1/* SPDX-License-Identifier: GPL-2.0
2 *
3 * Copyright 2016-2022 HabanaLabs, Ltd.
4 * All Rights Reserved.
5 *
6 */
7
8#ifndef HABANALABSP_H_
9#define HABANALABSP_H_
10
11#include "../include/common/cpucp_if.h"
12#include "../include/common/qman_if.h"
13#include "../include/hw_ip/mmu/mmu_general.h"
14#include <uapi/drm/habanalabs_accel.h>
15
16#include <linux/cdev.h>
17#include <linux/iopoll.h>
18#include <linux/irqreturn.h>
19#include <linux/dma-direction.h>
20#include <linux/scatterlist.h>
21#include <linux/hashtable.h>
22#include <linux/debugfs.h>
23#include <linux/rwsem.h>
24#include <linux/eventfd.h>
25#include <linux/bitfield.h>
26#include <linux/genalloc.h>
27#include <linux/sched/signal.h>
28#include <linux/io-64-nonatomic-lo-hi.h>
29#include <linux/coresight.h>
30#include <linux/dma-buf.h>
31
32#include "security.h"
33
34#define HL_NAME				"habanalabs"
35
36struct hl_device;
37struct hl_fpriv;
38
39#define PCI_VENDOR_ID_HABANALABS	0x1da3
40
41/* Use upper bits of mmap offset to store habana driver specific information.
42 * bits[63:59] - Encode mmap type
43 * bits[45:0]  - mmap offset value
44 *
45 * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
46 *  defines are w.r.t to PAGE_SIZE
47 */
48#define HL_MMAP_TYPE_SHIFT		(59 - PAGE_SHIFT)
49#define HL_MMAP_TYPE_MASK		(0x1full << HL_MMAP_TYPE_SHIFT)
50#define HL_MMAP_TYPE_TS_BUFF		(0x10ull << HL_MMAP_TYPE_SHIFT)
51#define HL_MMAP_TYPE_BLOCK		(0x4ull << HL_MMAP_TYPE_SHIFT)
52#define HL_MMAP_TYPE_CB			(0x2ull << HL_MMAP_TYPE_SHIFT)
53
54#define HL_MMAP_OFFSET_VALUE_MASK	(0x1FFFFFFFFFFFull >> PAGE_SHIFT)
55#define HL_MMAP_OFFSET_VALUE_GET(off)	(off & HL_MMAP_OFFSET_VALUE_MASK)
56
57#define HL_PENDING_RESET_PER_SEC		10
58#define HL_PENDING_RESET_MAX_TRIALS		60 /* 10 minutes */
59#define HL_PENDING_RESET_LONG_SEC		60
60/*
61 * In device fini, wait 10 minutes for user processes to be terminated after we kill them.
62 * This is needed to prevent situation of clearing resources while user processes are still alive.
63 */
64#define HL_WAIT_PROCESS_KILL_ON_DEVICE_FINI	600
65
66#define HL_HARD_RESET_MAX_TIMEOUT	120
67#define HL_PLDM_HARD_RESET_MAX_TIMEOUT	(HL_HARD_RESET_MAX_TIMEOUT * 3)
68
69#define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */
70
71#define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */
72
73#define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */
74
75#define HL_CPUCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
76#define HL_CPUCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */
77#define HL_CPUCP_MON_DUMP_TIMEOUT_USEC	10000000 /* 10s */
78#define HL_CPUCP_SEC_ATTEST_INFO_TINEOUT_USEC 10000000 /* 10s */
79
80#define HL_FW_STATUS_POLL_INTERVAL_USEC		10000 /* 10ms */
81#define HL_FW_COMMS_STATUS_PLDM_POLL_INTERVAL_USEC	1000000 /* 1s */
82
83#define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */
84
85#define HL_SIM_MAX_TIMEOUT_US		100000000 /* 100s */
86
87#define HL_INVALID_QUEUE		UINT_MAX
88
89#define HL_COMMON_USER_CQ_INTERRUPT_ID	0xFFF
90#define HL_COMMON_DEC_INTERRUPT_ID	0xFFE
91
92#define HL_STATE_DUMP_HIST_LEN		5
93
94/* Default value for device reset trigger , an invalid value */
95#define HL_RESET_TRIGGER_DEFAULT	0xFF
96
97#define OBJ_NAMES_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
98#define SYNC_TO_ENGINE_HASH_TABLE_BITS	7 /* 1 << 7 buckets */
99
100/* Memory */
101#define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
102
103/* MMU */
104#define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */
105
106/**
107 * enum hl_mmu_page_table_location - mmu page table location
108 * @MMU_DR_PGT: page-table is located on device DRAM.
109 * @MMU_HR_PGT: page-table is located on host memory.
110 * @MMU_NUM_PGT_LOCATIONS: number of page-table locations currently supported.
111 */
112enum hl_mmu_page_table_location {
113	MMU_DR_PGT = 0,		/* device-dram-resident MMU PGT */
114	MMU_HR_PGT,		/* host resident MMU PGT */
115	MMU_NUM_PGT_LOCATIONS	/* num of PGT locations */
116};
117
118/*
119 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
120 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
121 */
122#define HL_RSVD_SOBS			2
123#define HL_RSVD_MONS			1
124
125/*
126 * HL_COLLECTIVE_RSVD_MSTR_MONS 'collective' reserved monitors per QMAN stream
127 */
128#define HL_COLLECTIVE_RSVD_MSTR_MONS	2
129
130#define HL_MAX_SOB_VAL			(1 << 15)
131
132#define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
133#define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))
134
135#define HL_PCI_NUM_BARS			6
136
137/* Completion queue entry relates to completed job */
138#define HL_COMPLETION_MODE_JOB		0
139/* Completion queue entry relates to completed command submission */
140#define HL_COMPLETION_MODE_CS		1
141
142#define HL_MAX_DCORES			8
143
144/* DMA alloc/free wrappers */
145#define hl_asic_dma_alloc_coherent(hdev, size, dma_handle, flags) \
146	hl_asic_dma_alloc_coherent_caller(hdev, size, dma_handle, flags, __func__)
147
148#define hl_asic_dma_pool_zalloc(hdev, size, mem_flags, dma_handle) \
149	hl_asic_dma_pool_zalloc_caller(hdev, size, mem_flags, dma_handle, __func__)
150
151#define hl_asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle) \
152	hl_asic_dma_free_coherent_caller(hdev, size, cpu_addr, dma_handle, __func__)
153
154#define hl_asic_dma_pool_free(hdev, vaddr, dma_addr) \
155	hl_asic_dma_pool_free_caller(hdev, vaddr, dma_addr, __func__)
156
157/*
158 * Reset Flags
159 *
160 * - HL_DRV_RESET_HARD
161 *       If set do hard reset to all engines. If not set reset just
162 *       compute/DMA engines.
163 *
164 * - HL_DRV_RESET_FROM_RESET_THR
165 *       Set if the caller is the hard-reset thread
166 *
167 * - HL_DRV_RESET_HEARTBEAT
168 *       Set if reset is due to heartbeat
169 *
170 * - HL_DRV_RESET_TDR
171 *       Set if reset is due to TDR
172 *
173 * - HL_DRV_RESET_DEV_RELEASE
174 *       Set if reset is due to device release
175 *
176 * - HL_DRV_RESET_BYPASS_REQ_TO_FW
177 *       F/W will perform the reset. No need to ask it to reset the device. This is relevant
178 *       only when running with secured f/w
179 *
180 * - HL_DRV_RESET_FW_FATAL_ERR
181 *       Set if reset is due to a fatal error from FW
182 *
183 * - HL_DRV_RESET_DELAY
184 *       Set if a delay should be added before the reset
185 *
186 * - HL_DRV_RESET_FROM_WD_THR
187 *       Set if the caller is the device release watchdog thread
188 */
189
190#define HL_DRV_RESET_HARD		(1 << 0)
191#define HL_DRV_RESET_FROM_RESET_THR	(1 << 1)
192#define HL_DRV_RESET_HEARTBEAT		(1 << 2)
193#define HL_DRV_RESET_TDR		(1 << 3)
194#define HL_DRV_RESET_DEV_RELEASE	(1 << 4)
195#define HL_DRV_RESET_BYPASS_REQ_TO_FW	(1 << 5)
196#define HL_DRV_RESET_FW_FATAL_ERR	(1 << 6)
197#define HL_DRV_RESET_DELAY		(1 << 7)
198#define HL_DRV_RESET_FROM_WD_THR	(1 << 8)
199
200/*
201 * Security
202 */
203
204#define HL_PB_SHARED		1
205#define HL_PB_NA		0
206#define HL_PB_SINGLE_INSTANCE	1
207#define HL_BLOCK_SIZE		0x1000
208#define HL_BLOCK_GLBL_ERR_MASK	0xF40
209#define HL_BLOCK_GLBL_ERR_ADDR	0xF44
210#define HL_BLOCK_GLBL_ERR_CAUSE	0xF48
211#define HL_BLOCK_GLBL_SEC_OFFS	0xF80
212#define HL_BLOCK_GLBL_SEC_SIZE	(HL_BLOCK_SIZE - HL_BLOCK_GLBL_SEC_OFFS)
213#define HL_BLOCK_GLBL_SEC_LEN	(HL_BLOCK_GLBL_SEC_SIZE / sizeof(u32))
214#define UNSET_GLBL_SEC_BIT(array, b) ((array)[((b) / 32)] |= (1 << ((b) % 32)))
215
216enum hl_protection_levels {
217	SECURED_LVL,
218	PRIVILEGED_LVL,
219	NON_SECURED_LVL
220};
221
222/**
223 * struct iterate_module_ctx - HW module iterator
224 * @fn: function to apply to each HW module instance
225 * @data: optional internal data to the function iterator
226 * @rc: return code for optional use of iterator/iterator-caller
227 */
228struct iterate_module_ctx {
229	/*
230	 * callback for the HW module iterator
231	 * @hdev: pointer to the habanalabs device structure
232	 * @block: block (ASIC specific definition can be dcore/hdcore)
233	 * @inst: HW module instance within the block
234	 * @offset: current HW module instance offset from the 1-st HW module instance
235	 *          in the 1-st block
236	 * @ctx: the iterator context.
237	 */
238	void (*fn)(struct hl_device *hdev, int block, int inst, u32 offset,
239			struct iterate_module_ctx *ctx);
240	void *data;
241	int rc;
242};
243
244struct hl_block_glbl_sec {
245	u32 sec_array[HL_BLOCK_GLBL_SEC_LEN];
246};
247
248#define HL_MAX_SOBS_PER_MONITOR	8
249
250/**
251 * struct hl_gen_wait_properties - properties for generating a wait CB
252 * @data: command buffer
253 * @q_idx: queue id is used to extract fence register address
254 * @size: offset in command buffer
255 * @sob_base: SOB base to use in this wait CB
256 * @sob_val: SOB value to wait for
257 * @mon_id: monitor to use in this wait CB
258 * @sob_mask: each bit represents a SOB offset from sob_base to be used
259 */
260struct hl_gen_wait_properties {
261	void	*data;
262	u32	q_idx;
263	u32	size;
264	u16	sob_base;
265	u16	sob_val;
266	u16	mon_id;
267	u8	sob_mask;
268};
269
270/**
271 * struct pgt_info - MMU hop page info.
272 * @node: hash linked-list node for the pgts on host (shadow pgts for device resident MMU and
273 *        actual pgts for host resident MMU).
274 * @phys_addr: physical address of the pgt.
275 * @virt_addr: host virtual address of the pgt (see above device/host resident).
276 * @shadow_addr: shadow hop in the host for device resident MMU.
277 * @ctx: pointer to the owner ctx.
278 * @num_of_ptes: indicates how many ptes are used in the pgt. used only for dynamically
279 *               allocated HOPs (all HOPs but HOP0)
280 *
281 * The MMU page tables hierarchy can be placed either on the device's DRAM (in which case shadow
282 * pgts will be stored on host memory) or on host memory (in which case no shadow is required).
283 *
284 * When a new level (hop) is needed during mapping this structure will be used to describe
285 * the newly allocated hop as well as to track number of PTEs in it.
286 * During unmapping, if no valid PTEs remained in the page of a newly allocated hop, it is
287 * freed with its pgt_info structure.
288 */
289struct pgt_info {
290	struct hlist_node	node;
291	u64			phys_addr;
292	u64			virt_addr;
293	u64			shadow_addr;
294	struct hl_ctx		*ctx;
295	int			num_of_ptes;
296};
297
298/**
299 * enum hl_pci_match_mode - pci match mode per region
300 * @PCI_ADDRESS_MATCH_MODE: address match mode
301 * @PCI_BAR_MATCH_MODE: bar match mode
302 */
303enum hl_pci_match_mode {
304	PCI_ADDRESS_MATCH_MODE,
305	PCI_BAR_MATCH_MODE
306};
307
308/**
309 * enum hl_fw_component - F/W components to read version through registers.
310 * @FW_COMP_BOOT_FIT: boot fit.
311 * @FW_COMP_PREBOOT: preboot.
312 * @FW_COMP_LINUX: linux.
313 */
314enum hl_fw_component {
315	FW_COMP_BOOT_FIT,
316	FW_COMP_PREBOOT,
317	FW_COMP_LINUX,
318};
319
320/**
321 * enum hl_fw_types - F/W types present in the system
322 * @FW_TYPE_NONE: no FW component indication
323 * @FW_TYPE_LINUX: Linux image for device CPU
324 * @FW_TYPE_BOOT_CPU: Boot image for device CPU
325 * @FW_TYPE_PREBOOT_CPU: Indicates pre-loaded CPUs are present in the system
326 *                       (preboot, ppboot etc...)
327 * @FW_TYPE_ALL_TYPES: Mask for all types
328 */
329enum hl_fw_types {
330	FW_TYPE_NONE = 0x0,
331	FW_TYPE_LINUX = 0x1,
332	FW_TYPE_BOOT_CPU = 0x2,
333	FW_TYPE_PREBOOT_CPU = 0x4,
334	FW_TYPE_ALL_TYPES =
335		(FW_TYPE_LINUX | FW_TYPE_BOOT_CPU | FW_TYPE_PREBOOT_CPU)
336};
337
338/**
339 * enum hl_queue_type - Supported QUEUE types.
340 * @QUEUE_TYPE_NA: queue is not available.
341 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
342 *                  host.
343 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
344 *			memories and/or operates the compute engines.
345 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
346 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
347 *                 notifications are sent by H/W.
348 */
349enum hl_queue_type {
350	QUEUE_TYPE_NA,
351	QUEUE_TYPE_EXT,
352	QUEUE_TYPE_INT,
353	QUEUE_TYPE_CPU,
354	QUEUE_TYPE_HW
355};
356
357enum hl_cs_type {
358	CS_TYPE_DEFAULT,
359	CS_TYPE_SIGNAL,
360	CS_TYPE_WAIT,
361	CS_TYPE_COLLECTIVE_WAIT,
362	CS_RESERVE_SIGNALS,
363	CS_UNRESERVE_SIGNALS,
364	CS_TYPE_ENGINE_CORE,
365	CS_TYPE_ENGINES,
366	CS_TYPE_FLUSH_PCI_HBW_WRITES,
367};
368
369/*
370 * struct hl_inbound_pci_region - inbound region descriptor
371 * @mode: pci match mode for this region
372 * @addr: region target address
373 * @size: region size in bytes
374 * @offset_in_bar: offset within bar (address match mode)
375 * @bar: bar id
376 */
377struct hl_inbound_pci_region {
378	enum hl_pci_match_mode	mode;
379	u64			addr;
380	u64			size;
381	u64			offset_in_bar;
382	u8			bar;
383};
384
385/*
386 * struct hl_outbound_pci_region - outbound region descriptor
387 * @addr: region target address
388 * @size: region size in bytes
389 */
390struct hl_outbound_pci_region {
391	u64	addr;
392	u64	size;
393};
394
395/*
396 * enum queue_cb_alloc_flags - Indicates queue support for CBs that
397 * allocated by Kernel or by User
398 * @CB_ALLOC_KERNEL: support only CBs that allocated by Kernel
399 * @CB_ALLOC_USER: support only CBs that allocated by User
400 */
401enum queue_cb_alloc_flags {
402	CB_ALLOC_KERNEL = 0x1,
403	CB_ALLOC_USER   = 0x2
404};
405
406/*
407 * struct hl_hw_sob - H/W SOB info.
408 * @hdev: habanalabs device structure.
409 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
410 * @sob_id: id of this SOB.
411 * @sob_addr: the sob offset from the base address.
412 * @q_idx: the H/W queue that uses this SOB.
413 * @need_reset: reset indication set when switching to the other sob.
414 */
415struct hl_hw_sob {
416	struct hl_device	*hdev;
417	struct kref		kref;
418	u32			sob_id;
419	u32			sob_addr;
420	u32			q_idx;
421	bool			need_reset;
422};
423
424enum hl_collective_mode {
425	HL_COLLECTIVE_NOT_SUPPORTED = 0x0,
426	HL_COLLECTIVE_MASTER = 0x1,
427	HL_COLLECTIVE_SLAVE = 0x2
428};
429
430/**
431 * struct hw_queue_properties - queue information.
432 * @type: queue type.
433 * @cb_alloc_flags: bitmap which indicates if the hw queue supports CB
434 *                  that allocated by the Kernel driver and therefore,
435 *                  a CB handle can be provided for jobs on this queue.
436 *                  Otherwise, a CB address must be provided.
437 * @collective_mode: collective mode of current queue
438 * @driver_only: true if only the driver is allowed to send a job to this queue,
439 *               false otherwise.
440 * @binned: True if the queue is binned out and should not be used
441 * @supports_sync_stream: True if queue supports sync stream
442 */
443struct hw_queue_properties {
444	enum hl_queue_type		type;
445	enum queue_cb_alloc_flags	cb_alloc_flags;
446	enum hl_collective_mode		collective_mode;
447	u8				driver_only;
448	u8				binned;
449	u8				supports_sync_stream;
450};
451
452/**
453 * enum vm_type - virtual memory mapping request information.
454 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
455 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
456 */
457enum vm_type {
458	VM_TYPE_USERPTR = 0x1,
459	VM_TYPE_PHYS_PACK = 0x2
460};
461
462/**
463 * enum mmu_op_flags - mmu operation relevant information.
464 * @MMU_OP_USERPTR: operation on user memory (host resident).
465 * @MMU_OP_PHYS_PACK: operation on DRAM (device resident).
466 * @MMU_OP_CLEAR_MEMCACHE: operation has to clear memcache.
467 * @MMU_OP_SKIP_LOW_CACHE_INV: operation is allowed to skip parts of cache invalidation.
468 */
469enum mmu_op_flags {
470	MMU_OP_USERPTR = 0x1,
471	MMU_OP_PHYS_PACK = 0x2,
472	MMU_OP_CLEAR_MEMCACHE = 0x4,
473	MMU_OP_SKIP_LOW_CACHE_INV = 0x8,
474};
475
476
477/**
478 * enum hl_device_hw_state - H/W device state. use this to understand whether
479 *                           to do reset before hw_init or not
480 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
481 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
482 *                            hw_init
483 */
484enum hl_device_hw_state {
485	HL_DEVICE_HW_STATE_CLEAN = 0,
486	HL_DEVICE_HW_STATE_DIRTY
487};
488
489#define HL_MMU_VA_ALIGNMENT_NOT_NEEDED 0
490
491/**
492 * struct hl_mmu_properties - ASIC specific MMU address translation properties.
493 * @start_addr: virtual start address of the memory region.
494 * @end_addr: virtual end address of the memory region.
495 * @hop_shifts: array holds HOPs shifts.
496 * @hop_masks: array holds HOPs masks.
497 * @last_mask: mask to get the bit indicating this is the last hop.
498 * @pgt_size: size for page tables.
499 * @supported_pages_mask: bitmask for supported page size (relevant only for MMUs
500 *                        supporting multiple page size).
501 * @page_size: default page size used to allocate memory.
502 * @num_hops: The amount of hops supported by the translation table.
503 * @hop_table_size: HOP table size.
504 * @hop0_tables_total_size: total size for all HOP0 tables.
505 * @host_resident: Should the MMU page table reside in host memory or in the
506 *                 device DRAM.
507 */
508struct hl_mmu_properties {
509	u64	start_addr;
510	u64	end_addr;
511	u64	hop_shifts[MMU_HOP_MAX];
512	u64	hop_masks[MMU_HOP_MAX];
513	u64	last_mask;
514	u64	pgt_size;
515	u64	supported_pages_mask;
516	u32	page_size;
517	u32	num_hops;
518	u32	hop_table_size;
519	u32	hop0_tables_total_size;
520	u8	host_resident;
521};
522
523/**
524 * struct hl_hints_range - hint addresses reserved va range.
525 * @start_addr: start address of the va range.
526 * @end_addr: end address of the va range.
527 */
528struct hl_hints_range {
529	u64 start_addr;
530	u64 end_addr;
531};
532
533/**
534 * struct asic_fixed_properties - ASIC specific immutable properties.
535 * @hw_queues_props: H/W queues properties.
536 * @special_blocks: points to an array containing special blocks info.
537 * @skip_special_blocks_cfg: special blocks skip configs.
538 * @cpucp_info: received various information from CPU-CP regarding the H/W, e.g.
539 *		available sensors.
540 * @uboot_ver: F/W U-boot version.
541 * @preboot_ver: F/W Preboot version.
542 * @dmmu: DRAM MMU address translation properties.
543 * @pmmu: PCI (host) MMU address translation properties.
544 * @pmmu_huge: PCI (host) MMU address translation properties for memory
545 *              allocated with huge pages.
546 * @hints_dram_reserved_va_range: dram hint addresses reserved range.
547 * @hints_host_reserved_va_range: host hint addresses reserved range.
548 * @hints_host_hpage_reserved_va_range: host huge page hint addresses reserved
549 *                                      range.
550 * @sram_base_address: SRAM physical start address.
551 * @sram_end_address: SRAM physical end address.
552 * @sram_user_base_address - SRAM physical start address for user access.
553 * @dram_base_address: DRAM physical start address.
554 * @dram_end_address: DRAM physical end address.
555 * @dram_user_base_address: DRAM physical start address for user access.
