1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2016-2022 HabanaLabs, Ltd.
5 * All Rights Reserved.
6 */
7
8#include "habanalabs.h"
9
10#include <linux/slab.h>
11
12/**
13 * struct hl_eqe_work - This structure is used to schedule work of EQ
14 *                      entry and cpucp_reset event
15 *
16 * @eq_work:          workqueue object to run when EQ entry is received
17 * @hdev:             pointer to device structure
18 * @eq_entry:         copy of the EQ entry
19 */
20struct hl_eqe_work {
21	struct work_struct	eq_work;
22	struct hl_device	*hdev;
23	struct hl_eq_entry	eq_entry;
24};
25
26/**
27 * hl_cq_inc_ptr - increment ci or pi of cq
28 *
29 * @ptr: the current ci or pi value of the completion queue
30 *
31 * Increment ptr by 1. If it reaches the number of completion queue
32 * entries, set it to 0
33 */
34inline u32 hl_cq_inc_ptr(u32 ptr)
35{
36	ptr++;
37	if (unlikely(ptr == HL_CQ_LENGTH))
38		ptr = 0;
39	return ptr;
40}
41
42/**
43 * hl_eq_inc_ptr - increment ci of eq
44 *
45 * @ptr: the current ci value of the event queue
46 *
47 * Increment ptr by 1. If it reaches the number of event queue
48 * entries, set it to 0
49 */
50static inline u32 hl_eq_inc_ptr(u32 ptr)
51{
52	ptr++;
53	if (unlikely(ptr == HL_EQ_LENGTH))
54		ptr = 0;
55	return ptr;
56}
57
58static void irq_handle_eqe(struct work_struct *work)
59{
60	struct hl_eqe_work *eqe_work = container_of(work, struct hl_eqe_work,
61							eq_work);
62	struct hl_device *hdev = eqe_work->hdev;
63
64	hdev->asic_funcs->handle_eqe(hdev, &eqe_work->eq_entry);
65
66	kfree(eqe_work);
67}
68
69/**
70 * job_finish - queue job finish work
71 *
72 * @hdev: pointer to device structure
73 * @cs_seq: command submission sequence
74 * @cq: completion queue
75 * @timestamp: interrupt timestamp
76 *
77 */
78static void job_finish(struct hl_device *hdev, u32 cs_seq, struct hl_cq *cq, ktime_t timestamp)
79{
80	struct hl_hw_queue *queue;
81	struct hl_cs_job *job;
82
83	queue = &hdev->kernel_queues[cq->hw_queue_id];
84	job = queue->shadow_queue[hl_pi_2_offset(cs_seq)];
85	job->timestamp = timestamp;
86	queue_work(hdev->cq_wq[cq->cq_idx], &job->finish_work);
87
88	atomic_inc(&queue->ci);
89}
90
91/**
92 * cs_finish - queue all cs jobs finish work
93 *
94 * @hdev: pointer to device structure
95 * @cs_seq: command submission sequence
96 * @timestamp: interrupt timestamp
97 *
98 */
99static void cs_finish(struct hl_device *hdev, u16 cs_seq, ktime_t timestamp)
100{
101	struct asic_fixed_properties *prop = &hdev->asic_prop;
102	struct hl_hw_queue *queue;
103	struct hl_cs *cs;
104	struct hl_cs_job *job;
105
106	cs = hdev->shadow_cs_queue[cs_seq & (prop->max_pending_cs - 1)];
107	if (!cs) {
108		dev_warn(hdev->dev,
109			"No pointer to CS in shadow array at index %d\n",
110			cs_seq);
111		return;
112	}
113
114	list_for_each_entry(job, &cs->job_list, cs_node) {
115		queue = &hdev->kernel_queues[job->hw_queue_id];
116		atomic_inc(&queue->ci);
117	}
118
119	cs->completion_timestamp = timestamp;
120	queue_work(hdev->cs_cmplt_wq, &cs->finish_work);
121}
122
123/**
124 * hl_irq_handler_cq - irq handler for completion queue
125 *
126 * @irq: irq number
127 * @arg: pointer to completion queue structure
128 *
129 */
130irqreturn_t hl_irq_handler_cq(int irq, void *arg)
131{
132	struct hl_cq *cq = arg;
133	struct hl_device *hdev = cq->hdev;
134	bool shadow_index_valid, entry_ready;
135	u16 shadow_index;
136	struct hl_cq_entry *cq_entry, *cq_base;
137	ktime_t timestamp = ktime_get();
138
139	if (hdev->disabled) {
140		dev_dbg(hdev->dev,
141			"Device disabled but received IRQ %d for CQ %d\n",
142			irq, cq->hw_queue_id);
143		return IRQ_HANDLED;
144	}
145
146	cq_base = cq->kernel_address;
147
148	while (1) {
149		cq_entry = (struct hl_cq_entry *) &cq_base[cq->ci];
150
151		entry_ready = !!FIELD_GET(CQ_ENTRY_READY_MASK,
152				le32_to_cpu(cq_entry->data));
153		if (!entry_ready)
154			break;
155
156		/* Make sure we read CQ entry contents after we've
157		 * checked the ownership bit.
