed and hence no DRAM
2875	 * memory should be in use. Hence the DRAM pool should be freed here.
2876	 */
2877	if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
2878		dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
2879				__func__);
2880
2881	vm->init_done = false;
2882}
2883
2884/**
2885 * hl_hw_block_mem_init() - HW block memory initialization.
2886 * @ctx: pointer to the habanalabs context structure.
2887 *
2888 * This function initializes the HW block virtual mapped addresses list and
2889 * it's lock.
2890 */
2891void hl_hw_block_mem_init(struct hl_ctx *ctx)
2892{
2893	mutex_init(&ctx->hw_block_list_lock);
2894	INIT_LIST_HEAD(&ctx->hw_block_mem_list);
2895}
2896
2897/**
2898 * hl_hw_block_mem_fini() - HW block memory teardown.
2899 * @ctx: pointer to the habanalabs context structure.
2900 *
2901 * This function clears the HW block virtual mapped addresses list and destroys
2902 * it's lock.
2903 */
2904void hl_hw_block_mem_fini(struct hl_ctx *ctx)
2905{
2906	struct hl_vm_hw_block_list_node *lnode, *tmp;
2907
2908	if (!list_empty(&ctx->hw_block_mem_list))
2909		dev_crit(ctx->hdev->dev, "HW block mem list isn't empty\n");
2910
2911	list_for_each_entry_safe(lnode, tmp, &ctx->hw_block_mem_list, node) {
2912		list_del(&lnode->node);
2913		kfree(lnode);
2914	}
2915
2916	mutex_destroy(&ctx->hw_block_list_lock);
2917}
2918