162306a36Sopenharmony_ci/* 262306a36Sopenharmony_ci * Non-physical true random number generator based on timing jitter -- 362306a36Sopenharmony_ci * Linux Kernel Crypto API specific code 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Copyright Stephan Mueller <smueller@chronox.de>, 2015 - 2023 662306a36Sopenharmony_ci * 762306a36Sopenharmony_ci * Redistribution and use in source and binary forms, with or without 862306a36Sopenharmony_ci * modification, are permitted provided that the following conditions 962306a36Sopenharmony_ci * are met: 1062306a36Sopenharmony_ci * 1. Redistributions of source code must retain the above copyright 1162306a36Sopenharmony_ci * notice, and the entire permission notice in its entirety, 1262306a36Sopenharmony_ci * including the disclaimer of warranties. 1362306a36Sopenharmony_ci * 2. Redistributions in binary form must reproduce the above copyright 1462306a36Sopenharmony_ci * notice, this list of conditions and the following disclaimer in the 1562306a36Sopenharmony_ci * documentation and/or other materials provided with the distribution. 1662306a36Sopenharmony_ci * 3. The name of the author may not be used to endorse or promote 1762306a36Sopenharmony_ci * products derived from this software without specific prior 1862306a36Sopenharmony_ci * written permission. 1962306a36Sopenharmony_ci * 2062306a36Sopenharmony_ci * ALTERNATIVELY, this product may be distributed under the terms of 2162306a36Sopenharmony_ci * the GNU General Public License, in which case the provisions of the GPL2 are 2262306a36Sopenharmony_ci * required INSTEAD OF the above restrictions. (This clause is 2362306a36Sopenharmony_ci * necessary due to a potential bad interaction between the GPL and 2462306a36Sopenharmony_ci * the restrictions contained in a BSD-style copyright.) 2562306a36Sopenharmony_ci * 2662306a36Sopenharmony_ci * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED 2762306a36Sopenharmony_ci * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 2862306a36Sopenharmony_ci * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF 2962306a36Sopenharmony_ci * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE 3062306a36Sopenharmony_ci * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 3162306a36Sopenharmony_ci * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT 3262306a36Sopenharmony_ci * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 3362306a36Sopenharmony_ci * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 3462306a36Sopenharmony_ci * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 3562306a36Sopenharmony_ci * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 3662306a36Sopenharmony_ci * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH 3762306a36Sopenharmony_ci * DAMAGE. 3862306a36Sopenharmony_ci */ 3962306a36Sopenharmony_ci 4062306a36Sopenharmony_ci#include <crypto/hash.h> 4162306a36Sopenharmony_ci#include <crypto/sha3.h> 4262306a36Sopenharmony_ci#include <linux/fips.h> 4362306a36Sopenharmony_ci#include <linux/kernel.h> 4462306a36Sopenharmony_ci#include <linux/module.h> 4562306a36Sopenharmony_ci#include <linux/slab.h> 4662306a36Sopenharmony_ci#include <linux/time.h> 4762306a36Sopenharmony_ci#include <crypto/internal/rng.h> 4862306a36Sopenharmony_ci 4962306a36Sopenharmony_ci#include "jitterentropy.h" 