162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Budget Fair Queueing (BFQ) I/O scheduler. 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Based on ideas and code from CFQ: 662306a36Sopenharmony_ci * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 762306a36Sopenharmony_ci * 862306a36Sopenharmony_ci * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 962306a36Sopenharmony_ci * Paolo Valente <paolo.valente@unimore.it> 1062306a36Sopenharmony_ci * 1162306a36Sopenharmony_ci * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it> 1262306a36Sopenharmony_ci * Arianna Avanzini <avanzini@google.com> 1362306a36Sopenharmony_ci * 1462306a36Sopenharmony_ci * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org> 1562306a36Sopenharmony_ci * 1662306a36Sopenharmony_ci * BFQ is a proportional-share I/O scheduler, with some extra 1762306a36Sopenharmony_ci * low-latency capabilities. BFQ also supports full hierarchical 1862306a36Sopenharmony_ci * scheduling through cgroups. Next paragraphs provide an introduction 1962306a36Sopenharmony_ci * on BFQ inner workings. Details on BFQ benefits, usage and 2062306a36Sopenharmony_ci * limitations can be found in Documentation/block/bfq-iosched.rst. 2162306a36Sopenharmony_ci * 2262306a36Sopenharmony_ci * BFQ is a proportional-share storage-I/O scheduling algorithm based 2362306a36Sopenharmony_ci * on the slice-by-slice service scheme of CFQ. But BFQ assigns 2462306a36Sopenharmony_ci * budgets, measured in number of sectors, to processes instead of 2562306a36Sopenharmony_ci * time slices. The device is not granted to the in-service process 2662306a36Sopenharmony_ci * for a given time slice, but until it has exhausted its assigned 2762306a36Sopenharmony_ci * budget. This change from the time to the service domain enables BFQ 2862306a36Sopenharmony_ci * to distribute the device throughput among processes as desired, 2962306a36Sopenharmony_ci * without any distortion due to throughput fluctuations, or to device 3062306a36Sopenharmony_ci * internal queueing. BFQ uses an ad hoc internal scheduler, called 3162306a36Sopenharmony_ci * B-WF2Q+, to schedule processes according to their budgets. More 3262306a36Sopenharmony_ci * precisely, BFQ schedules queues associated with processes. Each 3362306a36Sopenharmony_ci * process/queue is assigned a user-configurable weight, and B-WF2Q+ 3462306a36Sopenharmony_ci * guarantees that each queue receives a fraction of the throughput 3562306a36Sopenharmony_ci * proportional to its weight. Thanks to the accurate policy of 3662306a36Sopenharmony_ci * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound 3762306a36Sopenharmony_ci * processes issuing sequential requests (to boost the throughput), 3862306a36Sopenharmony_ci * and yet guarantee a low latency to interactive and soft real-time 3962306a36Sopenharmony_ci * applications. 4062306a36Sopenharmony_ci * 4162306a36Sopenharmony_ci * In particular, to provide these low-latency guarantees, BFQ 4262306a36Sopenharmony_ci * explicitly privileges the I/O of two classes of time-sensitive 4362306a36Sopenharmony_ci * applications: interactive and soft real-time. In more detail, BFQ 4462306a36Sopenharmony_ci * behaves this way if the low_latency parameter is set (default 4562306a36Sopenharmony_ci * configuration). This feature enables BFQ to provide applications in 4662306a36Sopenharmony_ci * these classes with a very low latency. 