162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
462306a36Sopenharmony_ci */
562306a36Sopenharmony_ci#include <linux/mm.h>
662306a36Sopenharmony_ci#include <linux/swap.h>
762306a36Sopenharmony_ci#include <linux/bio.h>
862306a36Sopenharmony_ci#include <linux/blkdev.h>
962306a36Sopenharmony_ci#include <linux/uio.h>
1062306a36Sopenharmony_ci#include <linux/iocontext.h>
1162306a36Sopenharmony_ci#include <linux/slab.h>
1262306a36Sopenharmony_ci#include <linux/init.h>
1362306a36Sopenharmony_ci#include <linux/kernel.h>
1462306a36Sopenharmony_ci#include <linux/export.h>
1562306a36Sopenharmony_ci#include <linux/mempool.h>
1662306a36Sopenharmony_ci#include <linux/workqueue.h>
1762306a36Sopenharmony_ci#include <linux/cgroup.h>
1862306a36Sopenharmony_ci#include <linux/highmem.h>
1962306a36Sopenharmony_ci#include <linux/sched/sysctl.h>
2062306a36Sopenharmony_ci#include <linux/blk-crypto.h>
2162306a36Sopenharmony_ci#include <linux/xarray.h>
2262306a36Sopenharmony_ci
2362306a36Sopenharmony_ci#include <trace/events/block.h>
2462306a36Sopenharmony_ci#include "blk.h"
2562306a36Sopenharmony_ci#include "blk-rq-qos.h"
2662306a36Sopenharmony_ci#include "blk-cgroup.h"
2762306a36Sopenharmony_ci
2862306a36Sopenharmony_ci#define ALLOC_CACHE_THRESHOLD	16
2962306a36Sopenharmony_ci#define ALLOC_CACHE_MAX		256
3062306a36Sopenharmony_ci
3162306a36Sopenharmony_cistruct bio_alloc_cache {
3262306a36Sopenharmony_ci	struct bio		*free_list;
3362306a36Sopenharmony_ci	struct bio		*free_list_irq;
3462306a36Sopenharmony_ci	unsigned int		nr;
3562306a36Sopenharmony_ci	unsigned int		nr_irq;
3662306a36Sopenharmony_ci};
3762306a36Sopenharmony_ci
3862306a36Sopenharmony_cistatic struct biovec_slab {
3962306a36Sopenharmony_ci	int nr_vecs;
4062306a36Sopenharmony_ci	char *name;
4162306a36Sopenharmony_ci	struct kmem_cache *slab;
4262306a36Sopenharmony_ci} bvec_slabs[] __read_mostly = {
4362306a36Sopenharmony_ci	{ .nr_vecs = 16, .name = "biovec-16" },
4462306a36Sopenharmony_ci	{ .nr_vecs = 64, .name = "biovec-64" },
4562306a36Sopenharmony_ci	{ .nr_vecs = 128, .name = "biovec-128" },
4662306a36Sopenharmony_ci	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
4762306a36Sopenharmony_ci};
4862306a36Sopenharmony_ci
4962306a36Sopenharmony_cistatic struct biovec_slab *biovec_slab(unsigned short nr_vecs)
5062306a36Sopenharmony_ci{
5162306a36Sopenharmony_ci	switch (nr_vecs) {
5262306a36Sopenharmony_ci	/* smaller bios use inline vecs */
5362306a36Sopenharmony_ci	case 5 ... 16:
5462306a36Sopenharmony_ci		return &bvec_slabs[0];
5562306a36Sopenharmony_ci	case 17 ... 64:
5662306a36Sopenharmony_ci		return &bvec_slabs[1];
5762306a36Sopenharmony_ci	case 65 ... 128:
5862306a36Sopenharmony_ci		return &bvec_slabs[2];
5962306a36Sopenharmony_ci	case 129 ... BIO_MAX_VECS:
6062306a36Sopenharmony_ci		return &bvec_slabs[3];
6162306a36Sopenharmony_ci	default:
6262306a36Sopenharmony_ci		BUG();
6362306a36Sopenharmony_ci		return NULL;
6462306a36Sopenharmony_ci	}
6562306a36Sopenharmony_ci}
6662306a36Sopenharmony_ci
6762306a36Sopenharmony_ci/*
6862306a36Sopenharmony_ci * fs_bio_set is the bio_set containing bio and iovec memory pools used by
6962306a36Sopenharmony_ci * IO code that does not need private memory pools.
7062306a36Sopenharmony_ci */
7162306a36Sopenharmony_cistruct bio_set fs_bio_set;
7262306a36Sopenharmony_ciEXPORT_SYMBOL(fs_bio_set);
7362306a36Sopenharmony_ci
7462306a36Sopenharmony_ci/*
7562306a36Sopenharmony_ci * Our slab pool management
7662306a36Sopenharmony_ci */
7762306a36Sopenharmony_cistruct bio_slab {
7862306a36Sopenharmony_ci	struct kmem_cache *slab;
7962306a36Sopenharmony_ci	unsigned int slab_ref;
8062306a36Sopenharmony_ci	unsigned int slab_size;
8162306a36Sopenharmony_ci	char name[8];
8262306a36Sopenharmony_ci};
8362306a36Sopenharmony_cistatic DEFINE_MUTEX(bio_slab_lock);
8462306a36Sopenharmony_cistatic DEFINE_XARRAY(bio_slabs);
8562306a36Sopenharmony_ci
8662306a36Sopenharmony_cistatic struct bio_slab *create_bio_slab(unsigned int size)
8762306a36Sopenharmony_ci{
8862306a36Sopenharmony_ci	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
8962306a36Sopenharmony_ci
9062306a36Sopenharmony_ci	if (!bslab)
9162306a36Sopenharmony_ci		return NULL;
9262306a36Sopenharmony_ci
9362306a36Sopenharmony_ci	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
9462306a36Sopenharmony_ci	bslab->slab = kmem_cache_create(bslab->name, size,
9562306a36Sopenharmony_ci			ARCH_KMALLOC_MINALIGN,
9662306a36Sopenharmony_ci			SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
9762306a36Sopenharmony_ci	if (!bslab->slab)
9862306a36Sopenharmony_ci		goto fail_alloc_slab;
9962306a36Sopenharmony_ci
10062306a36Sopenharmony_ci	bslab->slab_ref = 1;
10162306a36Sopenharmony_ci	bslab->slab_size = size;
10262306a36Sopenharmony_ci
10362306a36Sopenharmony_ci	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
10462306a36Sopenharmony_ci		return bslab;
10562306a36Sopenharmony_ci
10662306a36Sopenharmony_ci	kmem_cache_destroy(bslab->slab);
10762306a36Sopenharmony_ci
10862306a36Sopenharmony_cifail_alloc_slab:
10962306a36Sopenharmony_ci	kfree(bslab);
11062306a36Sopenharmony_ci	return NULL;
11162306a36Sopenharmony_ci}
11262306a36Sopenharmony_ci
11362306a36Sopenharmony_cistatic inline unsigned int bs_bio_slab_size(struct bio_set *bs)
11462306a36Sopenharmony_ci{
11562306a36Sopenharmony_ci	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
11662306a36Sopenharmony_ci}
11762306a36Sopenharmony_ci
11862306a36Sopenharmony_cistatic struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
11962306a36Sopenharmony_ci{
12062306a36Sopenharmony_ci	unsigned int size = bs_bio_slab_size(bs);
12162306a36Sopenharmony_ci	struct bio_slab *bslab;
12262306a36Sopenharmony_ci
12362306a36Sopenharmony_ci	mutex_lock(&bio_slab_lock);
12462306a36Sopenharmony_ci	bslab = xa_load(&bio_slabs, size);
12562306a36Sopenharmony_ci	if (bslab)
12662306a36Sopenharmony_ci		bslab->slab_ref++;
12762306a36Sopenharmony_ci	else
12862306a36Sopenharmony_ci		bslab = create_bio_slab(size);
12962306a36Sopenharmony_ci	mutex_unlock(&bio_slab_lock);
13062306a36Sopenharmony_ci
13162306a36Sopenharmony_ci	if (bslab)
13262306a36Sopenharmony_ci		return bslab->slab;
13362306a36Sopenharmony_ci	return NULL;
13462306a36Sopenharmony_ci}
13562306a36Sopenharmony_ci
13662306a36Sopenharmony_cistatic void bio_put_slab(struct bio_set *bs)
13762306a36Sopenharmony_ci{
13862306a36Sopenharmony_ci	struct bio_slab *bslab = NULL;
13962306a36Sopenharmony_ci	unsigned int slab_size = bs_bio_slab_size(bs);
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci	mutex_lock(&bio_slab_lock);
14262306a36Sopenharmony_ci
14362306a36Sopenharmony_ci	bslab = xa_load(&bio_slabs, slab_size);
14462306a36Sopenharmony_ci	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
14562306a36Sopenharmony_ci		goto out;
14662306a36Sopenharmony_ci
14762306a36Sopenharmony_ci	WARN_ON_ONCE(bslab->slab != bs->bio_slab);
14862306a36Sopenharmony_ci
14962306a36Sopenharmony_ci	WARN_ON(!bslab->slab_ref);
15062306a36Sopenharmony_ci
15162306a36Sopenharmony_ci	if (--bslab->slab_ref)
15262306a36Sopenharmony_ci		goto out;
15362306a36Sopenharmony_ci
15462306a36Sopenharmony_ci	xa_erase(&bio_slabs, slab_size);
15562306a36Sopenharmony_ci
15662306a36Sopenharmony_ci	kmem_cache_destroy(bslab->slab);
15762306a36Sopenharmony_ci	kfree(bslab);
15862306a36Sopenharmony_ci
15962306a36Sopenharmony_ciout:
16062306a36Sopenharmony_ci	mutex_unlock(&bio_slab_lock);
16162306a36Sopenharmony_ci}
16262306a36Sopenharmony_ci
16362306a36Sopenharmony_civoid bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
16462306a36Sopenharmony_ci{
16562306a36Sopenharmony_ci	BUG_ON(nr_vecs > BIO_MAX_VECS);
16662306a36Sopenharmony_ci
16762306a36Sopenharmony_ci	if (nr_vecs == BIO_MAX_VECS)
16862306a36Sopenharmony_ci		mempool_free(bv, pool);
16962306a36Sopenharmony_ci	else if (nr_vecs > BIO_INLINE_VECS)
17062306a36Sopenharmony_ci		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
17162306a36Sopenharmony_ci}
17262306a36Sopenharmony_ci
17362306a36Sopenharmony_ci/*
17462306a36Sopenharmony_ci * Make the first allocation restricted and don't dump info on allocation
17562306a36Sopenharmony_ci * failures, since we'll fall back to the mempool in case of failure.
17662306a36Sopenharmony_ci */
17762306a36Sopenharmony_cistatic inline gfp_t bvec_alloc_gfp(gfp_t gfp)
17862306a36Sopenharmony_ci{
17962306a36Sopenharmony_ci	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
18062306a36Sopenharmony_ci		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
18162306a36Sopenharmony_ci}
18262306a36Sopenharmony_ci
18362306a36Sopenharmony_cistruct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
18462306a36Sopenharmony_ci		gfp_t gfp_mask)
18562306a36Sopenharmony_ci{
18662306a36Sopenharmony_ci	struct biovec_slab *bvs = biovec_slab(*nr_vecs);
18762306a36Sopenharmony_ci
18862306a36Sopenharmony_ci	if (WARN_ON_ONCE(!bvs))
18962306a36Sopenharmony_ci		return NULL;
19062306a36Sopenharmony_ci
19162306a36Sopenharmony_ci	/*
19262306a36Sopenharmony_ci	 * Upgrade the nr_vecs request to take full advantage of the allocation.
19362306a36Sopenharmony_ci	 * We also rely on this in the bvec_free path.
19462306a36Sopenharmony_ci	 */
19562306a36Sopenharmony_ci	*nr_vecs = bvs->nr_vecs;
19662306a36Sopenharmony_ci
19762306a36Sopenharmony_ci	/*
19862306a36Sopenharmony_ci	 * Try a slab allocation first for all smaller allocations.  If that
19962306a36Sopenharmony_ci	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
20062306a36Sopenharmony_ci	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
20162306a36Sopenharmony_ci	 */
20262306a36Sopenharmony_ci	if (*nr_vecs < BIO_MAX_VECS) {
20362306a36Sopenharmony_ci		struct bio_vec *bvl;
20462306a36Sopenharmony_ci
20562306a36Sopenharmony_ci		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
20662306a36Sopenharmony_ci		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
20762306a36Sopenharmony_ci			return bvl;
20862306a36Sopenharmony_ci		*nr_vecs = BIO_MAX_VECS;
20962306a36Sopenharmony_ci	}
21062306a36Sopenharmony_ci
21162306a36Sopenharmony_ci	return mempool_alloc(pool, gfp_mask);
21262306a36Sopenharmony_ci}
21362306a36Sopenharmony_ci
21462306a36Sopenharmony_civoid bio_uninit(struct bio *bio)
21562306a36Sopenharmony_ci{
21662306a36Sopenharmony_ci#ifdef CONFIG_BLK_CGROUP
21762306a36Sopenharmony_ci	if (bio->bi_blkg) {
21862306a36Sopenharmony_ci		blkg_put(bio->bi_blkg);
21962306a36Sopenharmony_ci		bio->bi_blkg = NULL;
22062306a36Sopenharmony_ci	}
22162306a36Sopenharmony_ci#endif
22262306a36Sopenharmony_ci	if (bio_integrity(bio))
22362306a36Sopenharmony_ci		bio_integrity_free(bio);
22462306a36Sopenharmony_ci
22562306a36Sopenharmony_ci	bio_crypt_free_ctx(bio);
22662306a36Sopenharmony_ci}
22762306a36Sopenharmony_ciEXPORT_SYMBOL(bio_uninit);
22862306a36Sopenharmony_ci
22962306a36Sopenharmony_cistatic void bio_free(struct bio *bio)
23062306a36Sopenharmony_ci{
23162306a36Sopenharmony_ci	struct bio_set *bs = bio->bi_pool;
23262306a36Sopenharmony_ci	void *p = bio;
23362306a36Sopenharmony_ci
23462306a36Sopenharmony_ci	WARN_ON_ONCE(!bs);
23562306a36Sopenharmony_ci
23662306a36Sopenharmony_ci	bio_uninit(bio);
23762306a36Sopenharmony_ci	bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
23862306a36Sopenharmony_ci	mempool_free(p - bs->front_pad, &bs->bio_pool);
23962306a36Sopenharmony_ci}
24062306a36Sopenharmony_ci
24162306a36Sopenharmony_ci/*
24262306a36Sopenharmony_ci * Users of this function have their own bio allocation. Subsequently,
24362306a36Sopenharmony_ci * they must remember to pair any call to bio_init() with bio_uninit()
24462306a36Sopenharmony_ci * when IO has completed, or when the bio is released.