158		 */
159		dma_rmb();
160
161		shadow_index_valid =
162			!!FIELD_GET(CQ_ENTRY_SHADOW_INDEX_VALID_MASK,
163					le32_to_cpu(cq_entry->data));
164
165		shadow_index = FIELD_GET(CQ_ENTRY_SHADOW_INDEX_MASK,
166				le32_to_cpu(cq_entry->data));
167
168		/*
169		 * CQ interrupt handler has 2 modes of operation:
170		 * 1. Interrupt per CS completion: (Single CQ for all queues)
171		 *    CQ entry represents a completed CS
172		 *
173		 * 2. Interrupt per CS job completion in queue: (CQ per queue)
174		 *    CQ entry represents a completed job in a certain queue
175		 */
176		if (shadow_index_valid && !hdev->disabled) {
177			if (hdev->asic_prop.completion_mode ==
178					HL_COMPLETION_MODE_CS)
179				cs_finish(hdev, shadow_index, timestamp);
180			else
181				job_finish(hdev, shadow_index, cq, timestamp);
182		}
183
184		/* Clear CQ entry ready bit */
185		cq_entry->data = cpu_to_le32(le32_to_cpu(cq_entry->data) &
186						~CQ_ENTRY_READY_MASK);
187
188		cq->ci = hl_cq_inc_ptr(cq->ci);
189
190		/* Increment free slots */
191		atomic_inc(&cq->free_slots_cnt);
192	}
193
194	return IRQ_HANDLED;
195}
196
197/*
198 * hl_ts_free_objects - handler of the free objects workqueue.
199 * This function should put refcount to objects that the registration node
200 * took refcount to them.
201 * @work: workqueue object pointer
202 */
203static void hl_ts_free_objects(struct work_struct *work)
204{
205	struct timestamp_reg_work_obj *job =
206			container_of(work, struct timestamp_reg_work_obj, free_obj);
207	struct timestamp_reg_free_node *free_obj, *temp_free_obj;
208	struct list_head *free_list_head = job->free_obj_head;
209	struct hl_device *hdev = job->hdev;
210
211	list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) {
212		dev_dbg(hdev->dev, "About to put refcount to buf (%p) cq_cb(%p)\n",
213					free_obj->buf,
214					free_obj->cq_cb);
215
216		hl_mmap_mem_buf_put(free_obj->buf);
217		hl_cb_put(free_obj->cq_cb);
218		kfree(free_obj);
219	}
220
221	kfree(free_list_head);
222	kfree(job);
223}
224
225/*
226 * This function called with spin_lock of wait_list_lock taken
227 * This function will set timestamp and delete the registration node from the
228 * wait_list_lock.
229 * and since we're protected with spin_lock here, so we cannot just put the refcount
230 * for the objects here, since the release function may be called and it's also a long
231 * logic (which might sleep also) that cannot be handled in irq context.
232 * so here we'll be filling a list with nodes of "put" jobs and then will send this
233 * list to a dedicated workqueue to do the actual put.