4762306a36Sopenharmony_ci * 4862306a36Sopenharmony_ci * To implement this feature, BFQ constantly tries to detect whether 4962306a36Sopenharmony_ci * the I/O requests in a bfq_queue come from an interactive or a soft 5062306a36Sopenharmony_ci * real-time application. For brevity, in these cases, the queue is 5162306a36Sopenharmony_ci * said to be interactive or soft real-time. In both cases, BFQ 5262306a36Sopenharmony_ci * privileges the service of the queue, over that of non-interactive 5362306a36Sopenharmony_ci * and non-soft-real-time queues. This privileging is performed, 5462306a36Sopenharmony_ci * mainly, by raising the weight of the queue. So, for brevity, we 5562306a36Sopenharmony_ci * call just weight-raising periods the time periods during which a 5662306a36Sopenharmony_ci * queue is privileged, because deemed interactive or soft real-time. 5762306a36Sopenharmony_ci * 5862306a36Sopenharmony_ci * The detection of soft real-time queues/applications is described in 5962306a36Sopenharmony_ci * detail in the comments on the function 6062306a36Sopenharmony_ci * bfq_bfqq_softrt_next_start. On the other hand, the detection of an 6162306a36Sopenharmony_ci * interactive queue works as follows: a queue is deemed interactive 6262306a36Sopenharmony_ci * if it is constantly non empty only for a limited time interval, 6362306a36Sopenharmony_ci * after which it does become empty. The queue may be deemed 6462306a36Sopenharmony_ci * interactive again (for a limited time), if it restarts being 6562306a36Sopenharmony_ci * constantly non empty, provided that this happens only after the 6662306a36Sopenharmony_ci * queue has remained empty for a given minimum idle time. 6762306a36Sopenharmony_ci * 6862306a36Sopenharmony_ci * By default, BFQ computes automatically the above maximum time 6962306a36Sopenharmony_ci * interval, i.e., the time interval after which a constantly 7062306a36Sopenharmony_ci * non-empty queue stops being deemed interactive. Since a queue is 7162306a36Sopenharmony_ci * weight-raised while it is deemed interactive, this maximum time 7262306a36Sopenharmony_ci * interval happens to coincide with the (maximum) duration of the 7362306a36Sopenharmony_ci * weight-raising for interactive queues. 7462306a36Sopenharmony_ci * 7562306a36Sopenharmony_ci * Finally, BFQ also features additional heuristics for 7662306a36Sopenharmony_ci * preserving both a low latency and a high throughput on NCQ-capable, 7762306a36Sopenharmony_ci * rotational or flash-based devices, and to get the job done quickly 7862306a36Sopenharmony_ci * for applications consisting in many I/O-bound processes. 7962306a36Sopenharmony_ci * 8062306a36Sopenharmony_ci * NOTE: if the main or only goal, with a given device, is to achieve 8162306a36Sopenharmony_ci * the maximum-possible throughput at all times, then do switch off 8262306a36Sopenharmony_ci * all low-latency heuristics for that device, by setting low_latency 8362306a36Sopenharmony_ci * to 0. 8462306a36Sopenharmony_ci * 8562306a36Sopenharmony_ci * BFQ is described in [1], where also a reference to the initial, 8662306a36Sopenharmony_ci * more theoretical paper on BFQ can be found. The interested reader 8762306a36Sopenharmony_ci * can find in the latter paper full details on the main algorithm, as 8862306a36Sopenharmony_ci * well as formulas of the guarantees and formal proofs of all the 8962306a36Sopenharmony_ci * properties. With respect to the version of BFQ presented in these 9062306a36Sopenharmony_ci * papers, this implementation adds a few more heuristics, such as the 9162306a36Sopenharmony_ci * ones that guarantee a low latency to interactive and soft real-time 9262306a36Sopenharmony_ci * applications, and a hierarchical extension based on H-WF2Q+. 9362306a36Sopenharmony_ci * 9462306a36Sopenharmony_ci * B-WF2Q+ is based on WF2Q+, which is described in [2], together with 9562306a36Sopenharmony_ci * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+ 9662306a36Sopenharmony_ci * with O(log N) complexity derives from the one introduced with EEVDF 9762306a36Sopenharmony_ci * in [3]. 