24562306a36Sopenharmony_ci */
24662306a36Sopenharmony_civoid bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
24762306a36Sopenharmony_ci	      unsigned short max_vecs, blk_opf_t opf)
24862306a36Sopenharmony_ci{
24962306a36Sopenharmony_ci	bio->bi_next = NULL;
25062306a36Sopenharmony_ci	bio->bi_bdev = bdev;
25162306a36Sopenharmony_ci	bio->bi_opf = opf;
25262306a36Sopenharmony_ci	bio->bi_flags = 0;
25362306a36Sopenharmony_ci	bio->bi_ioprio = 0;
25462306a36Sopenharmony_ci	bio->bi_status = 0;
25562306a36Sopenharmony_ci	bio->bi_iter.bi_sector = 0;
25662306a36Sopenharmony_ci	bio->bi_iter.bi_size = 0;
25762306a36Sopenharmony_ci	bio->bi_iter.bi_idx = 0;
25862306a36Sopenharmony_ci	bio->bi_iter.bi_bvec_done = 0;
25962306a36Sopenharmony_ci	bio->bi_end_io = NULL;
26062306a36Sopenharmony_ci	bio->bi_private = NULL;
26162306a36Sopenharmony_ci#ifdef CONFIG_BLK_CGROUP
26262306a36Sopenharmony_ci	bio->bi_blkg = NULL;
26362306a36Sopenharmony_ci	bio->bi_issue.value = 0;
26462306a36Sopenharmony_ci	if (bdev)
26562306a36Sopenharmony_ci		bio_associate_blkg(bio);
26662306a36Sopenharmony_ci#ifdef CONFIG_BLK_CGROUP_IOCOST
26762306a36Sopenharmony_ci	bio->bi_iocost_cost = 0;
26862306a36Sopenharmony_ci#endif
26962306a36Sopenharmony_ci#endif
27062306a36Sopenharmony_ci#ifdef CONFIG_BLK_INLINE_ENCRYPTION
27162306a36Sopenharmony_ci	bio->bi_crypt_context = NULL;
27262306a36Sopenharmony_ci#endif
27362306a36Sopenharmony_ci#ifdef CONFIG_BLK_DEV_INTEGRITY
27462306a36Sopenharmony_ci	bio->bi_integrity = NULL;
27562306a36Sopenharmony_ci#endif
27662306a36Sopenharmony_ci	bio->bi_vcnt = 0;
27762306a36Sopenharmony_ci
27862306a36Sopenharmony_ci	atomic_set(&bio->__bi_remaining, 1);
27962306a36Sopenharmony_ci	atomic_set(&bio->__bi_cnt, 1);
28062306a36Sopenharmony_ci	bio->bi_cookie = BLK_QC_T_NONE;
28162306a36Sopenharmony_ci
28262306a36Sopenharmony_ci	bio->bi_max_vecs = max_vecs;
28362306a36Sopenharmony_ci	bio->bi_io_vec = table;
28462306a36Sopenharmony_ci	bio->bi_pool = NULL;
28562306a36Sopenharmony_ci}
28662306a36Sopenharmony_ciEXPORT_SYMBOL(bio_init);
28762306a36Sopenharmony_ci
28862306a36Sopenharmony_ci/**
28962306a36Sopenharmony_ci * bio_reset - reinitialize a bio
29062306a36Sopenharmony_ci * @bio:	bio to reset
29162306a36Sopenharmony_ci * @bdev:	block device to use the bio for
29262306a36Sopenharmony_ci * @opf:	operation and flags for bio
29362306a36Sopenharmony_ci *
29462306a36Sopenharmony_ci * Description:
29562306a36Sopenharmony_ci *   After calling bio_reset(), @bio will be in the same state as a freshly
29662306a36Sopenharmony_ci *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
29762306a36Sopenharmony_ci *   preserved are the ones that are initialized by bio_alloc_bioset(). See
29862306a36Sopenharmony_ci *   comment in struct bio.
29962306a36Sopenharmony_ci */
30062306a36Sopenharmony_civoid bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
30162306a36Sopenharmony_ci{
30262306a36Sopenharmony_ci	bio_uninit(bio);
30362306a36Sopenharmony_ci	memset(bio, 0, BIO_RESET_BYTES);
30462306a36Sopenharmony_ci	atomic_set(&bio->__bi_remaining, 1);
30562306a36Sopenharmony_ci	bio->bi_bdev = bdev;
30662306a36Sopenharmony_ci	if (bio->bi_bdev)
30762306a36Sopenharmony_ci		bio_associate_blkg(bio);
30862306a36Sopenharmony_ci	bio->bi_opf = opf;
30962306a36Sopenharmony_ci}
31062306a36Sopenharmony_ciEXPORT_SYMBOL(bio_reset);
31162306a36Sopenharmony_ci
31262306a36Sopenharmony_cistatic struct bio *__bio_chain_endio(struct bio *bio)
31362306a36Sopenharmony_ci{
31462306a36Sopenharmony_ci	struct bio *parent = bio->bi_private;
31562306a36Sopenharmony_ci
31662306a36Sopenharmony_ci	if (bio->bi_status && !parent->bi_status)
31762306a36Sopenharmony_ci		parent->bi_status = bio->bi_status;
31862306a36Sopenharmony_ci	bio_put(bio);
31962306a36Sopenharmony_ci	return parent;
32062306a36Sopenharmony_ci}
32162306a36Sopenharmony_ci
32262306a36Sopenharmony_cistatic void bio_chain_endio(struct bio *bio)
32362306a36Sopenharmony_ci{
32462306a36Sopenharmony_ci	bio_endio(__bio_chain_endio(bio));
32562306a36Sopenharmony_ci}
32662306a36Sopenharmony_ci
32762306a36Sopenharmony_ci/**
32862306a36Sopenharmony_ci * bio_chain - chain bio completions
32962306a36Sopenharmony_ci * @bio: the target bio
33062306a36Sopenharmony_ci * @parent: the parent bio of @bio
33162306a36Sopenharmony_ci *
33262306a36Sopenharmony_ci * The caller won't have a bi_end_io called when @bio completes - instead,
33362306a36Sopenharmony_ci * @parent's bi_end_io won't be called until both @parent and @bio have
33462306a36Sopenharmony_ci * completed; the chained bio will also be freed when it completes.
33562306a36Sopenharmony_ci *
33662306a36Sopenharmony_ci * The caller must not set bi_private or bi_end_io in @bio.
33762306a36Sopenharmony_ci */
33862306a36Sopenharmony_civoid bio_chain(struct bio *bio, struct bio *parent)
33962306a36Sopenharmony_ci{
34062306a36Sopenharmony_ci	BUG_ON(bio->bi_private || bio->bi_end_io);
34162306a36Sopenharmony_ci
34262306a36Sopenharmony_ci	bio->bi_private = parent;
34362306a36Sopenharmony_ci	bio->bi_end_io	= bio_chain_endio;
34462306a36Sopenharmony_ci	bio_inc_remaining(parent);
34562306a36Sopenharmony_ci}
34662306a36Sopenharmony_ciEXPORT_SYMBOL(bio_chain);
34762306a36Sopenharmony_ci
34862306a36Sopenharmony_cistruct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
34962306a36Sopenharmony_ci		unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
35062306a36Sopenharmony_ci{
35162306a36Sopenharmony_ci	struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
35262306a36Sopenharmony_ci
35362306a36Sopenharmony_ci	if (bio) {
35462306a36Sopenharmony_ci		bio_chain(bio, new);
35562306a36Sopenharmony_ci		submit_bio(bio);
35662306a36Sopenharmony_ci	}
35762306a36Sopenharmony_ci
35862306a36Sopenharmony_ci	return new;
35962306a36Sopenharmony_ci}
36062306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(blk_next_bio);
36162306a36Sopenharmony_ci
36262306a36Sopenharmony_cistatic void bio_alloc_rescue(struct work_struct *work)
36362306a36Sopenharmony_ci{
36462306a36Sopenharmony_ci	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
36562306a36Sopenharmony_ci	struct bio *bio;
36662306a36Sopenharmony_ci
36762306a36Sopenharmony_ci	while (1) {
36862306a36Sopenharmony_ci		spin_lock(&bs->rescue_lock);
36962306a36Sopenharmony_ci		bio = bio_list_pop(&bs->rescue_list);
37062306a36Sopenharmony_ci		spin_unlock(&bs->rescue_lock);
37162306a36Sopenharmony_ci
37262306a36Sopenharmony_ci		if (!bio)
37362306a36Sopenharmony_ci			break;
37462306a36Sopenharmony_ci
37562306a36Sopenharmony_ci		submit_bio_noacct(bio);
37662306a36Sopenharmony_ci	}
37762306a36Sopenharmony_ci}
37862306a36Sopenharmony_ci
37962306a36Sopenharmony_cistatic void punt_bios_to_rescuer(struct bio_set *bs)
38062306a36Sopenharmony_ci{
38162306a36Sopenharmony_ci	struct bio_list punt, nopunt;
38262306a36Sopenharmony_ci	struct bio *bio;
38362306a36Sopenharmony_ci
38462306a36Sopenharmony_ci	if (WARN_ON_ONCE(!bs->rescue_workqueue))
38562306a36Sopenharmony_ci		return;
38662306a36Sopenharmony_ci	/*
38762306a36Sopenharmony_ci	 * In order to guarantee forward progress we must punt only bios that
38862306a36Sopenharmony_ci	 * were allocated from this bio_set; otherwise, if there was a bio on
38962306a36Sopenharmony_ci	 * there for a stacking driver higher up in the stack, processing it
39062306a36Sopenharmony_ci	 * could require allocating bios from this bio_set, and doing that from
39162306a36Sopenharmony_ci	 * our own rescuer would be bad.
39262306a36Sopenharmony_ci	 *
39362306a36Sopenharmony_ci	 * Since bio lists are singly linked, pop them all instead of trying to
39462306a36Sopenharmony_ci	 * remove from the middle of the list:
39562306a36Sopenharmony_ci	 */
39662306a36Sopenharmony_ci
39762306a36Sopenharmony_ci	bio_list_init(&punt);
39862306a36Sopenharmony_ci	bio_list_init(&nopunt);
39962306a36Sopenharmony_ci
40062306a36Sopenharmony_ci	while ((bio = bio_list_pop(&current->bio_list[0])))
40162306a36Sopenharmony_ci		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
40262306a36Sopenharmony_ci	current->bio_list[0] = nopunt;
40362306a36Sopenharmony_ci
40462306a36Sopenharmony_ci	bio_list_init(&nopunt);
40562306a36Sopenharmony_ci	while ((bio = bio_list_pop(&current->bio_list[1])))
40662306a36Sopenharmony_ci		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
40762306a36Sopenharmony_ci	current->bio_list[1] = nopunt;
40862306a36Sopenharmony_ci
40962306a36Sopenharmony_ci	spin_lock(&bs->rescue_lock);
41062306a36Sopenharmony_ci	bio_list_merge(&bs->rescue_list, &punt);
41162306a36Sopenharmony_ci	spin_unlock(&bs->rescue_lock);
41262306a36Sopenharmony_ci
41362306a36Sopenharmony_ci	queue_work(bs->rescue_workqueue, &bs->rescue_work);
41462306a36Sopenharmony_ci}
41562306a36Sopenharmony_ci
41662306a36Sopenharmony_cistatic void bio_alloc_irq_cache_splice(struct bio_alloc_cache *cache)
41762306a36Sopenharmony_ci{
41862306a36Sopenharmony_ci	unsigned long flags;
41962306a36Sopenharmony_ci
42062306a36Sopenharmony_ci	/* cache->free_list must be empty */
42162306a36Sopenharmony_ci	if (WARN_ON_ONCE(cache->free_list))
42262306a36Sopenharmony_ci		return;
42362306a36Sopenharmony_ci
42462306a36Sopenharmony_ci	local_irq_save(flags);
42562306a36Sopenharmony_ci	cache->free_list = cache->free_list_irq;
42662306a36Sopenharmony_ci	cache->free_list_irq = NULL;
42762306a36Sopenharmony_ci	cache->nr += cache->nr_irq;
42862306a36Sopenharmony_ci	cache->nr_irq = 0;
42962306a36Sopenharmony_ci	local_irq_restore(flags);
43062306a36Sopenharmony_ci}
43162306a36Sopenharmony_ci
43262306a36Sopenharmony_cistatic struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
43362306a36Sopenharmony_ci		unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
43462306a36Sopenharmony_ci		struct bio_set *bs)
43562306a36Sopenharmony_ci{
43662306a36Sopenharmony_ci	struct bio_alloc_cache *cache;
43762306a36Sopenharmony_ci	struct bio *bio;
43862306a36Sopenharmony_ci
43962306a36Sopenharmony_ci	cache = per_cpu_ptr(bs->cache, get_cpu());
44062306a36Sopenharmony_ci	if (!cache->free_list) {
44162306a36Sopenharmony_ci		if (READ_ONCE(cache->nr_irq) >= ALLOC_CACHE_THRESHOLD)
44262306a36Sopenharmony_ci			bio_alloc_irq_cache_splice(cache);
44362306a36Sopenharmony_ci		if (!cache->free_list) {
44462306a36Sopenharmony_ci			put_cpu();
44562306a36Sopenharmony_ci			return NULL;
44662306a36Sopenharmony_ci		}
44762306a36Sopenharmony_ci	}
44862306a36Sopenharmony_ci	bio = cache->free_list;
44962306a36Sopenharmony_ci	cache->free_list = bio->bi_next;
45062306a36Sopenharmony_ci	cache->nr--;
45162306a36Sopenharmony_ci	put_cpu();
45262306a36Sopenharmony_ci
45362306a36Sopenharmony_ci	bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
45462306a36Sopenharmony_ci	bio->bi_pool = bs;
45562306a36Sopenharmony_ci	return bio;
45662306a36Sopenharmony_ci}
45762306a36Sopenharmony_ci
45862306a36Sopenharmony_ci/**
45962306a36Sopenharmony_ci * bio_alloc_bioset - allocate a bio for I/O
46062306a36Sopenharmony_ci * @bdev:	block device to allocate the bio for (can be %NULL)
46162306a36Sopenharmony_ci * @nr_vecs:	number of bvecs to pre-allocate
46262306a36Sopenharmony_ci * @opf:	operation and flags for bio
46362306a36Sopenharmony_ci * @gfp_mask:   the GFP_* mask given to the slab allocator
46462306a36Sopenharmony_ci * @bs:		the bio_set to allocate from.