5062306a36Sopenharmony_ci 5162306a36Sopenharmony_ci#define JENT_CONDITIONING_HASH "sha3-256-generic" 5262306a36Sopenharmony_ci 5362306a36Sopenharmony_ci/*************************************************************************** 5462306a36Sopenharmony_ci * Helper function 5562306a36Sopenharmony_ci ***************************************************************************/ 5662306a36Sopenharmony_ci 5762306a36Sopenharmony_civoid *jent_zalloc(unsigned int len) 5862306a36Sopenharmony_ci{ 5962306a36Sopenharmony_ci return kzalloc(len, GFP_KERNEL); 6062306a36Sopenharmony_ci} 6162306a36Sopenharmony_ci 6262306a36Sopenharmony_civoid jent_zfree(void *ptr) 6362306a36Sopenharmony_ci{ 6462306a36Sopenharmony_ci kfree_sensitive(ptr); 6562306a36Sopenharmony_ci} 6662306a36Sopenharmony_ci 6762306a36Sopenharmony_ci/* 6862306a36Sopenharmony_ci * Obtain a high-resolution time stamp value. The time stamp is used to measure 6962306a36Sopenharmony_ci * the execution time of a given code path and its variations. Hence, the time 7062306a36Sopenharmony_ci * stamp must have a sufficiently high resolution. 7162306a36Sopenharmony_ci * 7262306a36Sopenharmony_ci * Note, if the function returns zero because a given architecture does not 7362306a36Sopenharmony_ci * implement a high-resolution time stamp, the RNG code's runtime test 7462306a36Sopenharmony_ci * will detect it and will not produce output. 7562306a36Sopenharmony_ci */ 7662306a36Sopenharmony_civoid jent_get_nstime(__u64 *out) 7762306a36Sopenharmony_ci{ 7862306a36Sopenharmony_ci __u64 tmp = 0; 7962306a36Sopenharmony_ci 8062306a36Sopenharmony_ci tmp = random_get_entropy(); 8162306a36Sopenharmony_ci 8262306a36Sopenharmony_ci /* 8362306a36Sopenharmony_ci * If random_get_entropy does not return a value, i.e. it is not 8462306a36Sopenharmony_ci * implemented for a given architecture, use a clock source. 8562306a36Sopenharmony_ci * hoping that there are timers we can work with. 8662306a36Sopenharmony_ci */ 8762306a36Sopenharmony_ci if (tmp == 0) 8862306a36Sopenharmony_ci tmp = ktime_get_ns(); 8962306a36Sopenharmony_ci 9062306a36Sopenharmony_ci *out = tmp; 9162306a36Sopenharmony_ci jent_raw_hires_entropy_store(tmp); 9262306a36Sopenharmony_ci} 9362306a36Sopenharmony_ci 9462306a36Sopenharmony_ciint jent_hash_time(void *hash_state, __u64 time, u8 *addtl, 9562306a36Sopenharmony_ci unsigned int addtl_len, __u64 hash_loop_cnt, 9662306a36Sopenharmony_ci unsigned int stuck) 9762306a36Sopenharmony_ci{ 9862306a36Sopenharmony_ci struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state; 9962306a36Sopenharmony_ci SHASH_DESC_ON_STACK(desc, hash_state_desc->tfm); 10062306a36Sopenharmony_ci u8 intermediary[SHA3_256_DIGEST_SIZE]; 10162306a36Sopenharmony_ci __u64 j = 0; 10262306a36Sopenharmony_ci int ret; 10362306a36Sopenharmony_ci 10462306a36Sopenharmony_ci desc->tfm = hash_state_desc->tfm; 10562306a36Sopenharmony_ci 10662306a36Sopenharmony_ci if (sizeof(intermediary) != crypto_shash_digestsize(desc->tfm)) { 10762306a36Sopenharmony_ci pr_warn_ratelimited("Unexpected digest size\n"); 10862306a36Sopenharmony_ci return -EINVAL; 10962306a36Sopenharmony_ci } 11062306a36Sopenharmony_ci 11162306a36Sopenharmony_ci /* 11262306a36Sopenharmony_ci * This loop fills a buffer which is injected into the entropy pool. 11362306a36Sopenharmony_ci * The main reason for this