9862306a36Sopenharmony_ci * 9962306a36Sopenharmony_ci * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O 10062306a36Sopenharmony_ci * Scheduler", Proceedings of the First Workshop on Mobile System 10162306a36Sopenharmony_ci * Technologies (MST-2015), May 2015. 10262306a36Sopenharmony_ci * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf 10362306a36Sopenharmony_ci * 10462306a36Sopenharmony_ci * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing 10562306a36Sopenharmony_ci * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689, 10662306a36Sopenharmony_ci * Oct 1997. 10762306a36Sopenharmony_ci * 10862306a36Sopenharmony_ci * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz 10962306a36Sopenharmony_ci * 11062306a36Sopenharmony_ci * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline 11162306a36Sopenharmony_ci * First: A Flexible and Accurate Mechanism for Proportional Share 11262306a36Sopenharmony_ci * Resource Allocation", technical report. 11362306a36Sopenharmony_ci * 11462306a36Sopenharmony_ci * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf 11562306a36Sopenharmony_ci */ 11662306a36Sopenharmony_ci#include <linux/module.h> 11762306a36Sopenharmony_ci#include <linux/slab.h> 11862306a36Sopenharmony_ci#include <linux/blkdev.h> 11962306a36Sopenharmony_ci#include <linux/cgroup.h> 12062306a36Sopenharmony_ci#include <linux/ktime.h> 12162306a36Sopenharmony_ci#include <linux/rbtree.h> 12262306a36Sopenharmony_ci#include <linux/ioprio.h> 12362306a36Sopenharmony_ci#include <linux/sbitmap.h> 12462306a36Sopenharmony_ci#include <linux/delay.h> 12562306a36Sopenharmony_ci#include <linux/backing-dev.h> 12662306a36Sopenharmony_ci 12762306a36Sopenharmony_ci#include <trace/events/block.h> 12862306a36Sopenharmony_ci 12962306a36Sopenharmony_ci#include "elevator.h" 13062306a36Sopenharmony_ci#include "blk.h" 13162306a36Sopenharmony_ci#include "blk-mq.h" 13262306a36Sopenharmony_ci#include "blk-mq-sched.h" 13362306a36Sopenharmony_ci#include "bfq-iosched.h" 13462306a36Sopenharmony_ci#include "blk-wbt.h" 13562306a36Sopenharmony_ci 13662306a36Sopenharmony_ci#define BFQ_BFQQ_FNS(name) \ 13762306a36Sopenharmony_civoid bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \ 13862306a36Sopenharmony_ci{ \ 13962306a36Sopenharmony_ci __set_bit(BFQQF_##name, &(bfqq)->flags); \ 14062306a36Sopenharmony_ci} \ 14162306a36Sopenharmony_civoid bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \ 14262306a36Sopenharmony_ci{ \ 14362306a36Sopenharmony_ci __clear_bit(BFQQF_##name, &(bfqq)->flags); \ 14462306a36Sopenharmony_ci} \ 14562306a36Sopenharmony_ciint bfq_bfqq_##name(const struct bfq_queue *bfqq) \ 14662306a36Sopenharmony_ci{ \ 14762306a36Sopenharmony_ci return test_bit(BFQQF_##name, &(bfqq)->flags); \ 14862306a36Sopenharmony_ci} 14962306a36Sopenharmony_ci 15062306a36Sopenharmony_ciBFQ_BFQQ_FNS(just_created); 15162306a36Sopenharmony_ciBFQ_BFQQ_FNS(busy); 15262306a36Sopenharmony_ciBFQ_BFQQ_FNS(wait_request); 15362306a36Sopenharmony_ciBFQ_BFQQ_FNS(non_blocking_wait_rq); 15462306a36Sopenharmony_ciBFQ_BFQQ_FNS(fifo_expire); 15562306a36Sopenharmony_ciBFQ_BFQQ_FNS(has_short_ttime); 15662306a36Sopenharmony_ciBFQ_BFQQ_FNS(sync); 15762306a36Sopenharmony_ciBFQ_BFQQ_FNS(IO_bound); 15862306a36Sopenharmony_ciBFQ_BFQQ_FNS(in_large_burst); 15962306a36Sopenharmony_ciBFQ_BFQQ_FNS(coop); 16062306a36Sopenharmony_ciBFQ_BFQQ_FNS(split_coop); 16162306a36Sopenharmony_ciBFQ_BFQQ_FNS(softrt_update); 16262306a36Sopenharmony_ci#undef BFQ_BFQQ_FNS \ 16362306a36Sopenharmony_ci 16462306a36Sopenharmony_ci/* Expiration time of async (0) and sync (1) requests, in ns. */ 16562306a36Sopenharmony_cistatic