556 * @dram_size: DRAM total size.
557 * @dram_pci_bar_size: size of PCI bar towards DRAM.
558 * @max_power_default: max power of the device after reset.
559 * @dc_power_default: power consumed by the device in mode idle.
560 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
561 *                                      fault.
562 * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
563 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
564 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
565 * @mmu_dram_default_page_addr: DRAM default page physical address.
566 * @tpc_enabled_mask: which TPCs are enabled.
567 * @tpc_binning_mask: which TPCs are binned. 0 means usable and 1 means binned.
568 * @dram_enabled_mask: which DRAMs are enabled.
569 * @dram_binning_mask: which DRAMs are binned. 0 means usable, 1 means binned.
570 * @dram_hints_align_mask: dram va hint addresses alignment mask which is used
571 *                  for hints validity check.
572 * @cfg_base_address: config space base address.
573 * @mmu_cache_mng_addr: address of the MMU cache.
574 * @mmu_cache_mng_size: size of the MMU cache.
575 * @device_dma_offset_for_host_access: the offset to add to host DMA addresses
576 *                                     to enable the device to access them.
577 * @host_base_address: host physical start address for host DMA from device
578 * @host_end_address: host physical end address for host DMA from device
579 * @max_freq_value: current max clk frequency.
580 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
581 *                                  in order to raise events toward FW.
582 * @clk_pll_index: clock PLL index that specify which PLL determines the clock
583 *                 we display to the user
584 * @mmu_pgt_size: MMU page tables total size.
585 * @mmu_pte_size: PTE size in MMU page tables.
586 * @mmu_hop_table_size: MMU hop table size.
587 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
588 * @dram_page_size: page size for MMU DRAM allocation.
589 * @cfg_size: configuration space size on SRAM.
590 * @sram_size: total size of SRAM.
591 * @max_asid: maximum number of open contexts (ASIDs).
592 * @num_of_events: number of possible internal H/W IRQs.
593 * @psoc_pci_pll_nr: PCI PLL NR value.
594 * @psoc_pci_pll_nf: PCI PLL NF value.
595 * @psoc_pci_pll_od: PCI PLL OD value.
596 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
597 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
598 * @high_pll: high PLL frequency used by the device.
599 * @cb_pool_cb_cnt: number of CBs in the CB pool.
600 * @cb_pool_cb_size: size of each CB in the CB pool.
601 * @decoder_enabled_mask: which decoders are enabled.
602 * @decoder_binning_mask: which decoders are binned, 0 means usable and 1 means binned.
603 * @rotator_enabled_mask: which rotators are enabled.
604 * @edma_enabled_mask: which EDMAs are enabled.
605 * @edma_binning_mask: which EDMAs are binned, 0 means usable and 1 means
606 *                     binned (at most one binned DMA).
607 * @max_pending_cs: maximum of concurrent pending command submissions
608 * @max_queues: maximum amount of queues in the system
609 * @fw_preboot_cpu_boot_dev_sts0: bitmap representation of preboot cpu
610 *                                capabilities reported by FW, bit description
611 *                                can be found in CPU_BOOT_DEV_STS0
612 * @fw_preboot_cpu_boot_dev_sts1: bitmap representation of preboot cpu
613 *                                capabilities reported by FW, bit description
614 *                                can be found in CPU_BOOT_DEV_STS1
615 * @fw_bootfit_cpu_boot_dev_sts0: bitmap representation of boot cpu security
616 *                                status reported by FW, bit description can be
617 *                                found in CPU_BOOT_DEV_STS0
618 * @fw_bootfit_cpu_boot_dev_sts1: bitmap representation of boot cpu security
619 *                                status reported by FW, bit description can be
620 *                                found in CPU_BOOT_DEV_STS1
621 * @fw_app_cpu_boot_dev_sts0: bitmap representation of application security
622 *                            status reported by FW, bit description can be
623 *                            found in CPU_BOOT_DEV_STS0
624 * @fw_app_cpu_boot_dev_sts1: bitmap representation of application security
625 *                            status reported by FW, bit description can be
626 *                            found in CPU_BOOT_DEV_STS1
627 * @max_dec: maximum number of decoders
628 * @hmmu_hif_enabled_mask: mask of HMMUs/HIFs that are not isolated (enabled)
629 *                         1- enabled, 0- isolated.
630 * @faulty_dram_cluster_map: mask of faulty DRAM cluster.
631 *                         1- faulty cluster, 0- good cluster.
632 * @xbar_edge_enabled_mask: mask of XBAR_EDGEs that are not isolated (enabled)
633 *                          1- enabled, 0- isolated.
634 * @device_mem_alloc_default_page_size: may be different than dram_page_size only for ASICs for
635 *                                      which the property supports_user_set_page_size is true
636 *                                      (i.e. the DRAM supports multiple page sizes), otherwise
637 *                                      it will shall  be equal to dram_page_size.
638 * @num_engine_cores: number of engine cpu cores.
639 * @max_num_of_engines: maximum number of all engines in the ASIC.
640 * @num_of_special_blocks: special_blocks array size.
641 * @glbl_err_cause_num: global err cause number.
642 * @hbw_flush_reg: register to read to generate HBW flush. value of 0 means HBW flush is
643 *                 not supported.
644 * @collective_first_sob: first sync object available for collective use
645 * @collective_first_mon: first monitor available for collective use
646 * @sync_stream_first_sob: first sync object available for sync stream use
647 * @sync_stream_first_mon: first monitor available for sync stream use
648 * @first_available_user_sob: first sob available for the user
649 * @first_available_user_mon: first monitor available for the user
650 * @first_available_user_interrupt: first available interrupt reserved for the user
651 * @first_available_cq: first available CQ for the user.
652 * @user_interrupt_count: number of user interrupts.
653 * @user_dec_intr_count: number of decoder interrupts exposed to user.
654 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
655 * @eq_interrupt_id: interrupt id for EQ, uses to synchronize EQ interrupts in hard-reset.
656 * @cache_line_size: device cache line size.
657 * @server_type: Server type that the ASIC is currently installed in.
658 *               The value is according to enum hl_server_type in uapi file.
659 * @completion_queues_count: number of completion queues.
660 * @completion_mode: 0 - job based completion, 1 - cs based completion
661 * @mme_master_slave_mode: 0 - Each MME works independently, 1 - MME works
662 *                         in Master/Slave mode
663 * @fw_security_enabled: true if security measures are enabled in firmware,
664 *                       false otherwise
665 * @fw_cpu_boot_dev_sts0_valid: status bits are valid and can be fetched from
666 *                              BOOT_DEV_STS0
667 * @fw_cpu_boot_dev_sts1_valid: status bits are valid and can be fetched from
668 *                              BOOT_DEV_STS1
669 * @dram_supports_virtual_memory: is there an MMU towards the DRAM
670 * @hard_reset_done_by_fw: true if firmware is handling hard reset flow
671 * @num_functional_hbms: number of functional HBMs in each DCORE.
672 * @hints_range_reservation: device support hint addresses range reservation.
673 * @iatu_done_by_fw: true if iATU configuration is being done by FW.
674 * @dynamic_fw_load: is dynamic FW load is supported.
675 * @gic_interrupts_enable: true if FW is not blocking GIC controller,
676 *                         false otherwise.
677 * @use_get_power_for_reset_history: To support backward compatibility for Goya
678 *                                   and Gaudi
679 * @supports_compute_reset: is a reset which is not a hard-reset supported by this asic.
680 * @allow_inference_soft_reset: true if the ASIC supports soft reset that is
681 *                              initiated by user or TDR. This is only true
682 *                              in inference ASICs, as there is no real-world
683 *                              use-case of doing soft-reset in training (due
684 *                              to the fact that training runs on multiple
685 *                              devices)
686 * @configurable_stop_on_err: is stop-on-error option configurable via debugfs.
687 * @set_max_power_on_device_init: true if need to set max power in F/W on device init.
688 * @supports_user_set_page_size: true if user can set the allocation page size.
689 * @dma_mask: the dma mask to be set for this device
690 * @supports_advanced_cpucp_rc: true if new cpucp opcodes are supported.
691 * @supports_engine_modes: true if changing engines/engine_cores modes is supported.
692 */
693struct asic_fixed_properties {
694	struct hw_queue_properties	*hw_queues_props;
695	struct hl_special_block_info	*special_blocks;
696	struct hl_skip_blocks_cfg	skip_special_blocks_cfg;
697	struct cpucp_info		cpucp_info;
698	char				uboot_ver[VERSION_MAX_LEN];
699	char				preboot_ver[VERSION_MAX_LEN];
700	struct hl_mmu_properties	dmmu;
701	struct hl_mmu_properties	pmmu;
702	struct hl_mmu_properties	pmmu_huge;
703	struct hl_hints_range		hints_dram_reserved_va_range;
704	struct hl_hints_range		hints_host_reserved_va_range;
705	struct hl_hints_range		hints_host_hpage_reserved_va_range;
706	u64				sram_base_address;
707	u64				sram_end_address;
708	u64				sram_user_base_address;
709	u64				dram_base_address;
710	u64				dram_end_address;
711	u64				dram_user_base_address;
712	u64				dram_size;
713	u64				dram_pci_bar_size;
714	u64				max_power_default;
715	u64				dc_power_default;
716	u64				dram_size_for_default_page_mapping;
717	u64				pcie_dbi_base_address;
718	u64				pcie_aux_dbi_reg_addr;
719	u64				mmu_pgt_addr;
720	u64				mmu_dram_default_page_addr;
721	u64				tpc_enabled_mask;
722	u64				tpc_binning_mask;
723	u64				dram_enabled_mask;
724	u64				dram_binning_mask;
725	u64				dram_hints_align_mask;
726	u64				cfg_base_address;
727	u64				mmu_cache_mng_addr;
728	u64				mmu_cache_mng_size;
729	u64				device_dma_offset_for_host_access;
730	u64				host_base_address;
731	u64				host_end_address;
732	u64				max_freq_value;
733	u64				engine_core_interrupt_reg_addr;
734	u32				clk_pll_index;
735	u32				mmu_pgt_size;
736	u32				mmu_pte_size;
737	u32				mmu_hop_table_size;
738	u32				mmu_hop0_tables_total_size;
739	u32				dram_page_size;
740	u32				cfg_size;
741	u32				sram_size;
742	u32				max_asid;
743	u32				num_of_events;
744	u32				psoc_pci_pll_nr;
745	u32				psoc_pci_pll_nf;
746	u32				psoc_pci_pll_od;
747	u32				psoc_pci_pll_div_factor;
748	u32				psoc_timestamp_frequency;
749	u32				high_pll;
750	u32				cb_pool_cb_cnt;
751	u32				cb_pool_cb_size;
752	u32				decoder_enabled_mask;
753	u32				decoder_binning_mask;
754	u32				rotator_enabled_mask;
755	u32				edma_enabled_mask;
756	u32				edma_binning_mask;
757	u32				max_pending_cs;
758	u32				max_queues;
759	u32				fw_preboot_cpu_boot_dev_sts0;
760	u32				fw_preboot_cpu_boot_dev_sts1;
761	u32				fw_bootfit_cpu_boot_dev_sts0;
762	u32				fw_bootfit_cpu_boot_dev_sts1;
763	u32				fw_app_cpu_boot_dev_sts0;
764	u32				fw_app_cpu_boot_dev_sts1;
765	u32				max_dec;
766	u32				hmmu_hif_enabled_mask;
767	u32				faulty_dram_cluster_map;
768	u32				xbar_edge_enabled_mask;
769	u32				device_mem_alloc_default_page_size;
770	u32				num_engine_cores;
771	u32				max_num_of_engines;
772	u32				num_of_special_blocks;
773	u32				glbl_err_cause_num;
774	u32				hbw_flush_reg;
775	u16				collective_first_sob;
776	u16				collective_first_mon;
777	u16				sync_stream_first_sob;
778	u16				sync_stream_first_mon;
779	u16				first_available_user_sob[HL_MAX_DCORES];
780	u16				first_available_user_mon[HL_MAX_DCORES];
781	u16				first_available_user_interrupt;
782	u16				first_available_cq[HL_MAX_DCORES];
783	u16				user_interrupt_count;
784	u16				user_dec_intr_count;
785	u16				tpc_interrupt_id;
786	u16				eq_interrupt_id;
787	u16				cache_line_size;
788	u16				server_type;
789	u8				completion_queues_count;
790	u8				completion_mode;
791	u8				mme_master_slave_mode;
792	u8				fw_security_enabled;
793	u8				fw_cpu_boot_dev_sts0_valid;
794	u8				fw_cpu_boot_dev_sts1_valid;
795	u8				dram_supports_virtual_memory;
796	u8				hard_reset_done_by_fw;
797	u8				num_functional_hbms;
798	u8				hints_range_reservation;
799	u8				iatu_done_by_fw;
800	u8				dynamic_fw_load;
801	u8				gic_interrupts_enable;
802	u8				use_get_power_for_reset_history;
803	u8				supports_compute_reset;
804	u8				allow_inference_soft_reset;
805	u8				configurable_stop_on_err;
806	u8				set_max_power_on_device_init;
807	u8				supports_user_set_page_size;
808	u8				dma_mask;
809	u8				supports_advanced_cpucp_rc;
810	u8				supports_engine_modes;
811};
812
813/**
814 * struct hl_fence - software synchronization primitive
815 * @completion: fence is implemented using completion
816 * @refcount: refcount for this fence
817 * @cs_sequence: sequence of the corresponding command submission
818 * @stream_master_qid_map: streams masters QID bitmap to represent all streams
819 *                         masters QIDs that multi cs is waiting on
820 * @error: mark this fence with error
821 * @timestamp: timestamp upon completion
822 * @mcs_handling_done: indicates that corresponding command submission has
823 *                     finished msc handling, this does not mean it was part
824 *                     of the mcs
825 */
826struct hl_fence {
827	struct completion	completion;
828	struct kref		refcount;
829	u64			cs_sequence;
830	u32			stream_master_qid_map;
831	int			error;
832	ktime_t			timestamp;
833	u8			mcs_handling_done;
834};
835
836/**
837 * struct hl_cs_compl - command submission completion object.
838 * @base_fence: hl fence object.
839 * @lock: spinlock to protect fence.
840 * @hdev: habanalabs device structure.
841 * @hw_sob: the H/W SOB used in this signal/wait CS.
842 * @encaps_sig_hdl: encaps signals handler.
843 * @cs_seq: command submission sequence number.
844 * @type: type of the CS - signal/wait.
845 * @sob_val: the SOB value that is used in this signal/wait CS.
846 * @sob_group: the SOB group that is used in this collective wait CS.
847 * @encaps_signals: indication whether it's a completion object of cs with
848 * encaps signals or not.
849 */
850struct hl_cs_compl {
851	struct hl_fence		base_fence;
852	spinlock_t		lock;
853	struct hl_device	*hdev;
854	struct hl_hw_sob	*hw_sob;
855	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
856	u64			cs_seq;
857	enum hl_cs_type		type;
858	u16			sob_val;
859	u16			sob_group;
860	bool			encaps_signals;
861};
862
863/*
864 * Command Buffers
865 */
866
867/**
868 * struct hl_ts_buff - describes a timestamp buffer.
869 * @kernel_buff_address: Holds the internal buffer's kernel virtual address.
870 * @user_buff_address: Holds the user buffer's kernel virtual address.
871 * @kernel_buff_size: Holds the internal kernel buffer size.
872 */
873struct hl_ts_buff {
874	void			*kernel_buff_address;
875	void			*user_buff_address;
876	u32			kernel_buff_size;
877};
878
879struct hl_mmap_mem_buf;
880
881/**
882 * struct hl_mem_mgr - describes unified memory manager for mappable memory chunks.
883 * @dev: back pointer to the owning device
884 * @lock: protects handles
885 * @handles: an idr holding all active handles to the memory buffers in the system.
886 */
887struct hl_mem_mgr {
888	struct device *dev;
889	spinlock_t lock;
890	struct idr handles;
891};
892
893/**
894 * struct hl_mmap_mem_buf_behavior - describes unified memory manager buffer behavior
895 * @topic: string identifier used for logging
896 * @mem_id: memory type identifier, embedded in the handle and used to identify
897 *          the memory type by handle.
898 * @alloc: callback executed on buffer allocation, shall allocate the memory,
899 *         set it under buffer private, and set mappable size.
900 * @mmap: callback executed on mmap, must map the buffer to vma
901 * @release: callback executed on release, must free the resources used by the buffer
902 */
903struct hl_mmap_mem_buf_behavior {
904	const char *topic;
905	u64 mem_id;
906
907	int (*alloc)(struct hl_mmap_mem_buf *buf, gfp_t gfp, void *args);
908	int (*mmap)(struct hl_mmap_mem_buf *buf, struct vm_area_struct *vma, void *args);
909	void (*release)(struct hl_mmap_mem_buf *buf);
910};
911
912/**
913 * struct hl_mmap_mem_buf - describes a single unified memory buffer
914 * @behavior: buffer behavior
915 * @mmg: back pointer to the unified memory manager
916 * @refcount: reference counter for buffer users
917 * @private: pointer to buffer behavior private data
918 * @mmap: atomic boolean indicating whether or not the buffer is mapped right now
919 * @real_mapped_size: the actual size of buffer mapped, after part of it may be released,
920 *                   may change at runtime.
921 * @mappable_size: the original mappable size of the buffer, does not change after
922 *                 the allocation.
923 * @handle: the buffer id in mmg handles store
924 */
925struct hl_mmap_mem_buf {
926	struct hl_mmap_mem_buf_behavior *behavior;
927	struct hl_mem_mgr *mmg;
928	struct kref refcount;
929	void *private;
930	atomic_t mmap;
931	u64 real_mapped_size;
932	u64 mappable_size;
933	u64 handle;
934};
935
936/**
937 * struct hl_cb - describes a Command Buffer.
938 * @hdev: pointer to device this CB belongs to.
939 * @ctx: pointer to the CB owner's context.
940 * @buf: back pointer to the parent mappable memory buffer
941 * @debugfs_list: node in debugfs list of command buffers.
942 * @pool_list: node in pool list of command buffers.
943 * @kernel_address: Holds the CB's kernel virtual address.
944 * @virtual_addr: Holds the CB's virtual address.
945 * @bus_address: Holds the CB's DMA address.
946 * @size: holds the CB's size.
947 * @roundup_size: holds the cb size after roundup to page size.
948 * @cs_cnt: holds number of CS that this CB participates in.
949 * @is_handle_destroyed: atomic boolean indicating whether or not the CB handle was destroyed.
950 * @is_pool: true if CB was acquired from the pool, false otherwise.
951 * @is_internal: internally allocated
952 * @is_mmu_mapped: true if the CB is mapped to the device's MMU.
953 */
954struct hl_cb {
955	struct hl_device	*hdev;
956	struct hl_ctx		*ctx;
957	struct hl_mmap_mem_buf	*buf;
958	struct list_head	debugfs_list;
959	struct list_head	pool_list;
960	void			*kernel_address;
961	u64			virtual_addr;
962	dma_addr_t		bus_address;
963	u32			size;
964	u32			roundup_size;
965	atomic_t		cs_cnt;
966	atomic_t		is_handle_destroyed;
967	u8			is_pool;
968	u8			is_internal;
969	u8			is_mmu_mapped;
970};
971
972
973/*
974 * QUEUES
975 */
976
977struct hl_cs_job;
978
979/* Queue length of external and HW queues */
980#define HL_QUEUE_LENGTH			4096
981#define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)
982
983#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
984#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
985#endif
986
987/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
988#define HL_CQ_LENGTH			HL_QUEUE_LENGTH
989#define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)
990
991/* Must be power of 2 */
992#define HL_EQ_LENGTH			64
993#define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)
994
995/* Host <-> CPU-CP shared memory size */
996#define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M
997
998/**
999 * struct hl_sync_stream_properties -
1000 *     describes a H/W queue sync stream properties
1001 * @hw_sob: array of the used H/W SOBs by this H/W queue.
1002 * @next_sob_val: the next value to use for the currently used SOB.
1003 * @base_sob_id: the base SOB id of the SOBs used by this queue.
1004 * @base_mon_id: the base MON id of the MONs used by this queue.
1005 * @collective_mstr_mon_id: the MON ids of the MONs used by this master queue
1006 *                          in order to sync with all slave queues.
1007 * @collective_slave_mon_id: the MON id used by this slave queue in order to
1008 *                           sync with its master queue.
1009 * @collective_sob_id: current SOB id used by this collective slave queue
1010 *                     to signal its collective master queue upon completion.
1011 * @curr_sob_offset: the id offset to the currently used SOB from the
1012 *                   HL_RSVD_SOBS that are being used by this queue.
1013 */
1014struct hl_sync_stream_properties {
1015	struct hl_hw_sob hw_sob[HL_RSVD_SOBS];
1016	u16		next_sob_val;
1017	u16		base_sob_id;
1018	u16		base_mon_id;
1019	u16		collective_mstr_mon_id[HL_COLLECTIVE_RSVD_MSTR_MONS];
1020	u16		collective_slave_mon_id;
1021	u16		collective_sob_id;
1022	u8		curr_sob_offset;
1023};
1024
1025/**
1026 * struct hl_encaps_signals_mgr - describes sync stream encapsulated signals
1027 * handlers manager
1028 * @lock: protects handles.
1029 * @handles: an idr to hold all encapsulated signals handles.
1030 */
1031struct hl_encaps_signals_mgr {
1032	spinlock_t		lock;
1033	struct idr		handles;
1034};
1035
1036/**
1037 * struct hl_hw_queue - describes a H/W transport queue.
1038 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
1039 * @sync_stream_prop: sync stream queue properties
1040 * @queue_type: type of queue.
1041 * @collective_mode: collective mode of current queue
1042 * @kernel_address: holds the queue's kernel virtual address.
1043 * @bus_address: holds the queue's DMA address.
1044 * @pi: holds the queue's pi value.
1045 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
1046 * @hw_queue_id: the id of the H/W queue.
1047 * @cq_id: the id for the corresponding CQ for this H/W queue.
1048 * @msi_vec: the IRQ number of the H/W queue.
1049 * @int_queue_len: length of internal queue (number of entries).
1050 * @valid: is the queue valid (we have array of 32 queues, not all of them
1051 *         exist).
1052 * @supports_sync_stream: True if queue supports sync stream
1053 */
1054struct hl_hw_queue {
1055	struct hl_cs_job			**shadow_queue;
1056	struct hl_sync_stream_properties	sync_stream_prop;
1057	enum hl_queue_type			queue_type;
1058	enum hl_collective_mode			collective_mode;
1059	void					*kernel_address;
1060	dma_addr_t				bus_address;
1061	u32					pi;
1062	atomic_t				ci;
1063	u32					hw_queue_id;
1064	u32					cq_id;
1065	u32					msi_vec;
1066	u16					int_queue_len;
1067	u8					valid;
1068	u8					supports_sync_stream;
1069};
1070
1071/**
1072 * struct hl_cq - describes a completion queue
1073 * @hdev: pointer to the device structure
1074 * @kernel_address: holds the queue's kernel virtual address
1075 * @bus_address: holds the queue's DMA address
1076 * @cq_idx: completion queue index in array
1077 * @hw_queue_id: the id of the matching H/W queue
1078 * @ci: ci inside the queue
1079 * @pi: pi inside the queue
1080 * @free_slots_cnt: counter of free slots in queue
1081 */
1082struct hl_cq {
1083	struct hl_device	*hdev;
1084	void			*kernel_address;
1085	dma_addr_t		bus_address;
1086	u32			cq_idx;
1087	u32			hw_queue_id;
1088	u32			ci;
1089	u32			pi;
1090	atomic_t		free_slots_cnt;
1091};
1092
1093enum hl_user_interrupt_type {
1094	HL_USR_INTERRUPT_CQ = 0,
1095	HL_USR_INTERRUPT_DECODER,
1096	HL_USR_INTERRUPT_TPC,
1097	HL_USR_INTERRUPT_UNEXPECTED
1098};
1099
1100/**
1101 * struct hl_user_interrupt - holds user interrupt information
1102 * @hdev: pointer to the device structure
1103 * @type: user interrupt type
1104 * @wait_list_head: head to the list of user threads pending on this interrupt
1105 * @wait_list_lock: protects wait_list_head
1106 * @timestamp: last timestamp taken upon interrupt
1107 * @interrupt_id: msix interrupt id
1108 */
1109struct hl_user_interrupt {
1110	struct hl_device		*hdev;
1111	enum hl_user_interrupt_type	type;
1112	struct list_head		wait_list_head;
1113	spinlock_t			wait_list_lock;
1114	ktime_t				timestamp;
1115	u32				interrupt_id;
1116};
1117
1118/**
1119 * struct timestamp_reg_free_node - holds the timestamp registration free objects node
1120 * @free_objects_node: node in the list free_obj_jobs
1121 * @cq_cb: pointer to cq command buffer to be freed
1122 * @buf: pointer to timestamp buffer to be freed
1123 */
1124struct timestamp_reg_free_node {
1125	struct list_head	free_objects_node;
1126	struct hl_cb		*cq_cb;
1127	struct hl_mmap_mem_buf	*buf;
1128};
1129
1130/* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
1131 * the job will be to pass over the free_obj_jobs list and put refcount to objects
1132 * in each node of the list
1133 * @free_obj: workqueue object to free timestamp registration node objects
1134 * @hdev: pointer to the device structure
1135 * @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
1136 */
1137struct timestamp_reg_work_obj {
1138	struct work_struct	free_obj;
1139	struct hl_device	*hdev;
1140	struct list_head	*free_obj_head;
1141};
1142
1143/* struct timestamp_reg_info - holds the timestamp registration related data.
1144 * @buf: pointer to the timestamp buffer which include both user/kernel buffers.
1145 *       relevant only when doing timestamps records registration.
1146 * @cq_cb: pointer to CQ counter CB.
1147 * @timestamp_kernel_addr: timestamp handle address, where to set timestamp
1148 *                         relevant only when doing timestamps records
1149 *                         registration.
1150 * @in_use: indicates if the node already in use. relevant only when doing
1151 *          timestamps records registration, since in this case the driver
1152 *          will have it's own buffer which serve as a records pool instead of
1153 *          allocating records dynamically.
1154 */
1155struct timestamp_reg_info {
1156	struct hl_mmap_mem_buf	*buf;
1157	struct hl_cb		*cq_cb;
1158	u64			*timestamp_kernel_addr;
1159	u8			in_use;
1160};
1161
1162/**
1163 * struct hl_user_pending_interrupt - holds a context to a user thread
1164 *                                    pending on an interrupt
1165 * @ts_reg_info: holds the timestamps registration nodes info
1166 * @wait_list_node: node in the list of user threads pending on an interrupt
1167 * @fence: hl fence object for interrupt completion
1168 * @cq_target_value: CQ target value
1169 * @cq_kernel_addr: CQ kernel address, to be used in the cq interrupt
1170 *                  handler for target value comparison
1171 */
1172struct hl_user_pending_interrupt {
1173	struct timestamp_reg_info	ts_reg_info;
1174	struct list_head		wait_list_node;
1175	struct hl_fence			fence;
1176	u64				cq_target_value;
1177	u64				*cq_kernel_addr;
1178};
1179
1180/**
1181 * struct hl_eq - describes the event queue (single one per device)
1182 * @hdev: pointer to the device structure
1183 * @kernel_address: holds the queue's kernel virtual address
1184 * @bus_address: holds the queue's DMA address
1185 * @ci: ci inside the queue
1186 * @prev_eqe_index: the index of the previous event queue entry. The index of
1187 *                  the current entry's index must be +1 of the previous one.
1188 * @check_eqe_index: do we need to check the index of the current entry vs. the
1189 *                   previous one. This is for backward compatibility with older
1190 *                   firmwares
1191 */
1192struct hl_eq {
1193	struct hl_device	*hdev;
1194	void			*kernel_address;
1195	dma_addr_t		bus_address;
1196	u32			ci;
1197	u32			prev_eqe_index;
1198	bool			check_eqe_index;
1199};
1200
1201/**
1202 * struct hl_dec - describes a decoder sw instance.
1203 * @hdev: pointer to the device structure.
1204 * @abnrm_intr_work: workqueue work item to run when decoder generates an error interrupt.
1205 * @core_id: ID of the decoder.
1206 * @base_addr: base address of the decoder.
1207 */
1208struct hl_dec {
1209	struct hl_device	*hdev;
1210	struct work_struct	abnrm_intr_work;
1211	u32			core_id;
1212	u32			base_addr;
1213};
1214
1215/**
1216 * enum hl_asic_type - supported ASIC types.
1217 * @ASIC_INVALID: Invalid ASIC type.
1218 * @ASIC_GOYA: Goya device (HL-1000).
1219 * @ASIC_GAUDI: Gaudi device (HL-2000).
1220 * @ASIC_GAUDI_SEC: Gaudi secured device (HL-2000).
1221 * @ASIC_GAUDI2: Gaudi2 device.
1222 * @ASIC_GAUDI2B: Gaudi2B device.
1223 * @ASIC_GAUDI2C: Gaudi2C device.
1224 */
1225enum hl_asic_type {
1226	ASIC_INVALID,
1227	ASIC_GOYA,
1228	ASIC_GAUDI,
1229	ASIC_GAUDI_SEC,
1230	ASIC_GAUDI2,
1231	ASIC_GAUDI2B,
1232	ASIC_GAUDI2C,
1233};
1234
1235struct hl_cs_parser;
1236
1237/**
1238 * enum hl_pm_mng_profile - power management profile.
1239 * @PM_AUTO: internal clock is set by the Linux driver.
1240 * @PM_MANUAL: internal clock is set by the user.
1241 * @PM_LAST: last power management type.
1242 */
1243enum hl_pm_mng_profile {
1244	PM_AUTO = 1,
1245	PM_MANUAL,
1246	PM_LAST
1247};
1248
1249/**
1250 * enum hl_pll_frequency - PLL frequency.
1251 * @PLL_HIGH: high frequency.
1252 * @PLL_LOW: low frequency.
1253 * @PLL_LAST: last frequency values that were configured by the user.
1254 */
1255enum hl_pll_frequency {
1256	PLL_HIGH = 1,
1257	PLL_LOW,
1258	PLL_LAST
1259};
1260
1261#define PLL_REF_CLK 50
1262
1263enum div_select_defs {
1264	DIV_SEL_REF_CLK = 0,
1265	DIV_SEL_PLL_CLK = 1,
1266	DIV_SEL_DIVIDED_REF = 2,
1267	DIV_SEL_DIVIDED_PLL = 3,
1268};
1269
1270enum debugfs_access_type {
1271	DEBUGFS_READ8,
1272	DEBUGFS_WRITE8,
1273	DEBUGFS_READ32,
1274	DEBUGFS_WRITE32,
1275	DEBUGFS_READ64,
1276	DEBUGFS_WRITE64,
1277};
1278
1279enum pci_region {
1280	PCI_REGION_CFG,
1281	PCI_REGION_SRAM,
1282	PCI_REGION_DRAM,
1283	PCI_REGION_SP_SRAM,
1284	PCI_REGION_NUMBER,
1285};
1286
1287/**
1288 * struct pci_mem_region - describe memory region in a PCI bar
1289 * @region_base: region base address
1290 * @region_size: region size
1291 * @bar_size: size of the BAR
1292 * @offset_in_bar: region offset into the bar
1293 * @bar_id: bar ID of the region
1294 * @used: if used 1, otherwise 0
1295 */
1296struct pci_mem_region {
1297	u64 region_base;
1298	u64 region_size;
1299	u64 bar_size;
1300	u64 offset_in_bar;
1301	u8 bar_id;
1302	u8 used;
1303};
1304
1305/**
1306 * struct static_fw_load_mgr - static FW load manager
1307 * @preboot_version_max_off: max offset to preboot version
1308 * @boot_fit_version_max_off: max offset to boot fit version
1309 * @kmd_msg_to_cpu_reg: register address for KDM->CPU messages
1310 * @cpu_cmd_status_to_host_reg: register address for CPU command status response
1311 * @cpu_boot_status_reg: boot status register
1312 * @cpu_boot_dev_status0_reg: boot device status register 0
1313 * @cpu_boot_dev_status1_reg: boot device status register 1
1314 * @boot_err0_reg: boot error register 0
1315 * @boot_err1_reg: boot error register 1
1316 * @preboot_version_offset_reg: SRAM offset to preboot version register
1317 * @boot_fit_version_offset_reg: SRAM offset to boot fit version register
1318 * @sram_offset_mask: mask for getting offset into the SRAM
1319 * @cpu_reset_wait_msec: used when setting WFE via kmd_msg_to_cpu_reg
1320 */
1321struct static_fw_load_mgr {
1322	u64 preboot_version_max_off;
1323	u64 boot_fit_version_max_off;
1324	u32 kmd_msg_to_cpu_reg;
1325	u32 cpu_cmd_status_to_host_reg;
1326	u32 cpu_boot_status_reg;
1327	u32 cpu_boot_dev_status0_reg;
1328	u32 cpu_boot_dev_status1_reg;
1329	u32 boot_err0_reg;
1330	u32 boot_err1_reg;
1331	u32 preboot_version_offset_reg;
1332	u32 boot_fit_version_offset_reg;
1333	u32 sram_offset_mask;
1334	u32 cpu_reset_wait_msec;
1335};
1336
1337/**
1338 * struct fw_response - FW response to LKD command
1339 * @ram_offset: descriptor offset into the RAM
1340 * @ram_type: RAM type containing the descriptor (SRAM/DRAM)
1341 * @status: command status
1342 */
1343struct fw_response {
1344	u32 ram_offset;
1345	u8 ram_type;
1346	u8 status;
1347};
1348
1349/**
1350 * struct dynamic_fw_load_mgr - dynamic FW load manager
1351 * @response: FW to LKD response
1352 * @comm_desc: the communication descriptor with FW
1353 * @image_region: region to copy the FW image to
1354 * @fw_image_size: size of FW image to load
1355 * @wait_for_bl_timeout: timeout for waiting for boot loader to respond
1356 * @fw_desc_valid: true if FW descriptor has been validated and hence the data can be used
1357 */
1358struct dynamic_fw_load_mgr {
1359	struct fw_response response;
1360	struct lkd_fw_comms_desc comm_desc;
1361	struct pci_mem_region *image_region;
1362	size_t fw_image_size;
1363	u32 wait_for_bl_timeout;
1364	bool fw_desc_valid;
1365};
1366
1367/**
1368 * struct pre_fw_load_props - needed properties for pre-FW load
1369 * @cpu_boot_status_reg: cpu_boot_status register address
1370 * @sts_boot_dev_sts0_reg: sts_boot_dev_sts0 register address
1371 * @sts_boot_dev_sts1_reg: sts_boot_dev_sts1 register address
1372 * @boot_err0_reg: boot_err0 register address
1373 * @boot_err1_reg: boot_err1 register address
1374 * @wait_for_preboot_timeout: timeout to poll for preboot ready
1375 */
1376struct pre_fw_load_props {
1377	u32 cpu_boot_status_reg;
1378	u32 sts_boot_dev_sts0_reg;
1379	u32 sts_boot_dev_sts1_reg;
1380	u32 boot_err0_reg;
1381	u32 boot_err1_reg;
1382	u32 wait_for_preboot_timeout;
1383};
1384
1385/**
1386 * struct fw_image_props - properties of FW image
1387 * @image_name: name of the image
1388 * @src_off: offset in src FW to copy from
1389 * @copy_size: amount of bytes to copy (0 to copy the whole binary)
1390 */
1391struct fw_image_props {
1392	char *image_name;
1393	u32 src_off;
1394	u32 copy_size;
1395};
1396
1397/**
1398 * struct fw_load_mgr - manager FW loading process
1399 * @dynamic_loader: specific structure for dynamic load
1400 * @static_loader: specific structure for static load
1401 * @pre_fw_load_props: parameter for pre FW load
1402 * @boot_fit_img: boot fit image properties
1403 * @linux_img: linux image properties
1404 * @cpu_timeout: CPU response timeout in usec
1405 * @boot_fit_timeout: Boot fit load timeout in usec
1406 * @skip_bmc: should BMC be skipped
1407 * @sram_bar_id: SRAM bar ID
1408 * @dram_bar_id: DRAM bar ID
1409 * @fw_comp_loaded: bitmask of loaded FW components. set bit meaning loaded
1410 *                  component. values are set according to enum hl_fw_types.
1411 */
1412struct fw_load_mgr {
1413	union {
1414		struct dynamic_fw_load_mgr dynamic_loader;
1415		struct static_fw_load_mgr static_loader;
1416	};
1417	struct pre_fw_load_props pre_fw_load;
1418	struct fw_image_props boot_fit_img;
1419	struct fw_image_props linux_img;
1420	u32 cpu_timeout;
1421	u32 boot_fit_timeout;
1422	u8 skip_bmc;
1423	u8 sram_bar_id;
1424	u8 dram_bar_id;
1425	u8 fw_comp_loaded;
1426};
1427
1428struct hl_cs;
1429
1430/**
1431 * struct engines_data - asic engines data
1432 * @buf: buffer for engines data in ascii
1433 * @actual_size: actual size of data that was written by the driver to the allocated buffer
1434 * @allocated_buf_size: total size of allocated buffer
1435 */
1436struct engines_data {
1437	char *buf;
1438	int actual_size;
1439	u32 allocated_buf_size;
1440};
1441
1442/**
1443 * struct hl_asic_funcs - ASIC specific functions that are can be called from
1444 *                        common code.
1445 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
1446 * @early_fini: tears down what was done in early_init.
1447 * @late_init: sets up late driver/hw state (post hw_init) - Optional.
1448 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
1449 * @sw_init: sets up driver state, does not configure H/W.
1450 * @sw_fini: tears down driver state, does not configure H/W.
1451 * @hw_init: sets up the H/W state.
1452 * @hw_fini: tears down the H/W state.
1453 * @halt_engines: halt engines, needed for reset sequence. This also disables
1454 *                interrupts from the device. Should be called before
1455 *                hw_fini and before CS rollback.
1456 * @suspend: handles IP specific H/W or SW changes for suspend.
1457 * @resume: handles IP specific H/W or SW changes for resume.
1458 * @mmap: maps a memory.
1459 * @ring_doorbell: increment PI on a given QMAN.
1460 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
1461 *             function because the PQs are located in different memory areas
1462 *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
1463 *             writing the PQE must match the destination memory area
1464 *             properties.
1465 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
1466 *                           dma_alloc_coherent(). This is ASIC function because
1467 *                           its implementation is not trivial when the driver
1468 *                           is loaded in simulation mode (not upstreamed).
1469 * @asic_dma_free_coherent:  Free coherent DMA memory by calling
1470 *                           dma_free_coherent(). This is ASIC function because
1471 *                           its implementation is not trivial when the driver
1472 *                           is loaded in simulation mode (not upstreamed).
1473 * @scrub_device_mem: Scrub the entire SRAM and DRAM.
1474 * @scrub_device_dram: Scrub the dram memory of the device.
1475 * @get_int_queue_base: get the internal queue base address.
1476 * @test_queues: run simple test on all queues for sanity check.
1477 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
1478 *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
1479 * @asic_dma_pool_free: free small DMA allocation from pool.
1480 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
1481 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
1482 * @asic_dma_unmap_single: unmap a single DMA buffer
1483 * @asic_dma_map_single: map a single buffer to a DMA
1484 * @hl_dma_unmap_sgtable: DMA unmap scatter-gather table.
1485 * @cs_parser: parse Command Submission.
1486 * @asic_dma_map_sgtable: DMA map scatter-gather table.
1487 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
1488 * @update_eq_ci: update event queue CI.
1489 * @context_switch: called upon ASID context switch.
1490 * @restore_phase_topology: clear all SOBs amd MONs.
1491 * @debugfs_read_dma: debug interface for reading up to 2MB from the device's
1492 *                    internal memory via DMA engine.
1493 * @add_device_attr: add ASIC specific device attributes.
1494 * @handle_eqe: handle event queue entry (IRQ) from CPU-CP.
1495 * @get_events_stat: retrieve event queue entries histogram.
1496 * @read_pte: read MMU page table entry from DRAM.
1497 * @write_pte: write MMU page table entry to DRAM.
1498 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
1499 *                        (L1 only) or hard (L0 & L1) flush.
1500 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with ASID-VA-size mask.
1501 * @mmu_prefetch_cache_range: pre-fetch specific MMU STLB cache lines with ASID-VA-size mask.
1502 * @send_heartbeat: send is-alive packet to CPU-CP and verify response.
1503 * @debug_coresight: perform certain actions on Coresight for debugging.
1504 * @is_device_idle: return true if device is idle, false otherwise.
1505 * @compute_reset_late_init: perform certain actions needed after a compute reset
1506 * @hw_queues_lock: acquire H/W queues lock.
1507 * @hw_queues_unlock: release H/W queues lock.
1508 * @get_pci_id: retrieve PCI ID.
1509 * @get_eeprom_data: retrieve EEPROM data from F/W.
1510 * @get_monitor_dump: retrieve monitor registers dump from F/W.
1511 * @send_cpu_message: send message to F/W. If the message is timedout, the
1512 *                    driver will eventually reset the device. The timeout can
1513 *                    be determined by the calling function or it can be 0 and
1514 *                    then the timeout is the default timeout for the specific
1515 *                    ASIC
1516 * @get_hw_state: retrieve the H/W state
1517 * @pci_bars_map: Map PCI BARs.
1518 * @init_iatu: Initialize the iATU unit inside the PCI controller.
1519 * @rreg: Read a register. Needed for simulator support.
1520 * @wreg: Write a register. Needed for simulator support.
1521 * @halt_coresight: stop the ETF and ETR traces.
1522 * @ctx_init: context dependent initialization.
1523 * @ctx_fini: context dependent cleanup.
1524 * @pre_schedule_cs: Perform pre-CS-scheduling operations.
1525 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
1526 * @load_firmware_to_device: load the firmware to the device's memory
1527 * @load_boot_fit_to_device: load boot fit to device's memory
1528 * @get_signal_cb_size: Get signal CB size.
1529 * @get_wait_cb_size: Get wait CB size.
1530 * @gen_signal_cb: Generate a signal CB.
1531 * @gen_wait_cb: Generate a wait CB.
1532 * @reset_sob: Reset a SOB.
1533 * @reset_sob_group: Reset SOB group
1534 * @get_device_time: Get the device time.
1535 * @pb_print_security_errors: print security errors according block and cause
1536 * @collective_wait_init_cs: Generate collective master/slave packets
1537 *                           and place them in the relevant cs jobs
1538 * @collective_wait_create_jobs: allocate collective wait cs jobs
1539 * @get_dec_base_addr: get the base address of a given decoder.
1540 * @scramble_addr: Routine to scramble the address prior of mapping it
1541 *                 in the MMU.
1542 * @descramble_addr: Routine to de-scramble the address prior of
1543 *                   showing it to users.
1544 * @ack_protection_bits_errors: ack and dump all security violations
1545 * @get_hw_block_id: retrieve a HW block id to be used by the user to mmap it.
1546 *                   also returns the size of the block if caller supplies
1547 *                   a valid pointer for it
1548 * @hw_block_mmap: mmap a HW block with a given id.
1549 * @enable_events_from_fw: send interrupt to firmware to notify them the
1550 *                         driver is ready to receive asynchronous events. This
1551 *                         function should be called during the first init and
1552 *                         after every hard-reset of the device
1553 * @ack_mmu_errors: check and ack mmu errors, page fault, access violation.
1554 * @get_msi_info: Retrieve asic-specific MSI ID of the f/w async event
1555 * @map_pll_idx_to_fw_idx: convert driver specific per asic PLL index to
1556 *                         generic f/w compatible PLL Indexes
1557 * @init_firmware_preload_params: initialize pre FW-load parameters.
1558 * @init_firmware_loader: initialize data for FW loader.
1559 * @init_cpu_scrambler_dram: Enable CPU specific DRAM scrambling
1560 * @state_dump_init: initialize constants required for state dump
1561 * @get_sob_addr: get SOB base address offset.
1562 * @set_pci_memory_regions: setting properties of PCI memory regions
1563 * @get_stream_master_qid_arr: get pointer to stream masters QID array
1564 * @check_if_razwi_happened: check if there was a razwi due to RR violation.