loop is to execute something over which we 11462306a36Sopenharmony_ci * can perform a timing measurement. The injection of the resulting 11562306a36Sopenharmony_ci * data into the pool is performed to ensure the result is used and 11662306a36Sopenharmony_ci * the compiler cannot optimize the loop away in case the result is not 11762306a36Sopenharmony_ci * used at all. Yet that data is considered "additional information" 11862306a36Sopenharmony_ci * considering the terminology from SP800-90A without any entropy. 11962306a36Sopenharmony_ci * 12062306a36Sopenharmony_ci * Note, it does not matter which or how much data you inject, we are 12162306a36Sopenharmony_ci * interested in one Keccack1600 compression operation performed with 12262306a36Sopenharmony_ci * the crypto_shash_final. 12362306a36Sopenharmony_ci */ 12462306a36Sopenharmony_ci for (j = 0; j < hash_loop_cnt; j++) { 12562306a36Sopenharmony_ci ret = crypto_shash_init(desc) ?: 12662306a36Sopenharmony_ci crypto_shash_update(desc, intermediary, 12762306a36Sopenharmony_ci sizeof(intermediary)) ?: 12862306a36Sopenharmony_ci crypto_shash_finup(desc, addtl, addtl_len, intermediary); 12962306a36Sopenharmony_ci if (ret) 13062306a36Sopenharmony_ci goto err; 13162306a36Sopenharmony_ci } 13262306a36Sopenharmony_ci 13362306a36Sopenharmony_ci /* 13462306a36Sopenharmony_ci * Inject the data from the previous loop into the pool. This data is 13562306a36Sopenharmony_ci * not considered to contain any entropy, but it stirs the pool a bit. 13662306a36Sopenharmony_ci */ 13762306a36Sopenharmony_ci ret = crypto_shash_update(desc, intermediary, sizeof(intermediary)); 13862306a36Sopenharmony_ci if (ret) 13962306a36Sopenharmony_ci goto err; 14062306a36Sopenharmony_ci 14162306a36Sopenharmony_ci /* 14262306a36Sopenharmony_ci * Insert the time stamp into the hash context representing the pool. 14362306a36Sopenharmony_ci * 14462306a36Sopenharmony_ci * If the time stamp is stuck, do not finally insert the value into the 14562306a36Sopenharmony_ci * entropy pool. Although this operation should not do any harm even 14662306a36Sopenharmony_ci * when the time stamp has no entropy, SP800-90B requires that any 14762306a36Sopenharmony_ci * conditioning operation to have an identical amount of input data 14862306a36Sopenharmony_ci * according to section 3.1.5. 14962306a36Sopenharmony_ci */ 15062306a36Sopenharmony_ci if (!stuck) { 15162306a36Sopenharmony_ci ret = crypto_shash_update(hash_state_desc, (u8 *)&time, 15262306a36Sopenharmony_ci sizeof(__u64)); 15362306a36Sopenharmony_ci } 15462306a36Sopenharmony_ci 15562306a36Sopenharmony_cierr: 15662306a36Sopenharmony_ci shash_desc_zero(desc); 15762306a36Sopenharmony_ci memzero_explicit(intermediary, sizeof(intermediary)); 15862306a36Sopenharmony_ci 15962306a36Sopenharmony_ci return ret; 16062306a36Sopenharmony_ci} 16162306a36Sopenharmony_ci 16262306a36Sopenharmony_ciint jent_read_random_block(void *hash_state, char *dst, unsigned int dst_len) 16362306a36Sopenharmony_ci{ 16462306a36Sopenharmony_ci struct shash_desc *hash_state_desc = (struct shash_desc *)hash_state; 16562306a36Sopenharmony_ci u8 jent_block[SHA3_256_DIGEST_SIZE]; 16662306a36Sopenharmony_ci /* Obtain data from entropy pool and re-initialize it */ 16762306a36Sopenharmony_ci int ret = crypto_shash_final(hash_state_desc, jent_block) ?: 