const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 }; 16662306a36Sopenharmony_ci 16762306a36Sopenharmony_ci/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */ 16862306a36Sopenharmony_cistatic const int bfq_back_max = 16 * 1024; 16962306a36Sopenharmony_ci 17062306a36Sopenharmony_ci/* Penalty of a backwards seek, in number of sectors. */ 17162306a36Sopenharmony_cistatic const int bfq_back_penalty = 2; 17262306a36Sopenharmony_ci 17362306a36Sopenharmony_ci/* Idling period duration, in ns. */ 17462306a36Sopenharmony_cistatic u64 bfq_slice_idle = NSEC_PER_SEC / 125; 17562306a36Sopenharmony_ci 17662306a36Sopenharmony_ci/* Minimum number of assigned budgets for which stats are safe to compute. */ 17762306a36Sopenharmony_cistatic const int bfq_stats_min_budgets = 194; 17862306a36Sopenharmony_ci 17962306a36Sopenharmony_ci/* Default maximum budget values, in sectors and number of requests. */ 18062306a36Sopenharmony_cistatic const int bfq_default_max_budget = 16 * 1024; 18162306a36Sopenharmony_ci 18262306a36Sopenharmony_ci/* 18362306a36Sopenharmony_ci * When a sync request is dispatched, the queue that contains that 18462306a36Sopenharmony_ci * request, and all the ancestor entities of that queue, are charged 18562306a36Sopenharmony_ci * with the number of sectors of the request. In contrast, if the 18662306a36Sopenharmony_ci * request is async, then the queue and its ancestor entities are 18762306a36Sopenharmony_ci * charged with the number of sectors of the request, multiplied by 18862306a36Sopenharmony_ci * the factor below. This throttles the bandwidth for async I/O, 18962306a36Sopenharmony_ci * w.r.t. to sync I/O, and it is done to counter the tendency of async 19062306a36Sopenharmony_ci * writes to steal I/O throughput to reads. 19162306a36Sopenharmony_ci * 19262306a36Sopenharmony_ci * The current value of this parameter is the result of a tuning with 19362306a36Sopenharmony_ci * several hardware and software configurations. We tried to find the 19462306a36Sopenharmony_ci * lowest value for which writes do not cause noticeable problems to 19562306a36Sopenharmony_ci * reads. In fact, the lower this parameter, the stabler I/O control, 19662306a36Sopenharmony_ci * in the following respect. The lower this parameter is, the less 19762306a36Sopenharmony_ci * the bandwidth enjoyed by a group decreases 19862306a36Sopenharmony_ci * - when the group does writes, w.r.t. to when it does reads; 19962306a36Sopenharmony_ci * - when other groups do reads, w.r.t. to when they do writes. 20062306a36Sopenharmony_ci */ 20162306a36Sopenharmony_cistatic const int bfq_async_charge_factor = 3; 20262306a36Sopenharmony_ci 20362306a36Sopenharmony_ci/* Default timeout values, in jiffies, approximating CFQ defaults. */ 20462306a36Sopenharmony_ciconst int bfq_timeout = HZ / 8; 20562306a36Sopenharmony_ci 20662306a36Sopenharmony_ci/* 20762306a36Sopenharmony_ci * Time limit for merging (see comments in bfq_setup_cooperator). Set 20862306a36Sopenharmony_ci * to the slowest value that, in our tests, proved to be effective in 20962306a36Sopenharmony_ci * removing false positives, while not causing true positives to miss 21062306a36Sopenharmony_ci * queue merging. 21162306a36Sopenharmony_ci * 21262306a36Sopenharmony_ci * As can be deduced from the low time limit below, queue merging, if 21362306a36Sopenharmony_ci * successful, happens at the very beginning of the I/O of the involved 21462306a36Sopenharmony_ci * cooperating processes, as a consequence of the arrival of the very 21562306a36Sopenharmony_ci * first requests from each cooperator. After that, there is very 21662306a36Sopenharmony_ci * little chance to find cooperators. 