234 */
235static int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend,
236						struct list_head **free_list, ktime_t now)
237{
238	struct timestamp_reg_free_node *free_node;
239	u64 timestamp;
240
241	if (!(*free_list)) {
242		/* Alloc/Init the timestamp registration free objects list */
243		*free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
244		if (!(*free_list))
245			return -ENOMEM;
246
247		INIT_LIST_HEAD(*free_list);
248	}
249
250	free_node = kmalloc(sizeof(*free_node), GFP_ATOMIC);
251	if (!free_node)
252		return -ENOMEM;
253
254	timestamp = ktime_to_ns(now);
255
256	*pend->ts_reg_info.timestamp_kernel_addr = timestamp;
257
258	dev_dbg(hdev->dev, "Timestamp is set to ts cb address (%p), ts: 0x%llx\n",
259			pend->ts_reg_info.timestamp_kernel_addr,
260			*(u64 *)pend->ts_reg_info.timestamp_kernel_addr);
261
262	list_del(&pend->wait_list_node);
263
264	/* Mark kernel CB node as free */
265	pend->ts_reg_info.in_use = 0;
266
267	/* Putting the refcount for ts_buff and cq_cb objects will be handled
268	 * in workqueue context, just add job to free_list.
269	 */
270	free_node->buf = pend->ts_reg_info.buf;
271	free_node->cq_cb = pend->ts_reg_info.cq_cb;
272	list_add(&free_node->free_objects_node, *free_list);
273
274	return 0;
275}
276
277static void handle_user_interrupt(struct hl_device *hdev, struct hl_user_interrupt *intr)
278{
279	struct hl_user_pending_interrupt *pend, *temp_pend;
280	struct list_head *ts_reg_free_list_head = NULL;
281	struct timestamp_reg_work_obj *job;
282	bool reg_node_handle_fail = false;
283	int rc;
284
285	/* For registration nodes:
286	 * As part of handling the registration nodes, we should put refcount to
287	 * some objects. the problem is that we cannot do that under spinlock
288	 * or in irq handler context at all (since release functions are long and
289	 * might sleep), so we will need to handle that part in workqueue context.
290	 * To avoid handling kmalloc failure which compels us rolling back actions
291	 * and move nodes hanged on the free list back to the interrupt wait list
292	 * we always alloc the job of the WQ at the beginning.
293	 */
294	job = kmalloc(sizeof(*job), GFP_ATOMIC);
295	if (!job)
296		return;
297
298	spin_lock(&intr->wait_list_lock);
299	list_for_each_entry_safe(pend, temp_pend, &intr->wait_list_head, wait_list_node) {
300		if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
301				!pend->cq_kernel_addr) {
302			if (pend->ts_reg_info.buf) {
303				if (!reg_node_handle_fail) {
304					rc = handle_registration_node(hdev, pend,
305							&ts_reg_free_list_head, intr->timestamp);
306					if (rc)
307						reg_node_handle_fail = true;
308				}
309			} else {
310				/* Handle wait target value node */
311				pend->fence.timestamp = intr->timestamp;
312				complete_all(&pend->fence.completion);
313			}
314		}
315	}
316	spin_unlock(&intr->wait_list_lock);
317
318	if (ts_reg_free_list_head) {
319		INIT_WORK(&job->free_obj, hl_ts_free_objects);
320		job->free_obj_head = ts_reg_free_list_head;
321		job->hdev = hdev;
322		queue_work(hdev->ts_free_obj_wq, &job->free_obj);
323	} else {
324		kfree(job);
325	}
326}
327
328static void handle_tpc_interrupt(struct hl_device *hdev)
329{
330	u64 event_mask;
331	u32 flags;
332
333	event_mask = HL_NOTIFIER_EVENT_TPC_ASSERT |
334		HL_NOTIFIER_EVENT_USER_ENGINE_ERR |
335		HL_NOTIFIER_EVENT_DEVICE_RESET;
336
337	flags = HL_DRV_RESET_DELAY;
338
339	dev_err_ratelimited(hdev->dev, "Received TPC assert\n");
340	hl_device_cond_reset(hdev, flags, event_mask);
341}
342
343static void handle_unexpected_user_interrupt(struct hl_device *hdev)
344{
345	dev_err_ratelimited(hdev->dev, "Received unexpected user error interrupt\n");
346}
347
348/**
349 * hl_irq_handler_user_interrupt - irq handler for user interrupts
350 *
351 * @irq: irq number
352 * @arg: pointer to user interrupt structure
353 *
354 */
355irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg)
356{
357	struct hl_user_interrupt *user_int = arg;
358
359	user_int->timestamp = ktime_get();
360
361	return IRQ_WAKE_THREAD;
362}
363
364/**
365 * hl_irq_user_interrupt_thread_handler - irq thread handler for user interrupts.