46562306a36Sopenharmony_ci *
46662306a36Sopenharmony_ci * Allocate a bio from the mempools in @bs.
46762306a36Sopenharmony_ci *
46862306a36Sopenharmony_ci * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
46962306a36Sopenharmony_ci * allocate a bio.  This is due to the mempool guarantees.  To make this work,
47062306a36Sopenharmony_ci * callers must never allocate more than 1 bio at a time from the general pool.
47162306a36Sopenharmony_ci * Callers that need to allocate more than 1 bio must always submit the
47262306a36Sopenharmony_ci * previously allocated bio for IO before attempting to allocate a new one.
47362306a36Sopenharmony_ci * Failure to do so can cause deadlocks under memory pressure.
47462306a36Sopenharmony_ci *
47562306a36Sopenharmony_ci * Note that when running under submit_bio_noacct() (i.e. any block driver),
47662306a36Sopenharmony_ci * bios are not submitted until after you return - see the code in
47762306a36Sopenharmony_ci * submit_bio_noacct() that converts recursion into iteration, to prevent
47862306a36Sopenharmony_ci * stack overflows.
47962306a36Sopenharmony_ci *
48062306a36Sopenharmony_ci * This would normally mean allocating multiple bios under submit_bio_noacct()
48162306a36Sopenharmony_ci * would be susceptible to deadlocks, but we have
48262306a36Sopenharmony_ci * deadlock avoidance code that resubmits any blocked bios from a rescuer
48362306a36Sopenharmony_ci * thread.
48462306a36Sopenharmony_ci *
48562306a36Sopenharmony_ci * However, we do not guarantee forward progress for allocations from other
48662306a36Sopenharmony_ci * mempools. Doing multiple allocations from the same mempool under
48762306a36Sopenharmony_ci * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
48862306a36Sopenharmony_ci * for per bio allocations.
48962306a36Sopenharmony_ci *
49062306a36Sopenharmony_ci * Returns: Pointer to new bio on success, NULL on failure.
49162306a36Sopenharmony_ci */
49262306a36Sopenharmony_cistruct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
49362306a36Sopenharmony_ci			     blk_opf_t opf, gfp_t gfp_mask,
49462306a36Sopenharmony_ci			     struct bio_set *bs)
49562306a36Sopenharmony_ci{
49662306a36Sopenharmony_ci	gfp_t saved_gfp = gfp_mask;
49762306a36Sopenharmony_ci	struct bio *bio;
49862306a36Sopenharmony_ci	void *p;
49962306a36Sopenharmony_ci
50062306a36Sopenharmony_ci	/* should not use nobvec bioset for nr_vecs > 0 */
50162306a36Sopenharmony_ci	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
50262306a36Sopenharmony_ci		return NULL;
50362306a36Sopenharmony_ci
50462306a36Sopenharmony_ci	if (opf & REQ_ALLOC_CACHE) {
50562306a36Sopenharmony_ci		if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
50662306a36Sopenharmony_ci			bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
50762306a36Sopenharmony_ci						     gfp_mask, bs);
50862306a36Sopenharmony_ci			if (bio)
50962306a36Sopenharmony_ci				return bio;
51062306a36Sopenharmony_ci			/*
51162306a36Sopenharmony_ci			 * No cached bio available, bio returned below marked with
51262306a36Sopenharmony_ci			 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
51362306a36Sopenharmony_ci			 */
51462306a36Sopenharmony_ci		} else {
51562306a36Sopenharmony_ci			opf &= ~REQ_ALLOC_CACHE;
51662306a36Sopenharmony_ci		}
51762306a36Sopenharmony_ci	}
51862306a36Sopenharmony_ci
51962306a36Sopenharmony_ci	/*
52062306a36Sopenharmony_ci	 * submit_bio_noacct() converts recursion to iteration; this means if
52162306a36Sopenharmony_ci	 * we're running beneath it, any bios we allocate and submit will not be
52262306a36Sopenharmony_ci	 * submitted (and thus freed) until after we return.
52362306a36Sopenharmony_ci	 *
52462306a36Sopenharmony_ci	 * This exposes us to a potential deadlock if we allocate multiple bios
52562306a36Sopenharmony_ci	 * from the same bio_set() while running underneath submit_bio_noacct().
52662306a36Sopenharmony_ci	 * If we were to allocate multiple bios (say a stacking block driver
52762306a36Sopenharmony_ci	 * that was splitting bios), we would deadlock if we exhausted the
52862306a36Sopenharmony_ci	 * mempool's reserve.
52962306a36Sopenharmony_ci	 *
53062306a36Sopenharmony_ci	 * We solve this, and guarantee forward progress, with a rescuer
53162306a36Sopenharmony_ci	 * workqueue per bio_set. If we go to allocate and there are bios on
53262306a36Sopenharmony_ci	 * current->bio_list, we first try the allocation without
53362306a36Sopenharmony_ci	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
53462306a36Sopenharmony_ci	 * blocking to the rescuer workqueue before we retry with the original
53562306a36Sopenharmony_ci	 * gfp_flags.
53662306a36Sopenharmony_ci	 */
53762306a36Sopenharmony_ci	if (current->bio_list &&
53862306a36Sopenharmony_ci	    (!bio_list_empty(&current->bio_list[0]) ||
53962306a36Sopenharmony_ci	     !bio_list_empty(&current->bio_list[1])) &&
54062306a36Sopenharmony_ci	    bs->rescue_workqueue)
54162306a36Sopenharmony_ci		gfp_mask &= ~__GFP_DIRECT_RECLAIM;
54262306a36Sopenharmony_ci
54362306a36Sopenharmony_ci	p = mempool_alloc(&bs->bio_pool, gfp_mask);
54462306a36Sopenharmony_ci	if (!p && gfp_mask != saved_gfp) {
54562306a36Sopenharmony_ci		punt_bios_to_rescuer(bs);
54662306a36Sopenharmony_ci		gfp_mask = saved_gfp;
54762306a36Sopenharmony_ci		p = mempool_alloc(&bs->bio_pool, gfp_mask);
54862306a36Sopenharmony_ci	}
54962306a36Sopenharmony_ci	if (unlikely(!p))
55062306a36Sopenharmony_ci		return NULL;
55162306a36Sopenharmony_ci	if (!mempool_is_saturated(&bs->bio_pool))
55262306a36Sopenharmony_ci		opf &= ~REQ_ALLOC_CACHE;
55362306a36Sopenharmony_ci
55462306a36Sopenharmony_ci	bio = p + bs->front_pad;
55562306a36Sopenharmony_ci	if (nr_vecs > BIO_INLINE_VECS) {
55662306a36Sopenharmony_ci		struct bio_vec *bvl = NULL;
55762306a36Sopenharmony_ci
55862306a36Sopenharmony_ci		bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
55962306a36Sopenharmony_ci		if (!bvl && gfp_mask != saved_gfp) {
56062306a36Sopenharmony_ci			punt_bios_to_rescuer(bs);
56162306a36Sopenharmony_ci			gfp_mask = saved_gfp;
56262306a36Sopenharmony_ci			bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
56362306a36Sopenharmony_ci		}
56462306a36Sopenharmony_ci		if (unlikely(!bvl))
56562306a36Sopenharmony_ci			goto err_free;
56662306a36Sopenharmony_ci
56762306a36Sopenharmony_ci		bio_init(bio, bdev, bvl, nr_vecs, opf);
56862306a36Sopenharmony_ci	} else if (nr_vecs) {
56962306a36Sopenharmony_ci		bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
57062306a36Sopenharmony_ci	} else {
57162306a36Sopenharmony_ci		bio_init(bio, bdev, NULL, 0, opf);
57262306a36Sopenharmony_ci	}
57362306a36Sopenharmony_ci
57462306a36Sopenharmony_ci	bio->bi_pool = bs;
57562306a36Sopenharmony_ci	return bio;
57662306a36Sopenharmony_ci
57762306a36Sopenharmony_cierr_free:
57862306a36Sopenharmony_ci	mempool_free(p, &bs->bio_pool);
57962306a36Sopenharmony_ci	return NULL;
58062306a36Sopenharmony_ci}
58162306a36Sopenharmony_ciEXPORT_SYMBOL(bio_alloc_bioset);
58262306a36Sopenharmony_ci
58362306a36Sopenharmony_ci/**
58462306a36Sopenharmony_ci * bio_kmalloc - kmalloc a bio
58562306a36Sopenharmony_ci * @nr_vecs:	number of bio_vecs to allocate
58662306a36Sopenharmony_ci * @gfp_mask:   the GFP_* mask given to the slab allocator
58762306a36Sopenharmony_ci *
58862306a36Sopenharmony_ci * Use kmalloc to allocate a bio (including bvecs).  The bio must be initialized
58962306a36Sopenharmony_ci * using bio_init() before use.  To free a bio returned from this function use
59062306a36Sopenharmony_ci * kfree() after calling bio_uninit().  A bio returned from this function can
59162306a36Sopenharmony_ci * be reused by calling bio_uninit() before calling bio_init() again.
59262306a36Sopenharmony_ci *
59362306a36Sopenharmony_ci * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
59462306a36Sopenharmony_ci * function are not backed by a mempool can fail.  Do not use this function
59562306a36Sopenharmony_ci * for allocations in the file system I/O path.
59662306a36Sopenharmony_ci *
59762306a36Sopenharmony_ci * Returns: Pointer to new bio on success, NULL on failure.
59862306a36Sopenharmony_ci */
59962306a36Sopenharmony_cistruct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
60062306a36Sopenharmony_ci{
60162306a36Sopenharmony_ci	struct bio *bio;
60262306a36Sopenharmony_ci
60362306a36Sopenharmony_ci	if (nr_vecs > UIO_MAXIOV)
60462306a36Sopenharmony_ci		return NULL;
60562306a36Sopenharmony_ci	return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
60662306a36Sopenharmony_ci}
60762306a36Sopenharmony_ciEXPORT_SYMBOL(bio_kmalloc);
60862306a36Sopenharmony_ci
60962306a36Sopenharmony_civoid zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
61062306a36Sopenharmony_ci{
61162306a36Sopenharmony_ci	struct bio_vec bv;
61262306a36Sopenharmony_ci	struct bvec_iter iter;
61362306a36Sopenharmony_ci
61462306a36Sopenharmony_ci	__bio_for_each_segment(bv, bio, iter, start)
61562306a36Sopenharmony_ci		memzero_bvec(&bv);
61662306a36Sopenharmony_ci}
61762306a36Sopenharmony_ciEXPORT_SYMBOL(zero_fill_bio_iter);
61862306a36Sopenharmony_ci
61962306a36Sopenharmony_ci/**
62062306a36Sopenharmony_ci * bio_truncate - truncate the bio to small size of @new_size
62162306a36Sopenharmony_ci * @bio:	the bio to be truncated
62262306a36Sopenharmony_ci * @new_size:	new size for truncating the bio
62362306a36Sopenharmony_ci *
62462306a36Sopenharmony_ci * Description:
62562306a36Sopenharmony_ci *   Truncate the bio to new size of @new_size. If bio_op(bio) is
62662306a36Sopenharmony_ci *   REQ_OP_READ, zero the truncated part. This function should only
62762306a36Sopenharmony_ci *   be used for handling corner cases, such as bio eod.
62862306a36Sopenharmony_ci */
62962306a36Sopenharmony_cistatic void bio_truncate(struct bio *bio, unsigned new_size)
63062306a36Sopenharmony_ci{
63162306a36Sopenharmony_ci	struct bio_vec bv;
63262306a36Sopenharmony_ci	struct bvec_iter iter;
63362306a36Sopenharmony_ci	unsigned int done = 0;
63462306a36Sopenharmony_ci	bool truncated = false;
63562306a36Sopenharmony_ci
63662306a36Sopenharmony_ci	if (new_size >= bio->bi_iter.bi_size)
63762306a36Sopenharmony_ci		return;
63862306a36Sopenharmony_ci
63962306a36Sopenharmony_ci	if (bio_op(bio) != REQ_OP_READ)
64062306a36Sopenharmony_ci		goto exit;
64162306a36Sopenharmony_ci
64262306a36Sopenharmony_ci	bio_for_each_segment(bv, bio, iter) {
64362306a36Sopenharmony_ci		if (done + bv.bv_len > new_size) {
64462306a36Sopenharmony_ci			unsigned offset;
64562306a36Sopenharmony_ci
64662306a36Sopenharmony_ci			if (!truncated)
64762306a36Sopenharmony_ci				offset = new_size - done;
64862306a36Sopenharmony_ci			else
64962306a36Sopenharmony_ci				offset = 0;
65062306a36Sopenharmony_ci			zero_user(bv.bv_page, bv.bv_offset + offset,
65162306a36Sopenharmony_ci				  bv.bv_len - offset);
65262306a36Sopenharmony_ci			truncated = true;
65362306a36Sopenharmony_ci		}
65462306a36Sopenharmony_ci		done += bv.bv_len;
65562306a36Sopenharmony_ci	}
65662306a36Sopenharmony_ci
65762306a36Sopenharmony_ci exit:
65862306a36Sopenharmony_ci	/*
65962306a36Sopenharmony_ci	 * Don't touch bvec table here and make it really immutable, since
66062306a36Sopenharmony_ci	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
66162306a36Sopenharmony_ci	 * in its .end_bio() callback.
66262306a36Sopenharmony_ci	 *
66362306a36Sopenharmony_ci	 * It is enough to truncate bio by updating .bi_size since we can make
66462306a36Sopenharmony_ci	 * correct bvec with the updated .bi_size for drivers.
66562306a36Sopenharmony_ci	 */
66662306a36Sopenharmony_ci	bio->bi_iter.bi_size = new_size;
66762306a36Sopenharmony_ci}
66862306a36Sopenharmony_ci
66962306a36Sopenharmony_ci/**
67062306a36Sopenharmony_ci * guard_bio_eod - truncate a BIO to fit the block device
67162306a36Sopenharmony_ci * @bio:	bio to truncate
67262306a36Sopenharmony_ci *
67362306a36Sopenharmony_ci * This allows us to do IO even on the odd last sectors of a device, even if the
67462306a36Sopenharmony_ci * block size is some multiple of the physical sector size.