21762306a36Sopenharmony_ci */ 21862306a36Sopenharmony_cistatic const unsigned long bfq_merge_time_limit = HZ/10; 21962306a36Sopenharmony_ci 22062306a36Sopenharmony_cistatic struct kmem_cache *bfq_pool; 22162306a36Sopenharmony_ci 22262306a36Sopenharmony_ci/* Below this threshold (in ns), we consider thinktime immediate. */ 22362306a36Sopenharmony_ci#define BFQ_MIN_TT (2 * NSEC_PER_MSEC) 22462306a36Sopenharmony_ci 22562306a36Sopenharmony_ci/* hw_tag detection: parallel requests threshold and min samples needed. */ 22662306a36Sopenharmony_ci#define BFQ_HW_QUEUE_THRESHOLD 3 22762306a36Sopenharmony_ci#define BFQ_HW_QUEUE_SAMPLES 32 22862306a36Sopenharmony_ci 22962306a36Sopenharmony_ci#define BFQQ_SEEK_THR (sector_t)(8 * 100) 23062306a36Sopenharmony_ci#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32) 23162306a36Sopenharmony_ci#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \ 23262306a36Sopenharmony_ci (get_sdist(last_pos, rq) > \ 23362306a36Sopenharmony_ci BFQQ_SEEK_THR && \ 23462306a36Sopenharmony_ci (!blk_queue_nonrot(bfqd->queue) || \ 23562306a36Sopenharmony_ci blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT)) 23662306a36Sopenharmony_ci#define BFQQ_CLOSE_THR (sector_t)(8 * 1024) 23762306a36Sopenharmony_ci#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19) 23862306a36Sopenharmony_ci/* 23962306a36Sopenharmony_ci * Sync random I/O is likely to be confused with soft real-time I/O, 24062306a36Sopenharmony_ci * because it is characterized by limited throughput and apparently 24162306a36Sopenharmony_ci * isochronous arrival pattern. To avoid false positives, queues 24262306a36Sopenharmony_ci * containing only random (seeky) I/O are prevented from being tagged 24362306a36Sopenharmony_ci * as soft real-time. 24462306a36Sopenharmony_ci */ 24562306a36Sopenharmony_ci#define BFQQ_TOTALLY_SEEKY(bfqq) (bfqq->seek_history == -1) 24662306a36Sopenharmony_ci 24762306a36Sopenharmony_ci/* Min number of samples required to perform peak-rate update */ 24862306a36Sopenharmony_ci#define BFQ_RATE_MIN_SAMPLES 32 24962306a36Sopenharmony_ci/* Min observation time interval required to perform a peak-rate update (ns) */ 25062306a36Sopenharmony_ci#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC) 25162306a36Sopenharmony_ci/* Target observation time interval for a peak-rate update (ns) */ 25262306a36Sopenharmony_ci#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC 25362306a36Sopenharmony_ci 25462306a36Sopenharmony_ci/* 25562306a36Sopenharmony_ci * Shift used for peak-rate fixed precision calculations. 25662306a36Sopenharmony_ci * With 25762306a36Sopenharmony_ci * - the current shift: 16 positions 25862306a36Sopenharmony_ci * - the current type used to store rate: u32 25962306a36Sopenharmony_ci * - the current unit of measure for rate: [sectors/usec], or, more precisely, 26062306a36Sopenharmony_ci * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift, 26162306a36Sopenharmony_ci * the range of rates that can be stored is 26262306a36Sopenharmony_ci * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec = 26362306a36Sopenharmony_ci * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec = 26462306a36Sopenharmony_ci * [15, 65G] sectors/sec 26562306a36Sopenharmony_ci * Which, assuming a sector size of 512B, corresponds to a range of 26662306a36Sopenharmony_ci * [7.5K, 33T] B/sec 26762306a36Sopenharmony_ci */ 26862306a36Sopenharmony_ci#define BFQ_RATE_SHIFT 16 26962306a36Sopenharmony_ci 27062306a36Sopenharmony_ci/* 27162306a36Sopenharmony_ci * When configured for computing the duration of the weight-raising 27262306a36Sopenharmony_ci * for interactive queues automatically (see the comments at the 27362306a36Sopenharmony_ci * beginning of this file), BFQ does it using the following formula: 27462306a36Sopenharmony_ci * duration = (ref_rate / r) * ref_wr_duration, 27562306a36Sopenharmony_ci * where r is the peak rate of the device, and ref_rate and 27662306a36Sopenharmony_ci * ref_wr_duration are two reference parameters. In particular, 27762306a36Sopenharmony_ci * ref_rate is the peak rate of the reference storage device (see 27862306a36Sopenharmony_ci * below), and ref_wr_duration is about the maximum time needed, with 27962306a36Sopenharmony_ci * BFQ and while reading two files in parallel, to load typical large 28062306a36Sopenharmony_ci * applications on the reference device (see the comments on 28162306a36Sopenharmony_ci * max_service_from_wr below, for more details on how ref_wr_duration 28262306a36Sopenharmony_ci * is obtained). In practice, the slower/faster the device at hand 28362306a36Sopenharmony_ci * is, the more/less it takes to load applications with respect to the 28462306a36Sopenharmony_ci * reference device. Accordingly, the longer/shorter BFQ grants 28562306a36Sopenharmony_ci * weight raising to interactive applications. 28662306a36Sopenharmony_ci * 28762306a36Sopenharmony_ci * BFQ uses two different reference pairs (ref_rate, ref_wr_duration), 28862306a36Sopenharmony_ci * depending on whether the device is rotational or non-rotational. 28962306a36Sopenharmony_ci * 29062306a36Sopenharmony_ci * In the following definitions, ref_rate[0] and ref_wr_duration[0] 29162306a36Sopenharmony_ci * are the reference values for a rotational device, whereas 29262306a36Sopenharmony_ci * ref_rate[1] and ref_wr_duration[1] are the reference values for a 29362306a36Sopenharmony_ci * non-rotational device. The reference rates are not the actual peak 29462306a36Sopenharmony_ci * rates of the devices used as a reference, but slightly lower 29562306a36Sopenharmony_ci * values. The reason for using slightly lower values is that the 29662306a36Sopenharmony_ci * peak-rate estimator tends to yield slightly lower values than the 29762306a36Sopenharmony_ci * actual peak rate (it can yield the actual peak rate only if there 29862306a36Sopenharmony_ci * is only one process doing I/O, and the process does sequential 29962306a36Sopenharmony_ci * I/O). 30062306a36Sopenharmony_ci * 30162306a36Sopenharmony_ci * The reference peak rates are measured in sectors/usec, left-shifted 30262306a36Sopenharmony_ci * by BFQ_RATE_SHIFT. 30362306a36Sopenharmony_ci */ 30462306a36Sopenharmony_cistatic int ref_rate[2] = {14000, 33000}; 30562306a36Sopenharmony_ci/* 30662306a36Sopenharmony_ci * To improve readability, a conversion function is used to initialize 30762306a36Sopenharmony_ci * the following array, which entails that the array can be 30862306a36Sopenharmony_ci * initialized only in a function. 30962306a36Sopenharmony_ci */ 31062306a36Sopenharmony_cistatic int ref_wr_duration[2]; 31162306a36Sopenharmony_ci 31262306a36Sopenharmony_ci/* 31362306a36Sopenharmony_ci * BFQ uses the above-detailed, time-based weight-raising mechanism to 31462306a36Sopenharmony_ci * privilege interactive tasks. This mechanism is vulnerable to the 31562306a36Sopenharmony_ci * following false positives: I/O-bound applications that will go on 31662306a36Sopenharmony_ci * doing I/O for much longer than the duration of weight 31762306a36Sopenharmony_ci * raising. These applications have basically no benefit from being 31862306a36Sopenharmony_ci * weight-raised at the beginning of their I/O. On the opposite end, 31962306a36Sopenharmony_ci * while being weight-raised, these applications 32062306a36Sopenharmony_ci * a) unjustly steal throughput to applications that may actually need 32162306a36Sopenharmony_ci * low latency; 32262306a36Sopenharmony_ci * b) make BFQ uselessly perform device idling; device idling results 32362306a36Sopenharmony_ci * in loss of device throughput with most flash-based storage, and may 32462306a36Sopenharmony_ci * increase latencies when used purposelessly. 