1565 * @access_dev_mem: access device memory
1566 * @set_dram_bar_base: set the base of the DRAM BAR
1567 * @set_engine_cores: set a config command to engine cores
1568 * @set_engines: set a config command to user engines
1569 * @send_device_activity: indication to FW about device availability
1570 * @set_dram_properties: set DRAM related properties.
1571 * @set_binning_masks: set binning/enable masks for all relevant components.
1572 */
1573struct hl_asic_funcs {
1574	int (*early_init)(struct hl_device *hdev);
1575	int (*early_fini)(struct hl_device *hdev);
1576	int (*late_init)(struct hl_device *hdev);
1577	void (*late_fini)(struct hl_device *hdev);
1578	int (*sw_init)(struct hl_device *hdev);
1579	int (*sw_fini)(struct hl_device *hdev);
1580	int (*hw_init)(struct hl_device *hdev);
1581	int (*hw_fini)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1582	void (*halt_engines)(struct hl_device *hdev, bool hard_reset, bool fw_reset);
1583	int (*suspend)(struct hl_device *hdev);
1584	int (*resume)(struct hl_device *hdev);
1585	int (*mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1586			void *cpu_addr, dma_addr_t dma_addr, size_t size);
1587	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
1588	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
1589			struct hl_bd *bd);
1590	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
1591					dma_addr_t *dma_handle, gfp_t flag);
1592	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
1593					void *cpu_addr, dma_addr_t dma_handle);
1594	int (*scrub_device_mem)(struct hl_device *hdev);
1595	int (*scrub_device_dram)(struct hl_device *hdev, u64 val);
1596	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
1597				dma_addr_t *dma_handle, u16 *queue_len);
1598	int (*test_queues)(struct hl_device *hdev);
1599	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
1600				gfp_t mem_flags, dma_addr_t *dma_handle);
1601	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
1602				dma_addr_t dma_addr);
1603	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
1604				size_t size, dma_addr_t *dma_handle);
1605	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
1606				size_t size, void *vaddr);
1607	void (*asic_dma_unmap_single)(struct hl_device *hdev,
1608				dma_addr_t dma_addr, int len,
1609				enum dma_data_direction dir);
1610	dma_addr_t (*asic_dma_map_single)(struct hl_device *hdev,
1611				void *addr, int len,
1612				enum dma_data_direction dir);
1613	void (*hl_dma_unmap_sgtable)(struct hl_device *hdev,
1614				struct sg_table *sgt,
1615				enum dma_data_direction dir);
1616	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
1617	int (*asic_dma_map_sgtable)(struct hl_device *hdev, struct sg_table *sgt,
1618				enum dma_data_direction dir);
1619	void (*add_end_of_cb_packets)(struct hl_device *hdev,
1620					void *kernel_address, u32 len,
1621					u32 original_len,
1622					u64 cq_addr, u32 cq_val, u32 msix_num,
1623					bool eb);
1624	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
1625	int (*context_switch)(struct hl_device *hdev, u32 asid);
1626	void (*restore_phase_topology)(struct hl_device *hdev);
1627	int (*debugfs_read_dma)(struct hl_device *hdev, u64 addr, u32 size,
1628				void *blob_addr);
1629	void (*add_device_attr)(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp,
1630				struct attribute_group *dev_vrm_attr_grp);
1631	void (*handle_eqe)(struct hl_device *hdev,
1632				struct hl_eq_entry *eq_entry);
1633	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
1634				u32 *size);
1635	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
1636	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
1637	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
1638					u32 flags);
1639	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
1640				u32 flags, u32 asid, u64 va, u64 size);
1641	int (*mmu_prefetch_cache_range)(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
1642	int (*send_heartbeat)(struct hl_device *hdev);
1643	int (*debug_coresight)(struct hl_device *hdev, struct hl_ctx *ctx, void *data);
1644	bool (*is_device_idle)(struct hl_device *hdev, u64 *mask_arr, u8 mask_len,
1645				struct engines_data *e);
1646	int (*compute_reset_late_init)(struct hl_device *hdev);
1647	void (*hw_queues_lock)(struct hl_device *hdev);
1648	void (*hw_queues_unlock)(struct hl_device *hdev);
1649	u32 (*get_pci_id)(struct hl_device *hdev);
1650	int (*get_eeprom_data)(struct hl_device *hdev, void *data, size_t max_size);
1651	int (*get_monitor_dump)(struct hl_device *hdev, void *data);
1652	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
1653				u16 len, u32 timeout, u64 *result);
1654	int (*pci_bars_map)(struct hl_device *hdev);
1655	int (*init_iatu)(struct hl_device *hdev);
1656	u32 (*rreg)(struct hl_device *hdev, u32 reg);
1657	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
1658	void (*halt_coresight)(struct hl_device *hdev, struct hl_ctx *ctx);
1659	int (*ctx_init)(struct hl_ctx *ctx);
1660	void (*ctx_fini)(struct hl_ctx *ctx);
1661	int (*pre_schedule_cs)(struct hl_cs *cs);
1662	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
1663	int (*load_firmware_to_device)(struct hl_device *hdev);
1664	int (*load_boot_fit_to_device)(struct hl_device *hdev);
1665	u32 (*get_signal_cb_size)(struct hl_device *hdev);
1666	u32 (*get_wait_cb_size)(struct hl_device *hdev);
1667	u32 (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id,
1668			u32 size, bool eb);
1669	u32 (*gen_wait_cb)(struct hl_device *hdev,
1670			struct hl_gen_wait_properties *prop);
1671	void (*reset_sob)(struct hl_device *hdev, void *data);
1672	void (*reset_sob_group)(struct hl_device *hdev, u16 sob_group);
1673	u64 (*get_device_time)(struct hl_device *hdev);
1674	void (*pb_print_security_errors)(struct hl_device *hdev,
1675			u32 block_addr, u32 cause, u32 offended_addr);
1676	int (*collective_wait_init_cs)(struct hl_cs *cs);
1677	int (*collective_wait_create_jobs)(struct hl_device *hdev,
1678			struct hl_ctx *ctx, struct hl_cs *cs,
1679			u32 wait_queue_id, u32 collective_engine_id,
1680			u32 encaps_signal_offset);
1681	u32 (*get_dec_base_addr)(struct hl_device *hdev, u32 core_id);
1682	u64 (*scramble_addr)(struct hl_device *hdev, u64 addr);
1683	u64 (*descramble_addr)(struct hl_device *hdev, u64 addr);
1684	void (*ack_protection_bits_errors)(struct hl_device *hdev);
1685	int (*get_hw_block_id)(struct hl_device *hdev, u64 block_addr,
1686				u32 *block_size, u32 *block_id);
1687	int (*hw_block_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
1688			u32 block_id, u32 block_size);
1689	void (*enable_events_from_fw)(struct hl_device *hdev);
1690	int (*ack_mmu_errors)(struct hl_device *hdev, u64 mmu_cap_mask);
1691	void (*get_msi_info)(__le32 *table);
1692	int (*map_pll_idx_to_fw_idx)(u32 pll_idx);
1693	void (*init_firmware_preload_params)(struct hl_device *hdev);
1694	void (*init_firmware_loader)(struct hl_device *hdev);
1695	void (*init_cpu_scrambler_dram)(struct hl_device *hdev);
1696	void (*state_dump_init)(struct hl_device *hdev);
1697	u32 (*get_sob_addr)(struct hl_device *hdev, u32 sob_id);
1698	void (*set_pci_memory_regions)(struct hl_device *hdev);
1699	u32* (*get_stream_master_qid_arr)(void);
1700	void (*check_if_razwi_happened)(struct hl_device *hdev);
1701	int (*mmu_get_real_page_size)(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
1702					u32 page_size, u32 *real_page_size, bool is_dram_addr);
1703	int (*access_dev_mem)(struct hl_device *hdev, enum pci_region region_type,
1704				u64 addr, u64 *val, enum debugfs_access_type acc_type);
1705	u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
1706	int (*set_engine_cores)(struct hl_device *hdev, u32 *core_ids,
1707					u32 num_cores, u32 core_command);
1708	int (*set_engines)(struct hl_device *hdev, u32 *engine_ids,
1709					u32 num_engines, u32 engine_command);
1710	int (*send_device_activity)(struct hl_device *hdev, bool open);
1711	int (*set_dram_properties)(struct hl_device *hdev);
1712	int (*set_binning_masks)(struct hl_device *hdev);
1713};
1714
1715
1716/*
1717 * CONTEXTS
1718 */
1719
1720#define HL_KERNEL_ASID_ID	0
1721
1722/**
1723 * enum hl_va_range_type - virtual address range type.
1724 * @HL_VA_RANGE_TYPE_HOST: range type of host pages
1725 * @HL_VA_RANGE_TYPE_HOST_HUGE: range type of host huge pages
1726 * @HL_VA_RANGE_TYPE_DRAM: range type of dram pages
1727 */
1728enum hl_va_range_type {
1729	HL_VA_RANGE_TYPE_HOST,
1730	HL_VA_RANGE_TYPE_HOST_HUGE,
1731	HL_VA_RANGE_TYPE_DRAM,
1732	HL_VA_RANGE_TYPE_MAX
1733};
1734
1735/**
1736 * struct hl_va_range - virtual addresses range.
1737 * @lock: protects the virtual addresses list.
1738 * @list: list of virtual addresses blocks available for mappings.
1739 * @start_addr: range start address.
1740 * @end_addr: range end address.
1741 * @page_size: page size of this va range.
1742 */
1743struct hl_va_range {
1744	struct mutex		lock;
1745	struct list_head	list;
1746	u64			start_addr;
1747	u64			end_addr;
1748	u32			page_size;
1749};
1750
1751/**
1752 * struct hl_cs_counters_atomic - command submission counters
1753 * @out_of_mem_drop_cnt: dropped due to memory allocation issue
1754 * @parsing_drop_cnt: dropped due to error in packet parsing
1755 * @queue_full_drop_cnt: dropped due to queue full
1756 * @device_in_reset_drop_cnt: dropped due to device in reset
1757 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
1758 * @validation_drop_cnt: dropped due to error in validation
1759 */
1760struct hl_cs_counters_atomic {
1761	atomic64_t out_of_mem_drop_cnt;
1762	atomic64_t parsing_drop_cnt;
1763	atomic64_t queue_full_drop_cnt;
1764	atomic64_t device_in_reset_drop_cnt;
1765	atomic64_t max_cs_in_flight_drop_cnt;
1766	atomic64_t validation_drop_cnt;
1767};
1768
1769/**
1770 * struct hl_dmabuf_priv - a dma-buf private object.
1771 * @dmabuf: pointer to dma-buf object.
1772 * @ctx: pointer to the dma-buf owner's context.
1773 * @phys_pg_pack: pointer to physical page pack if the dma-buf was exported
1774 *                where virtual memory is supported.
1775 * @memhash_hnode: pointer to the memhash node. this object holds the export count.
1776 * @device_address: physical address of the device's memory. Relevant only
1777 *                  if phys_pg_pack is NULL (dma-buf was exported from address).
1778 *                  The total size can be taken from the dmabuf object.
1779 */
1780struct hl_dmabuf_priv {
1781	struct dma_buf			*dmabuf;
1782	struct hl_ctx			*ctx;
1783	struct hl_vm_phys_pg_pack	*phys_pg_pack;
1784	struct hl_vm_hash_node		*memhash_hnode;
1785	uint64_t			device_address;
1786};
1787
1788#define HL_CS_OUTCOME_HISTORY_LEN 256
1789
1790/**
1791 * struct hl_cs_outcome - represents a single completed CS outcome
1792 * @list_link: link to either container's used list or free list
1793 * @map_link: list to the container hash map
1794 * @ts: completion ts
1795 * @seq: the original cs sequence
1796 * @error: error code cs completed with, if any
1797 */
1798struct hl_cs_outcome {
1799	struct list_head list_link;
1800	struct hlist_node map_link;
1801	ktime_t ts;
1802	u64 seq;
1803	int error;
1804};
1805
1806/**
1807 * struct hl_cs_outcome_store - represents a limited store of completed CS outcomes
1808 * @outcome_map: index of completed CS searchable by sequence number
1809 * @used_list: list of outcome objects currently in use
1810 * @free_list: list of outcome objects currently not in use
1811 * @nodes_pool: a static pool of pre-allocated outcome objects
1812 * @db_lock: any operation on the store must take this lock
1813 */
1814struct hl_cs_outcome_store {
1815	DECLARE_HASHTABLE(outcome_map, 8);
1816	struct list_head used_list;
1817	struct list_head free_list;
1818	struct hl_cs_outcome nodes_pool[HL_CS_OUTCOME_HISTORY_LEN];
1819	spinlock_t db_lock;
1820};
1821
1822/**
1823 * struct hl_ctx - user/kernel context.
1824 * @mem_hash: holds mapping from virtual address to virtual memory area
1825 *		descriptor (hl_vm_phys_pg_list or hl_userptr).
1826 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
1827 * @hr_mmu_phys_hash: if host-resident MMU is used, holds a mapping from
1828 *                    MMU-hop-page physical address to its host-resident
1829 *                    pgt_info structure.
1830 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
1831 * @hdev: pointer to the device structure.
1832 * @refcount: reference counter for the context. Context is released only when
1833 *		this hits 0. It is incremented on CS and CS_WAIT.
1834 * @cs_pending: array of hl fence objects representing pending CS.
1835 * @outcome_store: storage data structure used to remember outcomes of completed
1836 *                 command submissions for a long time after CS id wraparound.
1837 * @va_range: holds available virtual addresses for host and dram mappings.
1838 * @mem_hash_lock: protects the mem_hash.
1839 * @hw_block_list_lock: protects the HW block memory list.
1840 * @debugfs_list: node in debugfs list of contexts.
1841 * @hw_block_mem_list: list of HW block virtual mapped addresses.
1842 * @cs_counters: context command submission counters.
1843 * @cb_va_pool: device VA pool for command buffers which are mapped to the
1844 *              device's MMU.
1845 * @sig_mgr: encaps signals handle manager.
1846 * @cb_va_pool_base: the base address for the device VA pool
1847 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
1848 *			to user so user could inquire about CS. It is used as
1849 *			index to cs_pending array.
1850 * @dram_default_hops: array that holds all hops addresses needed for default
1851 *                     DRAM mapping.
1852 * @cs_lock: spinlock to protect cs_sequence.
1853 * @dram_phys_mem: amount of used physical DRAM memory by this context.
1854 * @thread_ctx_switch_token: token to prevent multiple threads of the same
1855 *				context	from running the context switch phase.
1856 *				Only a single thread should run it.
1857 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
1858 *				the context switch phase from moving to their
1859 *				execution phase before the context switch phase
1860 *				has finished.
1861 * @asid: context's unique address space ID in the device's MMU.
1862 * @handle: context's opaque handle for user
1863 */
1864struct hl_ctx {
1865	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
1866	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
1867	DECLARE_HASHTABLE(hr_mmu_phys_hash, MMU_HASH_TABLE_BITS);
1868	struct hl_fpriv			*hpriv;
1869	struct hl_device		*hdev;
1870	struct kref			refcount;
1871	struct hl_fence			**cs_pending;
1872	struct hl_cs_outcome_store	outcome_store;
1873	struct hl_va_range		*va_range[HL_VA_RANGE_TYPE_MAX];
1874	struct mutex			mem_hash_lock;
1875	struct mutex			hw_block_list_lock;
1876	struct list_head		debugfs_list;
1877	struct list_head		hw_block_mem_list;
1878	struct hl_cs_counters_atomic	cs_counters;
1879	struct gen_pool			*cb_va_pool;
1880	struct hl_encaps_signals_mgr	sig_mgr;
1881	u64				cb_va_pool_base;
1882	u64				cs_sequence;
1883	u64				*dram_default_hops;
1884	spinlock_t			cs_lock;
1885	atomic64_t			dram_phys_mem;
1886	atomic_t			thread_ctx_switch_token;
1887	u32				thread_ctx_switch_wait_token;
1888	u32				asid;
1889	u32				handle;
1890};
1891
1892/**
1893 * struct hl_ctx_mgr - for handling multiple contexts.
1894 * @lock: protects ctx_handles.
1895 * @handles: idr to hold all ctx handles.
1896 */
1897struct hl_ctx_mgr {
1898	struct mutex	lock;
1899	struct idr	handles;
1900};
1901
1902
1903/*
1904 * COMMAND SUBMISSIONS
1905 */
1906
1907/**
1908 * struct hl_userptr - memory mapping chunk information
1909 * @vm_type: type of the VM.
1910 * @job_node: linked-list node for hanging the object on the Job's list.
1911 * @pages: pointer to struct page array
1912 * @npages: size of @pages array
1913 * @sgt: pointer to the scatter-gather table that holds the pages.
1914 * @dir: for DMA unmapping, the direction must be supplied, so save it.
1915 * @debugfs_list: node in debugfs list of command submissions.
1916 * @pid: the pid of the user process owning the memory
1917 * @addr: user-space virtual address of the start of the memory area.
1918 * @size: size of the memory area to pin & map.
1919 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
1920 */
1921struct hl_userptr {
1922	enum vm_type		vm_type; /* must be first */
1923	struct list_head	job_node;
1924	struct page		**pages;
1925	unsigned int		npages;
1926	struct sg_table		*sgt;
1927	enum dma_data_direction dir;
1928	struct list_head	debugfs_list;
1929	pid_t			pid;
1930	u64			addr;
1931	u64			size;
1932	u8			dma_mapped;
1933};
1934
1935/**
1936 * struct hl_cs - command submission.
1937 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
1938 * @ctx: the context this CS belongs to.
1939 * @job_list: list of the CS's jobs in the various queues.
1940 * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
1941 * @refcount: reference counter for usage of the CS.
1942 * @fence: pointer to the fence object of this CS.
1943 * @signal_fence: pointer to the fence object of the signal CS (used by wait
1944 *                CS only).
1945 * @finish_work: workqueue object to run when CS is completed by H/W.
1946 * @work_tdr: delayed work node for TDR.
1947 * @mirror_node : node in device mirror list of command submissions.
1948 * @staged_cs_node: node in the staged cs list.
1949 * @debugfs_list: node in debugfs list of command submissions.
1950 * @encaps_sig_hdl: holds the encaps signals handle.
1951 * @sequence: the sequence number of this CS.
1952 * @staged_sequence: the sequence of the staged submission this CS is part of,
1953 *                   relevant only if staged_cs is set.
1954 * @timeout_jiffies: cs timeout in jiffies.
1955 * @submission_time_jiffies: submission time of the cs
1956 * @type: CS_TYPE_*.
1957 * @jobs_cnt: counter of submitted jobs on all queues.
1958 * @encaps_sig_hdl_id: encaps signals handle id, set for the first staged cs.
1959 * @completion_timestamp: timestamp of the last completed cs job.
1960 * @sob_addr_offset: sob offset from the configuration base address.
1961 * @initial_sob_count: count of completed signals in SOB before current submission of signal or
1962 *                     cs with encaps signals.
1963 * @submitted: true if CS was submitted to H/W.
1964 * @completed: true if CS was completed by device.
1965 * @timedout : true if CS was timedout.
1966 * @tdr_active: true if TDR was activated for this CS (to prevent
1967 *		double TDR activation).
1968 * @aborted: true if CS was aborted due to some device error.
1969 * @timestamp: true if a timestamp must be captured upon completion.
1970 * @staged_last: true if this is the last staged CS and needs completion.
1971 * @staged_first: true if this is the first staged CS and we need to receive
1972 *                timeout for this CS.
1973 * @staged_cs: true if this CS is part of a staged submission.
1974 * @skip_reset_on_timeout: true if we shall not reset the device in case
1975 *                         timeout occurs (debug scenario).
1976 * @encaps_signals: true if this CS has encaps reserved signals.
1977 */
1978struct hl_cs {
1979	u16			*jobs_in_queue_cnt;
1980	struct hl_ctx		*ctx;
1981	struct list_head	job_list;
1982	spinlock_t		job_lock;
1983	struct kref		refcount;
1984	struct hl_fence		*fence;
1985	struct hl_fence		*signal_fence;
1986	struct work_struct	finish_work;
1987	struct delayed_work	work_tdr;
1988	struct list_head	mirror_node;
1989	struct list_head	staged_cs_node;
1990	struct list_head	debugfs_list;
1991	struct hl_cs_encaps_sig_handle *encaps_sig_hdl;
1992	ktime_t			completion_timestamp;
1993	u64			sequence;
1994	u64			staged_sequence;
1995	u64			timeout_jiffies;
1996	u64			submission_time_jiffies;
1997	enum hl_cs_type		type;
1998	u32			jobs_cnt;
1999	u32			encaps_sig_hdl_id;
2000	u32			sob_addr_offset;
2001	u16			initial_sob_count;
2002	u8			submitted;
2003	u8			completed;
2004	u8			timedout;
2005	u8			tdr_active;
2006	u8			aborted;
2007	u8			timestamp;
2008	u8			staged_last;
2009	u8			staged_first;
2010	u8			staged_cs;
2011	u8			skip_reset_on_timeout;
2012	u8			encaps_signals;
2013};
2014
2015/**
2016 * struct hl_cs_job - command submission job.
2017 * @cs_node: the node to hang on the CS jobs list.
2018 * @cs: the CS this job belongs to.
2019 * @user_cb: the CB we got from the user.
2020 * @patched_cb: in case of patching, this is internal CB which is submitted on
2021 *		the queue instead of the CB we got from the IOCTL.
2022 * @finish_work: workqueue object to run when job is completed.
2023 * @userptr_list: linked-list of userptr mappings that belong to this job and
2024 *			wait for completion.
2025 * @debugfs_list: node in debugfs list of command submission jobs.
2026 * @refcount: reference counter for usage of the CS job.
2027 * @queue_type: the type of the H/W queue this job is submitted to.
2028 * @timestamp: timestamp upon job completion
2029 * @id: the id of this job inside a CS.
2030 * @hw_queue_id: the id of the H/W queue this job is submitted to.
2031 * @user_cb_size: the actual size of the CB we got from the user.
2032 * @job_cb_size: the actual size of the CB that we put on the queue.