67562306a36Sopenharmony_ci *
67662306a36Sopenharmony_ci * We'll just truncate the bio to the size of the device, and clear the end of
67762306a36Sopenharmony_ci * the buffer head manually.  Truly out-of-range accesses will turn into actual
67862306a36Sopenharmony_ci * I/O errors, this only handles the "we need to be able to do I/O at the final
67962306a36Sopenharmony_ci * sector" case.
68062306a36Sopenharmony_ci */
68162306a36Sopenharmony_civoid guard_bio_eod(struct bio *bio)
68262306a36Sopenharmony_ci{
68362306a36Sopenharmony_ci	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
68462306a36Sopenharmony_ci
68562306a36Sopenharmony_ci	if (!maxsector)
68662306a36Sopenharmony_ci		return;
68762306a36Sopenharmony_ci
68862306a36Sopenharmony_ci	/*
68962306a36Sopenharmony_ci	 * If the *whole* IO is past the end of the device,
69062306a36Sopenharmony_ci	 * let it through, and the IO layer will turn it into
69162306a36Sopenharmony_ci	 * an EIO.
69262306a36Sopenharmony_ci	 */
69362306a36Sopenharmony_ci	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
69462306a36Sopenharmony_ci		return;
69562306a36Sopenharmony_ci
69662306a36Sopenharmony_ci	maxsector -= bio->bi_iter.bi_sector;
69762306a36Sopenharmony_ci	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
69862306a36Sopenharmony_ci		return;
69962306a36Sopenharmony_ci
70062306a36Sopenharmony_ci	bio_truncate(bio, maxsector << 9);
70162306a36Sopenharmony_ci}
70262306a36Sopenharmony_ci
70362306a36Sopenharmony_cistatic int __bio_alloc_cache_prune(struct bio_alloc_cache *cache,
70462306a36Sopenharmony_ci				   unsigned int nr)
70562306a36Sopenharmony_ci{
70662306a36Sopenharmony_ci	unsigned int i = 0;
70762306a36Sopenharmony_ci	struct bio *bio;
70862306a36Sopenharmony_ci
70962306a36Sopenharmony_ci	while ((bio = cache->free_list) != NULL) {
71062306a36Sopenharmony_ci		cache->free_list = bio->bi_next;
71162306a36Sopenharmony_ci		cache->nr--;
71262306a36Sopenharmony_ci		bio_free(bio);
71362306a36Sopenharmony_ci		if (++i == nr)
71462306a36Sopenharmony_ci			break;
71562306a36Sopenharmony_ci	}
71662306a36Sopenharmony_ci	return i;
71762306a36Sopenharmony_ci}
71862306a36Sopenharmony_ci
71962306a36Sopenharmony_cistatic void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
72062306a36Sopenharmony_ci				  unsigned int nr)
72162306a36Sopenharmony_ci{
72262306a36Sopenharmony_ci	nr -= __bio_alloc_cache_prune(cache, nr);
72362306a36Sopenharmony_ci	if (!READ_ONCE(cache->free_list)) {
72462306a36Sopenharmony_ci		bio_alloc_irq_cache_splice(cache);
72562306a36Sopenharmony_ci		__bio_alloc_cache_prune(cache, nr);
72662306a36Sopenharmony_ci	}
72762306a36Sopenharmony_ci}
72862306a36Sopenharmony_ci
72962306a36Sopenharmony_cistatic int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
73062306a36Sopenharmony_ci{
73162306a36Sopenharmony_ci	struct bio_set *bs;
73262306a36Sopenharmony_ci
73362306a36Sopenharmony_ci	bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
73462306a36Sopenharmony_ci	if (bs->cache) {
73562306a36Sopenharmony_ci		struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
73662306a36Sopenharmony_ci
73762306a36Sopenharmony_ci		bio_alloc_cache_prune(cache, -1U);
73862306a36Sopenharmony_ci	}
73962306a36Sopenharmony_ci	return 0;
74062306a36Sopenharmony_ci}
74162306a36Sopenharmony_ci
74262306a36Sopenharmony_cistatic void bio_alloc_cache_destroy(struct bio_set *bs)
74362306a36Sopenharmony_ci{
74462306a36Sopenharmony_ci	int cpu;
74562306a36Sopenharmony_ci
74662306a36Sopenharmony_ci	if (!bs->cache)
74762306a36Sopenharmony_ci		return;
74862306a36Sopenharmony_ci
74962306a36Sopenharmony_ci	cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
75062306a36Sopenharmony_ci	for_each_possible_cpu(cpu) {
75162306a36Sopenharmony_ci		struct bio_alloc_cache *cache;
75262306a36Sopenharmony_ci
75362306a36Sopenharmony_ci		cache = per_cpu_ptr(bs->cache, cpu);
75462306a36Sopenharmony_ci		bio_alloc_cache_prune(cache, -1U);
75562306a36Sopenharmony_ci	}
75662306a36Sopenharmony_ci	free_percpu(bs->cache);
75762306a36Sopenharmony_ci	bs->cache = NULL;
75862306a36Sopenharmony_ci}
75962306a36Sopenharmony_ci
76062306a36Sopenharmony_cistatic inline void bio_put_percpu_cache(struct bio *bio)
76162306a36Sopenharmony_ci{
76262306a36Sopenharmony_ci	struct bio_alloc_cache *cache;
76362306a36Sopenharmony_ci
76462306a36Sopenharmony_ci	cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
76562306a36Sopenharmony_ci	if (READ_ONCE(cache->nr_irq) + cache->nr > ALLOC_CACHE_MAX) {
76662306a36Sopenharmony_ci		put_cpu();
76762306a36Sopenharmony_ci		bio_free(bio);
76862306a36Sopenharmony_ci		return;
76962306a36Sopenharmony_ci	}
77062306a36Sopenharmony_ci
77162306a36Sopenharmony_ci	bio_uninit(bio);
77262306a36Sopenharmony_ci
77362306a36Sopenharmony_ci	if ((bio->bi_opf & REQ_POLLED) && !WARN_ON_ONCE(in_interrupt())) {
77462306a36Sopenharmony_ci		bio->bi_next = cache->free_list;
77562306a36Sopenharmony_ci		bio->bi_bdev = NULL;
77662306a36Sopenharmony_ci		cache->free_list = bio;
77762306a36Sopenharmony_ci		cache->nr++;
77862306a36Sopenharmony_ci	} else {
77962306a36Sopenharmony_ci		unsigned long flags;
78062306a36Sopenharmony_ci
78162306a36Sopenharmony_ci		local_irq_save(flags);
78262306a36Sopenharmony_ci		bio->bi_next = cache->free_list_irq;
78362306a36Sopenharmony_ci		cache->free_list_irq = bio;
78462306a36Sopenharmony_ci		cache->nr_irq++;
78562306a36Sopenharmony_ci		local_irq_restore(flags);
78662306a36Sopenharmony_ci	}
78762306a36Sopenharmony_ci	put_cpu();
78862306a36Sopenharmony_ci}
78962306a36Sopenharmony_ci
79062306a36Sopenharmony_ci/**
79162306a36Sopenharmony_ci * bio_put - release a reference to a bio
79262306a36Sopenharmony_ci * @bio:   bio to release reference to
79362306a36Sopenharmony_ci *
79462306a36Sopenharmony_ci * Description:
79562306a36Sopenharmony_ci *   Put a reference to a &struct bio, either one you have gotten with
79662306a36Sopenharmony_ci *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
79762306a36Sopenharmony_ci **/
79862306a36Sopenharmony_civoid bio_put(struct bio *bio)
79962306a36Sopenharmony_ci{
80062306a36Sopenharmony_ci	if (unlikely(bio_flagged(bio, BIO_REFFED))) {
80162306a36Sopenharmony_ci		BUG_ON(!atomic_read(&bio->__bi_cnt));
80262306a36Sopenharmony_ci		if (!atomic_dec_and_test(&bio->__bi_cnt))
80362306a36Sopenharmony_ci			return;
80462306a36Sopenharmony_ci	}
80562306a36Sopenharmony_ci	if (bio->bi_opf & REQ_ALLOC_CACHE)
80662306a36Sopenharmony_ci		bio_put_percpu_cache(bio);
80762306a36Sopenharmony_ci	else
80862306a36Sopenharmony_ci		bio_free(bio);
80962306a36Sopenharmony_ci}
81062306a36Sopenharmony_ciEXPORT_SYMBOL(bio_put);
81162306a36Sopenharmony_ci
81262306a36Sopenharmony_cistatic int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
81362306a36Sopenharmony_ci{
81462306a36Sopenharmony_ci	bio_set_flag(bio, BIO_CLONED);
81562306a36Sopenharmony_ci	bio->bi_ioprio = bio_src->bi_ioprio;
81662306a36Sopenharmony_ci	bio->bi_iter = bio_src->bi_iter;
81762306a36Sopenharmony_ci
81862306a36Sopenharmony_ci	if (bio->bi_bdev) {
81962306a36Sopenharmony_ci		if (bio->bi_bdev == bio_src->bi_bdev &&
82062306a36Sopenharmony_ci		    bio_flagged(bio_src, BIO_REMAPPED))
82162306a36Sopenharmony_ci			bio_set_flag(bio, BIO_REMAPPED);
82262306a36Sopenharmony_ci		bio_clone_blkg_association(bio, bio_src);
82362306a36Sopenharmony_ci	}
82462306a36Sopenharmony_ci
82562306a36Sopenharmony_ci	if (bio_crypt_clone(bio, bio_src, gfp) < 0)
82662306a36Sopenharmony_ci		return -ENOMEM;
82762306a36Sopenharmony_ci	if (bio_integrity(bio_src) &&
82862306a36Sopenharmony_ci	    bio_integrity_clone(bio, bio_src, gfp) < 0)
82962306a36Sopenharmony_ci		return -ENOMEM;
83062306a36Sopenharmony_ci	return 0;
83162306a36Sopenharmony_ci}
83262306a36Sopenharmony_ci
83362306a36Sopenharmony_ci/**
83462306a36Sopenharmony_ci * bio_alloc_clone - clone a bio that shares the original bio's biovec
83562306a36Sopenharmony_ci * @bdev: block_device to clone onto
83662306a36Sopenharmony_ci * @bio_src: bio to clone from
83762306a36Sopenharmony_ci * @gfp: allocation priority
83862306a36Sopenharmony_ci * @bs: bio_set to allocate from
83962306a36Sopenharmony_ci *
84062306a36Sopenharmony_ci * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
84162306a36Sopenharmony_ci * bio, but not the actual data it points to.
84262306a36Sopenharmony_ci *
84362306a36Sopenharmony_ci * The caller must ensure that the return bio is not freed before @bio_src.
84462306a36Sopenharmony_ci */
84562306a36Sopenharmony_cistruct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
84662306a36Sopenharmony_ci		gfp_t gfp, struct bio_set *bs)
84762306a36Sopenharmony_ci{
84862306a36Sopenharmony_ci	struct bio *bio;
84962306a36Sopenharmony_ci
85062306a36Sopenharmony_ci	bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
85162306a36Sopenharmony_ci	if (!bio)
85262306a36Sopenharmony_ci		return NULL;
85362306a36Sopenharmony_ci
85462306a36Sopenharmony_ci	if (__bio_clone(bio, bio_src, gfp) < 0) {
85562306a36Sopenharmony_ci		bio_put(bio);
85662306a36Sopenharmony_ci		return NULL;
85762306a36Sopenharmony_ci	}
85862306a36Sopenharmony_ci	bio->bi_io_vec = bio_src->bi_io_vec;
85962306a36Sopenharmony_ci
86062306a36Sopenharmony_ci	return bio;
86162306a36Sopenharmony_ci}
86262306a36Sopenharmony_ciEXPORT_SYMBOL(bio_alloc_clone);
86362306a36Sopenharmony_ci
86462306a36Sopenharmony_ci/**
86562306a36Sopenharmony_ci * bio_init_clone - clone a bio that shares the original bio's biovec
86662306a36Sopenharmony_ci * @bdev: block_device to clone onto
86762306a36Sopenharmony_ci * @bio: bio to clone into
86862306a36Sopenharmony_ci * @bio_src: bio to clone from
86962306a36Sopenharmony_ci * @gfp: allocation priority
87062306a36Sopenharmony_ci *
87162306a36Sopenharmony_ci * Initialize a new bio in caller provided memory that is a clone of @bio_src.
87262306a36Sopenharmony_ci * The caller owns the returned bio, but not the actual data it points to.
87362306a36Sopenharmony_ci *
87462306a36Sopenharmony_ci * The caller must ensure that @bio_src is not freed before @bio.
87562306a36Sopenharmony_ci */
87662306a36Sopenharmony_ciint bio_init_clone(struct block_device *bdev, struct bio *bio,
87762306a36Sopenharmony_ci		struct bio *bio_src, gfp_t gfp)
87862306a36Sopenharmony_ci{
87962306a36Sopenharmony_ci	int ret;
88062306a36Sopenharmony_ci
88162306a36Sopenharmony_ci	bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
88262306a36Sopenharmony_ci	ret = __bio_clone(bio, bio_src, gfp);
88362306a36Sopenharmony_ci	if (ret)
88462306a36Sopenharmony_ci		bio_uninit(bio);
88562306a36Sopenharmony_ci	return ret;
88662306a36Sopenharmony_ci}
88762306a36Sopenharmony_ciEXPORT_SYMBOL(bio_init_clone);
88862306a36Sopenharmony_ci
88962306a36Sopenharmony_ci/**
89062306a36Sopenharmony_ci * bio_full - check if the bio is full
89162306a36Sopenharmony_ci * @bio:	bio to check
89262306a36Sopenharmony_ci * @len:	length of one segment to be added
89362306a36Sopenharmony_ci *
89462306a36Sopenharmony_ci * Return true if @bio is full and one segment with @len bytes can't be
89562306a36Sopenharmony_ci * added to the bio, otherwise return false
89662306a36Sopenharmony_ci */
89762306a36Sopenharmony_cistatic inline bool bio_full(struct bio *bio, unsigned len)
89862306a36Sopenharmony_ci{
89962306a36Sopenharmony_ci	if (bio->bi_vcnt >= bio->bi_max_vecs)
90062306a36Sopenharmony_ci		return true;
90162306a36Sopenharmony_ci	if (bio->bi_iter.bi_size > UINT_MAX - len)
90262306a36Sopenharmony_ci		return true;
90362306a36Sopenharmony_ci	return false;
90462306a36Sopenharmony_ci}
90562306a36Sopenharmony_ci
90662306a36Sopenharmony_cistatic bool bvec_try_merge_page(struct bio_vec *bv, struct page *page,
90762306a36Sopenharmony_ci		unsigned int len, unsigned int off, bool *same_page)
90862306a36Sopenharmony_ci{
90962306a36Sopenharmony_ci	size_t bv_end = bv->bv_offset + bv->bv_len;
91062306a36Sopenharmony_ci	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
91162306a36Sopenharmony_ci	phys_addr_t page_addr = page_to_phys(page);
91262306a36Sopenharmony_ci
91362306a36Sopenharmony_ci	if (vec_end_addr + 1 != page_addr + off)
91462306a36Sopenharmony_ci		return false;
91562306a36Sopenharmony_ci	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
91662306a36Sopenharmony_ci		return false;
91762306a36Sopenharmony_ci	if (!zone_device_pages_have_same_pgmap(bv->bv_page, page))
91862306a36Sopenharmony_ci		return false;
91962306a36Sopenharmony_ci
92062306a36Sopenharmony_ci	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
92162306a36Sopenharmony_ci	if (!*same_page) {
92262306a36Sopenharmony_ci		if (IS_ENABLED(CONFIG_KMSAN))
92362306a36Sopenharmony_ci			return false;
92462306a36Sopenharmony_ci		if (bv->bv_page + bv_end / PAGE_SIZE != page + off / PAGE_SIZE)
92562306a36Sopenharmony_ci			return false;
92662306a36Sopenharmony_ci	}
92762306a36Sopenharmony_ci
92862306a36Sopenharmony_ci	bv->bv_len += len;
92962306a36Sopenharmony_ci	return true;
93062306a36Sopenharmony_ci}
93162306a36Sopenharmony_ci
93262306a36Sopenharmony_ci/*
93362306a36Sopenharmony_ci * Try to merge a page into a segment, while obeying the hardware segment
93462306a36Sopenharmony_ci * size limit.  This is not for normal read/write bios, but for passthrough
93562306a36Sopenharmony_ci * or Zone Append operations that we can't split.