32562306a36Sopenharmony_ci * 32662306a36Sopenharmony_ci * BFQ tries to reduce these problems, by adopting the following 32762306a36Sopenharmony_ci * countermeasure. To introduce this countermeasure, we need first to 32862306a36Sopenharmony_ci * finish explaining how the duration of weight-raising for 32962306a36Sopenharmony_ci * interactive tasks is computed. 33062306a36Sopenharmony_ci * 33162306a36Sopenharmony_ci * For a bfq_queue deemed as interactive, the duration of weight 33262306a36Sopenharmony_ci * raising is dynamically adjusted, as a function of the estimated 33362306a36Sopenharmony_ci * peak rate of the device, so as to be equal to the time needed to 33462306a36Sopenharmony_ci * execute the 'largest' interactive task we benchmarked so far. By 33562306a36Sopenharmony_ci * largest task, we mean the task for which each involved process has 33662306a36Sopenharmony_ci * to do more I/O than for any of the other tasks we benchmarked. This 33762306a36Sopenharmony_ci * reference interactive task is the start-up of LibreOffice Writer, 33862306a36Sopenharmony_ci * and in this task each process/bfq_queue needs to have at most ~110K 33962306a36Sopenharmony_ci * sectors transferred. 34062306a36Sopenharmony_ci * 34162306a36Sopenharmony_ci * This last piece of information enables BFQ to reduce the actual 34262306a36Sopenharmony_ci * duration of weight-raising for at least one class of I/O-bound 34362306a36Sopenharmony_ci * applications: those doing sequential or quasi-sequential I/O. An 34462306a36Sopenharmony_ci * example is file copy. In fact, once started, the main I/O-bound 34562306a36Sopenharmony_ci * processes of these applications usually consume the above 110K 34662306a36Sopenharmony_ci * sectors in much less time than the processes of an application that 34762306a36Sopenharmony_ci * is starting, because these I/O-bound processes will greedily devote 34862306a36Sopenharmony_ci * almost all their CPU cycles only to their target, 34962306a36Sopenharmony_ci * throughput-friendly I/O operations. This is even more true if BFQ 35062306a36Sopenharmony_ci * happens to be underestimating the device peak rate, and thus 35162306a36Sopenharmony_ci * overestimating the duration of weight raising. But, according to 35262306a36Sopenharmony_ci * our measurements, once transferred 110K sectors, these processes 35362306a36Sopenharmony_ci * have no right to be weight-raised any longer. 35462306a36Sopenharmony_ci * 35562306a36Sopenharmony_ci * Basing on the last consideration, BFQ ends weight-raising for a 35662306a36Sopenharmony_ci * bfq_queue if the latter happens to have received an amount of 35762306a36Sopenharmony_ci * service at least equal to the following constant. The constant is 35862306a36Sopenharmony_ci * set to slightly more than 110K, to have a minimum safety margin. 35962306a36Sopenharmony_ci * 36062306a36Sopenharmony_ci * This early ending of weight-raising reduces the amount of time 36162306a36Sopenharmony_ci * during which interactive false positives cause the two problems 36262306a36Sopenharmony_ci * described at the beginning of these comments. 