16862306a36Sopenharmony_ci crypto_shash_init(hash_state_desc) ?: 16962306a36Sopenharmony_ci crypto_shash_update(hash_state_desc, jent_block, 17062306a36Sopenharmony_ci sizeof(jent_block)); 17162306a36Sopenharmony_ci 17262306a36Sopenharmony_ci if (!ret && dst_len) 17362306a36Sopenharmony_ci memcpy(dst, jent_block, dst_len); 17462306a36Sopenharmony_ci 17562306a36Sopenharmony_ci memzero_explicit(jent_block, sizeof(jent_block)); 17662306a36Sopenharmony_ci return ret; 17762306a36Sopenharmony_ci} 17862306a36Sopenharmony_ci 17962306a36Sopenharmony_ci/*************************************************************************** 18062306a36Sopenharmony_ci * Kernel crypto API interface 18162306a36Sopenharmony_ci ***************************************************************************/ 18262306a36Sopenharmony_ci 18362306a36Sopenharmony_cistruct jitterentropy { 18462306a36Sopenharmony_ci spinlock_t jent_lock; 18562306a36Sopenharmony_ci struct rand_data *entropy_collector; 18662306a36Sopenharmony_ci struct crypto_shash *tfm; 18762306a36Sopenharmony_ci struct shash_desc *sdesc; 18862306a36Sopenharmony_ci}; 18962306a36Sopenharmony_ci 19062306a36Sopenharmony_cistatic void jent_kcapi_cleanup(struct crypto_tfm *tfm) 19162306a36Sopenharmony_ci{ 19262306a36Sopenharmony_ci struct jitterentropy *rng = crypto_tfm_ctx(tfm); 19362306a36Sopenharmony_ci 19462306a36Sopenharmony_ci spin_lock(&rng->jent_lock); 19562306a36Sopenharmony_ci 19662306a36Sopenharmony_ci if (rng->sdesc) { 19762306a36Sopenharmony_ci shash_desc_zero(rng->sdesc); 19862306a36Sopenharmony_ci kfree(rng->sdesc); 19962306a36Sopenharmony_ci } 20062306a36Sopenharmony_ci rng->sdesc = NULL; 20162306a36Sopenharmony_ci 20262306a36Sopenharmony_ci if (rng->tfm) 20362306a36Sopenharmony_ci crypto_free_shash(rng->tfm); 20462306a36Sopenharmony_ci rng->tfm = NULL; 20562306a36Sopenharmony_ci 20662306a36Sopenharmony_ci if (rng->entropy_collector) 20762306a36Sopenharmony_ci jent_entropy_collector_free(rng->entropy_collector); 20862306a36Sopenharmony_ci rng->entropy_collector = NULL; 20962306a36Sopenharmony_ci spin_unlock(&rng->jent_lock); 21062306a36Sopenharmony_ci} 21162306a36Sopenharmony_ci 21262306a36Sopenharmony_cistatic int jent_kcapi_init(struct crypto_tfm *tfm) 21362306a36Sopenharmony_ci{ 21462306a36Sopenharmony_ci struct jitterentropy *rng = crypto_tfm_ctx(tfm); 21562306a36Sopenharmony_ci struct crypto_shash *hash; 21662306a36Sopenharmony_ci struct shash_desc *sdesc; 21762306a36Sopenharmony_ci int size, ret = 0; 21862306a36Sopenharmony_ci 21962306a36Sopenharmony_ci spin_lock_init(&rng->jent_lock); 22062306a36Sopenharmony_ci 22162306a36Sopenharmony_ci /* 22262306a36Sopenharmony_ci * Use SHA3-256 as conditioner. We allocate only the generic 22362306a36Sopenharmony_ci * implementation as we are not interested in high-performance. The 22462306a36Sopenharmony_ci * execution time of the SHA3 operation is measured and adds to the 22562306a36Sopenharmony_ci * Jitter RNG's unpredictable behavior. If we have a slower hash 22662306a36Sopenharmony_ci * implementation, the execution timing variations are larger. When 22762306a36Sopenharmony_ci * using a fast implementation, we would need to call it more often 22862306a36Sopenharmony_ci * as its variations are lower. 