93662306a36Sopenharmony_ci */
93762306a36Sopenharmony_cibool bvec_try_merge_hw_page(struct request_queue *q, struct bio_vec *bv,
93862306a36Sopenharmony_ci		struct page *page, unsigned len, unsigned offset,
93962306a36Sopenharmony_ci		bool *same_page)
94062306a36Sopenharmony_ci{
94162306a36Sopenharmony_ci	unsigned long mask = queue_segment_boundary(q);
94262306a36Sopenharmony_ci	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
94362306a36Sopenharmony_ci	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
94462306a36Sopenharmony_ci
94562306a36Sopenharmony_ci	if ((addr1 | mask) != (addr2 | mask))
94662306a36Sopenharmony_ci		return false;
94762306a36Sopenharmony_ci	if (len > queue_max_segment_size(q) - bv->bv_len)
94862306a36Sopenharmony_ci		return false;
94962306a36Sopenharmony_ci	return bvec_try_merge_page(bv, page, len, offset, same_page);
95062306a36Sopenharmony_ci}
95162306a36Sopenharmony_ci
95262306a36Sopenharmony_ci/**
95362306a36Sopenharmony_ci * bio_add_hw_page - attempt to add a page to a bio with hw constraints
95462306a36Sopenharmony_ci * @q: the target queue
95562306a36Sopenharmony_ci * @bio: destination bio
95662306a36Sopenharmony_ci * @page: page to add
95762306a36Sopenharmony_ci * @len: vec entry length
95862306a36Sopenharmony_ci * @offset: vec entry offset
95962306a36Sopenharmony_ci * @max_sectors: maximum number of sectors that can be added
96062306a36Sopenharmony_ci * @same_page: return if the segment has been merged inside the same page
96162306a36Sopenharmony_ci *
96262306a36Sopenharmony_ci * Add a page to a bio while respecting the hardware max_sectors, max_segment
96362306a36Sopenharmony_ci * and gap limitations.
96462306a36Sopenharmony_ci */
96562306a36Sopenharmony_ciint bio_add_hw_page(struct request_queue *q, struct bio *bio,
96662306a36Sopenharmony_ci		struct page *page, unsigned int len, unsigned int offset,
96762306a36Sopenharmony_ci		unsigned int max_sectors, bool *same_page)
96862306a36Sopenharmony_ci{
96962306a36Sopenharmony_ci	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
97062306a36Sopenharmony_ci		return 0;
97162306a36Sopenharmony_ci
97262306a36Sopenharmony_ci	if (((bio->bi_iter.bi_size + len) >> SECTOR_SHIFT) > max_sectors)
97362306a36Sopenharmony_ci		return 0;
97462306a36Sopenharmony_ci
97562306a36Sopenharmony_ci	if (bio->bi_vcnt > 0) {
97662306a36Sopenharmony_ci		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
97762306a36Sopenharmony_ci
97862306a36Sopenharmony_ci		if (bvec_try_merge_hw_page(q, bv, page, len, offset,
97962306a36Sopenharmony_ci				same_page)) {
98062306a36Sopenharmony_ci			bio->bi_iter.bi_size += len;
98162306a36Sopenharmony_ci			return len;
98262306a36Sopenharmony_ci		}
98362306a36Sopenharmony_ci
98462306a36Sopenharmony_ci		if (bio->bi_vcnt >=
98562306a36Sopenharmony_ci		    min(bio->bi_max_vecs, queue_max_segments(q)))
98662306a36Sopenharmony_ci			return 0;
98762306a36Sopenharmony_ci
98862306a36Sopenharmony_ci		/*
98962306a36Sopenharmony_ci		 * If the queue doesn't support SG gaps and adding this segment
99062306a36Sopenharmony_ci		 * would create a gap, disallow it.
99162306a36Sopenharmony_ci		 */
99262306a36Sopenharmony_ci		if (bvec_gap_to_prev(&q->limits, bv, offset))
99362306a36Sopenharmony_ci			return 0;
99462306a36Sopenharmony_ci	}
99562306a36Sopenharmony_ci
99662306a36Sopenharmony_ci	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, offset);
99762306a36Sopenharmony_ci	bio->bi_vcnt++;
99862306a36Sopenharmony_ci	bio->bi_iter.bi_size += len;
99962306a36Sopenharmony_ci	return len;
100062306a36Sopenharmony_ci}
100162306a36Sopenharmony_ci
100262306a36Sopenharmony_ci/**
100362306a36Sopenharmony_ci * bio_add_pc_page	- attempt to add page to passthrough bio
100462306a36Sopenharmony_ci * @q: the target queue
100562306a36Sopenharmony_ci * @bio: destination bio
100662306a36Sopenharmony_ci * @page: page to add
100762306a36Sopenharmony_ci * @len: vec entry length
100862306a36Sopenharmony_ci * @offset: vec entry offset
100962306a36Sopenharmony_ci *
101062306a36Sopenharmony_ci * Attempt to add a page to the bio_vec maplist. This can fail for a
101162306a36Sopenharmony_ci * number of reasons, such as the bio being full or target block device
101262306a36Sopenharmony_ci * limitations. The target block device must allow bio's up to PAGE_SIZE,
101362306a36Sopenharmony_ci * so it is always possible to add a single page to an empty bio.
101462306a36Sopenharmony_ci *
101562306a36Sopenharmony_ci * This should only be used by passthrough bios.
101662306a36Sopenharmony_ci */
101762306a36Sopenharmony_ciint bio_add_pc_page(struct request_queue *q, struct bio *bio,
101862306a36Sopenharmony_ci		struct page *page, unsigned int len, unsigned int offset)
101962306a36Sopenharmony_ci{
102062306a36Sopenharmony_ci	bool same_page = false;
102162306a36Sopenharmony_ci	return bio_add_hw_page(q, bio, page, len, offset,
102262306a36Sopenharmony_ci			queue_max_hw_sectors(q), &same_page);
102362306a36Sopenharmony_ci}
102462306a36Sopenharmony_ciEXPORT_SYMBOL(bio_add_pc_page);
102562306a36Sopenharmony_ci
102662306a36Sopenharmony_ci/**
102762306a36Sopenharmony_ci * bio_add_zone_append_page - attempt to add page to zone-append bio
102862306a36Sopenharmony_ci * @bio: destination bio
102962306a36Sopenharmony_ci * @page: page to add
103062306a36Sopenharmony_ci * @len: vec entry length
103162306a36Sopenharmony_ci * @offset: vec entry offset
103262306a36Sopenharmony_ci *
103362306a36Sopenharmony_ci * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
103462306a36Sopenharmony_ci * for a zone-append request. This can fail for a number of reasons, such as the
103562306a36Sopenharmony_ci * bio being full or the target block device is not a zoned block device or
103662306a36Sopenharmony_ci * other limitations of the target block device. The target block device must
103762306a36Sopenharmony_ci * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
103862306a36Sopenharmony_ci * to an empty bio.
103962306a36Sopenharmony_ci *
104062306a36Sopenharmony_ci * Returns: number of bytes added to the bio, or 0 in case of a failure.
104162306a36Sopenharmony_ci */
104262306a36Sopenharmony_ciint bio_add_zone_append_page(struct bio *bio, struct page *page,
104362306a36Sopenharmony_ci			     unsigned int len, unsigned int offset)
104462306a36Sopenharmony_ci{
104562306a36Sopenharmony_ci	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
104662306a36Sopenharmony_ci	bool same_page = false;
104762306a36Sopenharmony_ci
104862306a36Sopenharmony_ci	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
104962306a36Sopenharmony_ci		return 0;
105062306a36Sopenharmony_ci
105162306a36Sopenharmony_ci	if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
105262306a36Sopenharmony_ci		return 0;
105362306a36Sopenharmony_ci
105462306a36Sopenharmony_ci	return bio_add_hw_page(q, bio, page, len, offset,
105562306a36Sopenharmony_ci			       queue_max_zone_append_sectors(q), &same_page);
105662306a36Sopenharmony_ci}
105762306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bio_add_zone_append_page);
105862306a36Sopenharmony_ci
105962306a36Sopenharmony_ci/**
106062306a36Sopenharmony_ci * __bio_add_page - add page(s) to a bio in a new segment
106162306a36Sopenharmony_ci * @bio: destination bio
106262306a36Sopenharmony_ci * @page: start page to add
106362306a36Sopenharmony_ci * @len: length of the data to add, may cross pages
106462306a36Sopenharmony_ci * @off: offset of the data relative to @page, may cross pages
106562306a36Sopenharmony_ci *
106662306a36Sopenharmony_ci * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
106762306a36Sopenharmony_ci * that @bio has space for another bvec.
106862306a36Sopenharmony_ci */
106962306a36Sopenharmony_civoid __bio_add_page(struct bio *bio, struct page *page,
107062306a36Sopenharmony_ci		unsigned int len, unsigned int off)
107162306a36Sopenharmony_ci{
107262306a36Sopenharmony_ci	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
107362306a36Sopenharmony_ci	WARN_ON_ONCE(bio_full(bio, len));
107462306a36Sopenharmony_ci
107562306a36Sopenharmony_ci	bvec_set_page(&bio->bi_io_vec[bio->bi_vcnt], page, len, off);
107662306a36Sopenharmony_ci	bio->bi_iter.bi_size += len;
107762306a36Sopenharmony_ci	bio->bi_vcnt++;
107862306a36Sopenharmony_ci}
107962306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(__bio_add_page);
108062306a36Sopenharmony_ci
108162306a36Sopenharmony_ci/**
108262306a36Sopenharmony_ci *	bio_add_page	-	attempt to add page(s) to bio
108362306a36Sopenharmony_ci *	@bio: destination bio
108462306a36Sopenharmony_ci *	@page: start page to add
108562306a36Sopenharmony_ci *	@len: vec entry length, may cross pages
108662306a36Sopenharmony_ci *	@offset: vec entry offset relative to @page, may cross pages
108762306a36Sopenharmony_ci *
108862306a36Sopenharmony_ci *	Attempt to add page(s) to the bio_vec maplist. This will only fail
108962306a36Sopenharmony_ci *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
109062306a36Sopenharmony_ci */
109162306a36Sopenharmony_ciint bio_add_page(struct bio *bio, struct page *page,
109262306a36Sopenharmony_ci		 unsigned int len, unsigned int offset)
109362306a36Sopenharmony_ci{
109462306a36Sopenharmony_ci	bool same_page = false;
109562306a36Sopenharmony_ci
109662306a36Sopenharmony_ci	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
109762306a36Sopenharmony_ci		return 0;
109862306a36Sopenharmony_ci	if (bio->bi_iter.bi_size > UINT_MAX - len)
109962306a36Sopenharmony_ci		return 0;
110062306a36Sopenharmony_ci
110162306a36Sopenharmony_ci	if (bio->bi_vcnt > 0 &&
110262306a36Sopenharmony_ci	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
110362306a36Sopenharmony_ci				page, len, offset, &same_page)) {
110462306a36Sopenharmony_ci		bio->bi_iter.bi_size += len;
110562306a36Sopenharmony_ci		return len;
110662306a36Sopenharmony_ci	}
110762306a36Sopenharmony_ci
110862306a36Sopenharmony_ci	if (bio->bi_vcnt >= bio->bi_max_vecs)
110962306a36Sopenharmony_ci		return 0;
111062306a36Sopenharmony_ci	__bio_add_page(bio, page, len, offset);
111162306a36Sopenharmony_ci	return len;
111262306a36Sopenharmony_ci}
111362306a36Sopenharmony_ciEXPORT_SYMBOL(bio_add_page);
111462306a36Sopenharmony_ci
111562306a36Sopenharmony_civoid bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
111662306a36Sopenharmony_ci			  size_t off)
111762306a36Sopenharmony_ci{
111862306a36Sopenharmony_ci	WARN_ON_ONCE(len > UINT_MAX);
111962306a36Sopenharmony_ci	WARN_ON_ONCE(off > UINT_MAX);
112062306a36Sopenharmony_ci	__bio_add_page(bio, &folio->page, len, off);
112162306a36Sopenharmony_ci}
112262306a36Sopenharmony_ci
112362306a36Sopenharmony_ci/**
112462306a36Sopenharmony_ci * bio_add_folio - Attempt to add part of a folio to a bio.
112562306a36Sopenharmony_ci * @bio: BIO to add to.
112662306a36Sopenharmony_ci * @folio: Folio to add.
112762306a36Sopenharmony_ci * @len: How many bytes from the folio to add.
112862306a36Sopenharmony_ci * @off: First byte in this folio to add.