2033 * @encaps_sig_wait_offset: encapsulated signals offset, which allow user
2034 *                          to wait on part of the reserved signals.
2035 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2036 *                          handle to a kernel-allocated CB object, false
2037 *                          otherwise (SRAM/DRAM/host address).
2038 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2039 *                    info is needed later, when adding the 2xMSG_PROT at the
2040 *                    end of the JOB, to know which barriers to put in the
2041 *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2042 *                    have streams so the engine can't be busy by another
2043 *                    stream.
2044 */
2045struct hl_cs_job {
2046	struct list_head	cs_node;
2047	struct hl_cs		*cs;
2048	struct hl_cb		*user_cb;
2049	struct hl_cb		*patched_cb;
2050	struct work_struct	finish_work;
2051	struct list_head	userptr_list;
2052	struct list_head	debugfs_list;
2053	struct kref		refcount;
2054	enum hl_queue_type	queue_type;
2055	ktime_t			timestamp;
2056	u32			id;
2057	u32			hw_queue_id;
2058	u32			user_cb_size;
2059	u32			job_cb_size;
2060	u32			encaps_sig_wait_offset;
2061	u8			is_kernel_allocated_cb;
2062	u8			contains_dma_pkt;
2063};
2064
2065/**
2066 * struct hl_cs_parser - command submission parser properties.
2067 * @user_cb: the CB we got from the user.
2068 * @patched_cb: in case of patching, this is internal CB which is submitted on
2069 *		the queue instead of the CB we got from the IOCTL.
2070 * @job_userptr_list: linked-list of userptr mappings that belong to the related
2071 *			job and wait for completion.
2072 * @cs_sequence: the sequence number of the related CS.
2073 * @queue_type: the type of the H/W queue this job is submitted to.
2074 * @ctx_id: the ID of the context the related CS belongs to.
2075 * @hw_queue_id: the id of the H/W queue this job is submitted to.
2076 * @user_cb_size: the actual size of the CB we got from the user.
2077 * @patched_cb_size: the size of the CB after parsing.
2078 * @job_id: the id of the related job inside the related CS.
2079 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
2080 *                          handle to a kernel-allocated CB object, false
2081 *                          otherwise (SRAM/DRAM/host address).
2082 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
2083 *                    info is needed later, when adding the 2xMSG_PROT at the
2084 *                    end of the JOB, to know which barriers to put in the
2085 *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
2086 *                    have streams so the engine can't be busy by another
2087 *                    stream.
2088 * @completion: true if we need completion for this CS.
2089 */
2090struct hl_cs_parser {
2091	struct hl_cb		*user_cb;
2092	struct hl_cb		*patched_cb;
2093	struct list_head	*job_userptr_list;
2094	u64			cs_sequence;
2095	enum hl_queue_type	queue_type;
2096	u32			ctx_id;
2097	u32			hw_queue_id;
2098	u32			user_cb_size;
2099	u32			patched_cb_size;
2100	u8			job_id;
2101	u8			is_kernel_allocated_cb;
2102	u8			contains_dma_pkt;
2103	u8			completion;
2104};
2105
2106/*
2107 * MEMORY STRUCTURE
2108 */
2109
2110/**
2111 * struct hl_vm_hash_node - hash element from virtual address to virtual
2112 *				memory area descriptor (hl_vm_phys_pg_list or
2113 *				hl_userptr).
2114 * @node: node to hang on the hash table in context object.
2115 * @vaddr: key virtual address.
2116 * @handle: memory handle for device memory allocation.
2117 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
2118 * @export_cnt: number of exports from within the VA block.
2119 */
2120struct hl_vm_hash_node {
2121	struct hlist_node	node;
2122	u64			vaddr;
2123	u64			handle;
2124	void			*ptr;
2125	int			export_cnt;
2126};
2127
2128/**
2129 * struct hl_vm_hw_block_list_node - list element from user virtual address to
2130 *				HW block id.
2131 * @node: node to hang on the list in context object.
2132 * @ctx: the context this node belongs to.
2133 * @vaddr: virtual address of the HW block.
2134 * @block_size: size of the block.
2135 * @mapped_size: size of the block which is mapped. May change if partial un-mappings are done.
2136 * @id: HW block id (handle).
2137 */
2138struct hl_vm_hw_block_list_node {
2139	struct list_head	node;
2140	struct hl_ctx		*ctx;
2141	unsigned long		vaddr;
2142	u32			block_size;
2143	u32			mapped_size;
2144	u32			id;
2145};
2146
2147/**
2148 * struct hl_vm_phys_pg_pack - physical page pack.
2149 * @vm_type: describes the type of the virtual area descriptor.
2150 * @pages: the physical page array.
2151 * @npages: num physical pages in the pack.
2152 * @total_size: total size of all the pages in this list.
2153 * @exported_size: buffer exported size.
2154 * @node: used to attach to deletion list that is used when all the allocations are cleared
2155 *        at the teardown of the context.
2156 * @mapping_cnt: number of shared mappings.
2157 * @asid: the context related to this list.
2158 * @page_size: size of each page in the pack.
2159 * @flags: HL_MEM_* flags related to this list.
2160 * @handle: the provided handle related to this list.
2161 * @offset: offset from the first page.
2162 * @contiguous: is contiguous physical memory.
2163 * @created_from_userptr: is product of host virtual address.
2164 */
2165struct hl_vm_phys_pg_pack {
2166	enum vm_type		vm_type; /* must be first */
2167	u64			*pages;
2168	u64			npages;
2169	u64			total_size;
2170	u64			exported_size;
2171	struct list_head	node;
2172	atomic_t		mapping_cnt;
2173	u32			asid;
2174	u32			page_size;
2175	u32			flags;
2176	u32			handle;
2177	u32			offset;
2178	u8			contiguous;
2179	u8			created_from_userptr;
2180};
2181
2182/**
2183 * struct hl_vm_va_block - virtual range block information.
2184 * @node: node to hang on the virtual range list in context object.
2185 * @start: virtual range start address.
2186 * @end: virtual range end address.
2187 * @size: virtual range size.
2188 */
2189struct hl_vm_va_block {
2190	struct list_head	node;
2191	u64			start;
2192	u64			end;
2193	u64			size;
2194};
2195
2196/**
2197 * struct hl_vm - virtual memory manager for MMU.
2198 * @dram_pg_pool: pool for DRAM physical pages of 2MB.
2199 * @dram_pg_pool_refcount: reference counter for the pool usage.
2200 * @idr_lock: protects the phys_pg_list_handles.
2201 * @phys_pg_pack_handles: idr to hold all device allocations handles.
2202 * @init_done: whether initialization was done. We need this because VM
2203 *		initialization might be skipped during device initialization.
2204 */
2205struct hl_vm {
2206	struct gen_pool		*dram_pg_pool;
2207	struct kref		dram_pg_pool_refcount;
2208	spinlock_t		idr_lock;
2209	struct idr		phys_pg_pack_handles;
2210	u8			init_done;
2211};
2212
2213
2214/*
2215 * DEBUG, PROFILING STRUCTURE
2216 */
2217
2218/**
2219 * struct hl_debug_params - Coresight debug parameters.
2220 * @input: pointer to component specific input parameters.
2221 * @output: pointer to component specific output parameters.
2222 * @output_size: size of output buffer.
2223 * @reg_idx: relevant register ID.
2224 * @op: component operation to execute.
2225 * @enable: true if to enable component debugging, false otherwise.
2226 */
2227struct hl_debug_params {
2228	void *input;
2229	void *output;
2230	u32 output_size;
2231	u32 reg_idx;
2232	u32 op;
2233	bool enable;
2234};
2235
2236/**
2237 * struct hl_notifier_event - holds the notifier data structure
2238 * @eventfd: the event file descriptor to raise the notifications
2239 * @lock: mutex lock to protect the notifier data flows
2240 * @events_mask: indicates the bitmap events
2241 */
2242struct hl_notifier_event {
2243	struct eventfd_ctx	*eventfd;
2244	struct mutex		lock;
2245	u64			events_mask;
2246};
2247
2248/*
2249 * FILE PRIVATE STRUCTURE
2250 */
2251
2252/**
2253 * struct hl_fpriv - process information stored in FD private data.
2254 * @hdev: habanalabs device structure.
2255 * @filp: pointer to the given file structure.
2256 * @taskpid: current process ID.
2257 * @ctx: current executing context. TODO: remove for multiple ctx per process
2258 * @ctx_mgr: context manager to handle multiple context for this FD.
2259 * @mem_mgr: manager descriptor for memory exportable via mmap
2260 * @notifier_event: notifier eventfd towards user process
2261 * @debugfs_list: list of relevant ASIC debugfs.
2262 * @dev_node: node in the device list of file private data
2263 * @refcount: number of related contexts.
2264 * @restore_phase_mutex: lock for context switch and restore phase.
2265 * @ctx_lock: protects the pointer to current executing context pointer. TODO: remove for multiple
2266 *            ctx per process.
2267 */
2268struct hl_fpriv {
2269	struct hl_device		*hdev;
2270	struct file			*filp;
2271	struct pid			*taskpid;
2272	struct hl_ctx			*ctx;
2273	struct hl_ctx_mgr		ctx_mgr;
2274	struct hl_mem_mgr		mem_mgr;
2275	struct hl_notifier_event	notifier_event;
2276	struct list_head		debugfs_list;
2277	struct list_head		dev_node;
2278	struct kref			refcount;
2279	struct mutex			restore_phase_mutex;
2280	struct mutex			ctx_lock;
2281};
2282
2283
2284/*
2285 * DebugFS
2286 */
2287
2288/**
2289 * struct hl_info_list - debugfs file ops.
2290 * @name: file name.
2291 * @show: function to output information.
2292 * @write: function to write to the file.
2293 */
2294struct hl_info_list {
2295	const char	*name;
2296	int		(*show)(struct seq_file *s, void *data);
2297	ssize_t		(*write)(struct file *file, const char __user *buf,
2298				size_t count, loff_t *f_pos);
2299};
2300
2301/**
2302 * struct hl_debugfs_entry - debugfs dentry wrapper.
2303 * @info_ent: dentry related ops.
2304 * @dev_entry: ASIC specific debugfs manager.
2305 */
2306struct hl_debugfs_entry {
2307	const struct hl_info_list	*info_ent;
2308	struct hl_dbg_device_entry	*dev_entry;
2309};
2310
2311/**
2312 * struct hl_dbg_device_entry - ASIC specific debugfs manager.
2313 * @root: root dentry.
2314 * @hdev: habanalabs device structure.
2315 * @entry_arr: array of available hl_debugfs_entry.
2316 * @file_list: list of available debugfs files.
2317 * @file_mutex: protects file_list.
2318 * @cb_list: list of available CBs.
2319 * @cb_spinlock: protects cb_list.
2320 * @cs_list: list of available CSs.
2321 * @cs_spinlock: protects cs_list.
2322 * @cs_job_list: list of available CB jobs.
2323 * @cs_job_spinlock: protects cs_job_list.
2324 * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
2325 * @userptr_spinlock: protects userptr_list.
2326 * @ctx_mem_hash_list: list of available contexts with MMU mappings.
2327 * @ctx_mem_hash_mutex: protects list of available contexts with MMU mappings.
2328 * @data_dma_blob_desc: data DMA descriptor of blob.
2329 * @mon_dump_blob_desc: monitor dump descriptor of blob.
2330 * @state_dump: data of the system states in case of a bad cs.
2331 * @state_dump_sem: protects state_dump.
2332 * @addr: next address to read/write from/to in read/write32.
2333 * @mmu_addr: next virtual address to translate to physical address in mmu_show.
2334 * @mmu_cap_mask: mmu hw capability mask, to be used in mmu_ack_error.
2335 * @userptr_lookup: the target user ptr to look up for on demand.
2336 * @mmu_asid: ASID to use while translating in mmu_show.
2337 * @state_dump_head: index of the latest state dump
2338 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
2339 * @i2c_addr: generic u8 debugfs file for address value to use in i2c_data_read.
2340 * @i2c_reg: generic u8 debugfs file for register value to use in i2c_data_read.
2341 * @i2c_len: generic u8 debugfs file for length value to use in i2c_data_read.
2342 */
2343struct hl_dbg_device_entry {
2344	struct dentry			*root;
2345	struct hl_device		*hdev;
2346	struct hl_debugfs_entry		*entry_arr;
2347	struct list_head		file_list;
2348	struct mutex			file_mutex;
2349	struct list_head		cb_list;
2350	spinlock_t			cb_spinlock;
2351	struct list_head		cs_list;
2352	spinlock_t			cs_spinlock;
2353	struct list_head		cs_job_list;
2354	spinlock_t			cs_job_spinlock;
2355	struct list_head		userptr_list;
2356	spinlock_t			userptr_spinlock;
2357	struct list_head		ctx_mem_hash_list;
2358	struct mutex			ctx_mem_hash_mutex;
2359	struct debugfs_blob_wrapper	data_dma_blob_desc;
2360	struct debugfs_blob_wrapper	mon_dump_blob_desc;
2361	char				*state_dump[HL_STATE_DUMP_HIST_LEN];
2362	struct rw_semaphore		state_dump_sem;
2363	u64				addr;
2364	u64				mmu_addr;
2365	u64				mmu_cap_mask;
2366	u64				userptr_lookup;
2367	u32				mmu_asid;
2368	u32				state_dump_head;
2369	u8				i2c_bus;
2370	u8				i2c_addr;
2371	u8				i2c_reg;
2372	u8				i2c_len;
2373};
2374
2375/**
2376 * struct hl_hw_obj_name_entry - single hw object name, member of
2377 * hl_state_dump_specs
2378 * @node: link to the containing hash table
2379 * @name: hw object name
2380 * @id: object identifier
2381 */
2382struct hl_hw_obj_name_entry {
2383	struct hlist_node	node;
2384	const char		*name;
2385	u32			id;
2386};
2387
2388enum hl_state_dump_specs_props {
2389	SP_SYNC_OBJ_BASE_ADDR,
2390	SP_NEXT_SYNC_OBJ_ADDR,
2391	SP_SYNC_OBJ_AMOUNT,
2392	SP_MON_OBJ_WR_ADDR_LOW,
2393	SP_MON_OBJ_WR_ADDR_HIGH,
2394	SP_MON_OBJ_WR_DATA,
2395	SP_MON_OBJ_ARM_DATA,
2396	SP_MON_OBJ_STATUS,
2397	SP_MONITORS_AMOUNT,
2398	SP_TPC0_CMDQ,
2399	SP_TPC0_CFG_SO,
2400	SP_NEXT_TPC,
2401	SP_MME_CMDQ,
2402	SP_MME_CFG_SO,
2403	SP_NEXT_MME,
2404	SP_DMA_CMDQ,
2405	SP_DMA_CFG_SO,
2406	SP_DMA_QUEUES_OFFSET,
2407	SP_NUM_OF_MME_ENGINES,
2408	SP_SUB_MME_ENG_NUM,
2409	SP_NUM_OF_DMA_ENGINES,
2410	SP_NUM_OF_TPC_ENGINES,
2411	SP_ENGINE_NUM_OF_QUEUES,
2412	SP_ENGINE_NUM_OF_STREAMS,
2413	SP_ENGINE_NUM_OF_FENCES,
2414	SP_FENCE0_CNT_OFFSET,
2415	SP_FENCE0_RDATA_OFFSET,
2416	SP_CP_STS_OFFSET,
2417	SP_NUM_CORES,
2418
2419	SP_MAX
2420};
2421
2422enum hl_sync_engine_type {
2423	ENGINE_TPC,
2424	ENGINE_DMA,
2425	ENGINE_MME,
2426};
2427
2428/**
2429 * struct hl_mon_state_dump - represents a state dump of a single monitor
2430 * @id: monitor id
2431 * @wr_addr_low: address monitor will write to, low bits
2432 * @wr_addr_high: address monitor will write to, high bits
2433 * @wr_data: data monitor will write
2434 * @arm_data: register value containing monitor configuration
2435 * @status: monitor status
2436 */
2437struct hl_mon_state_dump {
2438	u32		id;
2439	u32		wr_addr_low;
2440	u32		wr_addr_high;
2441	u32		wr_data;
2442	u32		arm_data;
2443	u32		status;
2444};
2445
2446/**
2447 * struct hl_sync_to_engine_map_entry - sync object id to engine mapping entry
2448 * @engine_type: type of the engine
2449 * @engine_id: id of the engine
2450 * @sync_id: id of the sync object
2451 */
2452struct hl_sync_to_engine_map_entry {
2453	struct hlist_node		node;
2454	enum hl_sync_engine_type	engine_type;
2455	u32				engine_id;
2456	u32				sync_id;
2457};
2458
2459/**
2460 * struct hl_sync_to_engine_map - maps sync object id to associated engine id
2461 * @tb: hash table containing the mapping, each element is of type
2462 *      struct hl_sync_to_engine_map_entry
2463 */
2464struct hl_sync_to_engine_map {
2465	DECLARE_HASHTABLE(tb, SYNC_TO_ENGINE_HASH_TABLE_BITS);
2466};
2467
2468/**
2469 * struct hl_state_dump_specs_funcs - virtual functions used by the state dump
2470 * @gen_sync_to_engine_map: generate a hash map from sync obj id to its engine
2471 * @print_single_monitor: format monitor data as string
2472 * @monitor_valid: return true if given monitor dump is valid
2473 * @print_fences_single_engine: format fences data as string
2474 */
2475struct hl_state_dump_specs_funcs {
2476	int (*gen_sync_to_engine_map)(struct hl_device *hdev,
2477				struct hl_sync_to_engine_map *map);
2478	int (*print_single_monitor)(char **buf, size_t *size, size_t *offset,
2479				    struct hl_device *hdev,
2480				    struct hl_mon_state_dump *mon);
2481	int (*monitor_valid)(struct hl_mon_state_dump *mon);
2482	int (*print_fences_single_engine)(struct hl_device *hdev,
2483					u64 base_offset,
2484					u64 status_base_offset,
2485					enum hl_sync_engine_type engine_type,
2486					u32 engine_id, char **buf,
2487					size_t *size, size_t *offset);
2488};
2489
2490/**
2491 * struct hl_state_dump_specs - defines ASIC known hw objects names
2492 * @so_id_to_str_tb: sync objects names index table
2493 * @monitor_id_to_str_tb: monitors names index table
2494 * @funcs: virtual functions used for state dump
2495 * @sync_namager_names: readable names for sync manager if available (ex: N_E)
2496 * @props: pointer to a per asic const props array required for state dump
2497 */
2498struct hl_state_dump_specs {
2499	DECLARE_HASHTABLE(so_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2500	DECLARE_HASHTABLE(monitor_id_to_str_tb, OBJ_NAMES_HASH_TABLE_BITS);
2501	struct hl_state_dump_specs_funcs	funcs;
2502	const char * const			*sync_namager_names;
2503	s64					*props;
2504};
2505
2506
2507/*
2508 * DEVICES
2509 */
2510
2511#define HL_STR_MAX	32
2512
2513#define HL_DEV_STS_MAX (HL_DEVICE_STATUS_LAST + 1)
2514
2515/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
2516 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
2517 */
2518#define HL_MAX_MINORS	256
2519
2520/*
2521 * Registers read & write functions.
2522 */
2523
2524u32 hl_rreg(struct hl_device *hdev, u32 reg);
2525void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);
2526
2527#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
2528#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
2529#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
2530			hdev->asic_funcs->rreg(hdev, (reg)))
2531
2532#define WREG32_P(reg, val, mask)				\
2533	do {							\
2534		u32 tmp_ = RREG32(reg);				\
2535		tmp_ &= (mask);					\
2536		tmp_ |= ((val) & ~(mask));			\
2537		WREG32(reg, tmp_);				\
2538	} while (0)
2539#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
2540#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))
2541
2542#define RMWREG32_SHIFTED(reg, val, mask) WREG32_P(reg, val, ~(mask))
2543
2544#define RMWREG32(reg, val, mask) RMWREG32_SHIFTED(reg, (val) << __ffs(mask), mask)
2545
2546#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))
2547
2548#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
2549#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
2550#define WREG32_FIELD(reg, offset, field, val)	\
2551	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
2552				~REG_FIELD_MASK(reg, field)) | \
2553				(val) << REG_FIELD_SHIFT(reg, field))
2554
2555/* Timeout should be longer when working with simulator but cap the
2556 * increased timeout to some maximum
2557 */
2558#define hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, elbi) \
2559({ \
2560	ktime_t __timeout; \
2561	u32 __elbi_read; \
2562	int __rc = 0; \
2563	__timeout = ktime_add_us(ktime_get(), timeout_us); \
2564	might_sleep_if(sleep_us); \
2565	for (;;) { \
2566		if (elbi) { \
2567			__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2568			if (__rc) \
2569				break; \
2570			(val) = __elbi_read; \
2571		} else {\
2572			(val) = RREG32(lower_32_bits(addr)); \
2573		} \
2574		if (cond) \
2575			break; \
2576		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2577			if (elbi) { \
2578				__rc = hl_pci_elbi_read(hdev, addr, &__elbi_read); \
2579				if (__rc) \
2580					break; \
2581				(val) = __elbi_read; \
2582			} else {\
2583				(val) = RREG32(lower_32_bits(addr)); \
2584			} \
2585			break; \
2586		} \
2587		if (sleep_us) \
2588			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2589	} \
2590	__rc ? __rc : ((cond) ? 0 : -ETIMEDOUT); \
2591})
2592
2593#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
2594		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, false)
2595
2596#define hl_poll_timeout_elbi(hdev, addr, val, cond, sleep_us, timeout_us) \
2597		hl_poll_timeout_common(hdev, addr, val, cond, sleep_us, timeout_us, true)
2598
2599/*
2600 * poll array of register addresses.
2601 * condition is satisfied if all registers values match the expected value.
2602 * once some register in the array satisfies the condition it will not be polled again,
2603 * this is done both for efficiency and due to some registers are "clear on read".
