1/*
2 * Non-physical true random number generator based on timing jitter --
3 * Linux Kernel Crypto API specific code
4 *
5 * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 *    notice, and the entire permission notice in its entirety,
12 *    including the disclaimer of warranties.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 *    notice, this list of conditions and the following disclaimer in the
15 *    documentation and/or other materials provided with the distribution.
16 * 3. The name of the author may not be used to endorse or promote
17 *    products derived from this software without specific prior
18 *    written permission.
19 *
20 * ALTERNATIVELY, this product may be distributed under the terms of
21 * the GNU General Public License, in which case the provisions of the GPL2 are
22 * required INSTEAD OF the above restrictions.  (This clause is
23 * necessary due to a potential bad interaction between the GPL and
24 * the restrictions contained in a BSD-style copyright.)
25 *
26 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
27 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
28 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
29 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
30 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
32 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
33 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
35 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
36 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
37 * DAMAGE.
38 */
39
40#include <crypto/hash.h>
41#include <crypto/sha3.h>
42#include <linux/fips.h>
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/slab.h>
46#include <linux/time.h>
47#include <crypto/internal/rng.h>
48
49#include "jitterentropy.h"
50
51#define JENT_CONDITIONING_HASH	"sha3-256-generic"
52
53/***************************************************************************
54 * Helper function
55 ***************************************************************************/
56
57void *jent_zalloc(unsigned int len)
58{
59	return kzalloc(len, GFP_KERNEL);
60}
61
62void jent_zfree(void *ptr)
63{
64	kfree_sensitive(ptr);
65}
66
67/*
68 * Obtain a high-resolution time stamp value. The time stamp is used to measure
69 * the execution time of a given code path and its variations. Hence, the time
70 * stamp must have a sufficiently high resolution.
71 *
72 * Note, if the function returns zero because a given architecture does not
73 * implement a high-resolution time stamp, the RNG code's runtime test
74 * will detect it and will not produce output.
75 */
76void jent_get_nstime(__u64 *out)
77{
78	__u64 tmp = 0;
79
80	tmp = random_get_entropy();
81
82	/*
83	 * If random_get_entropy does not return a value, i.e. it is not
84	 * implemented for a given architecture, use a clock source.
85	 * hoping that there are timers we can work with.
86	 */
87	if (tmp == 0)
88		tmp = ktime_get_ns();
89
90	*out = tmp;
91	jent_raw_hires_entropy_store(tmp);
92}
93
94int jent_hash_time(void *hash_state, __u64 time, u8 *addtl,
95		   unsigned int addtl_len, __u64 hash_loop_cnt,
96		   unsigned int stuck)
97{
98	struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state;
99	SHASH_DESC_ON_STACK(desc, hash_state_desc->tfm);
100	u8 intermediary[SHA3_256_DIGEST_SIZE];
101	__u64 j = 0;
102	int ret;
103
104	desc->tfm = hash_state_desc->tfm;
105
106	if (sizeof(intermediary) != crypto_shash_digestsize(desc->tfm)) {
107		pr_warn_ratelimited("Unexpected digest size\n");
108		return -EINVAL;
109	}
110
111	/*
112	 * This loop fills a buffer which is injected into the entropy pool.
113	 * The main reason for this loop is to execute something over which we
114	 * can perform a timing measurement. The injection of the resulting
115	 * data into the pool is performed to ensure the result is used and
116	 * the compiler cannot optimize the loop away in case the result is not
117	 * used at all. Yet that data is considered "additional information"
118	 * considering the terminology from SP800-90A without any entropy.
119	 *
120	 * Note, it does not matter which or how much data you inject, we are
121	 * interested in one Keccack1600 compression operation performed with
122	 * the crypto_shash_final.