112962306a36Sopenharmony_ci *
113062306a36Sopenharmony_ci * Filesystems that use folios can call this function instead of calling
113162306a36Sopenharmony_ci * bio_add_page() for each page in the folio.  If @off is bigger than
113262306a36Sopenharmony_ci * PAGE_SIZE, this function can create a bio_vec that starts in a page
113362306a36Sopenharmony_ci * after the bv_page.  BIOs do not support folios that are 4GiB or larger.
113462306a36Sopenharmony_ci *
113562306a36Sopenharmony_ci * Return: Whether the addition was successful.
113662306a36Sopenharmony_ci */
113762306a36Sopenharmony_cibool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
113862306a36Sopenharmony_ci		   size_t off)
113962306a36Sopenharmony_ci{
114062306a36Sopenharmony_ci	if (len > UINT_MAX || off > UINT_MAX)
114162306a36Sopenharmony_ci		return false;
114262306a36Sopenharmony_ci	return bio_add_page(bio, &folio->page, len, off) > 0;
114362306a36Sopenharmony_ci}
114462306a36Sopenharmony_ciEXPORT_SYMBOL(bio_add_folio);
114562306a36Sopenharmony_ci
114662306a36Sopenharmony_civoid __bio_release_pages(struct bio *bio, bool mark_dirty)
114762306a36Sopenharmony_ci{
114862306a36Sopenharmony_ci	struct folio_iter fi;
114962306a36Sopenharmony_ci
115062306a36Sopenharmony_ci	bio_for_each_folio_all(fi, bio) {
115162306a36Sopenharmony_ci		struct page *page;
115262306a36Sopenharmony_ci		size_t nr_pages;
115362306a36Sopenharmony_ci
115462306a36Sopenharmony_ci		if (mark_dirty) {
115562306a36Sopenharmony_ci			folio_lock(fi.folio);
115662306a36Sopenharmony_ci			folio_mark_dirty(fi.folio);
115762306a36Sopenharmony_ci			folio_unlock(fi.folio);
115862306a36Sopenharmony_ci		}
115962306a36Sopenharmony_ci		page = folio_page(fi.folio, fi.offset / PAGE_SIZE);
116062306a36Sopenharmony_ci		nr_pages = (fi.offset + fi.length - 1) / PAGE_SIZE -
116162306a36Sopenharmony_ci			   fi.offset / PAGE_SIZE + 1;
116262306a36Sopenharmony_ci		do {
116362306a36Sopenharmony_ci			bio_release_page(bio, page++);
116462306a36Sopenharmony_ci		} while (--nr_pages != 0);
116562306a36Sopenharmony_ci	}
116662306a36Sopenharmony_ci}
116762306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(__bio_release_pages);
116862306a36Sopenharmony_ci
116962306a36Sopenharmony_civoid bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
117062306a36Sopenharmony_ci{
117162306a36Sopenharmony_ci	size_t size = iov_iter_count(iter);
117262306a36Sopenharmony_ci
117362306a36Sopenharmony_ci	WARN_ON_ONCE(bio->bi_max_vecs);
117462306a36Sopenharmony_ci
117562306a36Sopenharmony_ci	if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
117662306a36Sopenharmony_ci		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
117762306a36Sopenharmony_ci		size_t max_sectors = queue_max_zone_append_sectors(q);
117862306a36Sopenharmony_ci
117962306a36Sopenharmony_ci		size = min(size, max_sectors << SECTOR_SHIFT);
118062306a36Sopenharmony_ci	}
118162306a36Sopenharmony_ci
118262306a36Sopenharmony_ci	bio->bi_vcnt = iter->nr_segs;
118362306a36Sopenharmony_ci	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
118462306a36Sopenharmony_ci	bio->bi_iter.bi_bvec_done = iter->iov_offset;
118562306a36Sopenharmony_ci	bio->bi_iter.bi_size = size;
118662306a36Sopenharmony_ci	bio_set_flag(bio, BIO_CLONED);
118762306a36Sopenharmony_ci}
118862306a36Sopenharmony_ci
118962306a36Sopenharmony_cistatic int bio_iov_add_page(struct bio *bio, struct page *page,
119062306a36Sopenharmony_ci		unsigned int len, unsigned int offset)
119162306a36Sopenharmony_ci{
119262306a36Sopenharmony_ci	bool same_page = false;
119362306a36Sopenharmony_ci
119462306a36Sopenharmony_ci	if (WARN_ON_ONCE(bio->bi_iter.bi_size > UINT_MAX - len))
119562306a36Sopenharmony_ci		return -EIO;
119662306a36Sopenharmony_ci
119762306a36Sopenharmony_ci	if (bio->bi_vcnt > 0 &&
119862306a36Sopenharmony_ci	    bvec_try_merge_page(&bio->bi_io_vec[bio->bi_vcnt - 1],
119962306a36Sopenharmony_ci				page, len, offset, &same_page)) {
120062306a36Sopenharmony_ci		bio->bi_iter.bi_size += len;
120162306a36Sopenharmony_ci		if (same_page)
120262306a36Sopenharmony_ci			bio_release_page(bio, page);
120362306a36Sopenharmony_ci		return 0;
120462306a36Sopenharmony_ci	}
120562306a36Sopenharmony_ci	__bio_add_page(bio, page, len, offset);
120662306a36Sopenharmony_ci	return 0;
120762306a36Sopenharmony_ci}
120862306a36Sopenharmony_ci
120962306a36Sopenharmony_cistatic int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
121062306a36Sopenharmony_ci		unsigned int len, unsigned int offset)
121162306a36Sopenharmony_ci{
121262306a36Sopenharmony_ci	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
121362306a36Sopenharmony_ci	bool same_page = false;
121462306a36Sopenharmony_ci
121562306a36Sopenharmony_ci	if (bio_add_hw_page(q, bio, page, len, offset,
121662306a36Sopenharmony_ci			queue_max_zone_append_sectors(q), &same_page) != len)
121762306a36Sopenharmony_ci		return -EINVAL;
121862306a36Sopenharmony_ci	if (same_page)
121962306a36Sopenharmony_ci		bio_release_page(bio, page);
122062306a36Sopenharmony_ci	return 0;
122162306a36Sopenharmony_ci}
122262306a36Sopenharmony_ci
122362306a36Sopenharmony_ci#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))
122462306a36Sopenharmony_ci
122562306a36Sopenharmony_ci/**
122662306a36Sopenharmony_ci * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
122762306a36Sopenharmony_ci * @bio: bio to add pages to
122862306a36Sopenharmony_ci * @iter: iov iterator describing the region to be mapped
122962306a36Sopenharmony_ci *
123062306a36Sopenharmony_ci * Extracts pages from *iter and appends them to @bio's bvec array.  The pages
123162306a36Sopenharmony_ci * will have to be cleaned up in the way indicated by the BIO_PAGE_PINNED flag.
123262306a36Sopenharmony_ci * For a multi-segment *iter, this function only adds pages from the next
123362306a36Sopenharmony_ci * non-empty segment of the iov iterator.
123462306a36Sopenharmony_ci */
123562306a36Sopenharmony_cistatic int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
123662306a36Sopenharmony_ci{
123762306a36Sopenharmony_ci	iov_iter_extraction_t extraction_flags = 0;
123862306a36Sopenharmony_ci	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
123962306a36Sopenharmony_ci	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
124062306a36Sopenharmony_ci	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
124162306a36Sopenharmony_ci	struct page **pages = (struct page **)bv;
124262306a36Sopenharmony_ci	ssize_t size, left;
124362306a36Sopenharmony_ci	unsigned len, i = 0;
124462306a36Sopenharmony_ci	size_t offset;
124562306a36Sopenharmony_ci	int ret = 0;
124662306a36Sopenharmony_ci
124762306a36Sopenharmony_ci	/*
124862306a36Sopenharmony_ci	 * Move page array up in the allocated memory for the bio vecs as far as
124962306a36Sopenharmony_ci	 * possible so that we can start filling biovecs from the beginning
125062306a36Sopenharmony_ci	 * without overwriting the temporary page array.
125162306a36Sopenharmony_ci	 */
125262306a36Sopenharmony_ci	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
125362306a36Sopenharmony_ci	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
125462306a36Sopenharmony_ci
125562306a36Sopenharmony_ci	if (bio->bi_bdev && blk_queue_pci_p2pdma(bio->bi_bdev->bd_disk->queue))
125662306a36Sopenharmony_ci		extraction_flags |= ITER_ALLOW_P2PDMA;
125762306a36Sopenharmony_ci
125862306a36Sopenharmony_ci	/*
125962306a36Sopenharmony_ci	 * Each segment in the iov is required to be a block size multiple.
126062306a36Sopenharmony_ci	 * However, we may not be able to get the entire segment if it spans
126162306a36Sopenharmony_ci	 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
126262306a36Sopenharmony_ci	 * result to ensure the bio's total size is correct. The remainder of
126362306a36Sopenharmony_ci	 * the iov data will be picked up in the next bio iteration.
126462306a36Sopenharmony_ci	 */
126562306a36Sopenharmony_ci	size = iov_iter_extract_pages(iter, &pages,
126662306a36Sopenharmony_ci				      UINT_MAX - bio->bi_iter.bi_size,
126762306a36Sopenharmony_ci				      nr_pages, extraction_flags, &offset);
126862306a36Sopenharmony_ci	if (unlikely(size <= 0))
126962306a36Sopenharmony_ci		return size ? size : -EFAULT;
127062306a36Sopenharmony_ci
127162306a36Sopenharmony_ci	nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
127262306a36Sopenharmony_ci
127362306a36Sopenharmony_ci	if (bio->bi_bdev) {
127462306a36Sopenharmony_ci		size_t trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
127562306a36Sopenharmony_ci		iov_iter_revert(iter, trim);
127662306a36Sopenharmony_ci		size -= trim;
127762306a36Sopenharmony_ci	}
127862306a36Sopenharmony_ci
127962306a36Sopenharmony_ci	if (unlikely(!size)) {
128062306a36Sopenharmony_ci		ret = -EFAULT;
128162306a36Sopenharmony_ci		goto out;
128262306a36Sopenharmony_ci	}
128362306a36Sopenharmony_ci
128462306a36Sopenharmony_ci	for (left = size, i = 0; left > 0; left -= len, i++) {
128562306a36Sopenharmony_ci		struct page *page = pages[i];
128662306a36Sopenharmony_ci
128762306a36Sopenharmony_ci		len = min_t(size_t, PAGE_SIZE - offset, left);
128862306a36Sopenharmony_ci		if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
128962306a36Sopenharmony_ci			ret = bio_iov_add_zone_append_page(bio, page, len,
129062306a36Sopenharmony_ci					offset);
129162306a36Sopenharmony_ci			if (ret)
129262306a36Sopenharmony_ci				break;
129362306a36Sopenharmony_ci		} else
129462306a36Sopenharmony_ci			bio_iov_add_page(bio, page, len, offset);
129562306a36Sopenharmony_ci
129662306a36Sopenharmony_ci		offset = 0;
129762306a36Sopenharmony_ci	}
129862306a36Sopenharmony_ci
129962306a36Sopenharmony_ci	iov_iter_revert(iter, left);
130062306a36Sopenharmony_ciout:
130162306a36Sopenharmony_ci	while (i < nr_pages)
130262306a36Sopenharmony_ci		bio_release_page(bio, pages[i++]);
130362306a36Sopenharmony_ci
130462306a36Sopenharmony_ci	return ret;
130562306a36Sopenharmony_ci}
130662306a36Sopenharmony_ci
130762306a36Sopenharmony_ci/**
130862306a36Sopenharmony_ci * bio_iov_iter_get_pages - add user or kernel pages to a bio
130962306a36Sopenharmony_ci * @bio: bio to add pages to
131062306a36Sopenharmony_ci * @iter: iov iterator describing the region to be added
131162306a36Sopenharmony_ci *
131262306a36Sopenharmony_ci * This takes either an iterator pointing to user memory, or one pointing to
131362306a36Sopenharmony_ci * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
131462306a36Sopenharmony_ci * map them into the kernel. On IO completion, the caller should put those
131562306a36Sopenharmony_ci * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
131662306a36Sopenharmony_ci * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
131762306a36Sopenharmony_ci * to ensure the bvecs and pages stay referenced until the submitted I/O is
131862306a36Sopenharmony_ci * completed by a call to ->ki_complete() or returns with an error other than
131962306a36Sopenharmony_ci * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
132062306a36Sopenharmony_ci * on IO completion. If it isn't, then pages should be released.
132162306a36Sopenharmony_ci *
132262306a36Sopenharmony_ci * The function tries, but does not guarantee, to pin as many pages as
132362306a36Sopenharmony_ci * fit into the bio, or are requested in @iter, whatever is smaller. If
132462306a36Sopenharmony_ci * MM encounters an error pinning the requested pages, it stops. Error
132562306a36Sopenharmony_ci * is returned only if 0 pages could be pinned.
132662306a36Sopenharmony_ci */
132762306a36Sopenharmony_ciint bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
132862306a36Sopenharmony_ci{
132962306a36Sopenharmony_ci	int ret = 0;
133062306a36Sopenharmony_ci
133162306a36Sopenharmony_ci	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
133262306a36Sopenharmony_ci		return -EIO;
133362306a36Sopenharmony_ci
133462306a36Sopenharmony_ci	if (iov_iter_is_bvec(iter)) {
133562306a36Sopenharmony_ci		bio_iov_bvec_set(bio, iter);
133662306a36Sopenharmony_ci		iov_iter_advance(iter, bio->bi_iter.bi_size);
133762306a36Sopenharmony_ci		return 0;
133862306a36Sopenharmony_ci	}
133962306a36Sopenharmony_ci
134062306a36Sopenharmony_ci	if (iov_iter_extract_will_pin(iter))
134162306a36Sopenharmony_ci		bio_set_flag(bio, BIO_PAGE_PINNED);
134262306a36Sopenharmony_ci	do {
134362306a36Sopenharmony_ci		ret = __bio_iov_iter_get_pages(bio, iter);
134462306a36Sopenharmony_ci	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
134562306a36Sopenharmony_ci
134662306a36Sopenharmony_ci	return bio->bi_vcnt ? 0 : ret;
134762306a36Sopenharmony_ci}
134862306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
134962306a36Sopenharmony_ci
135062306a36Sopenharmony_cistatic void submit_bio_wait_endio(struct bio *bio)
135162306a36Sopenharmony_ci{
135262306a36Sopenharmony_ci	complete(bio->bi_private);
135362306a36Sopenharmony_ci}
135462306a36Sopenharmony_ci
135562306a36Sopenharmony_ci/**
135662306a36Sopenharmony_ci * submit_bio_wait - submit a bio, and wait until it completes
135762306a36Sopenharmony_ci * @bio: The &struct bio which describes the I/O
135862306a36Sopenharmony_ci *
135962306a36Sopenharmony_ci * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
136062306a36Sopenharmony_ci * bio_endio() on failure.