2604 * TODO: use read from PCI bar in other places in the code (SW-91406)
2605 */
2606#define hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2607						timeout_us, elbi) \
2608({ \
2609	ktime_t __timeout; \
2610	u64 __elem_bitmask; \
2611	u32 __read_val;	\
2612	u8 __arr_idx;	\
2613	int __rc = 0; \
2614	\
2615	__timeout = ktime_add_us(ktime_get(), timeout_us); \
2616	might_sleep_if(sleep_us); \
2617	if (arr_size >= 64) \
2618		__rc = -EINVAL; \
2619	else \
2620		__elem_bitmask = BIT_ULL(arr_size) - 1; \
2621	for (;;) { \
2622		if (__rc) \
2623			break; \
2624		for (__arr_idx = 0; __arr_idx < (arr_size); __arr_idx++) {	\
2625			if (!(__elem_bitmask & BIT_ULL(__arr_idx)))	\
2626				continue;	\
2627			if (elbi) { \
2628				__rc = hl_pci_elbi_read(hdev, (addr_arr)[__arr_idx], &__read_val); \
2629				if (__rc) \
2630					break; \
2631			} else { \
2632				__read_val = RREG32(lower_32_bits(addr_arr[__arr_idx])); \
2633			} \
2634			if (__read_val == (expected_val))	\
2635				__elem_bitmask &= ~BIT_ULL(__arr_idx);	\
2636		}	\
2637		if (__rc || (__elem_bitmask == 0)) \
2638			break; \
2639		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) \
2640			break; \
2641		if (sleep_us) \
2642			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2643	} \
2644	__rc ? __rc : ((__elem_bitmask == 0) ? 0 : -ETIMEDOUT); \
2645})
2646
2647#define hl_poll_reg_array_timeout(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2648					timeout_us) \
2649	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2650						timeout_us, false)
2651
2652#define hl_poll_reg_array_timeout_elbi(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2653					timeout_us) \
2654	hl_poll_reg_array_timeout_common(hdev, addr_arr, arr_size, expected_val, sleep_us, \
2655						timeout_us, true)
2656
2657/*
2658 * address in this macro points always to a memory location in the
2659 * host's (server's) memory. That location is updated asynchronously
2660 * either by the direct access of the device or by another core.
2661 *
2662 * To work both in LE and BE architectures, we need to distinguish between the
2663 * two states (device or another core updates the memory location). Therefore,
2664 * if mem_written_by_device is true, the host memory being polled will be
2665 * updated directly by the device. If false, the host memory being polled will
2666 * be updated by host CPU. Required so host knows whether or not the memory
2667 * might need to be byte-swapped before returning value to caller.
2668 */
2669#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
2670				mem_written_by_device) \
2671({ \
2672	ktime_t __timeout; \
2673	\
2674	__timeout = ktime_add_us(ktime_get(), timeout_us); \
2675	might_sleep_if(sleep_us); \
2676	for (;;) { \
2677		/* Verify we read updates done by other cores or by device */ \
2678		mb(); \
2679		(val) = *((u32 *)(addr)); \
2680		if (mem_written_by_device) \
2681			(val) = le32_to_cpu(*(__le32 *) &(val)); \
2682		if (cond) \
2683			break; \
2684		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
2685			(val) = *((u32 *)(addr)); \
2686			if (mem_written_by_device) \
2687				(val) = le32_to_cpu(*(__le32 *) &(val)); \
2688			break; \
2689		} \
2690		if (sleep_us) \
2691			usleep_range((sleep_us >> 2) + 1, sleep_us); \
2692	} \
2693	(cond) ? 0 : -ETIMEDOUT; \
2694})
2695
2696#define HL_USR_MAPPED_BLK_INIT(blk, base, sz) \
2697({ \
2698	struct user_mapped_block *p = blk; \
2699\
2700	p->address = base; \
2701	p->size = sz; \
2702})
2703
2704#define HL_USR_INTR_STRUCT_INIT(usr_intr, hdev, intr_id, intr_type) \
2705({ \
2706	usr_intr.hdev = hdev; \
2707	usr_intr.interrupt_id = intr_id; \
2708	usr_intr.type = intr_type; \
2709	INIT_LIST_HEAD(&usr_intr.wait_list_head); \
2710	spin_lock_init(&usr_intr.wait_list_lock); \
2711})
2712
2713struct hwmon_chip_info;
2714
2715/**
2716 * struct hl_device_reset_work - reset work wrapper.
2717 * @reset_work: reset work to be done.
2718 * @hdev: habanalabs device structure.
2719 * @flags: reset flags.
2720 */
2721struct hl_device_reset_work {
2722	struct delayed_work	reset_work;
2723	struct hl_device	*hdev;
2724	u32			flags;
2725};
2726
2727/**
2728 * struct hl_mmu_hr_pgt_priv - used for holding per-device mmu host-resident
2729 * page-table internal information.
2730 * @mmu_pgt_pool: pool of page tables used by a host-resident MMU for
2731 *                allocating hops.
2732 * @mmu_asid_hop0: per-ASID array of host-resident hop0 tables.
2733 */
2734struct hl_mmu_hr_priv {
2735	struct gen_pool	*mmu_pgt_pool;
2736	struct pgt_info	*mmu_asid_hop0;
2737};
2738
2739/**
2740 * struct hl_mmu_dr_pgt_priv - used for holding per-device mmu device-resident
2741 * page-table internal information.
2742 * @mmu_pgt_pool: pool of page tables used by MMU for allocating hops.
2743 * @mmu_shadow_hop0: shadow array of hop0 tables.
2744 */
2745struct hl_mmu_dr_priv {
2746	struct gen_pool *mmu_pgt_pool;
2747	void *mmu_shadow_hop0;
2748};
2749
2750/**
2751 * struct hl_mmu_priv - used for holding per-device mmu internal information.
2752 * @dr: information on the device-resident MMU, when exists.
2753 * @hr: information on the host-resident MMU, when exists.
2754 */
2755struct hl_mmu_priv {
2756	struct hl_mmu_dr_priv dr;
2757	struct hl_mmu_hr_priv hr;
2758};
2759
2760/**
2761 * struct hl_mmu_per_hop_info - A structure describing one TLB HOP and its entry
2762 *                that was created in order to translate a virtual address to a
2763 *                physical one.
2764 * @hop_addr: The address of the hop.
2765 * @hop_pte_addr: The address of the hop entry.
2766 * @hop_pte_val: The value in the hop entry.
2767 */
2768struct hl_mmu_per_hop_info {
2769	u64 hop_addr;
2770	u64 hop_pte_addr;
2771	u64 hop_pte_val;
2772};
2773
2774/**
2775 * struct hl_mmu_hop_info - A structure describing the TLB hops and their
2776 * hop-entries that were created in order to translate a virtual address to a
2777 * physical one.
2778 * @scrambled_vaddr: The value of the virtual address after scrambling. This
2779 *                   address replaces the original virtual-address when mapped
2780 *                   in the MMU tables.
2781 * @unscrambled_paddr: The un-scrambled physical address.
2782 * @hop_info: Array holding the per-hop information used for the translation.
2783 * @used_hops: The number of hops used for the translation.
2784 * @range_type: virtual address range type.
2785 */
2786struct hl_mmu_hop_info {
2787	u64 scrambled_vaddr;
2788	u64 unscrambled_paddr;
2789	struct hl_mmu_per_hop_info hop_info[MMU_ARCH_6_HOPS];
2790	u32 used_hops;
2791	enum hl_va_range_type range_type;
2792};
2793
2794/**
2795 * struct hl_hr_mmu_funcs - Device related host resident MMU functions.
2796 * @get_hop0_pgt_info: get page table info structure for HOP0.
2797 * @get_pgt_info: get page table info structure for HOP other than HOP0.
2798 * @add_pgt_info: add page table info structure to hash.
2799 * @get_tlb_mapping_params: get mapping parameters needed for getting TLB info for specific mapping.
2800 */
2801struct hl_hr_mmu_funcs {
2802	struct pgt_info *(*get_hop0_pgt_info)(struct hl_ctx *ctx);
2803	struct pgt_info *(*get_pgt_info)(struct hl_ctx *ctx, u64 phys_hop_addr);
2804	void (*add_pgt_info)(struct hl_ctx *ctx, struct pgt_info *pgt_info, dma_addr_t phys_addr);
2805	int (*get_tlb_mapping_params)(struct hl_device *hdev, struct hl_mmu_properties **mmu_prop,
2806								struct hl_mmu_hop_info *hops,
2807								u64 virt_addr, bool *is_huge);
2808};
2809
2810/**
2811 * struct hl_mmu_funcs - Device related MMU functions.
2812 * @init: initialize the MMU module.
2813 * @fini: release the MMU module.
2814 * @ctx_init: Initialize a context for using the MMU module.
2815 * @ctx_fini: disable a ctx from using the mmu module.
2816 * @map: maps a virtual address to physical address for a context.
2817 * @unmap: unmap a virtual address of a context.
2818 * @flush: flush all writes from all cores to reach device MMU.
2819 * @swap_out: marks all mapping of the given context as swapped out.
2820 * @swap_in: marks all mapping of the given context as swapped in.
2821 * @get_tlb_info: returns the list of hops and hop-entries used that were
2822 *                created in order to translate the giver virtual address to a
2823 *                physical one.
2824 * @hr_funcs: functions specific to host resident MMU.
2825 */
2826struct hl_mmu_funcs {
2827	int (*init)(struct hl_device *hdev);
2828	void (*fini)(struct hl_device *hdev);
2829	int (*ctx_init)(struct hl_ctx *ctx);
2830	void (*ctx_fini)(struct hl_ctx *ctx);
2831	int (*map)(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size,
2832				bool is_dram_addr);
2833	int (*unmap)(struct hl_ctx *ctx, u64 virt_addr, bool is_dram_addr);
2834	void (*flush)(struct hl_ctx *ctx);
2835	void (*swap_out)(struct hl_ctx *ctx);
2836	void (*swap_in)(struct hl_ctx *ctx);
2837	int (*get_tlb_info)(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops);
2838	struct hl_hr_mmu_funcs hr_funcs;
2839};
2840
2841/**
2842 * struct hl_prefetch_work - prefetch work structure handler
2843 * @prefetch_work: actual work struct.
2844 * @ctx: compute context.
2845 * @va: virtual address to pre-fetch.
2846 * @size: pre-fetch size.
2847 * @flags: operation flags.
2848 * @asid: ASID for maintenance operation.
2849 */
2850struct hl_prefetch_work {
2851	struct work_struct	prefetch_work;
2852	struct hl_ctx		*ctx;
2853	u64			va;
2854	u64			size;
2855	u32			flags;
2856	u32			asid;
2857};
2858
2859/*
2860 * number of user contexts allowed to call wait_for_multi_cs ioctl in
2861 * parallel
2862 */
2863#define MULTI_CS_MAX_USER_CTX	2
2864
2865/**
2866 * struct multi_cs_completion - multi CS wait completion.
2867 * @completion: completion of any of the CS in the list
2868 * @lock: spinlock for the completion structure
2869 * @timestamp: timestamp for the multi-CS completion
2870 * @stream_master_qid_map: bitmap of all stream masters on which the multi-CS
2871 *                        is waiting
2872 * @used: 1 if in use, otherwise 0
2873 */
2874struct multi_cs_completion {
2875	struct completion	completion;
2876	spinlock_t		lock;
2877	s64			timestamp;
2878	u32			stream_master_qid_map;
2879	u8			used;
2880};
2881
2882/**
2883 * struct multi_cs_data - internal data for multi CS call
2884 * @ctx: pointer to the context structure
2885 * @fence_arr: array of fences of all CSs
2886 * @seq_arr: array of CS sequence numbers
2887 * @timeout_jiffies: timeout in jiffies for waiting for CS to complete
2888 * @timestamp: timestamp of first completed CS
2889 * @wait_status: wait for CS status
2890 * @completion_bitmap: bitmap of completed CSs (1- completed, otherwise 0)
2891 * @arr_len: fence_arr and seq_arr array length
2892 * @gone_cs: indication of gone CS (1- there was gone CS, otherwise 0)
2893 * @update_ts: update timestamp. 1- update the timestamp, otherwise 0.
2894 */
2895struct multi_cs_data {
2896	struct hl_ctx	*ctx;
2897	struct hl_fence	**fence_arr;
2898	u64		*seq_arr;
2899	s64		timeout_jiffies;
2900	s64		timestamp;
2901	long		wait_status;
2902	u32		completion_bitmap;
2903	u8		arr_len;
2904	u8		gone_cs;
2905	u8		update_ts;
2906};
2907
2908/**
2909 * struct hl_clk_throttle_timestamp - current/last clock throttling timestamp
2910 * @start: timestamp taken when 'start' event is received in driver
2911 * @end: timestamp taken when 'end' event is received in driver
2912 */
2913struct hl_clk_throttle_timestamp {
2914	ktime_t		start;
2915	ktime_t		end;
2916};
2917
2918/**
2919 * struct hl_clk_throttle - keeps current/last clock throttling timestamps
2920 * @timestamp: timestamp taken by driver and firmware, index 0 refers to POWER
2921 *             index 1 refers to THERMAL
2922 * @lock: protects this structure as it can be accessed from both event queue
2923 *        context and info_ioctl context
2924 * @current_reason: bitmask represents the current clk throttling reasons
2925 * @aggregated_reason: bitmask represents aggregated clk throttling reasons since driver load
2926 */
2927struct hl_clk_throttle {
2928	struct hl_clk_throttle_timestamp timestamp[HL_CLK_THROTTLE_TYPE_MAX];
2929	struct mutex	lock;
2930	u32		current_reason;
2931	u32		aggregated_reason;
2932};
2933
2934/**
2935 * struct user_mapped_block - describes a hw block allowed to be mmapped by user
2936 * @address: physical HW block address
2937 * @size: allowed size for mmap
2938 */
2939struct user_mapped_block {
2940	u32 address;
2941	u32 size;
2942};
2943
2944/**
2945 * struct cs_timeout_info - info of last CS timeout occurred.
2946 * @timestamp: CS timeout timestamp.
2947 * @write_enable: if set writing to CS parameters in the structure is enabled. otherwise - disabled,
2948 *                so the first (root cause) CS timeout will not be overwritten.
2949 * @seq: CS timeout sequence number.
2950 */
2951struct cs_timeout_info {
2952	ktime_t		timestamp;
2953	atomic_t	write_enable;
2954	u64		seq;
2955};
2956
2957#define MAX_QMAN_STREAMS_INFO		4
2958#define OPCODE_INFO_MAX_ADDR_SIZE	8
2959/**
2960 * struct undefined_opcode_info - info about last undefined opcode error
2961 * @timestamp: timestamp of the undefined opcode error
2962 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
2963 *                   entries. In case all streams array entries are
2964 *                   filled with values, it means the execution was in Lower-CP.
2965 * @cq_addr: the address of the current handled command buffer
2966 * @cq_size: the size of the current handled command buffer
2967 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
2968 *                       should be equal to 1 in case of undefined opcode
2969 *                       in Upper-CP (specific stream) and equal to 4 in case
2970 *                       of undefined opcode in Lower-CP.
2971 * @engine_id: engine-id that the error occurred on
2972 * @stream_id: the stream id the error occurred on. In case the stream equals to
2973 *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
2974 * @write_enable: if set, writing to undefined opcode parameters in the structure
2975 *                 is enable so the first (root cause) undefined opcode will not be
2976 *                 overwritten.
2977 */
2978struct undefined_opcode_info {
2979	ktime_t timestamp;
2980	u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
2981	u64 cq_addr;
2982	u32 cq_size;
2983	u32 cb_addr_streams_len;
2984	u32 engine_id;
2985	u32 stream_id;
2986	bool write_enable;
2987};
2988
2989/**
2990 * struct page_fault_info - page fault information.
2991 * @page_fault: holds information collected during a page fault.
2992 * @user_mappings: buffer containing user mappings.
2993 * @num_of_user_mappings: number of user mappings.
2994 * @page_fault_detected: if set as 1, then a page-fault was discovered for the
2995 *                       first time after the driver has finished booting-up.
2996 *                       Since we're looking for the page-fault's root cause,
2997 *                       we don't care of the others that might follow it-
2998 *                       so once changed to 1, it will remain that way.
2999 * @page_fault_info_available: indicates that a page fault info is now available.
3000 */
3001struct page_fault_info {
3002	struct hl_page_fault_info	page_fault;
3003	struct hl_user_mapping		*user_mappings;
3004	u64				num_of_user_mappings;
3005	atomic_t			page_fault_detected;
3006	bool				page_fault_info_available;
3007};
3008
3009/**
3010 * struct razwi_info - RAZWI information.
3011 * @razwi: holds information collected during a RAZWI
3012 * @razwi_detected: if set as 1, then a RAZWI was discovered for the
3013 *                  first time after the driver has finished booting-up.
3014 *                  Since we're looking for the RAZWI's root cause,
3015 *                  we don't care of the others that might follow it-
3016 *                  so once changed to 1, it will remain that way.
3017 * @razwi_info_available: indicates that a RAZWI info is now available.
3018 */
3019struct razwi_info {
3020	struct hl_info_razwi_event	razwi;
3021	atomic_t			razwi_detected;
3022	bool				razwi_info_available;
3023};
3024
3025/**
3026 * struct hw_err_info - HW error information.
3027 * @event: holds information on the event.
3028 * @event_detected: if set as 1, then a HW event was discovered for the
3029 *                  first time after the driver has finished booting-up.
3030 *                  currently we assume that only fatal events (that require hard-reset) are
3031 *                  reported so we don't care of the others that might follow it.
3032 *                  so once changed to 1, it will remain that way.
3033 *                  TODO: support multiple events.
3034 * @event_info_available: indicates that a HW event info is now available.
3035 */
3036struct hw_err_info {
3037	struct hl_info_hw_err_event	event;
3038	atomic_t			event_detected;
3039	bool				event_info_available;
3040};
3041
3042/**
3043 * struct fw_err_info - FW error information.
3044 * @event: holds information on the event.
3045 * @event_detected: if set as 1, then a FW event was discovered for the
3046 *                  first time after the driver has finished booting-up.
3047 *                  currently we assume that only fatal events (that require hard-reset) are
3048 *                  reported so we don't care of the others that might follow it.
3049 *                  so once changed to 1, it will remain that way.
3050 *                  TODO: support multiple events.
3051 * @event_info_available: indicates that a HW event info is now available.
3052 */
3053struct fw_err_info {
3054	struct hl_info_fw_err_event	event;
3055	atomic_t			event_detected;
3056	bool				event_info_available;
3057};
3058
3059/**
3060 * struct hl_error_info - holds information collected during an error.
3061 * @cs_timeout: CS timeout error information.
3062 * @razwi_info: RAZWI information.
3063 * @undef_opcode: undefined opcode information.
3064 * @page_fault_info: page fault information.
3065 * @hw_err: (fatal) hardware error information.
3066 * @fw_err: firmware error information.
3067 */
3068struct hl_error_info {
3069	struct cs_timeout_info		cs_timeout;
3070	struct razwi_info		razwi_info;
3071	struct undefined_opcode_info	undef_opcode;
3072	struct page_fault_info		page_fault_info;
3073	struct hw_err_info		hw_err;
3074	struct fw_err_info		fw_err;
3075};
3076
3077/**
3078 * struct hl_reset_info - holds current device reset information.
3079 * @lock: lock to protect critical reset flows.
3080 * @compute_reset_cnt: number of compute resets since the driver was loaded.
3081 * @hard_reset_cnt: number of hard resets since the driver was loaded.
3082 * @hard_reset_schedule_flags: hard reset is scheduled to after current compute reset,
3083 *                             here we hold the hard reset flags.
3084 * @in_reset: is device in reset flow.
3085 * @in_compute_reset: Device is currently in reset but not in hard-reset.
3086 * @needs_reset: true if reset_on_lockup is false and device should be reset
3087 *               due to lockup.
3088 * @hard_reset_pending: is there a hard reset work pending.
3089 * @curr_reset_cause: saves an enumerated reset cause when a hard reset is
3090 *                    triggered, and cleared after it is shared with preboot.
3091 * @prev_reset_trigger: saves the previous trigger which caused a reset, overridden
3092 *                      with a new value on next reset
3093 * @reset_trigger_repeated: set if device reset is triggered more than once with
3094 *                          same cause.
3095 * @skip_reset_on_timeout: Skip device reset if CS has timed out, wait for it to
3096 *                         complete instead.
3097 * @watchdog_active: true if a device release watchdog work is scheduled.
3098 */
3099struct hl_reset_info {
3100	spinlock_t	lock;
3101	u32		compute_reset_cnt;
3102	u32		hard_reset_cnt;
3103	u32		hard_reset_schedule_flags;
3104	u8		in_reset;
3105	u8		in_compute_reset;
3106	u8		needs_reset;
3107	u8		hard_reset_pending;
3108	u8		curr_reset_cause;
3109	u8		prev_reset_trigger;
3110	u8		reset_trigger_repeated;
3111	u8		skip_reset_on_timeout;
3112	u8		watchdog_active;
3113};
3114
3115/**
3116 * struct hl_device - habanalabs device structure.
3117 * @pdev: pointer to PCI device, can be NULL in case of simulator device.
3118 * @pcie_bar_phys: array of available PCIe bars physical addresses.
3119 *		   (required only for PCI address match mode)
3120 * @pcie_bar: array of available PCIe bars virtual addresses.
3121 * @rmmio: configuration area address on SRAM.
3122 * @hclass: pointer to the habanalabs class.
3123 * @cdev: related char device.
3124 * @cdev_ctrl: char device for control operations only (INFO IOCTL)
3125 * @dev: related kernel basic device structure.
3126 * @dev_ctrl: related kernel device structure for the control device
3127 * @work_heartbeat: delayed work for CPU-CP is-alive check.
3128 * @device_reset_work: delayed work which performs hard reset
3129 * @device_release_watchdog_work: watchdog work that performs hard reset if user doesn't release
3130 *                                device upon certain error cases.
3131 * @asic_name: ASIC specific name.
3132 * @asic_type: ASIC specific type.
3133 * @completion_queue: array of hl_cq.
3134 * @user_interrupt: array of hl_user_interrupt. upon the corresponding user
3135 *                  interrupt, driver will monitor the list of fences
3136 *                  registered to this interrupt.
3137 * @tpc_interrupt: single TPC interrupt for all TPCs.
3138 * @unexpected_error_interrupt: single interrupt for unexpected user error indication.
