162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> 462306a36Sopenharmony_ci */ 562306a36Sopenharmony_ci#include <linux/mm.h> 662306a36Sopenharmony_ci#include <linux/swap.h> 762306a36Sopenharmony_ci#include <linux/bio.h> 862306a36Sopenharmony_ci#include <linux/blkdev.h> 962306a36Sopenharmony_ci#include <linux/uio.h> 1062306a36Sopenharmony_ci#include <linux/iocontext.h> 1162306a36Sopenharmony_ci#include <linux/slab.h> 1262306a36Sopenharmony_ci#include <linux/init.h> 1362306a36Sopenharmony_ci#include <linux/kernel.h> 1462306a36Sopenharmony_ci#include <linux/export.h> 1562306a36Sopenharmony_ci#include <linux/mempool.h> 1662306a36Sopenharmony_ci#include <linux/workqueue.h> 1762306a36Sopenharmony_ci#include <linux/cgroup.h> 1862306a36Sopenharmony_ci#include <linux/highmem.h> 1962306a36Sopenharmony_ci#include <linux/sched/sysctl.h> 2062306a36Sopenharmony_ci#include <linux/blk-crypto.h> 2162306a36Sopenharmony_ci#include <linux/xarray.h> 2262306a36Sopenharmony_ci 2362306a36Sopenharmony_ci#include <trace/events/block.h> 2462306a36Sopenharmony_ci#include "blk.h" 2562306a36Sopenharmony_ci#include "blk-rq-qos.h" 2662306a36Sopenharmony_ci#include "blk-cgroup.h" 2762306a36Sopenharmony_ci 2862306a36Sopenharmony_ci#define ALLOC_CACHE_THRESHOLD 16 2962306a36Sopenharmony_ci#define ALLOC_CACHE_MAX 256 3062306a36Sopenharmony_ci 3162306a36Sopenharmony_cistruct bio_alloc_cache { 3262306a36Sopenharmony_ci struct bio *free_list; 3362306a36Sopenharmony_ci struct bio *free_list_irq; 3462306a36Sopenharmony_ci unsigned int nr; 3562306a36Sopenharmony_ci unsigned int nr_irq; 3662306a36Sopenharmony_ci}; 3762306a36Sopenharmony_ci 3862306a36Sopenharmony_cistatic struct biovec_slab { 3962306a36Sopenharmony_ci int nr_vecs; 4062306a36Sopenharmony_ci char *name; 4162306a36Sopenharmony_ci struct kmem_cache *slab; 4262306a36Sopenharmony_ci} bvec_slabs[] __read_mostly = { 4362306a36Sopenharmony_ci { .nr_vecs = 16, .name = "biovec-16" }, 4462306a36Sopenharmony_ci { .nr_vecs = 64, .name = "biovec-64" }, 4562306a36Sopenharmony_ci { .nr_vecs = 128, .name = "biovec-128" }, 4662306a36Sopenharmony_ci { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" }, 4762306a36Sopenharmony_ci}; 4862306a36Sopenharmony_ci 4962306a36Sopenharmony_cistatic struct biovec_slab *biovec_slab(unsigned short nr_vecs) 5062306a36Sopenharmony_ci{ 5162306a36Sopenharmony_ci switch (nr_vecs) { 5262306a36Sopenharmony_ci /* smaller bios use inline vecs */ 5362306a36Sopenharmony_ci case 5 ... 16: 5462306a36Sopenharmony_ci return &bvec_slabs[0]; 5562306a36Sopenharmony_ci case 17 ... 64: 5662306a36Sopenharmony_ci return &bvec_slabs[1]; 5762306a36Sopenharmony_ci case 65 ... 128: 5862306a36Sopenharmony_ci return &bvec_slabs[2]; 5962306a36Sopenharmony_ci case 129 ... BIO_MAX_VECS: 6062306a36Sopenharmony_ci return &bvec_slabs[3]; 6162306a36Sopenharmony_ci default: 6262306a36Sopenharmony_ci BUG(); 6362306a36Sopenharmony_ci return NULL; 6462306a36Sopenharmony_ci } 6562306a36Sopenharmony_ci} 6662306a36Sopenharmony_ci 6762306a36Sopenharmony_ci/* 6862306a36Sopenharmony_ci * fs_bio_set is the bio_set containing bio and iovec memory pools used by 6962306a36Sopenharmony_ci * IO code that does not need private memory pools. 7062306a36Sopenharmony_ci */ 7162306a36Sopenharmony_cistruct bio_set fs_bio_set; 7262306a36Sopenharmony_ciEXPORT_SYMBOL(fs_bio_set); 7362306a36Sopenharmony_ci 7462306a36Sopenharmony_ci/* 7562306a36Sopenharmony_ci * Our slab pool management 7662306a36Sopenharmony_ci */ 7762306a36Sopenharmony_cistruct bio_slab { 7862306a36Sopenharmony_ci struct kmem_cache *slab; 7962306a36Sopenharmony_ci unsigned int slab_ref; 8062306a36Sopenharmony_ci unsigned int slab_size; 8162306a36Sopenharmony_ci char name[8]; 8262306a36Sopenharmony_ci}; 8362306a36Sopenharmony_cistatic DEFINE_MUTEX(bio_slab_lock); 8462306a36Sopenharmony_cistatic DEFINE_XARRAY(bio_slabs); 8562306a36Sopenharmony_ci 8662306a36Sopenharmony_cistatic struct bio_slab *create_bio_slab(unsigned int size) 8762306a36Sopenharmony_ci{ 8862306a36Sopenharmony_ci struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL); 8962306a36Sopenharmony_ci 9062306a36Sopenharmony_ci if (!bslab) 9162306a36Sopenharmony_ci return NULL; 9262306a36Sopenharmony_ci 9362306a36Sopenharmony_ci snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size); 9462306a36Sopenharmony_ci bslab->slab = kmem_cache_create(bslab->name, size, 9562306a36Sopenharmony_ci ARCH_KMALLOC_MINALIGN, 9662306a36Sopenharmony_ci SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL); 9762306a36Sopenharmony_ci if (!bslab->slab) 9862306a36Sopenharmony_ci goto fail_alloc_slab; 9962306a36Sopenharmony_ci 10062306a36Sopenharmony_ci bslab->slab_ref = 1; 10162306a36Sopenharmony_ci bslab->slab_size = size; 10262306a36Sopenharmony_ci 10362306a36Sopenharmony_ci if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL))) 10462306a36Sopenharmony_ci return bslab; 10562306a36Sopenharmony_ci 10662306a36Sopenharmony_ci kmem_cache_destroy(bslab->slab); 10762306a36Sopenharmony_ci 10862306a36Sopenharmony_cifail_alloc_slab: 10962306a36Sopenharmony_ci kfree(bslab); 11062306a36Sopenharmony_ci return NULL; 11162306a36Sopenharmony_ci} 11262306a36Sopenharmony_ci 11362306a36Sopenharmony_cistatic inline unsigned int bs_bio_slab_size(struct bio_set *bs) 11462306a36Sopenharmony_ci{ 11562306a36Sopenharmony_ci return bs->front_pad + sizeof(struct bio) + bs->back_pad; 11662306a36Sopenharmony_ci} 11762306a36Sopenharmony_ci 11862306a36Sopenharmony_cistatic struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs) 11962306a36Sopenharmony_ci{ 12062306a36Sopenharmony_ci unsigned int size = bs_bio_slab_size(bs); 12162306a36Sopenharmony_ci struct bio_slab *bslab; 12262306a36Sopenharmony_ci 12362306a36Sopenharmony_ci mutex_lock(&bio_slab_lock); 12462306a36Sopenharmony_ci bslab = xa_load(&bio_slabs, size); 12562306a36Sopenharmony_ci if (bslab) 12662306a36Sopenharmony_ci bslab->slab_ref++; 12762306a36Sopenharmony_ci else 12862306a36Sopenharmony_ci bslab = create_bio_slab(size); 12962306a36Sopenharmony_ci mutex_unlock(&bio_slab_lock); 13062306a36Sopenharmony_ci 13162306a36Sopenharmony_ci if (bslab) 13262306a36Sopenharmony_ci return bslab->slab; 13362306a36Sopenharmony_ci return NULL; 13462306a36Sopenharmony_ci} 13562306a36Sopenharmony_ci 13662306a36Sopenharmony_cistatic void bio_put_slab(struct bio_set *bs) 13762306a36Sopenharmony_ci{ 13862306a36Sopenharmony_ci struct bio_slab *bslab = NULL; 13962306a36Sopenharmony_ci unsigned int slab_size = bs_bio_slab_size(bs); 14062306a36Sopenharmony_ci 14162306a36Sopenharmony_ci mutex_lock(&bio_slab_lock); 14262306a36Sopenharmony_ci 14362306a36Sopenharmony_ci bslab = xa_load(&bio_slabs, slab_size); 14462306a36Sopenharmony_ci if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) 14562306a36Sopenharmony_ci goto out; 14662306a36Sopenharmony_ci 14762306a36Sopenharmony_ci WARN_ON_ONCE(bslab->slab != bs->bio_slab); 14862306a36Sopenharmony_ci 14962306a36Sopenharmony_ci WARN_ON(!bslab->slab_ref); 15062306a36Sopenharmony_ci 15162306a36Sopenharmony_ci if (--bslab->slab_ref) 15262306a36Sopenharmony_ci goto out; 15362306a36Sopenharmony_ci 15462306a36Sopenharmony_ci xa_erase(&bio_slabs, slab_size); 15562306a36Sopenharmony_ci 15662306a36Sopenharmony_ci kmem_cache_destroy(bslab->slab); 15762306a36Sopenharmony_ci kfree(bslab); 15862306a36Sopenharmony_ci 15962306a36Sopenharmony_ciout: 16062306a36Sopenharmony_ci mutex_unlock(&bio_slab_lock); 16162306a36Sopenharmony_ci} 16262306a36Sopenharmony_ci 16362306a36Sopenharmony_civoid bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs) 16462306a36Sopenharmony_ci{ 16562306a36Sopenharmony_ci BUG_ON(nr_vecs > BIO_MAX_VECS); 16662306a36Sopenharmony_ci 16762306a36Sopenharmony_ci if (nr_vecs == BIO_MAX_VECS) 16862306a36Sopenharmony_ci mempool_free(bv, pool); 16962306a36Sopenharmony_ci else if (nr_vecs > BIO_INLINE_VECS) 17062306a36Sopenharmony_ci kmem_cache_free(biovec_slab(nr_vecs)->slab, bv); 17162306a36Sopenharmony_ci} 17262306a36Sopenharmony_ci 17362306a36Sopenharmony_ci/* 17462306a36Sopenharmony_ci * Make the first allocation restricted and don't dump info on allocation 17562306a36Sopenharmony_ci * failures, since we'll fall back to the mempool in case of failure. 17662306a36Sopenharmony_ci */ 17762306a36Sopenharmony_cistatic inline gfp_t bvec_alloc_gfp(gfp_t gfp) 17862306a36Sopenharmony_ci{ 17962306a36Sopenharmony_ci return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) | 18062306a36Sopenharmony_ci __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; 18162306a36Sopenharmony_ci} 18262306a36Sopenharmony_ci 18362306a36Sopenharmony_cistruct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs, 18462306a36Sopenharmony_ci gfp_t gfp_mask) 18562306a36Sopenharmony_ci{ 18662306a36Sopenharmony_ci struct biovec_slab *bvs = biovec_slab(*nr_vecs); 18762306a36Sopenharmony_ci 18862306a36Sopenharmony_ci if (WARN_ON_ONCE(!bvs)) 18962306a36Sopenharmony_ci return NULL; 19062306a36Sopenharmony_ci 19162306a36Sopenharmony_ci /* 19262306a36Sopenharmony_ci * Upgrade the nr_vecs request to take full advantage of the allocation. 19362306a36Sopenharmony_ci * We also rely on this in the bvec_free path. 19462306a36Sopenharmony_ci */ 19562306a36Sopenharmony_ci *nr_vecs = bvs->nr_vecs; 19662306a36Sopenharmony_ci 19762306a36Sopenharmony_ci /* 19862306a36Sopenharmony_ci * Try a slab allocation first for all smaller allocations. If that 19962306a36Sopenharmony_ci * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool. 20062306a36Sopenharmony_ci * The mempool is sized to handle up to BIO_MAX_VECS entries. 20162306a36Sopenharmony_ci */ 20262306a36Sopenharmony_ci if (*nr_vecs < BIO_MAX_VECS) { 20362306a36Sopenharmony_ci struct bio_vec *bvl; 20462306a36Sopenharmony_ci 20562306a36Sopenharmony_ci bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask)); 20662306a36Sopenharmony_ci if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 20762306a36Sopenharmony_ci return bvl; 20862306a36Sopenharmony_ci *nr_vecs = BIO_MAX_VECS; 20962306a36Sopenharmony_ci } 21062306a36Sopenharmony_ci 21162306a36Sopenharmony_ci return mempool_alloc(pool, gfp_mask); 21262306a36Sopenharmony_ci} 21362306a36Sopenharmony_ci 21462306a36Sopenharmony_civoid bio_uninit(struct bio *bio) 21562306a36Sopenharmony_ci{ 21662306a36Sopenharmony_ci#ifdef CONFIG_BLK_CGROUP 21762306a36Sopenharmony_ci if (bio->bi_blkg) { 21862306a36Sopenharmony_ci blkg_put(bio->bi_blkg); 21962306a36Sopenharmony_ci bio->bi_blkg = NULL; 22062306a36Sopenharmony_ci } 22162306a36Sopenharmony_ci#endif 22262306a36Sopenharmony_ci if (bio_integrity(bio)) 22362306a36Sopenharmony_ci bio_integrity_free(bio); 22462306a36Sopenharmony_ci 22562306a36Sopenharmony_ci bio_crypt_free_ctx(bio); 22662306a36Sopenharmony_ci} 22762306a36Sopenharmony_ciEXPORT_SYMBOL(bio_uninit); 22862306a36Sopenharmony_ci 22962306a36Sopenharmony_cistatic void bio_free(struct bio *bio) 23062306a36Sopenharmony_ci{ 23162306a36Sopenharmony_ci struct bio_set *bs = bio->bi_pool; 23262306a36Sopenharmony_ci void *p = bio; 23362306a36Sopenharmony_ci 23462306a36Sopenharmony_ci WARN_ON_ONCE(!bs); 23562306a36Sopenharmony_ci 23662306a36Sopenharmony_ci bio_uninit(bio); 23762306a36Sopenharmony_ci bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs); 23862306a36Sopenharmony_ci mempool_free(p - bs->front_pad, &bs->bio_pool); 23962306a36Sopenharmony_ci} 24062306a36Sopenharmony_ci 24162306a36Sopenharmony_ci/* 24262306a36Sopenharmony_ci * Users of this function have their own bio allocation. Subsequently, 24362306a36Sopenharmony_ci * they must remember to pair any call to bio_init() with bio_uninit() 24462306a36Sopenharmony_ci * when IO has completed, or when the bio is released. 