136162306a36Sopenharmony_ci *
136262306a36Sopenharmony_ci * WARNING: Unlike to how submit_bio() is usually used, this function does not
136362306a36Sopenharmony_ci * result in bio reference to be consumed. The caller must drop the reference
136462306a36Sopenharmony_ci * on his own.
136562306a36Sopenharmony_ci */
136662306a36Sopenharmony_ciint submit_bio_wait(struct bio *bio)
136762306a36Sopenharmony_ci{
136862306a36Sopenharmony_ci	DECLARE_COMPLETION_ONSTACK_MAP(done,
136962306a36Sopenharmony_ci			bio->bi_bdev->bd_disk->lockdep_map);
137062306a36Sopenharmony_ci	unsigned long hang_check;
137162306a36Sopenharmony_ci
137262306a36Sopenharmony_ci	bio->bi_private = &done;
137362306a36Sopenharmony_ci	bio->bi_end_io = submit_bio_wait_endio;
137462306a36Sopenharmony_ci	bio->bi_opf |= REQ_SYNC;
137562306a36Sopenharmony_ci	submit_bio(bio);
137662306a36Sopenharmony_ci
137762306a36Sopenharmony_ci	/* Prevent hang_check timer from firing at us during very long I/O */
137862306a36Sopenharmony_ci	hang_check = sysctl_hung_task_timeout_secs;
137962306a36Sopenharmony_ci	if (hang_check)
138062306a36Sopenharmony_ci		while (!wait_for_completion_io_timeout(&done,
138162306a36Sopenharmony_ci					hang_check * (HZ/2)))
138262306a36Sopenharmony_ci			;
138362306a36Sopenharmony_ci	else
138462306a36Sopenharmony_ci		wait_for_completion_io(&done);
138562306a36Sopenharmony_ci
138662306a36Sopenharmony_ci	return blk_status_to_errno(bio->bi_status);
138762306a36Sopenharmony_ci}
138862306a36Sopenharmony_ciEXPORT_SYMBOL(submit_bio_wait);
138962306a36Sopenharmony_ci
139062306a36Sopenharmony_civoid __bio_advance(struct bio *bio, unsigned bytes)
139162306a36Sopenharmony_ci{
139262306a36Sopenharmony_ci	if (bio_integrity(bio))
139362306a36Sopenharmony_ci		bio_integrity_advance(bio, bytes);
139462306a36Sopenharmony_ci
139562306a36Sopenharmony_ci	bio_crypt_advance(bio, bytes);
139662306a36Sopenharmony_ci	bio_advance_iter(bio, &bio->bi_iter, bytes);
139762306a36Sopenharmony_ci}
139862306a36Sopenharmony_ciEXPORT_SYMBOL(__bio_advance);
139962306a36Sopenharmony_ci
140062306a36Sopenharmony_civoid bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
140162306a36Sopenharmony_ci			struct bio *src, struct bvec_iter *src_iter)
140262306a36Sopenharmony_ci{
140362306a36Sopenharmony_ci	while (src_iter->bi_size && dst_iter->bi_size) {
140462306a36Sopenharmony_ci		struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
140562306a36Sopenharmony_ci		struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
140662306a36Sopenharmony_ci		unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
140762306a36Sopenharmony_ci		void *src_buf = bvec_kmap_local(&src_bv);
140862306a36Sopenharmony_ci		void *dst_buf = bvec_kmap_local(&dst_bv);
140962306a36Sopenharmony_ci
141062306a36Sopenharmony_ci		memcpy(dst_buf, src_buf, bytes);
141162306a36Sopenharmony_ci
141262306a36Sopenharmony_ci		kunmap_local(dst_buf);
141362306a36Sopenharmony_ci		kunmap_local(src_buf);
141462306a36Sopenharmony_ci
141562306a36Sopenharmony_ci		bio_advance_iter_single(src, src_iter, bytes);
141662306a36Sopenharmony_ci		bio_advance_iter_single(dst, dst_iter, bytes);
141762306a36Sopenharmony_ci	}
141862306a36Sopenharmony_ci}
141962306a36Sopenharmony_ciEXPORT_SYMBOL(bio_copy_data_iter);
142062306a36Sopenharmony_ci
142162306a36Sopenharmony_ci/**
142262306a36Sopenharmony_ci * bio_copy_data - copy contents of data buffers from one bio to another
142362306a36Sopenharmony_ci * @src: source bio
142462306a36Sopenharmony_ci * @dst: destination bio
142562306a36Sopenharmony_ci *
142662306a36Sopenharmony_ci * Stops when it reaches the end of either @src or @dst - that is, copies
142762306a36Sopenharmony_ci * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
142862306a36Sopenharmony_ci */
142962306a36Sopenharmony_civoid bio_copy_data(struct bio *dst, struct bio *src)
143062306a36Sopenharmony_ci{
143162306a36Sopenharmony_ci	struct bvec_iter src_iter = src->bi_iter;
143262306a36Sopenharmony_ci	struct bvec_iter dst_iter = dst->bi_iter;
143362306a36Sopenharmony_ci
143462306a36Sopenharmony_ci	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
143562306a36Sopenharmony_ci}
143662306a36Sopenharmony_ciEXPORT_SYMBOL(bio_copy_data);
143762306a36Sopenharmony_ci
143862306a36Sopenharmony_civoid bio_free_pages(struct bio *bio)
143962306a36Sopenharmony_ci{
144062306a36Sopenharmony_ci	struct bio_vec *bvec;
144162306a36Sopenharmony_ci	struct bvec_iter_all iter_all;
144262306a36Sopenharmony_ci
144362306a36Sopenharmony_ci	bio_for_each_segment_all(bvec, bio, iter_all)
144462306a36Sopenharmony_ci		__free_page(bvec->bv_page);
144562306a36Sopenharmony_ci}
144662306a36Sopenharmony_ciEXPORT_SYMBOL(bio_free_pages);
144762306a36Sopenharmony_ci
144862306a36Sopenharmony_ci/*
144962306a36Sopenharmony_ci * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
145062306a36Sopenharmony_ci * for performing direct-IO in BIOs.
145162306a36Sopenharmony_ci *
145262306a36Sopenharmony_ci * The problem is that we cannot run folio_mark_dirty() from interrupt context
145362306a36Sopenharmony_ci * because the required locks are not interrupt-safe.  So what we can do is to
145462306a36Sopenharmony_ci * mark the pages dirty _before_ performing IO.  And in interrupt context,
145562306a36Sopenharmony_ci * check that the pages are still dirty.   If so, fine.  If not, redirty them
145662306a36Sopenharmony_ci * in process context.
145762306a36Sopenharmony_ci *
145862306a36Sopenharmony_ci * Note that this code is very hard to test under normal circumstances because
145962306a36Sopenharmony_ci * direct-io pins the pages with get_user_pages().  This makes
146062306a36Sopenharmony_ci * is_page_cache_freeable return false, and the VM will not clean the pages.
146162306a36Sopenharmony_ci * But other code (eg, flusher threads) could clean the pages if they are mapped
146262306a36Sopenharmony_ci * pagecache.
146362306a36Sopenharmony_ci *
146462306a36Sopenharmony_ci * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
146562306a36Sopenharmony_ci * deferred bio dirtying paths.
146662306a36Sopenharmony_ci */
146762306a36Sopenharmony_ci
146862306a36Sopenharmony_ci/*
146962306a36Sopenharmony_ci * bio_set_pages_dirty() will mark all the bio's pages as dirty.
147062306a36Sopenharmony_ci */
147162306a36Sopenharmony_civoid bio_set_pages_dirty(struct bio *bio)
147262306a36Sopenharmony_ci{
147362306a36Sopenharmony_ci	struct folio_iter fi;
147462306a36Sopenharmony_ci
147562306a36Sopenharmony_ci	bio_for_each_folio_all(fi, bio) {
147662306a36Sopenharmony_ci		folio_lock(fi.folio);
147762306a36Sopenharmony_ci		folio_mark_dirty(fi.folio);
147862306a36Sopenharmony_ci		folio_unlock(fi.folio);
147962306a36Sopenharmony_ci	}
148062306a36Sopenharmony_ci}
148162306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bio_set_pages_dirty);
148262306a36Sopenharmony_ci
148362306a36Sopenharmony_ci/*
148462306a36Sopenharmony_ci * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
148562306a36Sopenharmony_ci * If they are, then fine.  If, however, some pages are clean then they must
148662306a36Sopenharmony_ci * have been written out during the direct-IO read.  So we take another ref on
148762306a36Sopenharmony_ci * the BIO and re-dirty the pages in process context.
148862306a36Sopenharmony_ci *
148962306a36Sopenharmony_ci * It is expected that bio_check_pages_dirty() will wholly own the BIO from
149062306a36Sopenharmony_ci * here on.  It will unpin each page and will run one bio_put() against the
149162306a36Sopenharmony_ci * BIO.
149262306a36Sopenharmony_ci */
149362306a36Sopenharmony_ci
149462306a36Sopenharmony_cistatic void bio_dirty_fn(struct work_struct *work);
149562306a36Sopenharmony_ci
149662306a36Sopenharmony_cistatic DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
149762306a36Sopenharmony_cistatic DEFINE_SPINLOCK(bio_dirty_lock);
149862306a36Sopenharmony_cistatic struct bio *bio_dirty_list;
149962306a36Sopenharmony_ci
150062306a36Sopenharmony_ci/*
150162306a36Sopenharmony_ci * This runs in process context
150262306a36Sopenharmony_ci */
150362306a36Sopenharmony_cistatic void bio_dirty_fn(struct work_struct *work)
150462306a36Sopenharmony_ci{
150562306a36Sopenharmony_ci	struct bio *bio, *next;
150662306a36Sopenharmony_ci
150762306a36Sopenharmony_ci	spin_lock_irq(&bio_dirty_lock);
150862306a36Sopenharmony_ci	next = bio_dirty_list;
150962306a36Sopenharmony_ci	bio_dirty_list = NULL;
151062306a36Sopenharmony_ci	spin_unlock_irq(&bio_dirty_lock);
151162306a36Sopenharmony_ci
151262306a36Sopenharmony_ci	while ((bio = next) != NULL) {
151362306a36Sopenharmony_ci		next = bio->bi_private;
151462306a36Sopenharmony_ci
151562306a36Sopenharmony_ci		bio_release_pages(bio, true);
151662306a36Sopenharmony_ci		bio_put(bio);
151762306a36Sopenharmony_ci	}
151862306a36Sopenharmony_ci}
151962306a36Sopenharmony_ci
152062306a36Sopenharmony_civoid bio_check_pages_dirty(struct bio *bio)
152162306a36Sopenharmony_ci{
152262306a36Sopenharmony_ci	struct folio_iter fi;
152362306a36Sopenharmony_ci	unsigned long flags;
152462306a36Sopenharmony_ci
152562306a36Sopenharmony_ci	bio_for_each_folio_all(fi, bio) {
152662306a36Sopenharmony_ci		if (!folio_test_dirty(fi.folio))
152762306a36Sopenharmony_ci			goto defer;
152862306a36Sopenharmony_ci	}
152962306a36Sopenharmony_ci
153062306a36Sopenharmony_ci	bio_release_pages(bio, false);
153162306a36Sopenharmony_ci	bio_put(bio);
153262306a36Sopenharmony_ci	return;
153362306a36Sopenharmony_cidefer:
153462306a36Sopenharmony_ci	spin_lock_irqsave(&bio_dirty_lock, flags);
153562306a36Sopenharmony_ci	bio->bi_private = bio_dirty_list;
153662306a36Sopenharmony_ci	bio_dirty_list = bio;
153762306a36Sopenharmony_ci	spin_unlock_irqrestore(&bio_dirty_lock, flags);
153862306a36Sopenharmony_ci	schedule_work(&bio_dirty_work);
153962306a36Sopenharmony_ci}
154062306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bio_check_pages_dirty);
154162306a36Sopenharmony_ci
154262306a36Sopenharmony_cistatic inline bool bio_remaining_done(struct bio *bio)
154362306a36Sopenharmony_ci{
154462306a36Sopenharmony_ci	/*
154562306a36Sopenharmony_ci	 * If we're not chaining, then ->__bi_remaining is always 1 and
154662306a36Sopenharmony_ci	 * we always end io on the first invocation.
154762306a36Sopenharmony_ci	 */
154862306a36Sopenharmony_ci	if (!bio_flagged(bio, BIO_CHAIN))
154962306a36Sopenharmony_ci		return true;
155062306a36Sopenharmony_ci
155162306a36Sopenharmony_ci	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
155262306a36Sopenharmony_ci
155362306a36Sopenharmony_ci	if (atomic_dec_and_test(&bio->__bi_remaining)) {
155462306a36Sopenharmony_ci		bio_clear_flag(bio, BIO_CHAIN);
155562306a36Sopenharmony_ci		return true;
155662306a36Sopenharmony_ci	}
155762306a36Sopenharmony_ci
155862306a36Sopenharmony_ci	return false;
155962306a36Sopenharmony_ci}
156062306a36Sopenharmony_ci
156162306a36Sopenharmony_ci/**
156262306a36Sopenharmony_ci * bio_endio - end I/O on a bio
156362306a36Sopenharmony_ci * @bio:	bio
156462306a36Sopenharmony_ci *
156562306a36Sopenharmony_ci * Description:
156662306a36Sopenharmony_ci *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
156762306a36Sopenharmony_ci *   way to end I/O on a bio. No one should call bi_end_io() directly on a
156862306a36Sopenharmony_ci *   bio unless they own it and thus know that it has an end_io function.
156962306a36Sopenharmony_ci *
157062306a36Sopenharmony_ci *   bio_endio() can be called several times on a bio that has been chained
157162306a36Sopenharmony_ci *   using bio_chain().  The ->bi_end_io() function will only be called the
157262306a36Sopenharmony_ci *   last time.