123	 */
124	for (j = 0; j < hash_loop_cnt; j++) {
125		ret = crypto_shash_init(desc) ?:
126		      crypto_shash_update(desc, intermediary,
127					  sizeof(intermediary)) ?:
128		      crypto_shash_finup(desc, addtl, addtl_len, intermediary);
129		if (ret)
130			goto err;
131	}
132
133	/*
134	 * Inject the data from the previous loop into the pool. This data is
135	 * not considered to contain any entropy, but it stirs the pool a bit.
136	 */
137	ret = crypto_shash_update(desc, intermediary, sizeof(intermediary));
138	if (ret)
139		goto err;
140
141	/*
142	 * Insert the time stamp into the hash context representing the pool.
143	 *
144	 * If the time stamp is stuck, do not finally insert the value into the
145	 * entropy pool. Although this operation should not do any harm even
146	 * when the time stamp has no entropy, SP800-90B requires that any
147	 * conditioning operation to have an identical amount of input data
148	 * according to section 3.1.5.
149	 */
150	if (!stuck) {
151		ret = crypto_shash_update(hash_state_desc, (u8 *)&time,
152					  sizeof(__u64));
153	}
154
155err:
156	shash_desc_zero(desc);
157	memzero_explicit(intermediary, sizeof(intermediary));
158
159	return ret;
160}
161
162int jent_read_random_block(void *hash_state, char *dst, unsigned int dst_len)
163{
164	struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state;
165	u8 jent_block[SHA3_256_DIGEST_SIZE];
166	/* Obtain data from entropy pool and re-initialize it */
167	int ret = crypto_shash_final(hash_state_desc, jent_block) ?:
168		  crypto_shash_init(hash_state_desc) ?:
169		  crypto_shash_update(hash_state_desc, jent_block,
170				      sizeof(jent_block));
171
172	if (!ret && dst_len)
173		memcpy(dst, jent_block, dst_len);
174
175	memzero_explicit(jent_block, sizeof(jent_block));
176	return ret;
177}
178
179/***************************************************************************
180 * Kernel crypto API interface
181 ***************************************************************************/
182
183struct jitterentropy {
184	spinlock_t jent_lock;
185	struct rand_data *entropy_collector;
186	struct crypto_shash *tfm;
187	struct shash_desc *sdesc;
188};
189
190static void jent_kcapi_cleanup(struct crypto_tfm *tfm)
191{
192	struct jitterentropy *rng = crypto_tfm_ctx(tfm);
193
194	spin_lock(&rng->jent_lock);
195
196	if (rng->sdesc) {
197		shash_desc_zero(rng->sdesc);
198		kfree(rng->sdesc);
199	}
200	rng->sdesc = NULL;
201
202	if (rng->tfm)
203		crypto_free_shash(rng->tfm);
204	rng->tfm = NULL;
205
206	if (rng->entropy_collector)
207		jent_entropy_collector_free(rng->entropy_collector);
208	rng->entropy_collector = NULL;
209	spin_unlock(&rng->jent_lock);
210}
211
212static int jent_kcapi_init(struct crypto_tfm *tfm)
213{
214	struct jitterentropy *rng = crypto_tfm_ctx(tfm);
215	struct crypto_shash *hash;
216	struct shash_desc *sdesc;
217	int size, ret = 0;
218
219	spin_lock_init(&rng->jent_lock);
220
221	/*
222	 * Use SHA3-256 as conditioner. We allocate only the generic
223	 * implementation as we are not interested in high-performance. The
224	 * execution time of the SHA3 operation is measured and adds to the
225	 * Jitter RNG's unpredictable behavior. If we have a slower hash
226	 * implementation, the execution timing variations are larger. When
227	 * using a fast implementation, we would need to call it more often
228	 * as its variations are lower.