24562306a36Sopenharmony_ci */ 24662306a36Sopenharmony_civoid bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table, 24762306a36Sopenharmony_ci unsigned short max_vecs, blk_opf_t opf) 24862306a36Sopenharmony_ci{ 24962306a36Sopenharmony_ci bio->bi_next = NULL; 25062306a36Sopenharmony_ci bio->bi_bdev = bdev; 25162306a36Sopenharmony_ci bio->bi_opf = opf; 25262306a36Sopenharmony_ci bio->bi_flags = 0; 25362306a36Sopenharmony_ci bio->bi_ioprio = 0; 25462306a36Sopenharmony_ci bio->bi_status = 0; 25562306a36Sopenharmony_ci bio->bi_iter.bi_sector = 0; 25662306a36Sopenharmony_ci bio->bi_iter.bi_size = 0; 25762306a36Sopenharmony_ci bio->bi_iter.bi_idx = 0; 25862306a36Sopenharmony_ci bio->bi_iter.bi_bvec_done = 0; 25962306a36Sopenharmony_ci bio->bi_end_io = NULL; 26062306a36Sopenharmony_ci bio->bi_private = NULL; 26162306a36Sopenharmony_ci#ifdef CONFIG_BLK_CGROUP 26262306a36Sopenharmony_ci bio->bi_blkg = NULL; 26362306a36Sopenharmony_ci bio->bi_issue.value = 0; 26462306a36Sopenharmony_ci if (bdev) 26562306a36Sopenharmony_ci bio_associate_blkg(bio); 26662306a36Sopenharmony_ci#ifdef CONFIG_BLK_CGROUP_IOCOST 26762306a36Sopenharmony_ci bio->bi_iocost_cost = 0; 26862306a36Sopenharmony_ci#endif 26962306a36Sopenharmony_ci#endif 27062306a36Sopenharmony_ci#ifdef CONFIG_BLK_INLINE_ENCRYPTION 27162306a36Sopenharmony_ci bio->bi_crypt_context = NULL; 27262306a36Sopenharmony_ci#endif 27362306a36Sopenharmony_ci#ifdef CONFIG_BLK_DEV_INTEGRITY 27462306a36Sopenharmony_ci bio->bi_integrity = NULL; 27562306a36Sopenharmony_ci#endif 27662306a36Sopenharmony_ci bio->bi_vcnt = 0; 27762306a36Sopenharmony_ci 27862306a36Sopenharmony_ci atomic_set(&bio->__bi_remaining, 1); 27962306a36Sopenharmony_ci atomic_set(&bio->__bi_cnt, 1); 28062306a36Sopenharmony_ci bio->bi_cookie = BLK_QC_T_NONE; 28162306a36Sopenharmony_ci 28262306a36Sopenharmony_ci bio->bi_max_vecs = max_vecs; 28362306a36Sopenharmony_ci bio->bi_io_vec = table; 28462306a36Sopenharmony_ci bio->bi_pool = NULL; 28562306a36Sopenharmony_ci} 28662306a36Sopenharmony_ciEXPORT_SYMBOL(bio_init); 28762306a36Sopenharmony_ci 28862306a36Sopenharmony_ci/** 28962306a36Sopenharmony_ci * bio_reset - reinitialize a bio 29062306a36Sopenharmony_ci * @bio: bio to reset 29162306a36Sopenharmony_ci * @bdev: block device to use the bio for 29262306a36Sopenharmony_ci * @opf: operation and flags for bio 29362306a36Sopenharmony_ci * 29462306a36Sopenharmony_ci * Description: 29562306a36Sopenharmony_ci * After calling bio_reset(), @bio will be in the same state as a freshly 29662306a36Sopenharmony_ci * allocated bio returned bio bio_alloc_bioset() - the only fields that are 29762306a36Sopenharmony_ci * preserved are the ones that are initialized by bio_alloc_bioset(). See 29862306a36Sopenharmony_ci * comment in struct bio. 29962306a36Sopenharmony_ci */ 30062306a36Sopenharmony_civoid bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf) 30162306a36Sopenharmony_ci{ 30262306a36Sopenharmony_ci bio_uninit(bio); 30362306a36Sopenharmony_ci memset(bio, 0, BIO_RESET_BYTES); 30462306a36Sopenharmony_ci atomic_set(&bio->__bi_remaining, 1); 30562306a36Sopenharmony_ci bio->bi_bdev = bdev; 30662306a36Sopenharmony_ci if (bio->bi_bdev) 30762306a36Sopenharmony_ci bio_associate_blkg(bio); 30862306a36Sopenharmony_ci bio->bi_opf = opf; 30962306a36Sopenharmony_ci} 31062306a36Sopenharmony_ciEXPORT_SYMBOL(bio_reset); 31162306a36Sopenharmony_ci 31262306a36Sopenharmony_cistatic struct bio *__bio_chain_endio(struct bio *bio) 31362306a36Sopenharmony_ci{ 31462306a36Sopenharmony_ci struct bio *parent = bio->bi_private; 31562306a36Sopenharmony_ci 31662306a36Sopenharmony_ci if (bio->bi_status && !parent->bi_status) 31762306a36Sopenharmony_ci parent->bi_status = bio->bi_status; 31862306a36Sopenharmony_ci bio_put(bio); 31962306a36Sopenharmony_ci return parent; 32062306a36Sopenharmony_ci} 32162306a36Sopenharmony_ci 32262306a36Sopenharmony_cistatic void bio_chain_endio(struct bio *bio) 32362306a36Sopenharmony_ci{ 32462306a36Sopenharmony_ci bio_endio(__bio_chain_endio(bio)); 32562306a36Sopenharmony_ci} 32662306a36Sopenharmony_ci 32762306a36Sopenharmony_ci/** 32862306a36Sopenharmony_ci * bio_chain - chain bio completions 32962306a36Sopenharmony_ci * @bio: the target bio 33062306a36Sopenharmony_ci * @parent: the parent bio of @bio 33162306a36Sopenharmony_ci * 33262306a36Sopenharmony_ci * The caller won't have a bi_end_io called when @bio completes - instead, 33362306a36Sopenharmony_ci * @parent's bi_end_io won't be called until both @parent and @bio have 33462306a36Sopenharmony_ci * completed; the chained bio will also be freed when it completes. 33562306a36Sopenharmony_ci * 33662306a36Sopenharmony_ci * The caller must not set bi_private or bi_end_io in @bio. 33762306a36Sopenharmony_ci */ 33862306a36Sopenharmony_civoid bio_chain(struct bio *bio, struct bio *parent) 33962306a36Sopenharmony_ci{ 34062306a36Sopenharmony_ci BUG_ON(bio->bi_private || bio->bi_end_io); 34162306a36Sopenharmony_ci 34262306a36Sopenharmony_ci bio->bi_private = parent; 34362306a36Sopenharmony_ci bio->bi_end_io = bio_chain_endio; 34462306a36Sopenharmony_ci bio_inc_remaining(parent); 34562306a36Sopenharmony_ci} 34662306a36Sopenharmony_ciEXPORT_SYMBOL(bio_chain); 34762306a36Sopenharmony_ci 34862306a36Sopenharmony_cistruct bio *blk_next_bio(struct bio *bio, struct block_device *bdev, 34962306a36Sopenharmony_ci unsigned int nr_pages, blk_opf_t opf, gfp_t gfp) 35062306a36Sopenharmony_ci{ 35162306a36Sopenharmony_ci struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp); 35262306a36Sopenharmony_ci 35362306a36Sopenharmony_ci if (bio) { 35462306a36Sopenharmony_ci bio_chain(bio, new); 35562306a36Sopenharmony_ci submit_bio(bio); 35662306a36Sopenharmony_ci } 35762306a36Sopenharmony_ci 35862306a36Sopenharmony_ci return new; 35962306a36Sopenharmony_ci} 36062306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(blk_next_bio); 36162306a36Sopenharmony_ci 36262306a36Sopenharmony_cistatic void bio_alloc_rescue(struct work_struct *work) 36362306a36Sopenharmony_ci{ 36462306a36Sopenharmony_ci struct bio_set *bs = container_of(work, struct bio_set, rescue_work); 36562306a36Sopenharmony_ci struct bio *bio; 36662306a36Sopenharmony_ci 36762306a36Sopenharmony_ci while (1) { 36862306a36Sopenharmony_ci spin_lock(&bs->rescue_lock); 36962306a36Sopenharmony_ci bio = bio_list_pop(&bs->rescue_list); 37062306a36Sopenharmony_ci spin_unlock(&bs->rescue_lock); 37162306a36Sopenharmony_ci 37262306a36Sopenharmony_ci if (!bio) 37362306a36Sopenharmony_ci break; 37462306a36Sopenharmony_ci 37562306a36Sopenharmony_ci submit_bio_noacct(bio); 37662306a36Sopenharmony_ci } 37762306a36Sopenharmony_ci} 37862306a36Sopenharmony_ci 37962306a36Sopenharmony_cistatic void punt_bios_to_rescuer(struct bio_set *bs) 38062306a36Sopenharmony_ci{ 38162306a36Sopenharmony_ci struct bio_list punt, nopunt; 38262306a36Sopenharmony_ci struct bio *bio; 38362306a36Sopenharmony_ci 38462306a36Sopenharmony_ci if (WARN_ON_ONCE(!bs->rescue_workqueue)) 38562306a36Sopenharmony_ci return; 38662306a36Sopenharmony_ci /* 38762306a36Sopenharmony_ci * In order to guarantee forward progress we must punt only bios that 38862306a36Sopenharmony_ci * were allocated from this bio_set; otherwise, if there was a bio on 38962306a36Sopenharmony_ci * there for a stacking driver higher up in the stack, processing it 39062306a36Sopenharmony_ci * could require allocating bios from this bio_set, and doing that from 39162306a36Sopenharmony_ci * our own rescuer would be bad. 39262306a36Sopenharmony_ci * 39362306a36Sopenharmony_ci * Since bio lists are singly linked, pop them all instead of trying to 39462306a36Sopenharmony_ci * remove from the middle of the list: 39562306a36Sopenharmony_ci */ 39662306a36Sopenharmony_ci 39762306a36Sopenharmony_ci bio_list_init(&punt); 39862306a36Sopenharmony_ci bio_list_init(&nopunt); 39962306a36Sopenharmony_ci 40062306a36Sopenharmony_ci while ((bio = bio_list_pop(¤t->bio_list[0]))) 40162306a36Sopenharmony_ci bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 40262306a36Sopenharmony_ci current->bio_list[0] = nopunt; 40362306a36Sopenharmony_ci 40462306a36Sopenharmony_ci bio_list_init(&nopunt); 40562306a36Sopenharmony_ci while ((bio = bio_list_pop(¤t->bio_list[1]))) 40662306a36Sopenharmony_ci bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); 40762306a36Sopenharmony_ci current->bio_list[1] = nopunt; 40862306a36Sopenharmony_ci 40962306a36Sopenharmony_ci spin_lock(&bs->rescue_lock); 41062306a36Sopenharmony_ci bio_list_merge(&bs->rescue_list, &punt); 41162306a36Sopenharmony_ci spin_unlock(&bs->rescue_lock); 41262306a36Sopenharmony_ci 41362306a36Sopenharmony_ci queue_work(bs->rescue_workqueue, &bs->rescue_work); 41462306a36Sopenharmony_ci} 41562306a36Sopenharmony_ci 41662306a36Sopenharmony_cistatic void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache) 41762306a36Sopenharmony_ci{ 41862306a36Sopenharmony_ci unsigned long flags; 41962306a36Sopenharmony_ci 42062306a36Sopenharmony_ci /* cache->free_list must be empty */ 42162306a36Sopenharmony_ci if (WARN_ON_ONCE(cache->free_list)) 42262306a36Sopenharmony_ci return; 42362306a36Sopenharmony_ci 42462306a36Sopenharmony_ci local_irq_save(flags); 42562306a36Sopenharmony_ci cache->free_list = cache->free_list_irq; 42662306a36Sopenharmony_ci cache->free_list_irq = NULL; 42762306a36Sopenharmony_ci cache->nr += cache->nr_irq; 42862306a36Sopenharmony_ci cache->nr_irq = 0; 42962306a36Sopenharmony_ci local_irq_restore(flags); 43062306a36Sopenharmony_ci} 43162306a36Sopenharmony_ci 43262306a36Sopenharmony_cistatic struct bio *bio_alloc_percpu_cache(struct block_device *bdev, 43362306a36Sopenharmony_ci unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp, 43462306a36Sopenharmony_ci struct bio_set *bs) 43562306a36Sopenharmony_ci{ 43662306a36Sopenharmony_ci struct bio_alloc_cache *cache; 43762306a36Sopenharmony_ci struct bio *bio; 43862306a36Sopenharmony_ci 43962306a36Sopenharmony_ci cache = per_cpu_ptr(bs->cache, get_cpu()); 44062306a36Sopenharmony_ci if (!cache->free_list) { 44162306a36Sopenharmony_ci if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD) 44262306a36Sopenharmony_ci bio_alloc_irq_cache_splice(cache); 44362306a36Sopenharmony_ci if (!cache->free_list) { 44462306a36Sopenharmony_ci put_cpu(); 44562306a36Sopenharmony_ci return NULL; 44662306a36Sopenharmony_ci } 44762306a36Sopenharmony_ci } 44862306a36Sopenharmony_ci bio = cache->free_list; 44962306a36Sopenharmony_ci cache->free_list = bio->bi_next; 45062306a36Sopenharmony_ci cache->nr--; 45162306a36Sopenharmony_ci put_cpu(); 45262306a36Sopenharmony_ci 45362306a36Sopenharmony_ci bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf); 45462306a36Sopenharmony_ci bio->bi_pool = bs; 45562306a36Sopenharmony_ci return bio; 45662306a36Sopenharmony_ci} 45762306a36Sopenharmony_ci 45862306a36Sopenharmony_ci/** 45962306a36Sopenharmony_ci * bio_alloc_bioset - allocate a bio for I/O 46062306a36Sopenharmony_ci * @bdev: block device to allocate the bio for (can be %NULL) 46162306a36Sopenharmony_ci * @nr_vecs: number of bvecs to pre-allocate 46262306a36Sopenharmony_ci * @opf: operation and flags for bio 46362306a36Sopenharmony_ci * @gfp_mask: the GFP_* mask given to the slab allocator 46462306a36Sopenharmony_ci * @bs: the bio_set to allocate from. 46562306a36Sopenharmony_ci * 46662306a36Sopenharmony_ci * Allocate a bio from the mempools in @bs. 46762306a36Sopenharmony_ci * 46862306a36Sopenharmony_ci * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to 46962306a36Sopenharmony_ci * allocate a bio. This is due to the mempool guarantees. To make this work, 47062306a36Sopenharmony_ci * callers must never allocate more than 1 bio at a time from the general pool. 47162306a36Sopenharmony_ci * Callers that need to allocate more than 1 bio must always submit the 47262306a36Sopenharmony_ci * previously allocated bio for IO before attempting to allocate a new one. 47362306a36Sopenharmony_ci * Failure to do so can cause deadlocks under memory pressure. 47462306a36Sopenharmony_ci * 47562306a36Sopenharmony_ci * Note that when running under submit_bio_noacct() (i.e. any block driver), 47662306a36Sopenharmony_ci * bios are not submitted until after you return - see the code in 47762306a36Sopenharmony_ci * submit_bio_noacct() that converts recursion into iteration, to prevent 47862306a36Sopenharmony_ci * stack overflows. 