157362306a36Sopenharmony_ci **/
157462306a36Sopenharmony_civoid bio_endio(struct bio *bio)
157562306a36Sopenharmony_ci{
157662306a36Sopenharmony_ciagain:
157762306a36Sopenharmony_ci	if (!bio_remaining_done(bio))
157862306a36Sopenharmony_ci		return;
157962306a36Sopenharmony_ci	if (!bio_integrity_endio(bio))
158062306a36Sopenharmony_ci		return;
158162306a36Sopenharmony_ci
158262306a36Sopenharmony_ci	rq_qos_done_bio(bio);
158362306a36Sopenharmony_ci
158462306a36Sopenharmony_ci	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
158562306a36Sopenharmony_ci		trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
158662306a36Sopenharmony_ci		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
158762306a36Sopenharmony_ci	}
158862306a36Sopenharmony_ci
158962306a36Sopenharmony_ci	/*
159062306a36Sopenharmony_ci	 * Need to have a real endio function for chained bios, otherwise
159162306a36Sopenharmony_ci	 * various corner cases will break (like stacking block devices that
159262306a36Sopenharmony_ci	 * save/restore bi_end_io) - however, we want to avoid unbounded
159362306a36Sopenharmony_ci	 * recursion and blowing the stack. Tail call optimization would
159462306a36Sopenharmony_ci	 * handle this, but compiling with frame pointers also disables
159562306a36Sopenharmony_ci	 * gcc's sibling call optimization.
159662306a36Sopenharmony_ci	 */
159762306a36Sopenharmony_ci	if (bio->bi_end_io == bio_chain_endio) {
159862306a36Sopenharmony_ci		bio = __bio_chain_endio(bio);
159962306a36Sopenharmony_ci		goto again;
160062306a36Sopenharmony_ci	}
160162306a36Sopenharmony_ci
160262306a36Sopenharmony_ci	blk_throtl_bio_endio(bio);
160362306a36Sopenharmony_ci	/* release cgroup info */
160462306a36Sopenharmony_ci	bio_uninit(bio);
160562306a36Sopenharmony_ci	if (bio->bi_end_io)
160662306a36Sopenharmony_ci		bio->bi_end_io(bio);
160762306a36Sopenharmony_ci}
160862306a36Sopenharmony_ciEXPORT_SYMBOL(bio_endio);
160962306a36Sopenharmony_ci
161062306a36Sopenharmony_ci/**
161162306a36Sopenharmony_ci * bio_split - split a bio
161262306a36Sopenharmony_ci * @bio:	bio to split
161362306a36Sopenharmony_ci * @sectors:	number of sectors to split from the front of @bio
161462306a36Sopenharmony_ci * @gfp:	gfp mask
161562306a36Sopenharmony_ci * @bs:		bio set to allocate from
161662306a36Sopenharmony_ci *
161762306a36Sopenharmony_ci * Allocates and returns a new bio which represents @sectors from the start of
161862306a36Sopenharmony_ci * @bio, and updates @bio to represent the remaining sectors.
161962306a36Sopenharmony_ci *
162062306a36Sopenharmony_ci * Unless this is a discard request the newly allocated bio will point
162162306a36Sopenharmony_ci * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
162262306a36Sopenharmony_ci * neither @bio nor @bs are freed before the split bio.
162362306a36Sopenharmony_ci */
162462306a36Sopenharmony_cistruct bio *bio_split(struct bio *bio, int sectors,
162562306a36Sopenharmony_ci		      gfp_t gfp, struct bio_set *bs)
162662306a36Sopenharmony_ci{
162762306a36Sopenharmony_ci	struct bio *split;
162862306a36Sopenharmony_ci
162962306a36Sopenharmony_ci	BUG_ON(sectors <= 0);
163062306a36Sopenharmony_ci	BUG_ON(sectors >= bio_sectors(bio));
163162306a36Sopenharmony_ci
163262306a36Sopenharmony_ci	/* Zone append commands cannot be split */
163362306a36Sopenharmony_ci	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
163462306a36Sopenharmony_ci		return NULL;
163562306a36Sopenharmony_ci
163662306a36Sopenharmony_ci	split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
163762306a36Sopenharmony_ci	if (!split)
163862306a36Sopenharmony_ci		return NULL;
163962306a36Sopenharmony_ci
164062306a36Sopenharmony_ci	split->bi_iter.bi_size = sectors << 9;
164162306a36Sopenharmony_ci
164262306a36Sopenharmony_ci	if (bio_integrity(split))
164362306a36Sopenharmony_ci		bio_integrity_trim(split);
164462306a36Sopenharmony_ci
164562306a36Sopenharmony_ci	bio_advance(bio, split->bi_iter.bi_size);
164662306a36Sopenharmony_ci
164762306a36Sopenharmony_ci	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
164862306a36Sopenharmony_ci		bio_set_flag(split, BIO_TRACE_COMPLETION);
164962306a36Sopenharmony_ci
165062306a36Sopenharmony_ci	return split;
165162306a36Sopenharmony_ci}
165262306a36Sopenharmony_ciEXPORT_SYMBOL(bio_split);
165362306a36Sopenharmony_ci
165462306a36Sopenharmony_ci/**
165562306a36Sopenharmony_ci * bio_trim - trim a bio
165662306a36Sopenharmony_ci * @bio:	bio to trim
165762306a36Sopenharmony_ci * @offset:	number of sectors to trim from the front of @bio
165862306a36Sopenharmony_ci * @size:	size we want to trim @bio to, in sectors
165962306a36Sopenharmony_ci *
166062306a36Sopenharmony_ci * This function is typically used for bios that are cloned and submitted
166162306a36Sopenharmony_ci * to the underlying device in parts.
166262306a36Sopenharmony_ci */
166362306a36Sopenharmony_civoid bio_trim(struct bio *bio, sector_t offset, sector_t size)
166462306a36Sopenharmony_ci{
166562306a36Sopenharmony_ci	if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
166662306a36Sopenharmony_ci			 offset + size > bio_sectors(bio)))
166762306a36Sopenharmony_ci		return;
166862306a36Sopenharmony_ci
166962306a36Sopenharmony_ci	size <<= 9;
167062306a36Sopenharmony_ci	if (offset == 0 && size == bio->bi_iter.bi_size)
167162306a36Sopenharmony_ci		return;
167262306a36Sopenharmony_ci
167362306a36Sopenharmony_ci	bio_advance(bio, offset << 9);
167462306a36Sopenharmony_ci	bio->bi_iter.bi_size = size;
167562306a36Sopenharmony_ci
167662306a36Sopenharmony_ci	if (bio_integrity(bio))
167762306a36Sopenharmony_ci		bio_integrity_trim(bio);
167862306a36Sopenharmony_ci}
167962306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bio_trim);
168062306a36Sopenharmony_ci
168162306a36Sopenharmony_ci/*
168262306a36Sopenharmony_ci * create memory pools for biovec's in a bio_set.
168362306a36Sopenharmony_ci * use the global biovec slabs created for general use.
168462306a36Sopenharmony_ci */
168562306a36Sopenharmony_ciint biovec_init_pool(mempool_t *pool, int pool_entries)
168662306a36Sopenharmony_ci{
168762306a36Sopenharmony_ci	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
168862306a36Sopenharmony_ci
168962306a36Sopenharmony_ci	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
169062306a36Sopenharmony_ci}
169162306a36Sopenharmony_ci
169262306a36Sopenharmony_ci/*
169362306a36Sopenharmony_ci * bioset_exit - exit a bioset initialized with bioset_init()
169462306a36Sopenharmony_ci *
169562306a36Sopenharmony_ci * May be called on a zeroed but uninitialized bioset (i.e. allocated with
169662306a36Sopenharmony_ci * kzalloc()).
169762306a36Sopenharmony_ci */
169862306a36Sopenharmony_civoid bioset_exit(struct bio_set *bs)
169962306a36Sopenharmony_ci{
170062306a36Sopenharmony_ci	bio_alloc_cache_destroy(bs);
170162306a36Sopenharmony_ci	if (bs->rescue_workqueue)
170262306a36Sopenharmony_ci		destroy_workqueue(bs->rescue_workqueue);
170362306a36Sopenharmony_ci	bs->rescue_workqueue = NULL;
170462306a36Sopenharmony_ci
170562306a36Sopenharmony_ci	mempool_exit(&bs->bio_pool);
170662306a36Sopenharmony_ci	mempool_exit(&bs->bvec_pool);
170762306a36Sopenharmony_ci
170862306a36Sopenharmony_ci	bioset_integrity_free(bs);
170962306a36Sopenharmony_ci	if (bs->bio_slab)
171062306a36Sopenharmony_ci		bio_put_slab(bs);
171162306a36Sopenharmony_ci	bs->bio_slab = NULL;
171262306a36Sopenharmony_ci}
171362306a36Sopenharmony_ciEXPORT_SYMBOL(bioset_exit);
171462306a36Sopenharmony_ci
171562306a36Sopenharmony_ci/**
171662306a36Sopenharmony_ci * bioset_init - Initialize a bio_set
171762306a36Sopenharmony_ci * @bs:		pool to initialize
171862306a36Sopenharmony_ci * @pool_size:	Number of bio and bio_vecs to cache in the mempool
171962306a36Sopenharmony_ci * @front_pad:	Number of bytes to allocate in front of the returned bio
172062306a36Sopenharmony_ci * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
172162306a36Sopenharmony_ci *              and %BIOSET_NEED_RESCUER
172262306a36Sopenharmony_ci *
172362306a36Sopenharmony_ci * Description:
172462306a36Sopenharmony_ci *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
172562306a36Sopenharmony_ci *    to ask for a number of bytes to be allocated in front of the bio.
172662306a36Sopenharmony_ci *    Front pad allocation is useful for embedding the bio inside
172762306a36Sopenharmony_ci *    another structure, to avoid allocating extra data to go with the bio.
172862306a36Sopenharmony_ci *    Note that the bio must be embedded at the END of that structure always,
172962306a36Sopenharmony_ci *    or things will break badly.
173062306a36Sopenharmony_ci *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
173162306a36Sopenharmony_ci *    for allocating iovecs.  This pool is not needed e.g. for bio_init_clone().
173262306a36Sopenharmony_ci *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
173362306a36Sopenharmony_ci *    to dispatch queued requests when the mempool runs out of space.
173462306a36Sopenharmony_ci *
173562306a36Sopenharmony_ci */
173662306a36Sopenharmony_ciint bioset_init(struct bio_set *bs,
173762306a36Sopenharmony_ci		unsigned int pool_size,
173862306a36Sopenharmony_ci		unsigned int front_pad,
173962306a36Sopenharmony_ci		int flags)
174062306a36Sopenharmony_ci{
174162306a36Sopenharmony_ci	bs->front_pad = front_pad;
174262306a36Sopenharmony_ci	if (flags & BIOSET_NEED_BVECS)
174362306a36Sopenharmony_ci		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
174462306a36Sopenharmony_ci	else
174562306a36Sopenharmony_ci		bs->back_pad = 0;
174662306a36Sopenharmony_ci
174762306a36Sopenharmony_ci	spin_lock_init(&bs->rescue_lock);
174862306a36Sopenharmony_ci	bio_list_init(&bs->rescue_list);
174962306a36Sopenharmony_ci	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
175062306a36Sopenharmony_ci
175162306a36Sopenharmony_ci	bs->bio_slab = bio_find_or_create_slab(bs);
175262306a36Sopenharmony_ci	if (!bs->bio_slab)
175362306a36Sopenharmony_ci		return -ENOMEM;
175462306a36Sopenharmony_ci
175562306a36Sopenharmony_ci	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
175662306a36Sopenharmony_ci		goto bad;
175762306a36Sopenharmony_ci
175862306a36Sopenharmony_ci	if ((flags & BIOSET_NEED_BVECS) &&
175962306a36Sopenharmony_ci	    biovec_init_pool(&bs->bvec_pool, pool_size))
176062306a36Sopenharmony_ci		goto bad;
176162306a36Sopenharmony_ci
176262306a36Sopenharmony_ci	if (flags & BIOSET_NEED_RESCUER) {
176362306a36Sopenharmony_ci		bs->rescue_workqueue = alloc_workqueue("bioset",
176462306a36Sopenharmony_ci							WQ_MEM_RECLAIM, 0);
176562306a36Sopenharmony_ci		if (!bs->rescue_workqueue)
176662306a36Sopenharmony_ci			goto bad;
176762306a36Sopenharmony_ci	}
176862306a36Sopenharmony_ci	if (flags & BIOSET_PERCPU_CACHE) {
176962306a36Sopenharmony_ci		bs->cache = alloc_percpu(struct bio_alloc_cache);
177062306a36Sopenharmony_ci		if (!bs->cache)
177162306a36Sopenharmony_ci			goto bad;
177262306a36Sopenharmony_ci		cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
177362306a36Sopenharmony_ci	}
177462306a36Sopenharmony_ci
177562306a36Sopenharmony_ci	return 0;
177662306a36Sopenharmony_cibad:
177762306a36Sopenharmony_ci	bioset_exit(bs);
177862306a36Sopenharmony_ci	return -ENOMEM;
177962306a36Sopenharmony_ci}
178062306a36Sopenharmony_ciEXPORT_SYMBOL(bioset_init);
178162306a36Sopenharmony_ci
178262306a36Sopenharmony_cistatic int __init init_bio(void)
178362306a36Sopenharmony_ci{
178462306a36Sopenharmony_ci	int i;
178562306a36Sopenharmony_ci
178662306a36Sopenharmony_ci	BUILD_BUG_ON(BIO_FLAG_LAST > 8 * sizeof_field(struct bio, bi_flags));
178762306a36Sopenharmony_ci
178862306a36Sopenharmony_ci	bio_integrity_init();
178962306a36Sopenharmony_ci
179062306a36Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
179162306a36Sopenharmony_ci		struct biovec_slab *bvs = bvec_slabs + i;
179262306a36Sopenharmony_ci
179362306a36Sopenharmony_ci		bvs->slab = kmem_cache_create(bvs->name,
179462306a36Sopenharmony_ci				bvs->nr_vecs * sizeof(struct bio_vec), 0,
179562306a36Sopenharmony_ci				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
179662306a36Sopenharmony_ci	}
179762306a36Sopenharmony_ci
179862306a36Sopenharmony_ci	cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
179962306a36Sopenharmony_ci					bio_cpu_dead);
180062306a36Sopenharmony_ci
180162306a36Sopenharmony_ci	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0,
180262306a36Sopenharmony_ci			BIOSET_NEED_BVECS | BIOSET_PERCPU_CACHE))
180362306a36Sopenharmony_ci		panic("bio: can't allocate bios\n");
180462306a36Sopenharmony_ci
180562306a36Sopenharmony_ci	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
180662306a36Sopenharmony_ci		panic("bio: can't create integrity pool\n");
180762306a36Sopenharmony_ci
180862306a36Sopenharmony_ci	return 0;
180962306a36Sopenharmony_ci}
181062306a36Sopenharmony_cisubsys_initcall(init_bio);
1811