229	 */
230	hash = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0);
231	if (IS_ERR(hash)) {
232		pr_err("Cannot allocate conditioning digest\n");
233		return PTR_ERR(hash);
234	}
235	rng->tfm = hash;
236
237	size = sizeof(struct shash_desc) + crypto_shash_descsize(hash);
238	sdesc = kmalloc(size, GFP_KERNEL);
239	if (!sdesc) {
240		ret = -ENOMEM;
241		goto err;
242	}
243
244	sdesc->tfm = hash;
245	crypto_shash_init(sdesc);
246	rng->sdesc = sdesc;
247
248	rng->entropy_collector = jent_entropy_collector_alloc(1, 0, sdesc);
249	if (!rng->entropy_collector) {
250		ret = -ENOMEM;
251		goto err;
252	}
253
254	spin_lock_init(&rng->jent_lock);
255	return 0;
256
257err:
258	jent_kcapi_cleanup(tfm);
259	return ret;
260}
261
262static int jent_kcapi_random(struct crypto_rng *tfm,
263			     const u8 *src, unsigned int slen,
264			     u8 *rdata, unsigned int dlen)
265{
266	struct jitterentropy *rng = crypto_rng_ctx(tfm);
267	int ret = 0;
268
269	spin_lock(&rng->jent_lock);
270
271	ret = jent_read_entropy(rng->entropy_collector, rdata, dlen);
272
273	if (ret == -3) {
274		/* Handle permanent health test error */
275		/*
276		 * If the kernel was booted with fips=1, it implies that
277		 * the entire kernel acts as a FIPS 140 module. In this case
278		 * an SP800-90B permanent health test error is treated as
279		 * a FIPS module error.
280		 */
281		if (fips_enabled)
282			panic("Jitter RNG permanent health test failure\n");
283
284		pr_err("Jitter RNG permanent health test failure\n");
285		ret = -EFAULT;
286	} else if (ret == -2) {
287		/* Handle intermittent health test error */
288		pr_warn_ratelimited("Reset Jitter RNG due to intermittent health test failure\n");
289		ret = -EAGAIN;
290	} else if (ret == -1) {
291		/* Handle other errors */
292		ret = -EINVAL;
293	}
294
295	spin_unlock(&rng->jent_lock);
296
297	return ret;
298}
299
300static int jent_kcapi_reset(struct crypto_rng *tfm,
301			    const u8 *seed, unsigned int slen)
302{
303	return 0;
304}
305
306static struct rng_alg jent_alg = {
307	.generate		= jent_kcapi_random,
308	.seed			= jent_kcapi_reset,
309	.seedsize		= 0,
310	.base			= {
311		.cra_name               = "jitterentropy_rng",
312		.cra_driver_name        = "jitterentropy_rng",
313		.cra_priority           = 100,
314		.cra_ctxsize            = sizeof(struct jitterentropy),
315		.cra_module             = THIS_MODULE,
316		.cra_init               = jent_kcapi_init,
317		.cra_exit               = jent_kcapi_cleanup,
318	}
319};
320
321static int __init jent_mod_init(void)
322{
323	SHASH_DESC_ON_STACK(desc, tfm);
324	struct crypto_shash *tfm;
325	int ret = 0;
326
327	jent_testing_init();
328
329	tfm = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0);
330	if (IS_ERR(tfm)) {
331		jent_testing_exit();
332		return PTR_ERR(tfm);
333	}
334
335	desc->tfm = tfm;
336	crypto_shash_init(desc);
337	ret = jent_entropy_init(desc);
338	shash_desc_zero(desc);
339	crypto_free_shash(tfm);
340	if (ret) {
341		/* Handle permanent health test error */
342		if (fips_enabled)
343			panic("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret);
344
345		jent_testing_exit();
346		pr_info("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret);
347		return -EFAULT;
348	}
349	return crypto_register_rng(&jent_alg);
350}
351
352static void __exit jent_mod_exit(void)
353{
354	jent_testing_exit();
355	crypto_unregister_rng(&jent_alg);
356}
357
358module_init(jent_mod_init);
359module_exit(jent_mod_exit);
360
361MODULE_LICENSE("Dual BSD/GPL");
362MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
363MODULE_DESCRIPTION("Non-physical True Random Number Generator based on CPU Jitter");
364MODULE_ALIAS_CRYPTO("jitterentropy_rng");
365