3139 * @common_user_cq_interrupt: common user CQ interrupt for all user CQ interrupts.
3140 *                         upon any user CQ interrupt, driver will monitor the
3141 *                         list of fences registered to this common structure.
3142 * @common_decoder_interrupt: common decoder interrupt for all user decoder interrupts.
3143 * @shadow_cs_queue: pointer to a shadow queue that holds pointers to
3144 *                   outstanding command submissions.
3145 * @cq_wq: work queues of completion queues for executing work in process
3146 *         context.
3147 * @eq_wq: work queue of event queue for executing work in process context.
3148 * @cs_cmplt_wq: work queue of CS completions for executing work in process
3149 *               context.
3150 * @ts_free_obj_wq: work queue for timestamp registration objects release.
3151 * @prefetch_wq: work queue for MMU pre-fetch operations.
3152 * @reset_wq: work queue for device reset procedure.
3153 * @kernel_ctx: Kernel driver context structure.
3154 * @kernel_queues: array of hl_hw_queue.
3155 * @cs_mirror_list: CS mirror list for TDR.
3156 * @cs_mirror_lock: protects cs_mirror_list.
3157 * @kernel_mem_mgr: memory manager for memory buffers with lifespan of driver.
3158 * @event_queue: event queue for IRQ from CPU-CP.
3159 * @dma_pool: DMA pool for small allocations.
3160 * @cpu_accessible_dma_mem: Host <-> CPU-CP shared memory CPU address.
3161 * @cpu_accessible_dma_address: Host <-> CPU-CP shared memory DMA address.
3162 * @cpu_accessible_dma_pool: Host <-> CPU-CP shared memory pool.
3163 * @asid_bitmap: holds used/available ASIDs.
3164 * @asid_mutex: protects asid_bitmap.
3165 * @send_cpu_message_lock: enforces only one message in Host <-> CPU-CP queue.
3166 * @debug_lock: protects critical section of setting debug mode for device
3167 * @mmu_lock: protects the MMU page tables and invalidation h/w. Although the
3168 *            page tables are per context, the invalidation h/w is per MMU.
3169 *            Therefore, we can't allow multiple contexts (we only have two,
3170 *            user and kernel) to access the invalidation h/w at the same time.
3171 *            In addition, any change to the PGT, modifying the MMU hash or
3172 *            walking the PGT requires talking this lock.
3173 * @asic_prop: ASIC specific immutable properties.
3174 * @asic_funcs: ASIC specific functions.
3175 * @asic_specific: ASIC specific information to use only from ASIC files.
3176 * @vm: virtual memory manager for MMU.
3177 * @hwmon_dev: H/W monitor device.
3178 * @hl_chip_info: ASIC's sensors information.
3179 * @device_status_description: device status description.
3180 * @hl_debugfs: device's debugfs manager.
3181 * @cb_pool: list of pre allocated CBs.
3182 * @cb_pool_lock: protects the CB pool.
3183 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
3184 * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
3185 * @internal_cb_pool: internal command buffer memory pool.
3186 * @internal_cb_va_base: internal cb pool mmu virtual address base
3187 * @fpriv_list: list of file private data structures. Each structure is created
3188 *              when a user opens the device
3189 * @fpriv_ctrl_list: list of file private data structures. Each structure is created
3190 *              when a user opens the control device
3191 * @fpriv_list_lock: protects the fpriv_list
3192 * @fpriv_ctrl_list_lock: protects the fpriv_ctrl_list
3193 * @aggregated_cs_counters: aggregated cs counters among all contexts
3194 * @mmu_priv: device-specific MMU data.
3195 * @mmu_func: device-related MMU functions.
3196 * @dec: list of decoder sw instance
3197 * @fw_loader: FW loader manager.
3198 * @pci_mem_region: array of memory regions in the PCI
3199 * @state_dump_specs: constants and dictionaries needed to dump system state.
3200 * @multi_cs_completion: array of multi-CS completion.
3201 * @clk_throttling: holds information about current/previous clock throttling events
3202 * @captured_err_info: holds information about errors.
3203 * @reset_info: holds current device reset information.
3204 * @stream_master_qid_arr: pointer to array with QIDs of master streams.
3205 * @fw_inner_major_ver: the major of current loaded preboot inner version.
3206 * @fw_inner_minor_ver: the minor of current loaded preboot inner version.
3207 * @fw_sw_major_ver: the major of current loaded preboot SW version.
3208 * @fw_sw_minor_ver: the minor of current loaded preboot SW version.
3209 * @fw_sw_sub_minor_ver: the sub-minor of current loaded preboot SW version.
3210 * @dram_used_mem: current DRAM memory consumption.
3211 * @memory_scrub_val: the value to which the dram will be scrubbed to using cb scrub_device_dram
3212 * @timeout_jiffies: device CS timeout value.
3213 * @max_power: the max power of the device, as configured by the sysadmin. This
3214 *             value is saved so in case of hard-reset, the driver will restore
3215 *             this value and update the F/W after the re-initialization
3216 * @boot_error_status_mask: contains a mask of the device boot error status.
3217 *                          Each bit represents a different error, according to
3218 *                          the defines in hl_boot_if.h. If the bit is cleared,
3219 *                          the error will be ignored by the driver during
3220 *                          device initialization. Mainly used to debug and
3221 *                          workaround firmware bugs
3222 * @dram_pci_bar_start: start bus address of PCIe bar towards DRAM.
3223 * @last_successful_open_ktime: timestamp (ktime) of the last successful device open.
3224 * @last_successful_open_jif: timestamp (jiffies) of the last successful
3225 *                            device open.
3226 * @last_open_session_duration_jif: duration (jiffies) of the last device open
3227 *                                  session.
3228 * @open_counter: number of successful device open operations.
3229 * @fw_poll_interval_usec: FW status poll interval in usec.
3230 *                         used for CPU boot status
3231 * @fw_comms_poll_interval_usec: FW comms/protocol poll interval in usec.
3232 *                                  used for COMMs protocols cmds(COMMS_STS_*)
3233 * @dram_binning: contains mask of drams that is received from the f/w which indicates which
3234 *                drams are binned-out
3235 * @tpc_binning: contains mask of tpc engines that is received from the f/w which indicates which
3236 *               tpc engines are binned-out
3237 * @dmabuf_export_cnt: number of dma-buf exporting.
3238 * @card_type: Various ASICs have several card types. This indicates the card
3239 *             type of the current device.
3240 * @major: habanalabs kernel driver major.
3241 * @high_pll: high PLL profile frequency.
3242 * @decoder_binning: contains mask of decoder engines that is received from the f/w which
3243 *                   indicates which decoder engines are binned-out
3244 * @edma_binning: contains mask of edma engines that is received from the f/w which
3245 *                   indicates which edma engines are binned-out
3246 * @device_release_watchdog_timeout_sec: device release watchdog timeout value in seconds.
3247 * @rotator_binning: contains mask of rotators engines that is received from the f/w
3248 *			which indicates which rotator engines are binned-out(Gaudi3 and above).
3249 * @id: device minor.
3250 * @id_control: minor of the control device.
3251 * @cdev_idx: char device index. Used for setting its name.
3252 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
3253 *                    addresses.
3254 * @is_in_dram_scrub: true if dram scrub operation is on going.
3255 * @disabled: is device disabled.
3256 * @late_init_done: is late init stage was done during initialization.
3257 * @hwmon_initialized: is H/W monitor sensors was initialized.
3258 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
3259 *                   otherwise.
3260 * @dram_default_page_mapping: is DRAM default page mapping enabled.
3261 * @memory_scrub: true to perform device memory scrub in various locations,
3262 *                such as context-switch, context close, page free, etc.
3263 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
3264 *                   huge pages.
3265 * @init_done: is the initialization of the device done.
3266 * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
3267 * @in_debug: whether the device is in a state where the profiling/tracing infrastructure
3268 *            can be used. This indication is needed because in some ASICs we need to do
3269 *            specific operations to enable that infrastructure.
3270 * @cdev_sysfs_debugfs_created: were char devices and sysfs/debugfs files created.
3271 * @stop_on_err: true if engines should stop on error.
3272 * @supports_sync_stream: is sync stream supported.
3273 * @sync_stream_queue_idx: helper index for sync stream queues initialization.
3274 * @collective_mon_idx: helper index for collective initialization
3275 * @supports_coresight: is CoreSight supported.
3276 * @supports_cb_mapping: is mapping a CB to the device's MMU supported.
3277 * @process_kill_trial_cnt: number of trials reset thread tried killing
3278 *                          user processes
3279 * @device_fini_pending: true if device_fini was called and might be
3280 *                       waiting for the reset thread to finish
3281 * @supports_staged_submission: true if staged submissions are supported
3282 * @device_cpu_is_halted: Flag to indicate whether the device CPU was already
3283 *                        halted. We can't halt it again because the COMMS
3284 *                        protocol will throw an error. Relevant only for
3285 *                        cases where Linux was not loaded to device CPU
3286 * @supports_wait_for_multi_cs: true if wait for multi CS is supported
3287 * @is_compute_ctx_active: Whether there is an active compute context executing.
3288 * @compute_ctx_in_release: true if the current compute context is being released.
3289 * @supports_mmu_prefetch: true if prefetch is supported, otherwise false.
3290 * @reset_upon_device_release: reset the device when the user closes the file descriptor of the
3291 *                             device.
3292 * @supports_ctx_switch: true if a ctx switch is required upon first submission.
3293 * @support_preboot_binning: true if we support read binning info from preboot.
3294 * @nic_ports_mask: Controls which NIC ports are enabled. Used only for testing.
3295 * @fw_components: Controls which f/w components to load to the device. There are multiple f/w
3296 *                 stages and sometimes we want to stop at a certain stage. Used only for testing.
3297 * @mmu_disable: Disable the device MMU(s). Used only for testing.
3298 * @cpu_queues_enable: Whether to enable queues communication vs. the f/w. Used only for testing.
3299 * @pldm: Whether we are running in Palladium environment. Used only for testing.
3300 * @hard_reset_on_fw_events: Whether to do device hard-reset when a fatal event is received from
3301 *                           the f/w. Used only for testing.
3302 * @bmc_enable: Whether we are running in a box with BMC. Used only for testing.
3303 * @reset_on_preboot_fail: Whether to reset the device if preboot f/w fails to load.
3304 *                         Used only for testing.
3305 * @heartbeat: Controls if we want to enable the heartbeat mechanism vs. the f/w, which verifies
3306 *             that the f/w is always alive. Used only for testing.
3307 */
3308struct hl_device {
3309	struct pci_dev			*pdev;
3310	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
3311	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
3312	void __iomem			*rmmio;
3313	struct class			*hclass;
3314	struct cdev			cdev;
3315	struct cdev			cdev_ctrl;
3316	struct device			*dev;
3317	struct device			*dev_ctrl;
3318	struct delayed_work		work_heartbeat;
3319	struct hl_device_reset_work	device_reset_work;
3320	struct hl_device_reset_work	device_release_watchdog_work;
3321	char				asic_name[HL_STR_MAX];
3322	char				status[HL_DEV_STS_MAX][HL_STR_MAX];
3323	enum hl_asic_type		asic_type;
3324	struct hl_cq			*completion_queue;
3325	struct hl_user_interrupt	*user_interrupt;
3326	struct hl_user_interrupt	tpc_interrupt;
3327	struct hl_user_interrupt	unexpected_error_interrupt;
3328	struct hl_user_interrupt	common_user_cq_interrupt;
3329	struct hl_user_interrupt	common_decoder_interrupt;
3330	struct hl_cs			**shadow_cs_queue;
3331	struct workqueue_struct		**cq_wq;
3332	struct workqueue_struct		*eq_wq;
3333	struct workqueue_struct		*cs_cmplt_wq;
3334	struct workqueue_struct		*ts_free_obj_wq;
3335	struct workqueue_struct		*prefetch_wq;
3336	struct workqueue_struct		*reset_wq;
3337	struct hl_ctx			*kernel_ctx;
3338	struct hl_hw_queue		*kernel_queues;
3339	struct list_head		cs_mirror_list;
3340	spinlock_t			cs_mirror_lock;
3341	struct hl_mem_mgr		kernel_mem_mgr;
3342	struct hl_eq			event_queue;
3343	struct dma_pool			*dma_pool;
3344	void				*cpu_accessible_dma_mem;
3345	dma_addr_t			cpu_accessible_dma_address;
3346	struct gen_pool			*cpu_accessible_dma_pool;
3347	unsigned long			*asid_bitmap;
3348	struct mutex			asid_mutex;
3349	struct mutex			send_cpu_message_lock;
3350	struct mutex			debug_lock;
3351	struct mutex			mmu_lock;
3352	struct asic_fixed_properties	asic_prop;
3353	const struct hl_asic_funcs	*asic_funcs;
3354	void				*asic_specific;
3355	struct hl_vm			vm;
3356	struct device			*hwmon_dev;
3357	struct hwmon_chip_info		*hl_chip_info;
3358
3359	struct hl_dbg_device_entry	hl_debugfs;
3360
3361	struct list_head		cb_pool;
3362	spinlock_t			cb_pool_lock;
3363
3364	void				*internal_cb_pool_virt_addr;
3365	dma_addr_t			internal_cb_pool_dma_addr;
3366	struct gen_pool			*internal_cb_pool;
3367	u64				internal_cb_va_base;
3368
3369	struct list_head		fpriv_list;
3370	struct list_head		fpriv_ctrl_list;
3371	struct mutex			fpriv_list_lock;
3372	struct mutex			fpriv_ctrl_list_lock;
3373
3374	struct hl_cs_counters_atomic	aggregated_cs_counters;
3375
3376	struct hl_mmu_priv		mmu_priv;
3377	struct hl_mmu_funcs		mmu_func[MMU_NUM_PGT_LOCATIONS];
3378
3379	struct hl_dec			*dec;
3380
3381	struct fw_load_mgr		fw_loader;
3382
3383	struct pci_mem_region		pci_mem_region[PCI_REGION_NUMBER];
3384
3385	struct hl_state_dump_specs	state_dump_specs;
3386
3387	struct multi_cs_completion	multi_cs_completion[
3388							MULTI_CS_MAX_USER_CTX];
3389	struct hl_clk_throttle		clk_throttling;
3390	struct hl_error_info		captured_err_info;
3391
3392	struct hl_reset_info		reset_info;
3393
3394	u32				*stream_master_qid_arr;
3395	u32				fw_inner_major_ver;
3396	u32				fw_inner_minor_ver;
3397	u32				fw_sw_major_ver;
3398	u32				fw_sw_minor_ver;
3399	u32				fw_sw_sub_minor_ver;
3400	atomic64_t			dram_used_mem;
3401	u64				memory_scrub_val;
3402	u64				timeout_jiffies;
3403	u64				max_power;
3404	u64				boot_error_status_mask;
3405	u64				dram_pci_bar_start;
3406	u64				last_successful_open_jif;
3407	u64				last_open_session_duration_jif;
3408	u64				open_counter;
3409	u64				fw_poll_interval_usec;
3410	ktime_t				last_successful_open_ktime;
3411	u64				fw_comms_poll_interval_usec;
3412	u64				dram_binning;
3413	u64				tpc_binning;
3414	atomic_t			dmabuf_export_cnt;
3415	enum cpucp_card_types		card_type;
3416	u32				major;
3417	u32				high_pll;
3418	u32				decoder_binning;
3419	u32				edma_binning;
3420	u32				device_release_watchdog_timeout_sec;
3421	u32				rotator_binning;
3422	u16				id;
3423	u16				id_control;
3424	u16				cdev_idx;
3425	u16				cpu_pci_msb_addr;
3426	u8				is_in_dram_scrub;
3427	u8				disabled;
3428	u8				late_init_done;
3429	u8				hwmon_initialized;
3430	u8				reset_on_lockup;
3431	u8				dram_default_page_mapping;
3432	u8				memory_scrub;
3433	u8				pmmu_huge_range;
3434	u8				init_done;
3435	u8				device_cpu_disabled;
3436	u8				in_debug;
3437	u8				cdev_sysfs_debugfs_created;
3438	u8				stop_on_err;
3439	u8				supports_sync_stream;
3440	u8				sync_stream_queue_idx;
3441	u8				collective_mon_idx;
3442	u8				supports_coresight;
3443	u8				supports_cb_mapping;
3444	u8				process_kill_trial_cnt;
3445	u8				device_fini_pending;
3446	u8				supports_staged_submission;
3447	u8				device_cpu_is_halted;
3448	u8				supports_wait_for_multi_cs;
3449	u8				stream_master_qid_arr_size;
3450	u8				is_compute_ctx_active;
3451	u8				compute_ctx_in_release;
3452	u8				supports_mmu_prefetch;
3453	u8				reset_upon_device_release;
3454	u8				supports_ctx_switch;
3455	u8				support_preboot_binning;
3456
3457	/* Parameters for bring-up to be upstreamed */
3458	u64				nic_ports_mask;
3459	u64				fw_components;
3460	u8				mmu_disable;
3461	u8				cpu_queues_enable;
3462	u8				pldm;
3463	u8				hard_reset_on_fw_events;
3464	u8				bmc_enable;
3465	u8				reset_on_preboot_fail;
3466	u8				heartbeat;
3467};
3468
3469
3470/**
3471 * struct hl_cs_encaps_sig_handle - encapsulated signals handle structure
3472 * @refcount: refcount used to protect removing this id when several
3473 *            wait cs are used to wait of the reserved encaps signals.
3474 * @hdev: pointer to habanalabs device structure.
3475 * @hw_sob: pointer to  H/W SOB used in the reservation.
3476 * @ctx: pointer to the user's context data structure
3477 * @cs_seq: staged cs sequence which contains encapsulated signals
3478 * @id: idr handler id to be used to fetch the handler info
3479 * @q_idx: stream queue index
3480 * @pre_sob_val: current SOB value before reservation
3481 * @count: signals number
3482 */
3483struct hl_cs_encaps_sig_handle {
3484	struct kref refcount;
3485	struct hl_device *hdev;
3486	struct hl_hw_sob *hw_sob;
3487	struct hl_ctx *ctx;
3488	u64  cs_seq;
3489	u32  id;
3490	u32  q_idx;
3491	u32  pre_sob_val;
3492	u32  count;
3493};
3494
3495/**
3496 * struct hl_info_fw_err_info - firmware error information structure
3497 * @err_type: The type of error detected (or reported).
3498 * @event_mask: Pointer to the event mask to be modified with the detected error flag
3499 *              (can be NULL)
3500 * @event_id: The id of the event that reported the error
3501 *            (applicable when err_type is HL_INFO_FW_REPORTED_ERR).
3502 */
3503struct hl_info_fw_err_info {
3504	enum hl_info_fw_err_type err_type;
3505	u64 *event_mask;
3506	u16 event_id;
3507};
3508
3509/*
3510 * IOCTLs
3511 */
3512
3513/**
3514 * typedef hl_ioctl_t - typedef for ioctl function in the driver
3515 * @hpriv: pointer to the FD's private data, which contains state of
3516 *		user process
3517 * @data: pointer to the input/output arguments structure of the IOCTL
3518 *
3519 * Return: 0 for success, negative value for error
3520 */
3521typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);
3522
3523/**
3524 * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
3525 * @cmd: the IOCTL code as created by the kernel macros.
3526 * @func: pointer to the driver's function that should be called for this IOCTL.
3527 */
3528struct hl_ioctl_desc {
3529	unsigned int cmd;
3530	hl_ioctl_t *func;
3531};
3532
3533static inline bool hl_is_fw_sw_ver_below(struct hl_device *hdev, u32 fw_sw_major, u32 fw_sw_minor)
3534{
3535	if (hdev->fw_sw_major_ver < fw_sw_major)
3536		return true;
3537	if (hdev->fw_sw_major_ver > fw_sw_major)
3538		return false;
3539	if (hdev->fw_sw_minor_ver < fw_sw_minor)
3540		return true;
3541	return false;
3542}
3543
3544/*
3545 * Kernel module functions that can be accessed by entire module
3546 */
3547
3548/**
3549 * hl_get_sg_info() - get number of pages and the DMA address from SG list.
3550 * @sg: the SG list.
3551 * @dma_addr: pointer to DMA address to return.
3552 *
3553 * Calculate the number of consecutive pages described by the SG list. Take the
3554 * offset of the address in the first page, add to it the length and round it up
3555 * to the number of needed pages.
3556 */
3557static inline u32 hl_get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
3558{
3559	*dma_addr = sg_dma_address(sg);
3560
3561	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
3562			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
3563}
3564
3565/**
3566 * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
3567 * @address: The start address of the area we want to validate.
3568 * @size: The size in bytes of the area we want to validate.
3569 * @range_start_address: The start address of the valid range.
3570 * @range_end_address: The end address of the valid range.
3571 *
3572 * Return: true if the area is inside the valid range, false otherwise.
3573 */
3574static inline bool hl_mem_area_inside_range(u64 address, u64 size,
3575				u64 range_start_address, u64 range_end_address)
3576{
3577	u64 end_address = address + size;
3578
3579	if ((address >= range_start_address) &&
3580			(end_address <= range_end_address) &&
3581			(end_address > address))
3582		return true;
3583
3584	return false;
3585}
3586
3587/**
3588 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
3589 * @address: The start address of the area we want to validate.
3590 * @size: The size in bytes of the area we want to validate.
3591 * @range_start_address: The start address of the valid range.
3592 * @range_end_address: The end address of the valid range.
3593 *
3594 * Return: true if the area overlaps part or all of the valid range,
3595 *		false otherwise.