47962306a36Sopenharmony_ci * 48062306a36Sopenharmony_ci * This would normally mean allocating multiple bios under submit_bio_noacct() 48162306a36Sopenharmony_ci * would be susceptible to deadlocks, but we have 48262306a36Sopenharmony_ci * deadlock avoidance code that resubmits any blocked bios from a rescuer 48362306a36Sopenharmony_ci * thread. 48462306a36Sopenharmony_ci * 48562306a36Sopenharmony_ci * However, we do not guarantee forward progress for allocations from other 48662306a36Sopenharmony_ci * mempools. Doing multiple allocations from the same mempool under 48762306a36Sopenharmony_ci * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad 48862306a36Sopenharmony_ci * for per bio allocations. 48962306a36Sopenharmony_ci * 49062306a36Sopenharmony_ci * Returns: Pointer to new bio on success, NULL on failure. 49162306a36Sopenharmony_ci */ 49262306a36Sopenharmony_cistruct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs, 49362306a36Sopenharmony_ci blk_opf_t opf, gfp_t gfp_mask, 49462306a36Sopenharmony_ci struct bio_set *bs) 49562306a36Sopenharmony_ci{ 49662306a36Sopenharmony_ci gfp_t saved_gfp = gfp_mask; 49762306a36Sopenharmony_ci struct bio *bio; 49862306a36Sopenharmony_ci void *p; 49962306a36Sopenharmony_ci 50062306a36Sopenharmony_ci /* should not use nobvec bioset for nr_vecs > 0 */ 50162306a36Sopenharmony_ci if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0)) 50262306a36Sopenharmony_ci return NULL; 50362306a36Sopenharmony_ci 50462306a36Sopenharmony_ci if (opf & REQ_ALLOC_CACHE) { 50562306a36Sopenharmony_ci if (bs->cache && nr_vecs <= BIO_INLINE_VECS) { 50662306a36Sopenharmony_ci bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf, 50762306a36Sopenharmony_ci gfp_mask, bs); 50862306a36Sopenharmony_ci if (bio) 50962306a36Sopenharmony_ci return bio; 51062306a36Sopenharmony_ci /* 51162306a36Sopenharmony_ci * No cached bio available, bio returned below marked with 51262306a36Sopenharmony_ci * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache. 51362306a36Sopenharmony_ci */ 51462306a36Sopenharmony_ci } else { 51562306a36Sopenharmony_ci opf &= ~REQ_ALLOC_CACHE; 51662306a36Sopenharmony_ci } 51762306a36Sopenharmony_ci } 51862306a36Sopenharmony_ci 51962306a36Sopenharmony_ci /* 52062306a36Sopenharmony_ci * submit_bio_noacct() converts recursion to iteration; this means if 52162306a36Sopenharmony_ci * we're running beneath it, any bios we allocate and submit will not be 52262306a36Sopenharmony_ci * submitted (and thus freed) until after we return. 52362306a36Sopenharmony_ci * 52462306a36Sopenharmony_ci * This exposes us to a potential deadlock if we allocate multiple bios 52562306a36Sopenharmony_ci * from the same bio_set() while running underneath submit_bio_noacct(). 52662306a36Sopenharmony_ci * If we were to allocate multiple bios (say a stacking block driver 52762306a36Sopenharmony_ci * that was splitting bios), we would deadlock if we exhausted the 52862306a36Sopenharmony_ci * mempool's reserve. 52962306a36Sopenharmony_ci * 53062306a36Sopenharmony_ci * We solve this, and guarantee forward progress, with a rescuer 53162306a36Sopenharmony_ci * workqueue per bio_set. If we go to allocate and there are bios on 53262306a36Sopenharmony_ci * current->bio_list, we first try the allocation without 53362306a36Sopenharmony_ci * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be 53462306a36Sopenharmony_ci * blocking to the rescuer workqueue before we retry with the original 53562306a36Sopenharmony_ci * gfp_flags. 53662306a36Sopenharmony_ci */ 53762306a36Sopenharmony_ci if (current->bio_list && 53862306a36Sopenharmony_ci (!bio_list_empty(¤t->bio_list[0]) || 53962306a36Sopenharmony_ci !bio_list_empty(¤t->bio_list[1])) && 54062306a36Sopenharmony_ci bs->rescue_workqueue) 54162306a36Sopenharmony_ci gfp_mask &= ~__GFP_DIRECT_RECLAIM; 54262306a36Sopenharmony_ci 54362306a36Sopenharmony_ci p = mempool_alloc(&bs->bio_pool, gfp_mask); 54462306a36Sopenharmony_ci if (!p && gfp_mask != saved_gfp) { 54562306a36Sopenharmony_ci punt_bios_to_rescuer(bs); 54662306a36Sopenharmony_ci gfp_mask = saved_gfp; 54762306a36Sopenharmony_ci p = mempool_alloc(&bs->bio_pool, gfp_mask); 54862306a36Sopenharmony_ci } 54962306a36Sopenharmony_ci if (unlikely(!p)) 55062306a36Sopenharmony_ci return NULL; 55162306a36Sopenharmony_ci if (!mempool_is_saturated(&bs->bio_pool)) 55262306a36Sopenharmony_ci opf &= ~REQ_ALLOC_CACHE; 55362306a36Sopenharmony_ci 55462306a36Sopenharmony_ci bio = p + bs->front_pad; 55562306a36Sopenharmony_ci if (nr_vecs > BIO_INLINE_VECS) { 55662306a36Sopenharmony_ci struct bio_vec *bvl = NULL; 55762306a36Sopenharmony_ci 55862306a36Sopenharmony_ci bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 55962306a36Sopenharmony_ci if (!bvl && gfp_mask != saved_gfp) { 56062306a36Sopenharmony_ci punt_bios_to_rescuer(bs); 56162306a36Sopenharmony_ci gfp_mask = saved_gfp; 56262306a36Sopenharmony_ci bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask); 56362306a36Sopenharmony_ci } 56462306a36Sopenharmony_ci if (unlikely(!bvl)) 56562306a36Sopenharmony_ci goto err_free; 56662306a36Sopenharmony_ci 56762306a36Sopenharmony_ci bio_init(bio, bdev, bvl, nr_vecs, opf); 56862306a36Sopenharmony_ci } else if (nr_vecs) { 56962306a36Sopenharmony_ci bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf); 57062306a36Sopenharmony_ci } else { 57162306a36Sopenharmony_ci bio_init(bio, bdev, NULL, 0, opf); 57262306a36Sopenharmony_ci } 57362306a36Sopenharmony_ci 57462306a36Sopenharmony_ci bio->bi_pool = bs; 57562306a36Sopenharmony_ci return bio; 57662306a36Sopenharmony_ci 57762306a36Sopenharmony_cierr_free: 57862306a36Sopenharmony_ci mempool_free(p, &bs->bio_pool); 57962306a36Sopenharmony_ci return NULL; 58062306a36Sopenharmony_ci} 58162306a36Sopenharmony_ciEXPORT_SYMBOL(bio_alloc_bioset); 58262306a36Sopenharmony_ci 58362306a36Sopenharmony_ci/** 58462306a36Sopenharmony_ci * bio_kmalloc - kmalloc a bio 58562306a36Sopenharmony_ci * @nr_vecs: number of bio_vecs to allocate 58662306a36Sopenharmony_ci * @gfp_mask: the GFP_* mask given to the slab allocator 58762306a36Sopenharmony_ci * 58862306a36Sopenharmony_ci * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized 58962306a36Sopenharmony_ci * using bio_init() before use. To free a bio returned from this function use 59062306a36Sopenharmony_ci * kfree() after calling bio_uninit(). A bio returned from this function can 59162306a36Sopenharmony_ci * be reused by calling bio_uninit() before calling bio_init() again. 59262306a36Sopenharmony_ci * 59362306a36Sopenharmony_ci * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this 59462306a36Sopenharmony_ci * function are not backed by a mempool can fail. Do not use this function 59562306a36Sopenharmony_ci * for allocations in the file system I/O path. 59662306a36Sopenharmony_ci * 59762306a36Sopenharmony_ci * Returns: Pointer to new bio on success, NULL on failure. 59862306a36Sopenharmony_ci */ 59962306a36Sopenharmony_cistruct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask) 60062306a36Sopenharmony_ci{ 60162306a36Sopenharmony_ci struct bio *bio; 60262306a36Sopenharmony_ci 60362306a36Sopenharmony_ci if (nr_vecs > UIO_MAXIOV) 60462306a36Sopenharmony_ci return NULL; 60562306a36Sopenharmony_ci return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask); 60662306a36Sopenharmony_ci} 60762306a36Sopenharmony_ciEXPORT_SYMBOL(bio_kmalloc); 60862306a36Sopenharmony_ci 60962306a36Sopenharmony_civoid zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) 61062306a36Sopenharmony_ci{ 61162306a36Sopenharmony_ci struct bio_vec bv; 61262306a36Sopenharmony_ci struct bvec_iter iter; 61362306a36Sopenharmony_ci 61462306a36Sopenharmony_ci __bio_for_each_segment(bv, bio, iter, start) 61562306a36Sopenharmony_ci memzero_bvec(&bv); 61662306a36Sopenharmony_ci} 61762306a36Sopenharmony_ciEXPORT_SYMBOL(zero_fill_bio_iter); 61862306a36Sopenharmony_ci 61962306a36Sopenharmony_ci/** 62062306a36Sopenharmony_ci * bio_truncate - truncate the bio to small size of @new_size 62162306a36Sopenharmony_ci * @bio: the bio to be truncated 62262306a36Sopenharmony_ci * @new_size: new size for truncating the bio 62362306a36Sopenharmony_ci * 62462306a36Sopenharmony_ci * Description: 62562306a36Sopenharmony_ci * Truncate the bio to new size of @new_size. If bio_op(bio) is 62662306a36Sopenharmony_ci * REQ_OP_READ, zero the truncated part. This function should only 62762306a36Sopenharmony_ci * be used for handling corner cases, such as bio eod. 62862306a36Sopenharmony_ci */ 62962306a36Sopenharmony_cistatic void bio_truncate(struct bio *bio, unsigned new_size) 63062306a36Sopenharmony_ci{ 63162306a36Sopenharmony_ci struct bio_vec bv; 63262306a36Sopenharmony_ci struct bvec_iter iter; 63362306a36Sopenharmony_ci unsigned int done = 0; 63462306a36Sopenharmony_ci bool truncated = false; 63562306a36Sopenharmony_ci 63662306a36Sopenharmony_ci if (new_size >= bio->bi_iter.bi_size) 63762306a36Sopenharmony_ci return; 63862306a36Sopenharmony_ci 63962306a36Sopenharmony_ci if (bio_op(bio) != REQ_OP_READ) 64062306a36Sopenharmony_ci goto exit; 64162306a36Sopenharmony_ci 64262306a36Sopenharmony_ci bio_for_each_segment(bv, bio, iter) { 64362306a36Sopenharmony_ci if (done + bv.bv_len > new_size) { 64462306a36Sopenharmony_ci unsigned offset; 64562306a36Sopenharmony_ci 64662306a36Sopenharmony_ci if (!truncated) 64762306a36Sopenharmony_ci offset = new_size - done; 64862306a36Sopenharmony_ci else 64962306a36Sopenharmony_ci offset = 0; 65062306a36Sopenharmony_ci zero_user(bv.bv_page, bv.bv_offset + offset, 65162306a36Sopenharmony_ci bv.bv_len - offset); 65262306a36Sopenharmony_ci truncated = true; 65362306a36Sopenharmony_ci } 65462306a36Sopenharmony_ci done += bv.bv_len; 65562306a36Sopenharmony_ci } 65662306a36Sopenharmony_ci 65762306a36Sopenharmony_ci exit: 65862306a36Sopenharmony_ci /* 65962306a36Sopenharmony_ci * Don't touch bvec table here and make it really immutable, since 66062306a36Sopenharmony_ci * fs bio user has to retrieve all pages via bio_for_each_segment_all 66162306a36Sopenharmony_ci * in its .end_bio() callback. 66262306a36Sopenharmony_ci * 66362306a36Sopenharmony_ci * It is enough to truncate bio by updating .bi_size since we can make 66462306a36Sopenharmony_ci * correct bvec with the updated .bi_size for drivers. 66562306a36Sopenharmony_ci */ 66662306a36Sopenharmony_ci bio->bi_iter.bi_size = new_size; 66762306a36Sopenharmony_ci} 66862306a36Sopenharmony_ci 66962306a36Sopenharmony_ci/** 67062306a36Sopenharmony_ci * guard_bio_eod - truncate a BIO to fit the block device 67162306a36Sopenharmony_ci * @bio: bio to truncate 67262306a36Sopenharmony_ci * 67362306a36Sopenharmony_ci * This allows us to do IO even on the odd last sectors of a device, even if the 67462306a36Sopenharmony_ci * block size is some multiple of the physical sector size. 67562306a36Sopenharmony_ci * 67662306a36Sopenharmony_ci * We'll just truncate the bio to the size of the device, and clear the end of 67762306a36Sopenharmony_ci * the buffer head manually. Truly out-of-range accesses will turn into actual 67862306a36Sopenharmony_ci * I/O errors, this only handles the "we need to be able to do I/O at the final 67962306a36Sopenharmony_ci * sector" case. 68062306a36Sopenharmony_ci */ 68162306a36Sopenharmony_civoid guard_bio_eod(struct bio *bio) 68262306a36Sopenharmony_ci{ 68362306a36Sopenharmony_ci sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 68462306a36Sopenharmony_ci 68562306a36Sopenharmony_ci if (!maxsector) 68662306a36Sopenharmony_ci return; 68762306a36Sopenharmony_ci 68862306a36Sopenharmony_ci /* 68962306a36Sopenharmony_ci * If the *whole* IO is past the end of the device, 69062306a36Sopenharmony_ci * let it through, and the IO layer will turn it into 69162306a36Sopenharmony_ci * an EIO. 69262306a36Sopenharmony_ci */ 69362306a36Sopenharmony_ci if (unlikely(bio->bi_iter.bi_sector >= maxsector)) 69462306a36Sopenharmony_ci return; 69562306a36Sopenharmony_ci 69662306a36Sopenharmony_ci maxsector -= bio->bi_iter.bi_sector; 69762306a36Sopenharmony_ci if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) 69862306a36Sopenharmony_ci return; 69962306a36Sopenharmony_ci 70062306a36Sopenharmony_ci bio_truncate(bio, maxsector << 9); 70162306a36Sopenharmony_ci} 70262306a36Sopenharmony_ci 70362306a36Sopenharmony_cistatic int __bio_alloc_cache_prune(struct bio_alloc_cache *cache, 70462306a36Sopenharmony_ci unsigned int nr) 70562306a36Sopenharmony_ci{ 70662306a36Sopenharmony_ci unsigned int i = 0; 70762306a36Sopenharmony_ci struct bio *bio; 70862306a36Sopenharmony_ci 70962306a36Sopenharmony_ci while ((bio = cache->free_list) != NULL) { 71062306a36Sopenharmony_ci cache->free_list = bio->bi_next; 71162306a36Sopenharmony_ci cache->nr--; 71262306a36Sopenharmony_ci bio_free(bio); 71362306a36Sopenharmony_ci if (++i == nr) 71462306a36Sopenharmony_ci break; 71562306a36Sopenharmony_ci } 71662306a36Sopenharmony_ci return i; 71762306a36Sopenharmony_ci} 71862306a36Sopenharmony_ci 71962306a36Sopenharmony_cistatic void bio_alloc_cache_prune(struct bio_alloc_cache *cache, 72062306a36Sopenharmony_ci unsigned int nr) 72162306a36Sopenharmony_ci{ 72262306a36Sopenharmony_ci nr -= __bio_alloc_cache_prune(cache, nr); 72362306a36Sopenharmony_ci if (!READ_ONCE(cache->free_list)) { 72462306a36Sopenharmony_ci bio_alloc_irq_cache_splice(cache); 72562306a36Sopenharmony_ci __bio_alloc_cache_prune(cache, nr); 72662306a36Sopenharmony_ci } 72762306a36Sopenharmony_ci} 72862306a36Sopenharmony_ci 72962306a36Sopenharmony_cistatic int bio_cpu_dead(unsigned int cpu, struct hlist_node *node) 73062306a36Sopenharmony_ci{ 73162306a36Sopenharmony_ci struct bio_set *bs; 73262306a36Sopenharmony_ci 73362306a36Sopenharmony_ci bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead); 73462306a36Sopenharmony_ci if (bs->cache) { 73562306a36Sopenharmony_ci struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu); 73662306a36Sopenharmony_ci 73762306a36Sopenharmony_ci bio_alloc_cache_prune(cache, -1U); 73862306a36Sopenharmony_ci } 73962306a36Sopenharmony_ci return 0; 74062306a36Sopenharmony_ci} 74162306a36Sopenharmony_ci 74262306a36Sopenharmony_cistatic void bio_alloc_cache_destroy(struct bio_set *bs) 74362306a36Sopenharmony_ci{ 74462306a36Sopenharmony_ci int cpu; 74562306a36Sopenharmony_ci 74662306a36Sopenharmony_ci if (!bs->cache) 74762306a36Sopenharmony_ci return; 74862306a36Sopenharmony_ci 74962306a36Sopenharmony_ci cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 75062306a36Sopenharmony_ci for_each_possible_cpu(cpu) { 75162306a36Sopenharmony_ci struct bio_alloc_cache *cache; 75262306a36Sopenharmony_ci 75362306a36Sopenharmony_ci cache = per_cpu_ptr(bs->cache, cpu); 75462306a36Sopenharmony_ci bio_alloc_cache_prune(cache, -1U); 75562306a36Sopenharmony_ci } 75662306a36Sopenharmony_ci free_percpu(bs->cache); 75762306a36Sopenharmony_ci bs->cache = NULL; 75862306a36Sopenharmony_ci} 75962306a36Sopenharmony_ci 76062306a36Sopenharmony_cistatic inline void bio_put_percpu_cache(struct bio *bio) 76162306a36Sopenharmony_ci{ 76262306a36Sopenharmony_ci struct bio_alloc_cache *cache; 76362306a36Sopenharmony_ci 76462306a36Sopenharmony_ci cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu()); 76562306a36Sopenharmony_ci if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) { 76662306a36Sopenharmony_ci put_cpu(); 76762306a36Sopenharmony_ci bio_free(bio); 76862306a36Sopenharmony_ci return; 76962306a36Sopenharmony_ci } 77062306a36Sopenharmony_ci 77162306a36Sopenharmony_ci bio_uninit(bio); 77262306a36Sopenharmony_ci 77362306a36Sopenharmony_ci if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) { 77462306a36Sopenharmony_ci bio->bi_next = cache->free_list; 77562306a36Sopenharmony_ci bio->bi_bdev = NULL; 77662306a36Sopenharmony_ci cache->free_list = bio; 77762306a36Sopenharmony_ci cache->nr++; 77862306a36Sopenharmony_ci } else { 77962306a36Sopenharmony_ci unsigned long flags; 78062306a36Sopenharmony_ci 78162306a36Sopenharmony_ci local_irq_save(flags); 78262306a36Sopenharmony_ci bio->bi_next = cache->free_list_irq; 78362306a36Sopenharmony_ci cache->free_list_irq = bio; 78462306a36Sopenharmony_ci cache->nr_irq++; 78562306a36Sopenharmony_ci local_irq_restore(flags); 78662306a36Sopenharmony_ci } 78762306a36Sopenharmony_ci put_cpu(); 78862306a36Sopenharmony_ci} 78962306a36Sopenharmony_ci 79062306a36Sopenharmony_ci/** 79162306a36Sopenharmony_ci * bio_put - release a reference to a bio 79262306a36Sopenharmony_ci * @bio: bio to release reference to 79362306a36Sopenharmony_ci * 79462306a36Sopenharmony_ci * Description: 79562306a36Sopenharmony_ci * Put a reference to a &struct bio, either one you have gotten with 79662306a36Sopenharmony_ci * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. 79762306a36Sopenharmony_ci **/ 79862306a36Sopenharmony_civoid bio_put(struct bio *bio) 79962306a36Sopenharmony_ci{ 80062306a36Sopenharmony_ci if (unlikely(bio_flagged(bio, BIO_REFFED))) { 80162306a36Sopenharmony_ci BUG_ON(!atomic_read(&bio->__bi_cnt)); 80262306a36Sopenharmony_ci if (!atomic_dec_and_test(&bio->__bi_cnt)) 80362306a36Sopenharmony_ci return; 80462306a36Sopenharmony_ci } 80562306a36Sopenharmony_ci if (bio->bi_opf & REQ_ALLOC_CACHE) 80662306a36Sopenharmony_ci bio_put_percpu_cache(bio); 80762306a36Sopenharmony_ci else 80862306a36Sopenharmony_ci bio_free(bio); 80962306a36Sopenharmony_ci} 81062306a36Sopenharmony_ciEXPORT_SYMBOL(bio_put); 81162306a36Sopenharmony_ci 81262306a36Sopenharmony_cistatic int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp) 81362306a36Sopenharmony_ci{ 81462306a36Sopenharmony_ci bio_set_flag(bio, BIO_CLONED); 81562306a36Sopenharmony_ci bio->bi_ioprio = bio_src->bi_ioprio; 81662306a36Sopenharmony_ci bio->bi_iter = bio_src->bi_iter; 81762306a36Sopenharmony_ci 81862306a36Sopenharmony_ci if (bio->bi_bdev) { 81962306a36Sopenharmony_ci if (bio->bi_bdev == bio_src->bi_bdev && 82062306a36Sopenharmony_ci bio_flagged(bio_src, BIO_REMAPPED)) 82162306a36Sopenharmony_ci bio_set_flag(bio, BIO_REMAPPED); 82262306a36Sopenharmony_ci bio_clone_blkg_association(bio, bio_src); 82362306a36Sopenharmony_ci } 82462306a36Sopenharmony_ci 82562306a36Sopenharmony_ci if (bio_crypt_clone(bio, bio_src, gfp) < 0) 82662306a36Sopenharmony_ci return -ENOMEM; 82762306a36Sopenharmony_ci if (bio_integrity(bio_src) && 82862306a36Sopenharmony_ci bio_integrity_clone(bio, bio_src, gfp) < 0) 82962306a36Sopenharmony_ci return -ENOMEM; 83062306a36Sopenharmony_ci return 0; 83162306a36Sopenharmony_ci} 83262306a36Sopenharmony_ci 83362306a36Sopenharmony_ci/** 83462306a36Sopenharmony_ci * bio_alloc_clone - clone a bio that shares the original bio's biovec 83562306a36Sopenharmony_ci * @bdev: block_device to clone onto 83662306a36Sopenharmony_ci * @bio_src: bio to clone from 83762306a36Sopenharmony_ci * @gfp: allocation priority 83862306a36Sopenharmony_ci * @bs: bio_set to allocate from 83962306a36Sopenharmony_ci * 84062306a36Sopenharmony_ci * Allocate a new bio that is a clone of @bio_src. The caller owns the returned 84162306a36Sopenharmony_ci * bio, but not the actual data it points to. 84262306a36Sopenharmony_ci * 84362306a36Sopenharmony_ci * The caller must ensure that the return bio is not freed before @bio_src. 84462306a36Sopenharmony_ci */ 84562306a36Sopenharmony_cistruct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src, 84662306a36Sopenharmony_ci gfp_t gfp, struct bio_set *bs) 84762306a36Sopenharmony_ci{ 84862306a36Sopenharmony_ci struct bio *bio; 84962306a36Sopenharmony_ci 85062306a36Sopenharmony_ci bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs); 85162306a36Sopenharmony_ci if (!bio) 85262306a36Sopenharmony_ci return NULL; 85362306a36Sopenharmony_ci 85462306a36Sopenharmony_ci if (__bio_clone(bio, bio_src, gfp) < 0) { 85562306a36Sopenharmony_ci bio_put(bio); 85662306a36Sopenharmony_ci return NULL; 85762306a36Sopenharmony_ci } 85862306a36Sopenharmony_ci bio->bi_io_vec = bio_src->bi_io_vec; 85962306a36Sopenharmony_ci 86062306a36Sopenharmony_ci return bio; 86162306a36Sopenharmony_ci} 86262306a36Sopenharmony_ciEXPORT_SYMBOL(bio_alloc_clone); 86362306a36Sopenharmony_ci 86462306a36Sopenharmony_ci/** 86562306a36Sopenharmony_ci * bio_init_clone - clone a bio that shares the original bio's biovec 86662306a36Sopenharmony_ci * @bdev: block_device to clone onto 86762306a36Sopenharmony_ci * @bio: bio to clone into 86862306a36Sopenharmony_ci * @bio_src: bio to clone from 86962306a36Sopenharmony_ci * @gfp: allocation priority 87062306a36Sopenharmony_ci * 87162306a36Sopenharmony_ci * Initialize a new bio in caller provided memory that is a clone of @bio_src. 87262306a36Sopenharmony_ci * The caller owns the returned bio, but not the actual data it points to. 87362306a36Sopenharmony_ci * 87462306a36Sopenharmony_ci * The caller must ensure that @bio_src is not freed before @bio. 87562306a36Sopenharmony_ci */ 87662306a36Sopenharmony_ciint bio_init_clone(struct block_device *bdev, struct bio *bio, 87762306a36Sopenharmony_ci struct bio *bio_src, gfp_t gfp) 87862306a36Sopenharmony_ci{ 87962306a36Sopenharmony_ci int ret; 88062306a36Sopenharmony_ci 88162306a36Sopenharmony_ci bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf); 88262306a36Sopenharmony_ci ret = __bio_clone(bio, bio_src, gfp); 88362306a36Sopenharmony_ci if (ret) 88462306a36Sopenharmony_ci bio_uninit(bio); 88562306a36Sopenharmony_ci return ret; 88662306a36Sopenharmony_ci} 88762306a36Sopenharmony_ciEXPORT_SYMBOL(bio_init_clone); 88862306a36Sopenharmony_ci 88962306a36Sopenharmony_ci/** 89062306a36Sopenharmony_ci * bio_full - check if the bio is full 89162306a36Sopenharmony_ci * @bio: bio to check 89262306a36Sopenharmony_ci * @len: length of one segment to be added 89362306a36Sopenharmony_ci * 89462306a36Sopenharmony_ci * Return true if @bio is full and one segment with @len bytes can't be 89562306a36Sopenharmony_ci * added to the bio, otherwise return false 89662306a36Sopenharmony_ci */ 89762306a36Sopenharmony_cistatic inline bool bio_full(struct bio *bio, unsigned len) 89862306a36Sopenharmony_ci{ 89962306a36Sopenharmony_ci if (bio->bi_vcnt >= bio->bi_max_vecs) 90062306a36Sopenharmony_ci return true; 90162306a36Sopenharmony_ci if (bio->bi_iter.bi_size > UINT_MAX - len) 90262306a36Sopenharmony_ci return true; 90362306a36Sopenharmony_ci return false; 90462306a36Sopenharmony_ci} 90562306a36Sopenharmony_ci 90662306a36Sopenharmony_cistatic bool bvec_try_merge_page(struct bio_vec *bv, struct page *page, 90762306a36Sopenharmony_ci unsigned int len, unsigned int off, bool *same_page) 90862306a36Sopenharmony_ci{ 90962306a36Sopenharmony_ci size_t bv_end = bv->bv_offset + bv->bv_len; 91062306a36Sopenharmony_ci phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; 91162306a36Sopenharmony_ci phys_addr_t page_addr = page_to_phys(page); 91262306a36Sopenharmony_ci 91362306a36Sopenharmony_ci if (vec_end_addr + 1 != page_addr + off) 91462306a36Sopenharmony_ci return false; 91562306a36Sopenharmony_ci if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) 91662306a36Sopenharmony_ci return false; 91762306a36Sopenharmony_ci if (!zone_device_pages_have_same_pgmap(bv->bv_page, page)) 91862306a36Sopenharmony_ci return false; 91962306a36Sopenharmony_ci 92062306a36Sopenharmony_ci *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); 92162306a36Sopenharmony_ci if (!*same_page) { 92262306a36Sopenharmony_ci if (IS_ENABLED(CONFIG_KMSAN)) 92362306a36Sopenharmony_ci return false; 92462306a36Sopenharmony_ci if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE) 92562306a36Sopenharmony_ci return false; 92662306a36Sopenharmony_ci } 92762306a36Sopenharmony_ci 92862306a36Sopenharmony_ci bv->bv_len += len; 92962306a36Sopenharmony_ci return true; 93062306a36Sopenharmony_ci} 93162306a36Sopenharmony_ci 93262306a36Sopenharmony_ci/* 93362306a36Sopenharmony_ci * Try to merge a page into a segment, while obeying the hardware segment 93462306a36Sopenharmony_ci * size limit. This is not for normal read/write bios, but for passthrough 93562306a36Sopenharmony_ci * or Zone Append operations that we can't split. 