366 * This function is invoked by threaded irq mechanism
367 *
368 * @irq: irq number
369 * @arg: pointer to user interrupt structure
370 *
371 */
372irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg)
373{
374	struct hl_user_interrupt *user_int = arg;
375	struct hl_device *hdev = user_int->hdev;
376
377	switch (user_int->type) {
378	case HL_USR_INTERRUPT_CQ:
379		handle_user_interrupt(hdev, &hdev->common_user_cq_interrupt);
380
381		/* Handle user cq interrupt registered on this specific irq */
382		handle_user_interrupt(hdev, user_int);
383		break;
384	case HL_USR_INTERRUPT_DECODER:
385		handle_user_interrupt(hdev, &hdev->common_decoder_interrupt);
386
387		/* Handle decoder interrupt registered on this specific irq */
388		handle_user_interrupt(hdev, user_int);
389		break;
390	case HL_USR_INTERRUPT_TPC:
391		handle_tpc_interrupt(hdev);
392		break;
393	case HL_USR_INTERRUPT_UNEXPECTED:
394		handle_unexpected_user_interrupt(hdev);
395		break;
396	default:
397		break;
398	}
399
400	return IRQ_HANDLED;
401}
402
403/**
404 * hl_irq_handler_eq - irq handler for event queue
405 *
406 * @irq: irq number
407 * @arg: pointer to event queue structure
408 *
409 */
410irqreturn_t hl_irq_handler_eq(int irq, void *arg)
411{
412	struct hl_eq *eq = arg;
413	struct hl_device *hdev = eq->hdev;
414	struct hl_eq_entry *eq_entry;
415	struct hl_eq_entry *eq_base;
416	struct hl_eqe_work *handle_eqe_work;
417	bool entry_ready;
418	u32 cur_eqe, ctl;
419	u16 cur_eqe_index, event_type;
420
421	eq_base = eq->kernel_address;
422
423	while (1) {
424		cur_eqe = le32_to_cpu(eq_base[eq->ci].hdr.ctl);
425		entry_ready = !!FIELD_GET(EQ_CTL_READY_MASK, cur_eqe);
426
427		if (!entry_ready)
428			break;
429
430		cur_eqe_index = FIELD_GET(EQ_CTL_INDEX_MASK, cur_eqe);
431		if ((hdev->event_queue.check_eqe_index) &&
432				(((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK) != cur_eqe_index)) {
433			dev_err(hdev->dev,
434				"EQE %#x in queue is ready but index does not match %d!=%d",
435				cur_eqe,
436				((eq->prev_eqe_index + 1) & EQ_CTL_INDEX_MASK),
437				cur_eqe_index);
438			break;
439		}
440
441		eq->prev_eqe_index++;
442
443		eq_entry = &eq_base[eq->ci];
444
445		/*
446		 * Make sure we read EQ entry contents after we've
447		 * checked the ownership bit.
448		 */
449		dma_rmb();
450
451		if (hdev->disabled && !hdev->reset_info.in_compute_reset) {
452			ctl = le32_to_cpu(eq_entry->hdr.ctl);
453			event_type = ((ctl & EQ_CTL_EVENT_TYPE_MASK) >> EQ_CTL_EVENT_TYPE_SHIFT);
454			dev_warn(hdev->dev,
455				"Device disabled but received an EQ event (%u)\n", event_type);
456			goto skip_irq;
457		}
458
459		handle_eqe_work = kmalloc(sizeof(*handle_eqe_work), GFP_ATOMIC);
460		if (handle_eqe_work) {
461			INIT_WORK(&handle_eqe_work->eq_work, irq_handle_eqe);
462			handle_eqe_work->hdev = hdev;
463
464			memcpy(&handle_eqe_work->eq_entry, eq_entry,
465					sizeof(*eq_entry));
466
467			queue_work(hdev->eq_wq, &handle_eqe_work->eq_work);
468		}
469skip_irq:
470		/* Clear EQ entry ready bit */
471		eq_entry->hdr.ctl =
472			cpu_to_le32(le32_to_cpu(eq_entry->hdr.ctl) &
473							~EQ_CTL_READY_MASK);
474
475		eq->ci = hl_eq_inc_ptr(eq->ci);
476
477		hdev->asic_funcs->update_eq_ci(hdev, eq->ci);
478	}
479
480	return IRQ_HANDLED;
481}
482
483/**
484 * hl_irq_handler_dec_abnrm - Decoder error interrupt handler
485 * @irq: IRQ number
486 * @arg: pointer to decoder structure.