22962306a36Sopenharmony_ci */ 23062306a36Sopenharmony_ci hash = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0); 23162306a36Sopenharmony_ci if (IS_ERR(hash)) { 23262306a36Sopenharmony_ci pr_err("Cannot allocate conditioning digest\n"); 23362306a36Sopenharmony_ci return PTR_ERR(hash); 23462306a36Sopenharmony_ci } 23562306a36Sopenharmony_ci rng->tfm = hash; 23662306a36Sopenharmony_ci 23762306a36Sopenharmony_ci size = sizeof(struct shash_desc) + crypto_shash_descsize(hash); 23862306a36Sopenharmony_ci sdesc = kmalloc(size, GFP_KERNEL); 23962306a36Sopenharmony_ci if (!sdesc) { 24062306a36Sopenharmony_ci ret = -ENOMEM; 24162306a36Sopenharmony_ci goto err; 24262306a36Sopenharmony_ci } 24362306a36Sopenharmony_ci 24462306a36Sopenharmony_ci sdesc->tfm = hash; 24562306a36Sopenharmony_ci crypto_shash_init(sdesc); 24662306a36Sopenharmony_ci rng->sdesc = sdesc; 24762306a36Sopenharmony_ci 24862306a36Sopenharmony_ci rng->entropy_collector = jent_entropy_collector_alloc(1, 0, sdesc); 24962306a36Sopenharmony_ci if (!rng->entropy_collector) { 25062306a36Sopenharmony_ci ret = -ENOMEM; 25162306a36Sopenharmony_ci goto err; 25262306a36Sopenharmony_ci } 25362306a36Sopenharmony_ci 25462306a36Sopenharmony_ci spin_lock_init(&rng->jent_lock); 25562306a36Sopenharmony_ci return 0; 25662306a36Sopenharmony_ci 25762306a36Sopenharmony_cierr: 25862306a36Sopenharmony_ci jent_kcapi_cleanup(tfm); 25962306a36Sopenharmony_ci return ret; 26062306a36Sopenharmony_ci} 26162306a36Sopenharmony_ci 26262306a36Sopenharmony_cistatic int jent_kcapi_random(struct crypto_rng *tfm, 26362306a36Sopenharmony_ci const u8 *src, unsigned int slen, 26462306a36Sopenharmony_ci u8 *rdata, unsigned int dlen) 26562306a36Sopenharmony_ci{ 26662306a36Sopenharmony_ci struct jitterentropy *rng = crypto_rng_ctx(tfm); 26762306a36Sopenharmony_ci int ret = 0; 26862306a36Sopenharmony_ci 26962306a36Sopenharmony_ci spin_lock(&rng->jent_lock); 27062306a36Sopenharmony_ci 27162306a36Sopenharmony_ci ret = jent_read_entropy(rng->entropy_collector, rdata, dlen); 27262306a36Sopenharmony_ci 27362306a36Sopenharmony_ci if (ret == -3) { 27462306a36Sopenharmony_ci /* Handle permanent health test error */ 27562306a36Sopenharmony_ci /* 27662306a36Sopenharmony_ci * If the kernel was booted with fips=1, it implies that 27762306a36Sopenharmony_ci * the entire kernel acts as a FIPS 140 module. In this case 27862306a36Sopenharmony_ci * an SP800-90B permanent health test error is treated as 27962306a36Sopenharmony_ci * a FIPS module error. 28062306a36Sopenharmony_ci */ 28162306a36Sopenharmony_ci if (fips_enabled) 28262306a36Sopenharmony_ci panic("Jitter RNG permanent health test failure\n"); 28362306a36Sopenharmony_ci 28462306a36Sopenharmony_ci pr_err("Jitter RNG permanent health test failure\n"); 28562306a36Sopenharmony_ci ret = -EFAULT; 28662306a36Sopenharmony_ci } else if (ret == -2) { 28762306a36Sopenharmony_ci /* Handle intermittent health test error */ 28862306a36Sopenharmony_ci pr_warn_ratelimited("Reset Jitter RNG due to intermittent health test failure\n"); 28962306a36Sopenharmony_ci ret = -EAGAIN; 29062306a36Sopenharmony_ci } else if (ret == -1) { 29162306a36Sopenharmony_ci /* Handle other errors */ 29262306a36Sopenharmony_ci ret = -EINVAL; 29362306a36Sopenharmony_ci } 29462306a36Sopenharmony_ci 29562306a36Sopenharmony_ci spin_unlock(&rng->jent_lock); 29662306a36Sopenharmony_ci 29762306a36Sopenharmony_ci