93662306a36Sopenharmony_ci */ 93762306a36Sopenharmony_cibool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv, 93862306a36Sopenharmony_ci struct page *page, unsigned len, unsigned offset, 93962306a36Sopenharmony_ci bool *same_page) 94062306a36Sopenharmony_ci{ 94162306a36Sopenharmony_ci unsigned long mask = queue_segment_boundary(q); 94262306a36Sopenharmony_ci phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; 94362306a36Sopenharmony_ci phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; 94462306a36Sopenharmony_ci 94562306a36Sopenharmony_ci if ((addr1 | mask) != (addr2 | mask)) 94662306a36Sopenharmony_ci return false; 94762306a36Sopenharmony_ci if (len > queue_max_segment_size(q) - bv->bv_len) 94862306a36Sopenharmony_ci return false; 94962306a36Sopenharmony_ci return bvec_try_merge_page(bv, page, len, offset, same_page); 95062306a36Sopenharmony_ci} 95162306a36Sopenharmony_ci 95262306a36Sopenharmony_ci/** 95362306a36Sopenharmony_ci * bio_add_hw_page - attempt to add a page to a bio with hw constraints 95462306a36Sopenharmony_ci * @q: the target queue 95562306a36Sopenharmony_ci * @bio: destination bio 95662306a36Sopenharmony_ci * @page: page to add 95762306a36Sopenharmony_ci * @len: vec entry length 95862306a36Sopenharmony_ci * @offset: vec entry offset 95962306a36Sopenharmony_ci * @max_sectors: maximum number of sectors that can be added 96062306a36Sopenharmony_ci * @same_page: return if the segment has been merged inside the same page 96162306a36Sopenharmony_ci * 96262306a36Sopenharmony_ci * Add a page to a bio while respecting the hardware max_sectors, max_segment 96362306a36Sopenharmony_ci * and gap limitations. 96462306a36Sopenharmony_ci */ 96562306a36Sopenharmony_ciint bio_add_hw_page(struct request_queue *q, struct bio *bio, 96662306a36Sopenharmony_ci struct page *page, unsigned int len, unsigned int offset, 96762306a36Sopenharmony_ci unsigned int max_sectors, bool *same_page) 96862306a36Sopenharmony_ci{ 96962306a36Sopenharmony_ci if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 97062306a36Sopenharmony_ci return 0; 97162306a36Sopenharmony_ci 97262306a36Sopenharmony_ci if (((bio->bi_iter.bi_size + len) >> SECTOR_SHIFT) > max_sectors) 97362306a36Sopenharmony_ci return 0; 97462306a36Sopenharmony_ci 97562306a36Sopenharmony_ci if (bio->bi_vcnt > 0) { 97662306a36Sopenharmony_ci struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; 97762306a36Sopenharmony_ci 97862306a36Sopenharmony_ci if (bvec_try_merge_hw_page(q, bv, page, len, offset, 97962306a36Sopenharmony_ci same_page)) { 98062306a36Sopenharmony_ci bio->bi_iter.bi_size += len; 98162306a36Sopenharmony_ci return len; 98262306a36Sopenharmony_ci } 98362306a36Sopenharmony_ci 98462306a36Sopenharmony_ci if (bio->bi_vcnt >= 98562306a36Sopenharmony_ci min(bio->bi_max_vecs, queue_max_segments(q))) 98662306a36Sopenharmony_ci return 0; 98762306a36Sopenharmony_ci 98862306a36Sopenharmony_ci /* 98962306a36Sopenharmony_ci * If the queue doesn't support SG gaps and adding this segment 99062306a36Sopenharmony_ci * would create a gap, disallow it. 99162306a36Sopenharmony_ci */ 99262306a36Sopenharmony_ci if (bvec_gap_to_prev(&q->limits, bv, offset)) 99362306a36Sopenharmony_ci return 0; 99462306a36Sopenharmony_ci } 99562306a36Sopenharmony_ci 99662306a36Sopenharmony_ci bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset); 99762306a36Sopenharmony_ci bio->bi_vcnt++; 99862306a36Sopenharmony_ci bio->bi_iter.bi_size += len; 99962306a36Sopenharmony_ci return len; 100062306a36Sopenharmony_ci} 100162306a36Sopenharmony_ci 100262306a36Sopenharmony_ci/** 100362306a36Sopenharmony_ci * bio_add_pc_page - attempt to add page to passthrough bio 100462306a36Sopenharmony_ci * @q: the target queue 100562306a36Sopenharmony_ci * @bio: destination bio 100662306a36Sopenharmony_ci * @page: page to add 100762306a36Sopenharmony_ci * @len: vec entry length 100862306a36Sopenharmony_ci * @offset: vec entry offset 100962306a36Sopenharmony_ci * 101062306a36Sopenharmony_ci * Attempt to add a page to the bio_vec maplist. This can fail for a 101162306a36Sopenharmony_ci * number of reasons, such as the bio being full or target block device 101262306a36Sopenharmony_ci * limitations. The target block device must allow bio's up to PAGE_SIZE, 101362306a36Sopenharmony_ci * so it is always possible to add a single page to an empty bio. 101462306a36Sopenharmony_ci * 101562306a36Sopenharmony_ci * This should only be used by passthrough bios. 101662306a36Sopenharmony_ci */ 101762306a36Sopenharmony_ciint bio_add_pc_page(struct request_queue *q, struct bio *bio, 101862306a36Sopenharmony_ci struct page *page, unsigned int len, unsigned int offset) 101962306a36Sopenharmony_ci{ 102062306a36Sopenharmony_ci bool same_page = false; 102162306a36Sopenharmony_ci return bio_add_hw_page(q, bio, page, len, offset, 102262306a36Sopenharmony_ci queue_max_hw_sectors(q), &same_page); 102362306a36Sopenharmony_ci} 102462306a36Sopenharmony_ciEXPORT_SYMBOL(bio_add_pc_page); 102562306a36Sopenharmony_ci 102662306a36Sopenharmony_ci/** 102762306a36Sopenharmony_ci * bio_add_zone_append_page - attempt to add page to zone-append bio 102862306a36Sopenharmony_ci * @bio: destination bio 102962306a36Sopenharmony_ci * @page: page to add 103062306a36Sopenharmony_ci * @len: vec entry length 103162306a36Sopenharmony_ci * @offset: vec entry offset 103262306a36Sopenharmony_ci * 103362306a36Sopenharmony_ci * Attempt to add a page to the bio_vec maplist of a bio that will be submitted 103462306a36Sopenharmony_ci * for a zone-append request. This can fail for a number of reasons, such as the 103562306a36Sopenharmony_ci * bio being full or the target block device is not a zoned block device or 103662306a36Sopenharmony_ci * other limitations of the target block device. The target block device must 103762306a36Sopenharmony_ci * allow bio's up to PAGE_SIZE, so it is always possible to add a single page 103862306a36Sopenharmony_ci * to an empty bio. 103962306a36Sopenharmony_ci * 104062306a36Sopenharmony_ci * Returns: number of bytes added to the bio, or 0 in case of a failure. 104162306a36Sopenharmony_ci */ 104262306a36Sopenharmony_ciint bio_add_zone_append_page(struct bio *bio, struct page *page, 104362306a36Sopenharmony_ci unsigned int len, unsigned int offset) 104462306a36Sopenharmony_ci{ 104562306a36Sopenharmony_ci struct request_queue *q = bdev_get_queue(bio->bi_bdev); 104662306a36Sopenharmony_ci bool same_page = false; 104762306a36Sopenharmony_ci 104862306a36Sopenharmony_ci if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND)) 104962306a36Sopenharmony_ci return 0; 105062306a36Sopenharmony_ci 105162306a36Sopenharmony_ci if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev))) 105262306a36Sopenharmony_ci return 0; 105362306a36Sopenharmony_ci 105462306a36Sopenharmony_ci return bio_add_hw_page(q, bio, page, len, offset, 105562306a36Sopenharmony_ci queue_max_zone_append_sectors(q), &same_page); 105662306a36Sopenharmony_ci} 105762306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bio_add_zone_append_page); 105862306a36Sopenharmony_ci 105962306a36Sopenharmony_ci/** 106062306a36Sopenharmony_ci * __bio_add_page - add page(s) to a bio in a new segment 106162306a36Sopenharmony_ci * @bio: destination bio 106262306a36Sopenharmony_ci * @page: start page to add 106362306a36Sopenharmony_ci * @len: length of the data to add, may cross pages 106462306a36Sopenharmony_ci * @off: offset of the data relative to @page, may cross pages 106562306a36Sopenharmony_ci * 106662306a36Sopenharmony_ci * Add the data at @page + @off to @bio as a new bvec. The caller must ensure 106762306a36Sopenharmony_ci * that @bio has space for another bvec. 106862306a36Sopenharmony_ci */ 106962306a36Sopenharmony_civoid __bio_add_page(struct bio *bio, struct page *page, 107062306a36Sopenharmony_ci unsigned int len, unsigned int off) 107162306a36Sopenharmony_ci{ 107262306a36Sopenharmony_ci WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); 107362306a36Sopenharmony_ci WARN_ON_ONCE(bio_full(bio, len)); 107462306a36Sopenharmony_ci 107562306a36Sopenharmony_ci bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off); 107662306a36Sopenharmony_ci bio->bi_iter.bi_size += len; 107762306a36Sopenharmony_ci bio->bi_vcnt++; 107862306a36Sopenharmony_ci} 107962306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(__bio_add_page); 108062306a36Sopenharmony_ci 108162306a36Sopenharmony_ci/** 108262306a36Sopenharmony_ci * bio_add_page - attempt to add page(s) to bio 108362306a36Sopenharmony_ci * @bio: destination bio 108462306a36Sopenharmony_ci * @page: start page to add 108562306a36Sopenharmony_ci * @len: vec entry length, may cross pages 108662306a36Sopenharmony_ci * @offset: vec entry offset relative to @page, may cross pages 108762306a36Sopenharmony_ci * 108862306a36Sopenharmony_ci * Attempt to add page(s) to the bio_vec maplist. This will only fail 108962306a36Sopenharmony_ci * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. 109062306a36Sopenharmony_ci */ 109162306a36Sopenharmony_ciint bio_add_page(struct bio *bio, struct page *page, 109262306a36Sopenharmony_ci unsigned int len, unsigned int offset) 109362306a36Sopenharmony_ci{ 109462306a36Sopenharmony_ci bool same_page = false; 109562306a36Sopenharmony_ci 109662306a36Sopenharmony_ci if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 109762306a36Sopenharmony_ci return 0; 109862306a36Sopenharmony_ci if (bio->bi_iter.bi_size > UINT_MAX - len) 109962306a36Sopenharmony_ci return 0; 110062306a36Sopenharmony_ci 110162306a36Sopenharmony_ci if (bio->bi_vcnt > 0 && 110262306a36Sopenharmony_ci bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 110362306a36Sopenharmony_ci page, len, offset, &same_page)) { 110462306a36Sopenharmony_ci bio->bi_iter.bi_size += len; 110562306a36Sopenharmony_ci return len; 110662306a36Sopenharmony_ci } 110762306a36Sopenharmony_ci 110862306a36Sopenharmony_ci if (bio->bi_vcnt >= bio->bi_max_vecs) 110962306a36Sopenharmony_ci return 0; 111062306a36Sopenharmony_ci __bio_add_page(bio, page, len, offset); 111162306a36Sopenharmony_ci return len; 111262306a36Sopenharmony_ci} 111362306a36Sopenharmony_ciEXPORT_SYMBOL(bio_add_page); 111462306a36Sopenharmony_ci 111562306a36Sopenharmony_civoid bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len, 111662306a36Sopenharmony_ci size_t off) 111762306a36Sopenharmony_ci{ 111862306a36Sopenharmony_ci WARN_ON_ONCE(len > UINT_MAX); 111962306a36Sopenharmony_ci WARN_ON_ONCE(off > UINT_MAX); 112062306a36Sopenharmony_ci __bio_add_page(bio, &folio->page, len, off); 112162306a36Sopenharmony_ci} 112262306a36Sopenharmony_ci 112362306a36Sopenharmony_ci/** 112462306a36Sopenharmony_ci * bio_add_folio - Attempt to add part of a folio to a bio. 112562306a36Sopenharmony_ci * @bio: BIO to add to. 112662306a36Sopenharmony_ci * @folio: Folio to add. 112762306a36Sopenharmony_ci * @len: How many bytes from the folio to add. 112862306a36Sopenharmony_ci * @off: First byte in this folio to add. 112962306a36Sopenharmony_ci * 113062306a36Sopenharmony_ci * Filesystems that use folios can call this function instead of calling 113162306a36Sopenharmony_ci * bio_add_page() for each page in the folio. If @off is bigger than 113262306a36Sopenharmony_ci * PAGE_SIZE, this function can create a bio_vec that starts in a page 113362306a36Sopenharmony_ci * after the bv_page. BIOs do not support folios that are 4GiB or larger. 113462306a36Sopenharmony_ci * 113562306a36Sopenharmony_ci * Return: Whether the addition was successful. 