487 */
488irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg)
489{
490	struct hl_dec *dec = arg;
491
492	schedule_work(&dec->abnrm_intr_work);
493
494	return IRQ_HANDLED;
495}
496
497/**
498 * hl_cq_init - main initialization function for an cq object
499 *
500 * @hdev: pointer to device structure
501 * @q: pointer to cq structure
502 * @hw_queue_id: The H/W queue ID this completion queue belongs to
503 *               HL_INVALID_QUEUE if cq is not attached to any specific queue
504 *
505 * Allocate dma-able memory for the completion queue and initialize fields
506 * Returns 0 on success
507 */
508int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id)
509{
510	void *p;
511
512	p = hl_asic_dma_alloc_coherent(hdev, HL_CQ_SIZE_IN_BYTES, &q->bus_address,
513					GFP_KERNEL | __GFP_ZERO);
514	if (!p)
515		return -ENOMEM;
516
517	q->hdev = hdev;
518	q->kernel_address = p;
519	q->hw_queue_id = hw_queue_id;
520	q->ci = 0;
521	q->pi = 0;
522
523	atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
524
525	return 0;
526}
527
528/**
529 * hl_cq_fini - destroy completion queue
530 *
531 * @hdev: pointer to device structure
532 * @q: pointer to cq structure
533 *
534 * Free the completion queue memory
535 */
536void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q)
537{
538	hl_asic_dma_free_coherent(hdev, HL_CQ_SIZE_IN_BYTES, q->kernel_address, q->bus_address);
539}
540
541void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q)
542{
543	q->ci = 0;
544	q->pi = 0;
545
546	atomic_set(&q->free_slots_cnt, HL_CQ_LENGTH);
547
548	/*
549	 * It's not enough to just reset the PI/CI because the H/W may have
550	 * written valid completion entries before it was halted and therefore
551	 * we need to clean the actual queues so we won't process old entries
552	 * when the device is operational again
553	 */
554
555	memset(q->kernel_address, 0, HL_CQ_SIZE_IN_BYTES);
556}
557
558/**
559 * hl_eq_init - main initialization function for an event queue object
560 *
561 * @hdev: pointer to device structure
562 * @q: pointer to eq structure
563 *
564 * Allocate dma-able memory for the event queue and initialize fields
565 * Returns 0 on success
566 */
567int hl_eq_init(struct hl_device *hdev, struct hl_eq *q)
568{
569	void *p;
570
571	p = hl_cpu_accessible_dma_pool_alloc(hdev, HL_EQ_SIZE_IN_BYTES, &q->bus_address);
572	if (!p)
573		return -ENOMEM;
574
575	q->hdev = hdev;
576	q->kernel_address = p;
577	q->ci = 0;
578	q->prev_eqe_index = 0;
579
580	return 0;
581}
582
583/**
584 * hl_eq_fini - destroy event queue
585 *
586 * @hdev: pointer to device structure
587 * @q: pointer to eq structure
588 *
589 * Free the event queue memory
590 */
591void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q)
592{
593	flush_workqueue(hdev->eq_wq);
594
595	hl_cpu_accessible_dma_pool_free(hdev, HL_EQ_SIZE_IN_BYTES, q->kernel_address);
596}
597
598void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q)
599{
600	q->ci = 0;
601	q->prev_eqe_index = 0;
602
603	/*
604	 * It's not enough to just reset the PI/CI because the H/W may have
605	 * written valid completion entries before it was halted and therefore
606	 * we need to clean the actual queues so we won't process old entries
607	 * when the device is operational again
608	 */
609
610	memset(q->kernel_address, 0, HL_EQ_SIZE_IN_BYTES);
611}
612