return ret; 29862306a36Sopenharmony_ci} 29962306a36Sopenharmony_ci 30062306a36Sopenharmony_cistatic int jent_kcapi_reset(struct crypto_rng *tfm, 30162306a36Sopenharmony_ci const u8 *seed, unsigned int slen) 30262306a36Sopenharmony_ci{ 30362306a36Sopenharmony_ci return 0; 30462306a36Sopenharmony_ci} 30562306a36Sopenharmony_ci 30662306a36Sopenharmony_cistatic struct rng_alg jent_alg = { 30762306a36Sopenharmony_ci .generate = jent_kcapi_random, 30862306a36Sopenharmony_ci .seed = jent_kcapi_reset, 30962306a36Sopenharmony_ci .seedsize = 0, 31062306a36Sopenharmony_ci .base = { 31162306a36Sopenharmony_ci .cra_name = "jitterentropy_rng", 31262306a36Sopenharmony_ci .cra_driver_name = "jitterentropy_rng", 31362306a36Sopenharmony_ci .cra_priority = 100, 31462306a36Sopenharmony_ci .cra_ctxsize = sizeof(struct jitterentropy), 31562306a36Sopenharmony_ci .cra_module = THIS_MODULE, 31662306a36Sopenharmony_ci .cra_init = jent_kcapi_init, 31762306a36Sopenharmony_ci .cra_exit = jent_kcapi_cleanup, 31862306a36Sopenharmony_ci } 31962306a36Sopenharmony_ci}; 32062306a36Sopenharmony_ci 32162306a36Sopenharmony_cistatic int __init jent_mod_init(void) 32262306a36Sopenharmony_ci{ 32362306a36Sopenharmony_ci SHASH_DESC_ON_STACK(desc, tfm); 32462306a36Sopenharmony_ci struct crypto_shash *tfm; 32562306a36Sopenharmony_ci int ret = 0; 32662306a36Sopenharmony_ci 32762306a36Sopenharmony_ci jent_testing_init(); 32862306a36Sopenharmony_ci 32962306a36Sopenharmony_ci tfm = crypto_alloc_shash(JENT_CONDITIONING_HASH, 0, 0); 33062306a36Sopenharmony_ci if (IS_ERR(tfm)) { 33162306a36Sopenharmony_ci jent_testing_exit(); 33262306a36Sopenharmony_ci return PTR_ERR(tfm); 33362306a36Sopenharmony_ci } 33462306a36Sopenharmony_ci 33562306a36Sopenharmony_ci desc->tfm = tfm; 33662306a36Sopenharmony_ci crypto_shash_init(desc); 33762306a36Sopenharmony_ci ret = jent_entropy_init(desc); 33862306a36Sopenharmony_ci shash_desc_zero(desc); 33962306a36Sopenharmony_ci crypto_free_shash(tfm); 34062306a36Sopenharmony_ci if (ret) { 34162306a36Sopenharmony_ci /* Handle permanent health test error */ 34262306a36Sopenharmony_ci if (fips_enabled) 34362306a36Sopenharmony_ci panic("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret); 34462306a36Sopenharmony_ci 34562306a36Sopenharmony_ci jent_testing_exit(); 34662306a36Sopenharmony_ci pr_info("jitterentropy: Initialization failed with host not compliant with requirements: %d\n", ret); 34762306a36Sopenharmony_ci return -EFAULT; 34862306a36Sopenharmony_ci } 34962306a36Sopenharmony_ci return crypto_register_rng(&jent_alg); 35062306a36Sopenharmony_ci} 35162306a36Sopenharmony_ci 35262306a36Sopenharmony_cistatic void __exit jent_mod_exit(void) 35362306a36Sopenharmony_ci{ 35462306a36Sopenharmony_ci jent_testing_exit(); 35562306a36Sopenharmony_ci crypto_unregister_rng(&jent_alg); 35662306a36Sopenharmony_ci} 35762306a36Sopenharmony_ci 35862306a36Sopenharmony_cimodule_init(jent_mod_init); 35962306a36Sopenharmony_cimodule_exit(jent_mod_exit); 36062306a36Sopenharmony_ci 36162306a36Sopenharmony_ciMODULE_LICENSE("Dual BSD/GPL"); 36262306a36Sopenharmony_ciMODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); 36362306a36Sopenharmony_ciMODULE_DESCRIPTION("Non-physical True Random Number Generator based on CPU Jitter"); 36462306a36Sopenharmony_ciMODULE_ALIAS_CRYPTO("jitterentropy_rng"); 365