113662306a36Sopenharmony_ci */ 113762306a36Sopenharmony_cibool bio_add_folio(struct bio *bio, struct folio *folio, size_t len, 113862306a36Sopenharmony_ci size_t off) 113962306a36Sopenharmony_ci{ 114062306a36Sopenharmony_ci if (len > UINT_MAX || off > UINT_MAX) 114162306a36Sopenharmony_ci return false; 114262306a36Sopenharmony_ci return bio_add_page(bio, &folio->page, len, off) > 0; 114362306a36Sopenharmony_ci} 114462306a36Sopenharmony_ciEXPORT_SYMBOL(bio_add_folio); 114562306a36Sopenharmony_ci 114662306a36Sopenharmony_civoid __bio_release_pages(struct bio *bio, bool mark_dirty) 114762306a36Sopenharmony_ci{ 114862306a36Sopenharmony_ci struct folio_iter fi; 114962306a36Sopenharmony_ci 115062306a36Sopenharmony_ci bio_for_each_folio_all(fi, bio) { 115162306a36Sopenharmony_ci struct page *page; 115262306a36Sopenharmony_ci size_t nr_pages; 115362306a36Sopenharmony_ci 115462306a36Sopenharmony_ci if (mark_dirty) { 115562306a36Sopenharmony_ci folio_lock(fi.folio); 115662306a36Sopenharmony_ci folio_mark_dirty(fi.folio); 115762306a36Sopenharmony_ci folio_unlock(fi.folio); 115862306a36Sopenharmony_ci } 115962306a36Sopenharmony_ci page = folio_page(fi.folio, fi.offset / PAGE_SIZE); 116062306a36Sopenharmony_ci nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE - 116162306a36Sopenharmony_ci fi.offset / PAGE_SIZE + 1; 116262306a36Sopenharmony_ci do { 116362306a36Sopenharmony_ci bio_release_page(bio, page++); 116462306a36Sopenharmony_ci } while (--nr_pages != 0); 116562306a36Sopenharmony_ci } 116662306a36Sopenharmony_ci} 116762306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(__bio_release_pages); 116862306a36Sopenharmony_ci 116962306a36Sopenharmony_civoid bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter) 117062306a36Sopenharmony_ci{ 117162306a36Sopenharmony_ci size_t size = iov_iter_count(iter); 117262306a36Sopenharmony_ci 117362306a36Sopenharmony_ci WARN_ON_ONCE(bio->bi_max_vecs); 117462306a36Sopenharmony_ci 117562306a36Sopenharmony_ci if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 117662306a36Sopenharmony_ci struct request_queue *q = bdev_get_queue(bio->bi_bdev); 117762306a36Sopenharmony_ci size_t max_sectors = queue_max_zone_append_sectors(q); 117862306a36Sopenharmony_ci 117962306a36Sopenharmony_ci size = min(size, max_sectors << SECTOR_SHIFT); 118062306a36Sopenharmony_ci } 118162306a36Sopenharmony_ci 118262306a36Sopenharmony_ci bio->bi_vcnt = iter->nr_segs; 118362306a36Sopenharmony_ci bio->bi_io_vec = (struct bio_vec *)iter->bvec; 118462306a36Sopenharmony_ci bio->bi_iter.bi_bvec_done = iter->iov_offset; 118562306a36Sopenharmony_ci bio->bi_iter.bi_size = size; 118662306a36Sopenharmony_ci bio_set_flag(bio, BIO_CLONED); 118762306a36Sopenharmony_ci} 118862306a36Sopenharmony_ci 118962306a36Sopenharmony_cistatic int bio_iov_add_page(struct bio *bio, struct page *page, 119062306a36Sopenharmony_ci unsigned int len, unsigned int offset) 119162306a36Sopenharmony_ci{ 119262306a36Sopenharmony_ci bool same_page = false; 119362306a36Sopenharmony_ci 119462306a36Sopenharmony_ci if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len)) 119562306a36Sopenharmony_ci return -EIO; 119662306a36Sopenharmony_ci 119762306a36Sopenharmony_ci if (bio->bi_vcnt > 0 && 119862306a36Sopenharmony_ci bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1], 119962306a36Sopenharmony_ci page, len, offset, &same_page)) { 120062306a36Sopenharmony_ci bio->bi_iter.bi_size += len; 120162306a36Sopenharmony_ci if (same_page) 120262306a36Sopenharmony_ci bio_release_page(bio, page); 120362306a36Sopenharmony_ci return 0; 120462306a36Sopenharmony_ci } 120562306a36Sopenharmony_ci __bio_add_page(bio, page, len, offset); 120662306a36Sopenharmony_ci return 0; 120762306a36Sopenharmony_ci} 120862306a36Sopenharmony_ci 120962306a36Sopenharmony_cistatic int bio_iov_add_zone_append_page(struct bio *bio, struct page *page, 121062306a36Sopenharmony_ci unsigned int len, unsigned int offset) 121162306a36Sopenharmony_ci{ 121262306a36Sopenharmony_ci struct request_queue *q = bdev_get_queue(bio->bi_bdev); 121362306a36Sopenharmony_ci bool same_page = false; 121462306a36Sopenharmony_ci 121562306a36Sopenharmony_ci if (bio_add_hw_page(q, bio, page, len, offset, 121662306a36Sopenharmony_ci queue_max_zone_append_sectors(q), &same_page) != len) 121762306a36Sopenharmony_ci return -EINVAL; 121862306a36Sopenharmony_ci if (same_page) 121962306a36Sopenharmony_ci bio_release_page(bio, page); 122062306a36Sopenharmony_ci return 0; 122162306a36Sopenharmony_ci} 122262306a36Sopenharmony_ci 122362306a36Sopenharmony_ci#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) 122462306a36Sopenharmony_ci 122562306a36Sopenharmony_ci/** 122662306a36Sopenharmony_ci * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio 122762306a36Sopenharmony_ci * @bio: bio to add pages to 122862306a36Sopenharmony_ci * @iter: iov iterator describing the region to be mapped 122962306a36Sopenharmony_ci * 123062306a36Sopenharmony_ci * Extracts pages from *iter and appends them to @bio's bvec array. The pages 123162306a36Sopenharmony_ci * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag. 123262306a36Sopenharmony_ci * For a multi-segment *iter, this function only adds pages from the next 123362306a36Sopenharmony_ci * non-empty segment of the iov iterator. 123462306a36Sopenharmony_ci */ 123562306a36Sopenharmony_cistatic int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 123662306a36Sopenharmony_ci{ 123762306a36Sopenharmony_ci iov_iter_extraction_t extraction_flags = 0; 123862306a36Sopenharmony_ci unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; 123962306a36Sopenharmony_ci unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; 124062306a36Sopenharmony_ci struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; 124162306a36Sopenharmony_ci struct page **pages = (struct page **)bv; 124262306a36Sopenharmony_ci ssize_t size, left; 124362306a36Sopenharmony_ci unsigned len, i = 0; 124462306a36Sopenharmony_ci size_t offset; 124562306a36Sopenharmony_ci int ret = 0; 124662306a36Sopenharmony_ci 124762306a36Sopenharmony_ci /* 124862306a36Sopenharmony_ci * Move page array up in the allocated memory for the bio vecs as far as 124962306a36Sopenharmony_ci * possible so that we can start filling biovecs from the beginning 125062306a36Sopenharmony_ci * without overwriting the temporary page array. 125162306a36Sopenharmony_ci */ 125262306a36Sopenharmony_ci BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); 125362306a36Sopenharmony_ci pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); 125462306a36Sopenharmony_ci 125562306a36Sopenharmony_ci if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue)) 125662306a36Sopenharmony_ci extraction_flags |= ITER_ALLOW_P2PDMA; 125762306a36Sopenharmony_ci 125862306a36Sopenharmony_ci /* 125962306a36Sopenharmony_ci * Each segment in the iov is required to be a block size multiple. 126062306a36Sopenharmony_ci * However, we may not be able to get the entire segment if it spans 126162306a36Sopenharmony_ci * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the 126262306a36Sopenharmony_ci * result to ensure the bio's total size is correct. The remainder of 126362306a36Sopenharmony_ci * the iov data will be picked up in the next bio iteration. 126462306a36Sopenharmony_ci */ 126562306a36Sopenharmony_ci size = iov_iter_extract_pages(iter, &pages, 126662306a36Sopenharmony_ci UINT_MAX - bio->bi_iter.bi_size, 126762306a36Sopenharmony_ci nr_pages, extraction_flags, &offset); 126862306a36Sopenharmony_ci if (unlikely(size <= 0)) 126962306a36Sopenharmony_ci return size ? size : -EFAULT; 127062306a36Sopenharmony_ci 127162306a36Sopenharmony_ci nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE); 127262306a36Sopenharmony_ci 127362306a36Sopenharmony_ci if (bio->bi_bdev) { 127462306a36Sopenharmony_ci size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1); 127562306a36Sopenharmony_ci iov_iter_revert(iter, trim); 127662306a36Sopenharmony_ci size -= trim; 127762306a36Sopenharmony_ci } 127862306a36Sopenharmony_ci 127962306a36Sopenharmony_ci if (unlikely(!size)) { 128062306a36Sopenharmony_ci ret = -EFAULT; 128162306a36Sopenharmony_ci goto out; 128262306a36Sopenharmony_ci } 128362306a36Sopenharmony_ci 128462306a36Sopenharmony_ci for (left = size, i = 0; left > 0; left -= len, i++) { 128562306a36Sopenharmony_ci struct page *page = pages[i]; 128662306a36Sopenharmony_ci 128762306a36Sopenharmony_ci len = min_t(size_t, PAGE_SIZE - offset, left); 128862306a36Sopenharmony_ci if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 128962306a36Sopenharmony_ci ret = bio_iov_add_zone_append_page(bio, page, len, 129062306a36Sopenharmony_ci offset); 129162306a36Sopenharmony_ci if (ret) 129262306a36Sopenharmony_ci break; 129362306a36Sopenharmony_ci } else 129462306a36Sopenharmony_ci bio_iov_add_page(bio, page, len, offset); 129562306a36Sopenharmony_ci 129662306a36Sopenharmony_ci offset = 0; 129762306a36Sopenharmony_ci } 129862306a36Sopenharmony_ci 129962306a36Sopenharmony_ci iov_iter_revert(iter, left); 130062306a36Sopenharmony_ciout: 130162306a36Sopenharmony_ci while (i < nr_pages) 130262306a36Sopenharmony_ci bio_release_page(bio, pages[i++]); 130362306a36Sopenharmony_ci 130462306a36Sopenharmony_ci return ret; 130562306a36Sopenharmony_ci} 130662306a36Sopenharmony_ci 130762306a36Sopenharmony_ci/** 130862306a36Sopenharmony_ci * bio_iov_iter_get_pages - add user or kernel pages to a bio 130962306a36Sopenharmony_ci * @bio: bio to add pages to 131062306a36Sopenharmony_ci * @iter: iov iterator describing the region to be added 131162306a36Sopenharmony_ci * 131262306a36Sopenharmony_ci * This takes either an iterator pointing to user memory, or one pointing to 131362306a36Sopenharmony_ci * kernel pages (BVEC iterator). If we're adding user pages, we pin them and 131462306a36Sopenharmony_ci * map them into the kernel. On IO completion, the caller should put those 131562306a36Sopenharmony_ci * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided 131662306a36Sopenharmony_ci * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs 131762306a36Sopenharmony_ci * to ensure the bvecs and pages stay referenced until the submitted I/O is 131862306a36Sopenharmony_ci * completed by a call to ->ki_complete() or returns with an error other than 131962306a36Sopenharmony_ci * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF 132062306a36Sopenharmony_ci * on IO completion. If it isn't, then pages should be released. 132162306a36Sopenharmony_ci * 132262306a36Sopenharmony_ci * The function tries, but does not guarantee, to pin as many pages as 132362306a36Sopenharmony_ci * fit into the bio, or are requested in @iter, whatever is smaller. If 132462306a36Sopenharmony_ci * MM encounters an error pinning the requested pages, it stops. Error 132562306a36Sopenharmony_ci * is returned only if 0 pages could be pinned. 132662306a36Sopenharmony_ci */ 132762306a36Sopenharmony_ciint bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) 132862306a36Sopenharmony_ci{ 132962306a36Sopenharmony_ci int ret = 0; 133062306a36Sopenharmony_ci 133162306a36Sopenharmony_ci if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) 133262306a36Sopenharmony_ci return -EIO; 133362306a36Sopenharmony_ci 133462306a36Sopenharmony_ci if (iov_iter_is_bvec(iter)) { 133562306a36Sopenharmony_ci bio_iov_bvec_set(bio, iter); 133662306a36Sopenharmony_ci iov_iter_advance(iter, bio->bi_iter.bi_size); 133762306a36Sopenharmony_ci return 0; 133862306a36Sopenharmony_ci } 133962306a36Sopenharmony_ci 134062306a36Sopenharmony_ci if (iov_iter_extract_will_pin(iter)) 134162306a36Sopenharmony_ci bio_set_flag(bio, BIO_PAGE_PINNED); 134262306a36Sopenharmony_ci do { 134362306a36Sopenharmony_ci ret = __bio_iov_iter_get_pages(bio, iter); 134462306a36Sopenharmony_ci } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); 134562306a36Sopenharmony_ci 134662306a36Sopenharmony_ci return bio->bi_vcnt ? 0 : ret; 134762306a36Sopenharmony_ci} 134862306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); 134962306a36Sopenharmony_ci 135062306a36Sopenharmony_cistatic void submit_bio_wait_endio(struct bio *bio) 135162306a36Sopenharmony_ci{ 135262306a36Sopenharmony_ci complete(bio->bi_private); 135362306a36Sopenharmony_ci} 135462306a36Sopenharmony_ci 135562306a36Sopenharmony_ci/** 135662306a36Sopenharmony_ci * submit_bio_wait - submit a bio, and wait until it completes 135762306a36Sopenharmony_ci * @bio: The &struct bio which describes the I/O 135862306a36Sopenharmony_ci * 135962306a36Sopenharmony_ci * Simple wrapper around submit_bio(). Returns 0 on success, or the error from 136062306a36Sopenharmony_ci * bio_endio() on failure. 