3596 */
3597static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
3598				u64 range_start_address, u64 range_end_address)
3599{
3600	u64 end_address = address + size - 1;
3601
3602	return ((address <= range_end_address) && (range_start_address <= end_address));
3603}
3604
3605uint64_t hl_set_dram_bar_default(struct hl_device *hdev, u64 addr);
3606void *hl_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle);
3607void hl_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size, void *vaddr);
3608void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
3609					gfp_t flag, const char *caller);
3610void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
3611					dma_addr_t dma_handle, const char *caller);
3612void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
3613					dma_addr_t *dma_handle, const char *caller);
3614void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
3615					const char *caller);
3616int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir);
3617void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt,
3618				enum dma_data_direction dir);
3619int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
3620	enum debugfs_access_type acc_type, enum pci_region region_type, bool set_dram_bar);
3621int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
3622	enum debugfs_access_type acc_type);
3623int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
3624			u64 addr, u64 *val, enum debugfs_access_type acc_type);
3625int hl_device_open(struct inode *inode, struct file *filp);
3626int hl_device_open_ctrl(struct inode *inode, struct file *filp);
3627bool hl_device_operational(struct hl_device *hdev,
3628		enum hl_device_status *status);
3629bool hl_ctrl_device_operational(struct hl_device *hdev,
3630		enum hl_device_status *status);
3631enum hl_device_status hl_device_status(struct hl_device *hdev);
3632int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable);
3633int hl_hw_queues_create(struct hl_device *hdev);
3634void hl_hw_queues_destroy(struct hl_device *hdev);
3635int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
3636		u32 cb_size, u64 cb_ptr);
3637void hl_hw_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
3638		u32 ctl, u32 len, u64 ptr);
3639int hl_hw_queue_schedule_cs(struct hl_cs *cs);
3640u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
3641void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
3642void hl_hw_queue_update_ci(struct hl_cs *cs);
3643void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);
3644
3645#define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
3646#define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))
3647
3648int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
3649void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
3650int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
3651void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
3652void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
3653void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
3654irqreturn_t hl_irq_handler_cq(int irq, void *arg);
3655irqreturn_t hl_irq_handler_eq(int irq, void *arg);
3656irqreturn_t hl_irq_handler_dec_abnrm(int irq, void *arg);
3657irqreturn_t hl_irq_handler_user_interrupt(int irq, void *arg);
3658irqreturn_t hl_irq_user_interrupt_thread_handler(int irq, void *arg);
3659u32 hl_cq_inc_ptr(u32 ptr);
3660
3661int hl_asid_init(struct hl_device *hdev);
3662void hl_asid_fini(struct hl_device *hdev);
3663unsigned long hl_asid_alloc(struct hl_device *hdev);
3664void hl_asid_free(struct hl_device *hdev, unsigned long asid);
3665
3666int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
3667void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
3668int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
3669void hl_ctx_do_release(struct kref *ref);
3670void hl_ctx_get(struct hl_ctx *ctx);
3671int hl_ctx_put(struct hl_ctx *ctx);
3672struct hl_ctx *hl_get_compute_ctx(struct hl_device *hdev);
3673struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
3674int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
3675				struct hl_fence **fence, u32 arr_len);
3676void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
3677void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);
3678
3679int hl_device_init(struct hl_device *hdev);
3680void hl_device_fini(struct hl_device *hdev);
3681int hl_device_suspend(struct hl_device *hdev);
3682int hl_device_resume(struct hl_device *hdev);
3683int hl_device_reset(struct hl_device *hdev, u32 flags);
3684int hl_device_cond_reset(struct hl_device *hdev, u32 flags, u64 event_mask);
3685void hl_hpriv_get(struct hl_fpriv *hpriv);
3686int hl_hpriv_put(struct hl_fpriv *hpriv);
3687int hl_device_utilization(struct hl_device *hdev, u32 *utilization);
3688
3689int hl_build_hwmon_channel_info(struct hl_device *hdev,
3690		struct cpucp_sensor *sensors_arr);
3691
3692void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask);
3693
3694int hl_sysfs_init(struct hl_device *hdev);
3695void hl_sysfs_fini(struct hl_device *hdev);
3696
3697int hl_hwmon_init(struct hl_device *hdev);
3698void hl_hwmon_fini(struct hl_device *hdev);
3699void hl_hwmon_release_resources(struct hl_device *hdev);
3700
3701int hl_cb_create(struct hl_device *hdev, struct hl_mem_mgr *mmg,
3702			struct hl_ctx *ctx, u32 cb_size, bool internal_cb,
3703			bool map_cb, u64 *handle);
3704int hl_cb_destroy(struct hl_mem_mgr *mmg, u64 cb_handle);
3705int hl_hw_block_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
3706struct hl_cb *hl_cb_get(struct hl_mem_mgr *mmg, u64 handle);
3707void hl_cb_put(struct hl_cb *cb);
3708struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
3709					bool internal_cb);
3710int hl_cb_pool_init(struct hl_device *hdev);
3711int hl_cb_pool_fini(struct hl_device *hdev);
3712int hl_cb_va_pool_init(struct hl_ctx *ctx);
3713void hl_cb_va_pool_fini(struct hl_ctx *ctx);
3714
3715void hl_cs_rollback_all(struct hl_device *hdev, bool skip_wq_flush);
3716struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
3717		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
3718void hl_sob_reset_error(struct kref *ref);
3719int hl_gen_sob_mask(u16 sob_base, u8 sob_mask, u8 *mask);
3720void hl_fence_put(struct hl_fence *fence);
3721void hl_fences_put(struct hl_fence **fence, int len);
3722void hl_fence_get(struct hl_fence *fence);
3723void cs_get(struct hl_cs *cs);
3724bool cs_needs_completion(struct hl_cs *cs);
3725bool cs_needs_timeout(struct hl_cs *cs);
3726bool is_staged_cs_last_exists(struct hl_device *hdev, struct hl_cs *cs);
3727struct hl_cs *hl_staged_cs_find_first(struct hl_device *hdev, u64 cs_seq);
3728void hl_multi_cs_completion_init(struct hl_device *hdev);
3729u32 hl_get_active_cs_num(struct hl_device *hdev);
3730
3731void goya_set_asic_funcs(struct hl_device *hdev);
3732void gaudi_set_asic_funcs(struct hl_device *hdev);
3733void gaudi2_set_asic_funcs(struct hl_device *hdev);
3734
3735int hl_vm_ctx_init(struct hl_ctx *ctx);
3736void hl_vm_ctx_fini(struct hl_ctx *ctx);
3737
3738int hl_vm_init(struct hl_device *hdev);
3739void hl_vm_fini(struct hl_device *hdev);
3740
3741void hl_hw_block_mem_init(struct hl_ctx *ctx);
3742void hl_hw_block_mem_fini(struct hl_ctx *ctx);
3743
3744u64 hl_reserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3745		enum hl_va_range_type type, u64 size, u32 alignment);
3746int hl_unreserve_va_block(struct hl_device *hdev, struct hl_ctx *ctx,
3747		u64 start_addr, u64 size);
3748int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
3749			struct hl_userptr *userptr);
3750void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
3751void hl_userptr_delete_list(struct hl_device *hdev,
3752				struct list_head *userptr_list);
3753bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
3754				struct list_head *userptr_list,
3755				struct hl_userptr **userptr);
3756
3757int hl_mmu_init(struct hl_device *hdev);
3758void hl_mmu_fini(struct hl_device *hdev);
3759int hl_mmu_ctx_init(struct hl_ctx *ctx);
3760void hl_mmu_ctx_fini(struct hl_ctx *ctx);
3761int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
3762		u32 page_size, bool flush_pte);
3763int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop,
3764				u32 page_size, u32 *real_page_size, bool is_dram_addr);
3765int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
3766		bool flush_pte);
3767int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr,
3768					u64 phys_addr, u32 size);
3769int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size);
3770int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags);
3771int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard,
3772					u32 flags, u32 asid, u64 va, u64 size);
3773int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size);
3774u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte);
3775u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop,
3776					u8 hop_idx, u64 hop_addr, u64 virt_addr);
3777void hl_mmu_hr_flush(struct hl_ctx *ctx);
3778int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size,
3779			u64 pgt_size);
3780void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size);
3781void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3782				u32 hop_table_size);
3783u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, u64 phys_pte_addr,
3784							u32 hop_table_size);
3785void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3786							u64 val, u32 hop_table_size);
3787void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr,
3788							u32 hop_table_size);
3789int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv,
3790							u32 hop_table_size);
3791void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr);
3792struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx,
3793							struct hl_hr_mmu_funcs *hr_func,
3794							u64 curr_pte);
3795struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv,
3796							struct hl_hr_mmu_funcs *hr_func,
3797							struct hl_mmu_properties *mmu_prop);
3798struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx,
3799							struct hl_mmu_hr_priv *hr_priv,
3800							struct hl_hr_mmu_funcs *hr_func,
3801							struct hl_mmu_properties *mmu_prop,
3802							u64 curr_pte, bool *is_new_hop);
3803int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops,
3804							struct hl_hr_mmu_funcs *hr_func);
3805int hl_mmu_if_set_funcs(struct hl_device *hdev);
3806void hl_mmu_v1_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3807void hl_mmu_v2_hr_set_funcs(struct hl_device *hdev, struct hl_mmu_funcs *mmu);
3808int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr);
3809int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr,
3810			struct hl_mmu_hop_info *hops);
3811u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr);
3812u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr);
3813bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr);
3814
3815int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
3816				void __iomem *dst, u32 src_offset, u32 size);
3817int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode, u64 value);
3818int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
3819				u16 len, u32 timeout, u64 *result);
3820int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
3821int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
3822		size_t irq_arr_size);
3823int hl_fw_test_cpu_queue(struct hl_device *hdev);
3824void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
3825						dma_addr_t *dma_handle);
3826void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
3827					void *vaddr);
3828int hl_fw_send_heartbeat(struct hl_device *hdev);
3829int hl_fw_cpucp_info_get(struct hl_device *hdev,
3830				u32 sts_boot_dev_sts0_reg,
3831				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3832				u32 boot_err1_reg);
3833int hl_fw_cpucp_handshake(struct hl_device *hdev,
3834				u32 sts_boot_dev_sts0_reg,
3835				u32 sts_boot_dev_sts1_reg, u32 boot_err0_reg,
3836				u32 boot_err1_reg);
3837int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
3838int hl_fw_get_monitor_dump(struct hl_device *hdev, void *data);
3839int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
3840		struct hl_info_pci_counters *counters);
3841int hl_fw_cpucp_total_energy_get(struct hl_device *hdev,
3842			u64 *total_energy);
3843int get_used_pll_index(struct hl_device *hdev, u32 input_pll_index,
3844						enum pll_index *pll_index);
3845int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u32 pll_index,
3846		u16 *pll_freq_arr);
3847int hl_fw_cpucp_power_get(struct hl_device *hdev, u64 *power);
3848void hl_fw_ask_hard_reset_without_linux(struct hl_device *hdev);
3849void hl_fw_ask_halt_machine_without_linux(struct hl_device *hdev);
3850int hl_fw_init_cpu(struct hl_device *hdev);
3851int hl_fw_wait_preboot_ready(struct hl_device *hdev);
3852int hl_fw_read_preboot_status(struct hl_device *hdev);
3853int hl_fw_dynamic_send_protocol_cmd(struct hl_device *hdev,
3854				struct fw_load_mgr *fw_loader,
3855				enum comms_cmd cmd, unsigned int size,
3856				bool wait_ok, u32 timeout);
3857int hl_fw_dram_replaced_row_get(struct hl_device *hdev,
3858				struct cpucp_hbm_row_info *info);
3859int hl_fw_dram_pending_row_get(struct hl_device *hdev, u32 *pend_rows_num);
3860int hl_fw_cpucp_engine_core_asid_set(struct hl_device *hdev, u32 asid);
3861int hl_fw_send_device_activity(struct hl_device *hdev, bool open);
3862int hl_fw_send_soft_reset(struct hl_device *hdev);
3863int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
3864			bool is_wc[3]);
3865int hl_pci_elbi_read(struct hl_device *hdev, u64 addr, u32 *data);
3866int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
3867int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
3868		struct hl_inbound_pci_region *pci_region);
3869int hl_pci_set_outbound_region(struct hl_device *hdev,
3870		struct hl_outbound_pci_region *pci_region);
3871enum pci_region hl_get_pci_memory_region(struct hl_device *hdev, u64 addr);
3872int hl_pci_init(struct hl_device *hdev);
3873void hl_pci_fini(struct hl_device *hdev);
3874
3875long hl_fw_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
3876void hl_fw_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
3877int hl_get_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3878int hl_set_temperature(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3879int hl_get_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3880int hl_get_current(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3881int hl_get_fan_speed(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3882int hl_get_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3883void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3884long hl_fw_get_max_power(struct hl_device *hdev);
3885void hl_fw_set_max_power(struct hl_device *hdev);
3886int hl_fw_get_sec_attest_info(struct hl_device *hdev, struct cpucp_sec_attest_info *sec_attest_info,
3887				u32 nonce);
3888int hl_set_voltage(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3889int hl_set_current(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3890int hl_set_power(struct hl_device *hdev, int sensor_index, u32 attr, long value);
3891int hl_get_power(struct hl_device *hdev, int sensor_index, u32 attr, long *value);
3892int hl_fw_get_clk_rate(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
3893void hl_fw_set_pll_profile(struct hl_device *hdev);
3894void hl_sysfs_add_dev_clk_attr(struct hl_device *hdev, struct attribute_group *dev_clk_attr_grp);
3895void hl_sysfs_add_dev_vrm_attr(struct hl_device *hdev, struct attribute_group *dev_vrm_attr_grp);
3896int hl_fw_send_generic_request(struct hl_device *hdev, enum hl_passthrough_type sub_opcode,
3897						dma_addr_t buff, u32 *size);
3898
3899void hw_sob_get(struct hl_hw_sob *hw_sob);
3900void hw_sob_put(struct hl_hw_sob *hw_sob);
3901void hl_encaps_release_handle_and_put_ctx(struct kref *ref);
3902void hl_encaps_release_handle_and_put_sob_ctx(struct kref *ref);
3903void hl_hw_queue_encaps_sig_set_sob_info(struct hl_device *hdev,
3904			struct hl_cs *cs, struct hl_cs_job *job,
3905			struct hl_cs_compl *cs_cmpl);
3906
3907int hl_dec_init(struct hl_device *hdev);
3908void hl_dec_fini(struct hl_device *hdev);
3909void hl_dec_ctx_fini(struct hl_ctx *ctx);
3910
3911void hl_release_pending_user_interrupts(struct hl_device *hdev);
3912void hl_abort_waiting_for_cs_completions(struct hl_device *hdev);
3913int hl_cs_signal_sob_wraparound_handler(struct hl_device *hdev, u32 q_idx,
3914			struct hl_hw_sob **hw_sob, u32 count, bool encaps_sig);
3915
3916int hl_state_dump(struct hl_device *hdev);
3917const char *hl_state_dump_get_sync_name(struct hl_device *hdev, u32 sync_id);
3918const char *hl_state_dump_get_monitor_name(struct hl_device *hdev,
3919					struct hl_mon_state_dump *mon);
3920void hl_state_dump_free_sync_to_engine_map(struct hl_sync_to_engine_map *map);
3921__printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
3922					const char *format, ...);
3923char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
3924const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
3925
3926void hl_mem_mgr_init(struct device *dev, struct hl_mem_mgr *mmg);
3927void hl_mem_mgr_fini(struct hl_mem_mgr *mmg);
3928void hl_mem_mgr_idr_destroy(struct hl_mem_mgr *mmg);
3929int hl_mem_mgr_mmap(struct hl_mem_mgr *mmg, struct vm_area_struct *vma,
3930		    void *args);
3931struct hl_mmap_mem_buf *hl_mmap_mem_buf_get(struct hl_mem_mgr *mmg,
3932						   u64 handle);
3933int hl_mmap_mem_buf_put_handle(struct hl_mem_mgr *mmg, u64 handle);
3934int hl_mmap_mem_buf_put(struct hl_mmap_mem_buf *buf);
3935struct hl_mmap_mem_buf *
3936hl_mmap_mem_buf_alloc(struct hl_mem_mgr *mmg,
3937		      struct hl_mmap_mem_buf_behavior *behavior, gfp_t gfp,
3938		      void *args);
3939__printf(2, 3) void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...);
3940void hl_capture_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
3941			u8 flags);
3942void hl_handle_razwi(struct hl_device *hdev, u64 addr, u16 *engine_id, u16 num_of_engines,
3943			u8 flags, u64 *event_mask);
3944void hl_capture_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu);
3945void hl_handle_page_fault(struct hl_device *hdev, u64 addr, u16 eng_id, bool is_pmmu,
3946				u64 *event_mask);
3947void hl_handle_critical_hw_err(struct hl_device *hdev, u16 event_id, u64 *event_mask);
3948void hl_handle_fw_err(struct hl_device *hdev, struct hl_info_fw_err_info *info);
3949void hl_enable_err_info_capture(struct hl_error_info *captured_err_info);
3950
3951#ifdef CONFIG_DEBUG_FS
3952
3953void hl_debugfs_init(void);
3954void hl_debugfs_fini(void);
3955int hl_debugfs_device_init(struct hl_device *hdev);
3956void hl_debugfs_device_fini(struct hl_device *hdev);
3957void hl_debugfs_add_device(struct hl_device *hdev);
3958void hl_debugfs_remove_device(struct hl_device *hdev);
3959void hl_debugfs_add_file(struct hl_fpriv *hpriv);
3960void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
3961void hl_debugfs_add_cb(struct hl_cb *cb);
3962void hl_debugfs_remove_cb(struct hl_cb *cb);
3963void hl_debugfs_add_cs(struct hl_cs *cs);
3964void hl_debugfs_remove_cs(struct hl_cs *cs);
3965void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
3966void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
3967void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
3968void hl_debugfs_remove_userptr(struct hl_device *hdev,
3969				struct hl_userptr *userptr);
3970void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3971void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
3972void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
3973					unsigned long length);
3974
3975#else
3976
3977static inline void __init hl_debugfs_init(void)
3978{
3979}
3980
3981static inline void hl_debugfs_fini(void)
3982{
3983}
3984
3985static inline int hl_debugfs_device_init(struct hl_device *hdev)
3986{
3987	return 0;
3988}
3989
3990static inline void hl_debugfs_device_fini(struct hl_device *hdev)
3991{
3992}
3993
3994static inline void hl_debugfs_add_device(struct hl_device *hdev)
3995{
3996}
3997
3998static inline void hl_debugfs_remove_device(struct hl_device *hdev)
3999{
4000}
4001
4002static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
4003{
4004}
4005
4006static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
4007{
4008}
4009
4010static inline void hl_debugfs_add_cb(struct hl_cb *cb)
4011{
4012}
4013
4014static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
4015{
4016}
4017
4018static inline void hl_debugfs_add_cs(struct hl_cs *cs)
4019{
4020}
4021
4022static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
4023{
4024}
4025
4026static inline void hl_debugfs_add_job(struct hl_device *hdev,
4027					struct hl_cs_job *job)
4028{
4029}
4030
4031static inline void hl_debugfs_remove_job(struct hl_device *hdev,
4032					struct hl_cs_job *job)
4033{
4034}
4035
4036static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
4037					struct hl_userptr *userptr)
4038{
4039}
4040
4041static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
4042					struct hl_userptr *userptr)
4043{
4044}
4045
4046static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
4047					struct hl_ctx *ctx)
4048{
4049}
4050
4051static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
4052					struct hl_ctx *ctx)
4053{
4054}
4055
4056static inline void hl_debugfs_set_state_dump(struct hl_device *hdev,
4057					char *data, unsigned long length)
4058{
4059}
4060
4061#endif
4062
4063/* Security */
4064int hl_unsecure_register(struct hl_device *hdev, u32 mm_reg_addr, int offset,
4065		const u32 pb_blocks[], struct hl_block_glbl_sec sgs_array[],
4066		int array_size);
4067int hl_unsecure_registers(struct hl_device *hdev, const u32 mm_reg_array[],
4068		int mm_array_size, int offset, const u32 pb_blocks[],
4069		struct hl_block_glbl_sec sgs_array[], int blocks_array_size);
4070void hl_config_glbl_sec(struct hl_device *hdev, const u32 pb_blocks[],
4071		struct hl_block_glbl_sec sgs_array[], u32 block_offset,
4072		int array_size);
4073void hl_secure_block(struct hl_device *hdev,
4074		struct hl_block_glbl_sec sgs_array[], int array_size);
4075int hl_init_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4076		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4077		const u32 pb_blocks[], u32 blocks_array_size,
4078		const u32 *regs_array, u32 regs_array_size, u64 mask);
4079int hl_init_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4080		u32 num_instances, u32 instance_offset,
4081		const u32 pb_blocks[], u32 blocks_array_size,
4082		const u32 *regs_array, u32 regs_array_size);
4083int hl_init_pb_ranges_with_mask(struct hl_device *hdev, u32 num_dcores,
4084		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4085		const u32 pb_blocks[], u32 blocks_array_size,
4086		const struct range *regs_range_array, u32 regs_range_array_size,
4087		u64 mask);
4088int hl_init_pb_ranges(struct hl_device *hdev, u32 num_dcores,
4089		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4090		const u32 pb_blocks[], u32 blocks_array_size,
4091		const struct range *regs_range_array,
4092		u32 regs_range_array_size);
4093int hl_init_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4094		u32 num_instances, u32 instance_offset,
4095		const u32 pb_blocks[], u32 blocks_array_size,
4096		const u32 *regs_array, u32 regs_array_size);
4097int hl_init_pb_ranges_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4098		u32 num_instances, u32 instance_offset,
4099		const u32 pb_blocks[], u32 blocks_array_size,
4100		const struct range *regs_range_array,
4101		u32 regs_range_array_size);
4102void hl_ack_pb(struct hl_device *hdev, u32 num_dcores, u32 dcore_offset,
4103		u32 num_instances, u32 instance_offset,
4104		const u32 pb_blocks[], u32 blocks_array_size);
4105void hl_ack_pb_with_mask(struct hl_device *hdev, u32 num_dcores,
4106		u32 dcore_offset, u32 num_instances, u32 instance_offset,
4107		const u32 pb_blocks[], u32 blocks_array_size, u64 mask);
4108void hl_ack_pb_single_dcore(struct hl_device *hdev, u32 dcore_offset,
4109		u32 num_instances, u32 instance_offset,
4110		const u32 pb_blocks[], u32 blocks_array_size);
4111
4112/* IOCTLs */
4113long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
4114long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
4115int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
4116int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
4117int hl_wait_ioctl(struct hl_fpriv *hpriv, void *data);
4118int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);
4119
4120#endif /* HABANALABSP_H_ */
4121