136162306a36Sopenharmony_ci * 136262306a36Sopenharmony_ci * WARNING: Unlike to how submit_bio() is usually used, this function does not 136362306a36Sopenharmony_ci * result in bio reference to be consumed. The caller must drop the reference 136462306a36Sopenharmony_ci * on his own. 136562306a36Sopenharmony_ci */ 136662306a36Sopenharmony_ciint submit_bio_wait(struct bio *bio) 136762306a36Sopenharmony_ci{ 136862306a36Sopenharmony_ci DECLARE_COMPLETION_ONSTACK_MAP(done, 136962306a36Sopenharmony_ci bio->bi_bdev->bd_disk->lockdep_map); 137062306a36Sopenharmony_ci unsigned long hang_check; 137162306a36Sopenharmony_ci 137262306a36Sopenharmony_ci bio->bi_private = &done; 137362306a36Sopenharmony_ci bio->bi_end_io = submit_bio_wait_endio; 137462306a36Sopenharmony_ci bio->bi_opf |= REQ_SYNC; 137562306a36Sopenharmony_ci submit_bio(bio); 137662306a36Sopenharmony_ci 137762306a36Sopenharmony_ci /* Prevent hang_check timer from firing at us during very long I/O */ 137862306a36Sopenharmony_ci hang_check = sysctl_hung_task_timeout_secs; 137962306a36Sopenharmony_ci if (hang_check) 138062306a36Sopenharmony_ci while (!wait_for_completion_io_timeout(&done, 138162306a36Sopenharmony_ci hang_check * (HZ/2))) 138262306a36Sopenharmony_ci ; 138362306a36Sopenharmony_ci else 138462306a36Sopenharmony_ci wait_for_completion_io(&done); 138562306a36Sopenharmony_ci 138662306a36Sopenharmony_ci return blk_status_to_errno(bio->bi_status); 138762306a36Sopenharmony_ci} 138862306a36Sopenharmony_ciEXPORT_SYMBOL(submit_bio_wait); 138962306a36Sopenharmony_ci 139062306a36Sopenharmony_civoid __bio_advance(struct bio *bio, unsigned bytes) 139162306a36Sopenharmony_ci{ 139262306a36Sopenharmony_ci if (bio_integrity(bio)) 139362306a36Sopenharmony_ci bio_integrity_advance(bio, bytes); 139462306a36Sopenharmony_ci 139562306a36Sopenharmony_ci bio_crypt_advance(bio, bytes); 139662306a36Sopenharmony_ci bio_advance_iter(bio, &bio->bi_iter, bytes); 139762306a36Sopenharmony_ci} 139862306a36Sopenharmony_ciEXPORT_SYMBOL(__bio_advance); 139962306a36Sopenharmony_ci 140062306a36Sopenharmony_civoid bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, 140162306a36Sopenharmony_ci struct bio *src, struct bvec_iter *src_iter) 140262306a36Sopenharmony_ci{ 140362306a36Sopenharmony_ci while (src_iter->bi_size && dst_iter->bi_size) { 140462306a36Sopenharmony_ci struct bio_vec src_bv = bio_iter_iovec(src, *src_iter); 140562306a36Sopenharmony_ci struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter); 140662306a36Sopenharmony_ci unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len); 140762306a36Sopenharmony_ci void *src_buf = bvec_kmap_local(&src_bv); 140862306a36Sopenharmony_ci void *dst_buf = bvec_kmap_local(&dst_bv); 140962306a36Sopenharmony_ci 141062306a36Sopenharmony_ci memcpy(dst_buf, src_buf, bytes); 141162306a36Sopenharmony_ci 141262306a36Sopenharmony_ci kunmap_local(dst_buf); 141362306a36Sopenharmony_ci kunmap_local(src_buf); 141462306a36Sopenharmony_ci 141562306a36Sopenharmony_ci bio_advance_iter_single(src, src_iter, bytes); 141662306a36Sopenharmony_ci bio_advance_iter_single(dst, dst_iter, bytes); 141762306a36Sopenharmony_ci } 141862306a36Sopenharmony_ci} 141962306a36Sopenharmony_ciEXPORT_SYMBOL(bio_copy_data_iter); 142062306a36Sopenharmony_ci 142162306a36Sopenharmony_ci/** 142262306a36Sopenharmony_ci * bio_copy_data - copy contents of data buffers from one bio to another 142362306a36Sopenharmony_ci * @src: source bio 142462306a36Sopenharmony_ci * @dst: destination bio 142562306a36Sopenharmony_ci * 142662306a36Sopenharmony_ci * Stops when it reaches the end of either @src or @dst - that is, copies 142762306a36Sopenharmony_ci * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). 142862306a36Sopenharmony_ci */ 142962306a36Sopenharmony_civoid bio_copy_data(struct bio *dst, struct bio *src) 143062306a36Sopenharmony_ci{ 143162306a36Sopenharmony_ci struct bvec_iter src_iter = src->bi_iter; 143262306a36Sopenharmony_ci struct bvec_iter dst_iter = dst->bi_iter; 143362306a36Sopenharmony_ci 143462306a36Sopenharmony_ci bio_copy_data_iter(dst, &dst_iter, src, &src_iter); 143562306a36Sopenharmony_ci} 143662306a36Sopenharmony_ciEXPORT_SYMBOL(bio_copy_data); 143762306a36Sopenharmony_ci 143862306a36Sopenharmony_civoid bio_free_pages(struct bio *bio) 143962306a36Sopenharmony_ci{ 144062306a36Sopenharmony_ci struct bio_vec *bvec; 144162306a36Sopenharmony_ci struct bvec_iter_all iter_all; 144262306a36Sopenharmony_ci 144362306a36Sopenharmony_ci bio_for_each_segment_all(bvec, bio, iter_all) 144462306a36Sopenharmony_ci __free_page(bvec->bv_page); 144562306a36Sopenharmony_ci} 144662306a36Sopenharmony_ciEXPORT_SYMBOL(bio_free_pages); 144762306a36Sopenharmony_ci 144862306a36Sopenharmony_ci/* 144962306a36Sopenharmony_ci * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions 145062306a36Sopenharmony_ci * for performing direct-IO in BIOs. 145162306a36Sopenharmony_ci * 145262306a36Sopenharmony_ci * The problem is that we cannot run folio_mark_dirty() from interrupt context 145362306a36Sopenharmony_ci * because the required locks are not interrupt-safe. So what we can do is to 145462306a36Sopenharmony_ci * mark the pages dirty _before_ performing IO. And in interrupt context, 145562306a36Sopenharmony_ci * check that the pages are still dirty. If so, fine. If not, redirty them 145662306a36Sopenharmony_ci * in process context. 145762306a36Sopenharmony_ci * 145862306a36Sopenharmony_ci * Note that this code is very hard to test under normal circumstances because 145962306a36Sopenharmony_ci * direct-io pins the pages with get_user_pages(). This makes 146062306a36Sopenharmony_ci * is_page_cache_freeable return false, and the VM will not clean the pages. 146162306a36Sopenharmony_ci * But other code (eg, flusher threads) could clean the pages if they are mapped 146262306a36Sopenharmony_ci * pagecache. 146362306a36Sopenharmony_ci * 146462306a36Sopenharmony_ci * Simply disabling the call to bio_set_pages_dirty() is a good way to test the 146562306a36Sopenharmony_ci * deferred bio dirtying paths. 146662306a36Sopenharmony_ci */ 146762306a36Sopenharmony_ci 146862306a36Sopenharmony_ci/* 146962306a36Sopenharmony_ci * bio_set_pages_dirty() will mark all the bio's pages as dirty. 147062306a36Sopenharmony_ci */ 147162306a36Sopenharmony_civoid bio_set_pages_dirty(struct bio *bio) 147262306a36Sopenharmony_ci{ 147362306a36Sopenharmony_ci struct folio_iter fi; 147462306a36Sopenharmony_ci 147562306a36Sopenharmony_ci bio_for_each_folio_all(fi, bio) { 147662306a36Sopenharmony_ci folio_lock(fi.folio); 147762306a36Sopenharmony_ci folio_mark_dirty(fi.folio); 147862306a36Sopenharmony_ci folio_unlock(fi.folio); 147962306a36Sopenharmony_ci } 148062306a36Sopenharmony_ci} 148162306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bio_set_pages_dirty); 148262306a36Sopenharmony_ci 148362306a36Sopenharmony_ci/* 148462306a36Sopenharmony_ci * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. 148562306a36Sopenharmony_ci * If they are, then fine. If, however, some pages are clean then they must 148662306a36Sopenharmony_ci * have been written out during the direct-IO read. So we take another ref on 148762306a36Sopenharmony_ci * the BIO and re-dirty the pages in process context. 148862306a36Sopenharmony_ci * 148962306a36Sopenharmony_ci * It is expected that bio_check_pages_dirty() will wholly own the BIO from 149062306a36Sopenharmony_ci * here on. It will unpin each page and will run one bio_put() against the 149162306a36Sopenharmony_ci * BIO. 149262306a36Sopenharmony_ci */ 149362306a36Sopenharmony_ci 149462306a36Sopenharmony_cistatic void bio_dirty_fn(struct work_struct *work); 149562306a36Sopenharmony_ci 149662306a36Sopenharmony_cistatic DECLARE_WORK(bio_dirty_work, bio_dirty_fn); 149762306a36Sopenharmony_cistatic DEFINE_SPINLOCK(bio_dirty_lock); 149862306a36Sopenharmony_cistatic struct bio *bio_dirty_list; 149962306a36Sopenharmony_ci 150062306a36Sopenharmony_ci/* 150162306a36Sopenharmony_ci * This runs in process context 150262306a36Sopenharmony_ci */ 150362306a36Sopenharmony_cistatic void bio_dirty_fn(struct work_struct *work) 150462306a36Sopenharmony_ci{ 150562306a36Sopenharmony_ci struct bio *bio, *next; 150662306a36Sopenharmony_ci 150762306a36Sopenharmony_ci spin_lock_irq(&bio_dirty_lock); 150862306a36Sopenharmony_ci next = bio_dirty_list; 150962306a36Sopenharmony_ci bio_dirty_list = NULL; 151062306a36Sopenharmony_ci spin_unlock_irq(&bio_dirty_lock); 151162306a36Sopenharmony_ci 151262306a36Sopenharmony_ci while ((bio = next) != NULL) { 151362306a36Sopenharmony_ci next = bio->bi_private; 151462306a36Sopenharmony_ci 151562306a36Sopenharmony_ci bio_release_pages(bio, true); 151662306a36Sopenharmony_ci bio_put(bio); 151762306a36Sopenharmony_ci } 151862306a36Sopenharmony_ci} 151962306a36Sopenharmony_ci 152062306a36Sopenharmony_civoid bio_check_pages_dirty(struct bio *bio) 152162306a36Sopenharmony_ci{ 152262306a36Sopenharmony_ci struct folio_iter fi; 152362306a36Sopenharmony_ci unsigned long flags; 152462306a36Sopenharmony_ci 152562306a36Sopenharmony_ci bio_for_each_folio_all(fi, bio) { 152662306a36Sopenharmony_ci if (!folio_test_dirty(fi.folio)) 152762306a36Sopenharmony_ci goto defer; 152862306a36Sopenharmony_ci } 152962306a36Sopenharmony_ci 153062306a36Sopenharmony_ci bio_release_pages(bio, false); 153162306a36Sopenharmony_ci bio_put(bio); 153262306a36Sopenharmony_ci return; 153362306a36Sopenharmony_cidefer: 153462306a36Sopenharmony_ci spin_lock_irqsave(&bio_dirty_lock, flags); 153562306a36Sopenharmony_ci bio->bi_private = bio_dirty_list; 153662306a36Sopenharmony_ci bio_dirty_list = bio; 153762306a36Sopenharmony_ci spin_unlock_irqrestore(&bio_dirty_lock, flags); 153862306a36Sopenharmony_ci schedule_work(&bio_dirty_work); 153962306a36Sopenharmony_ci} 154062306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bio_check_pages_dirty); 154162306a36Sopenharmony_ci 154262306a36Sopenharmony_cistatic inline bool bio_remaining_done(struct bio *bio) 154362306a36Sopenharmony_ci{ 154462306a36Sopenharmony_ci /* 154562306a36Sopenharmony_ci * If we're not chaining, then ->__bi_remaining is always 1 and 154662306a36Sopenharmony_ci * we always end io on the first invocation. 154762306a36Sopenharmony_ci */ 154862306a36Sopenharmony_ci if (!bio_flagged(bio, BIO_CHAIN)) 154962306a36Sopenharmony_ci return true; 155062306a36Sopenharmony_ci 155162306a36Sopenharmony_ci BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); 155262306a36Sopenharmony_ci 155362306a36Sopenharmony_ci if (atomic_dec_and_test(&bio->__bi_remaining)) { 155462306a36Sopenharmony_ci bio_clear_flag(bio, BIO_CHAIN); 155562306a36Sopenharmony_ci return true; 155662306a36Sopenharmony_ci } 155762306a36Sopenharmony_ci 155862306a36Sopenharmony_ci return false; 155962306a36Sopenharmony_ci} 156062306a36Sopenharmony_ci 156162306a36Sopenharmony_ci/** 156262306a36Sopenharmony_ci * bio_endio - end I/O on a bio 156362306a36Sopenharmony_ci * @bio: bio 156462306a36Sopenharmony_ci * 156562306a36Sopenharmony_ci * Description: 156662306a36Sopenharmony_ci * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred 156762306a36Sopenharmony_ci * way to end I/O on a bio. No one should call bi_end_io() directly on a 156862306a36Sopenharmony_ci * bio unless they own it and thus know that it has an end_io function. 156962306a36Sopenharmony_ci * 157062306a36Sopenharmony_ci * bio_endio() can be called several times on a bio that has been chained 157162306a36Sopenharmony_ci * using bio_chain(). The ->bi_end_io() function will only be called the 157262306a36Sopenharmony_ci * last time. 157362306a36Sopenharmony_ci **/ 157462306a36Sopenharmony_civoid bio_endio(struct bio *bio) 157562306a36Sopenharmony_ci{ 157662306a36Sopenharmony_ciagain: 157762306a36Sopenharmony_ci if (!bio_remaining_done(bio)) 157862306a36Sopenharmony_ci return; 157962306a36Sopenharmony_ci if (!bio_integrity_endio(bio)) 158062306a36Sopenharmony_ci return; 158162306a36Sopenharmony_ci 158262306a36Sopenharmony_ci rq_qos_done_bio(bio); 158362306a36Sopenharmony_ci 158462306a36Sopenharmony_ci if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) { 158562306a36Sopenharmony_ci trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio); 158662306a36Sopenharmony_ci bio_clear_flag(bio, BIO_TRACE_COMPLETION); 158762306a36Sopenharmony_ci } 158862306a36Sopenharmony_ci 158962306a36Sopenharmony_ci /* 159062306a36Sopenharmony_ci * Need to have a real endio function for chained bios, otherwise 159162306a36Sopenharmony_ci * various corner cases will break (like stacking block devices that 159262306a36Sopenharmony_ci * save/restore bi_end_io) - however, we want to avoid unbounded 159362306a36Sopenharmony_ci * recursion and blowing the stack. Tail call optimization would 159462306a36Sopenharmony_ci * handle this, but compiling with frame pointers also disables 159562306a36Sopenharmony_ci * gcc's sibling call optimization. 159662306a36Sopenharmony_ci */ 159762306a36Sopenharmony_ci if (bio->bi_end_io == bio_chain_endio) { 159862306a36Sopenharmony_ci bio = __bio_chain_endio(bio); 159962306a36Sopenharmony_ci goto again; 160062306a36Sopenharmony_ci } 160162306a36Sopenharmony_ci 160262306a36Sopenharmony_ci blk_throtl_bio_endio(bio); 160362306a36Sopenharmony_ci /* release cgroup info */ 160462306a36Sopenharmony_ci bio_uninit(bio); 160562306a36Sopenharmony_ci if (bio->bi_end_io) 160662306a36Sopenharmony_ci bio->bi_end_io(bio); 160762306a36Sopenharmony_ci} 160862306a36Sopenharmony_ciEXPORT_SYMBOL(bio_endio); 160962306a36Sopenharmony_ci 161062306a36Sopenharmony_ci/** 161162306a36Sopenharmony_ci * bio_split - split a bio 161262306a36Sopenharmony_ci * @bio: bio to split 161362306a36Sopenharmony_ci * @sectors: number of sectors to split from the front of @bio 161462306a36Sopenharmony_ci * @gfp: gfp mask 161562306a36Sopenharmony_ci * @bs: bio set to allocate from 161662306a36Sopenharmony_ci * 161762306a36Sopenharmony_ci * Allocates and returns a new bio which represents @sectors from the start of 161862306a36Sopenharmony_ci * @bio, and updates @bio to represent the remaining sectors. 161962306a36Sopenharmony_ci * 162062306a36Sopenharmony_ci * Unless this is a discard request the newly allocated bio will point 162162306a36Sopenharmony_ci * to @bio's bi_io_vec. It is the caller's responsibility to ensure that 162262306a36Sopenharmony_ci * neither @bio nor @bs are freed before the split bio. 162362306a36Sopenharmony_ci */ 162462306a36Sopenharmony_cistruct bio *bio_split(struct bio *bio, int sectors, 162562306a36Sopenharmony_ci gfp_t gfp, struct bio_set *bs) 162662306a36Sopenharmony_ci{ 162762306a36Sopenharmony_ci struct bio *split; 162862306a36Sopenharmony_ci 162962306a36Sopenharmony_ci BUG_ON(sectors <= 0); 163062306a36Sopenharmony_ci BUG_ON(sectors >= bio_sectors(bio)); 163162306a36Sopenharmony_ci 163262306a36Sopenharmony_ci /* Zone append commands cannot be split */ 163362306a36Sopenharmony_ci if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) 163462306a36Sopenharmony_ci return NULL; 163562306a36Sopenharmony_ci 163662306a36Sopenharmony_ci split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs); 163762306a36Sopenharmony_ci if (!split) 163862306a36Sopenharmony_ci return NULL; 163962306a36Sopenharmony_ci 164062306a36Sopenharmony_ci split->bi_iter.bi_size = sectors << 9; 164162306a36Sopenharmony_ci 164262306a36Sopenharmony_ci if (bio_integrity(split)) 164362306a36Sopenharmony_ci bio_integrity_trim(split); 164462306a36Sopenharmony_ci 164562306a36Sopenharmony_ci bio_advance(bio, split->bi_iter.bi_size); 164662306a36Sopenharmony_ci 164762306a36Sopenharmony_ci if (bio_flagged(bio, BIO_TRACE_COMPLETION)) 164862306a36Sopenharmony_ci bio_set_flag(split, BIO_TRACE_COMPLETION); 164962306a36Sopenharmony_ci 165062306a36Sopenharmony_ci return split; 165162306a36Sopenharmony_ci} 165262306a36Sopenharmony_ciEXPORT_SYMBOL(bio_split); 165362306a36Sopenharmony_ci 165462306a36Sopenharmony_ci/** 165562306a36Sopenharmony_ci * bio_trim - trim a bio 165662306a36Sopenharmony_ci * @bio: bio to trim 165762306a36Sopenharmony_ci * @offset: number of sectors to trim from the front of @bio 165862306a36Sopenharmony_ci * @size: size we want to trim @bio to, in sectors 165962306a36Sopenharmony_ci * 166062306a36Sopenharmony_ci * This function is typically used for bios that are cloned and submitted 166162306a36Sopenharmony_ci * to the underlying device in parts. 166262306a36Sopenharmony_ci */ 166362306a36Sopenharmony_civoid bio_trim(struct bio *bio, sector_t offset, sector_t size) 166462306a36Sopenharmony_ci{ 166562306a36Sopenharmony_ci if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS || 166662306a36Sopenharmony_ci offset + size > bio_sectors(bio))) 166762306a36Sopenharmony_ci return; 166862306a36Sopenharmony_ci 166962306a36Sopenharmony_ci size <<= 9; 167062306a36Sopenharmony_ci if (offset == 0 && size == bio->bi_iter.bi_size) 167162306a36Sopenharmony_ci return; 167262306a36Sopenharmony_ci 167362306a36Sopenharmony_ci bio_advance(bio, offset << 9); 167462306a36Sopenharmony_ci bio->bi_iter.bi_size = size; 167562306a36Sopenharmony_ci 167662306a36Sopenharmony_ci if (bio_integrity(bio)) 167762306a36Sopenharmony_ci bio_integrity_trim(bio); 167862306a36Sopenharmony_ci} 167962306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bio_trim); 168062306a36Sopenharmony_ci 168162306a36Sopenharmony_ci/* 168262306a36Sopenharmony_ci * create memory pools for biovec's in a bio_set. 168362306a36Sopenharmony_ci * use the global biovec slabs created for general use. 168462306a36Sopenharmony_ci */ 168562306a36Sopenharmony_ciint biovec_init_pool(mempool_t *pool, int pool_entries) 168662306a36Sopenharmony_ci{ 168762306a36Sopenharmony_ci struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1; 168862306a36Sopenharmony_ci 168962306a36Sopenharmony_ci return mempool_init_slab_pool(pool, pool_entries, bp->slab); 169062306a36Sopenharmony_ci} 169162306a36Sopenharmony_ci 169262306a36Sopenharmony_ci/* 169362306a36Sopenharmony_ci * bioset_exit - exit a bioset initialized with bioset_init() 169462306a36Sopenharmony_ci * 169562306a36Sopenharmony_ci * May be called on a zeroed but uninitialized bioset (i.e. allocated with 169662306a36Sopenharmony_ci * kzalloc()). 169762306a36Sopenharmony_ci */ 169862306a36Sopenharmony_civoid bioset_exit(struct bio_set *bs) 169962306a36Sopenharmony_ci{ 170062306a36Sopenharmony_ci bio_alloc_cache_destroy(bs); 170162306a36Sopenharmony_ci if (bs->rescue_workqueue) 170262306a36Sopenharmony_ci destroy_workqueue(bs->rescue_workqueue); 170362306a36Sopenharmony_ci bs->rescue_workqueue = NULL; 170462306a36Sopenharmony_ci 170562306a36Sopenharmony_ci mempool_exit(&bs->bio_pool); 170662306a36Sopenharmony_ci mempool_exit(&bs->bvec_pool); 170762306a36Sopenharmony_ci 170862306a36Sopenharmony_ci bioset_integrity_free(bs); 170962306a36Sopenharmony_ci if (bs->bio_slab) 171062306a36Sopenharmony_ci bio_put_slab(bs); 171162306a36Sopenharmony_ci bs->bio_slab = NULL; 171262306a36Sopenharmony_ci} 171362306a36Sopenharmony_ciEXPORT_SYMBOL(bioset_exit); 171462306a36Sopenharmony_ci 171562306a36Sopenharmony_ci/** 171662306a36Sopenharmony_ci * bioset_init - Initialize a bio_set 171762306a36Sopenharmony_ci * @bs: pool to initialize 171862306a36Sopenharmony_ci * @pool_size: Number of bio and bio_vecs to cache in the mempool 171962306a36Sopenharmony_ci * @front_pad: Number of bytes to allocate in front of the returned bio 172062306a36Sopenharmony_ci * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS 172162306a36Sopenharmony_ci * and %BIOSET_NEED_RESCUER 172262306a36Sopenharmony_ci * 172362306a36Sopenharmony_ci * Description: 172462306a36Sopenharmony_ci * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller 172562306a36Sopenharmony_ci * to ask for a number of bytes to be allocated in front of the bio. 172662306a36Sopenharmony_ci * Front pad allocation is useful for embedding the bio inside 172762306a36Sopenharmony_ci * another structure, to avoid allocating extra data to go with the bio. 172862306a36Sopenharmony_ci * Note that the bio must be embedded at the END of that structure always, 172962306a36Sopenharmony_ci * or things will break badly. 173062306a36Sopenharmony_ci * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated 173162306a36Sopenharmony_ci * for allocating iovecs. This pool is not needed e.g. for bio_init_clone(). 173262306a36Sopenharmony_ci * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used 173362306a36Sopenharmony_ci * to dispatch queued requests when the mempool runs out of space. 173462306a36Sopenharmony_ci * 173562306a36Sopenharmony_ci */ 173662306a36Sopenharmony_ciint bioset_init(struct bio_set *bs, 173762306a36Sopenharmony_ci unsigned int pool_size, 173862306a36Sopenharmony_ci unsigned int front_pad, 173962306a36Sopenharmony_ci int flags) 174062306a36Sopenharmony_ci{ 174162306a36Sopenharmony_ci bs->front_pad = front_pad; 174262306a36Sopenharmony_ci if (flags & BIOSET_NEED_BVECS) 174362306a36Sopenharmony_ci bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); 174462306a36Sopenharmony_ci else 174562306a36Sopenharmony_ci bs->back_pad = 0; 174662306a36Sopenharmony_ci 174762306a36Sopenharmony_ci spin_lock_init(&bs->rescue_lock); 174862306a36Sopenharmony_ci bio_list_init(&bs->rescue_list); 174962306a36Sopenharmony_ci INIT_WORK(&bs->rescue_work, bio_alloc_rescue); 175062306a36Sopenharmony_ci 175162306a36Sopenharmony_ci bs->bio_slab = bio_find_or_create_slab(bs); 175262306a36Sopenharmony_ci if (!bs->bio_slab) 175362306a36Sopenharmony_ci return -ENOMEM; 175462306a36Sopenharmony_ci 175562306a36Sopenharmony_ci if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) 175662306a36Sopenharmony_ci goto bad; 175762306a36Sopenharmony_ci 175862306a36Sopenharmony_ci if ((flags & BIOSET_NEED_BVECS) && 175962306a36Sopenharmony_ci biovec_init_pool(&bs->bvec_pool, pool_size)) 176062306a36Sopenharmony_ci goto bad; 176162306a36Sopenharmony_ci 176262306a36Sopenharmony_ci if (flags & BIOSET_NEED_RESCUER) { 176362306a36Sopenharmony_ci bs->rescue_workqueue = alloc_workqueue("bioset", 176462306a36Sopenharmony_ci WQ_MEM_RECLAIM, 0); 176562306a36Sopenharmony_ci if (!bs->rescue_workqueue) 176662306a36Sopenharmony_ci goto bad; 176762306a36Sopenharmony_ci } 176862306a36Sopenharmony_ci if (flags & BIOSET_PERCPU_CACHE) { 176962306a36Sopenharmony_ci bs->cache = alloc_percpu(struct bio_alloc_cache); 177062306a36Sopenharmony_ci if (!bs->cache) 177162306a36Sopenharmony_ci goto bad; 177262306a36Sopenharmony_ci cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead); 177362306a36Sopenharmony_ci } 177462306a36Sopenharmony_ci 177562306a36Sopenharmony_ci return 0; 177662306a36Sopenharmony_cibad: 177762306a36Sopenharmony_ci bioset_exit(bs); 177862306a36Sopenharmony_ci return -ENOMEM; 177962306a36Sopenharmony_ci} 178062306a36Sopenharmony_ciEXPORT_SYMBOL(bioset_init); 178162306a36Sopenharmony_ci 178262306a36Sopenharmony_cistatic int __init init_bio(void) 178362306a36Sopenharmony_ci{ 178462306a36Sopenharmony_ci int i; 178562306a36Sopenharmony_ci 178662306a36Sopenharmony_ci BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags)); 178762306a36Sopenharmony_ci 178862306a36Sopenharmony_ci bio_integrity_init(); 178962306a36Sopenharmony_ci 179062306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) { 179162306a36Sopenharmony_ci struct biovec_slab *bvs = bvec_slabs + i; 179262306a36Sopenharmony_ci 179362306a36Sopenharmony_ci bvs->slab = kmem_cache_create(bvs->name, 179462306a36Sopenharmony_ci bvs->nr_vecs * sizeof(struct bio_vec), 0, 179562306a36Sopenharmony_ci SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 179662306a36Sopenharmony_ci } 179762306a36Sopenharmony_ci 179862306a36Sopenharmony_ci cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL, 179962306a36Sopenharmony_ci bio_cpu_dead); 180062306a36Sopenharmony_ci 180162306a36Sopenharmony_ci if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, 180262306a36Sopenharmony_ci BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE)) 180362306a36Sopenharmony_ci panic("bio: can't allocate bios\n"); 180462306a36Sopenharmony_ci 180562306a36Sopenharmony_ci if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) 180662306a36Sopenharmony_ci panic("bio: can't create integrity pool\n"); 180762306a36Sopenharmony_ci 180862306a36Sopenharmony_ci return 0; 180962306a36Sopenharmony_ci} 181062306a36Sopenharmony_cisubsys_initcall(init_bio); 1811