36362306a36Sopenharmony_ci */ 36462306a36Sopenharmony_cistatic const unsigned long max_service_from_wr = 120000; 36562306a36Sopenharmony_ci 36662306a36Sopenharmony_ci/* 36762306a36Sopenharmony_ci * Maximum time between the creation of two queues, for stable merge 36862306a36Sopenharmony_ci * to be activated (in ms) 36962306a36Sopenharmony_ci */ 37062306a36Sopenharmony_cistatic const unsigned long bfq_activation_stable_merging = 600; 37162306a36Sopenharmony_ci/* 37262306a36Sopenharmony_ci * Minimum time to be waited before evaluating delayed stable merge (in ms) 37362306a36Sopenharmony_ci */ 37462306a36Sopenharmony_cistatic const unsigned long bfq_late_stable_merging = 600; 37562306a36Sopenharmony_ci 37662306a36Sopenharmony_ci#define RQ_BIC(rq) ((struct bfq_io_cq *)((rq)->elv.priv[0])) 37762306a36Sopenharmony_ci#define RQ_BFQQ(rq) ((rq)->elv.priv[1]) 37862306a36Sopenharmony_ci 37962306a36Sopenharmony_cistruct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync, 38062306a36Sopenharmony_ci unsigned int actuator_idx) 38162306a36Sopenharmony_ci{ 38262306a36Sopenharmony_ci if (is_sync) 38362306a36Sopenharmony_ci return bic->bfqq[1][actuator_idx]; 38462306a36Sopenharmony_ci 38562306a36Sopenharmony_ci return bic->bfqq[0][actuator_idx]; 38662306a36Sopenharmony_ci} 38762306a36Sopenharmony_ci 38862306a36Sopenharmony_cistatic void bfq_put_stable_ref(struct bfq_queue *bfqq); 38962306a36Sopenharmony_ci 39062306a36Sopenharmony_civoid bic_set_bfqq(struct bfq_io_cq *bic, 39162306a36Sopenharmony_ci struct bfq_queue *bfqq, 39262306a36Sopenharmony_ci bool is_sync, 39362306a36Sopenharmony_ci unsigned int actuator_idx) 39462306a36Sopenharmony_ci{ 39562306a36Sopenharmony_ci struct bfq_queue *old_bfqq = bic->bfqq[is_sync][actuator_idx]; 39662306a36Sopenharmony_ci 39762306a36Sopenharmony_ci /* 39862306a36Sopenharmony_ci * If bfqq != NULL, then a non-stable queue merge between 39962306a36Sopenharmony_ci * bic->bfqq and bfqq is happening here. This causes troubles 40062306a36Sopenharmony_ci * in the following case: bic->bfqq has also been scheduled 40162306a36Sopenharmony_ci * for a possible stable merge with bic->stable_merge_bfqq, 40262306a36Sopenharmony_ci * and bic->stable_merge_bfqq == bfqq happens to 40362306a36Sopenharmony_ci * hold. Troubles occur because bfqq may then undergo a split, 40462306a36Sopenharmony_ci * thereby becoming eligible for a stable merge. Yet, if 40562306a36Sopenharmony_ci * bic->stable_merge_bfqq points exactly to bfqq, then bfqq 40662306a36Sopenharmony_ci * would be stably merged with itself. To avoid this anomaly, 40762306a36Sopenharmony_ci * we cancel the stable merge if 40862306a36Sopenharmony_ci * bic->stable_merge_bfqq == bfqq. 40962306a36Sopenharmony_ci */ 41062306a36Sopenharmony_ci struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[actuator_idx]; 41162306a36Sopenharmony_ci 41262306a36Sopenharmony_ci /* Clear bic pointer if bfqq is detached from this bic */ 41362306a36Sopenharmony_ci if (old_bfqq && old_bfqq->bic == bic) 41462306a36Sopenharmony_ci old_bfqq->bic = NULL; 41562306a36Sopenharmony_ci 41662306a36Sopenharmony_ci if (is_sync) 41762306a36Sopenharmony_ci bic->bfqq[1][actuator_idx] = bfqq; 41862306a36Sopenharmony_ci else 41962306a36Sopenharmony_ci bic->bfqq[0][actuator_idx] = bfqq; 42062306a36Sopenharmony_ci 42162306a36Sopenharmony_ci if (bfqq && bfqq_data->stable_merge_bfqq == bfqq) { 42262306a36Sopenharmony_ci /* 42362306a36Sopenharmony_ci * Actually, these same instructions are executed also 42462306a36Sopenharmony_ci * in bfq_setup_cooperator, in case of abort or actual 42562306a36Sopenharmony_ci * execution of a stable merge. We could avoid 42662306a36Sopenharmony_ci * repeating these instructions there too, but if we 42762306a36Sopenharmony_ci * did so, we would nest even more complexity in this 42862306a36Sopenharmony_ci * function. 42962306a36Sopenharmony_ci */ 43062306a36Sopenharmony_ci bfq_put_stable_ref(bfqq_data->stable_merge_bfqq); 43162306a36Sopenharmony_ci 43262306a36Sopenharmony_ci bfqq_data->stable_merge_bfqq = NULL; 43362306a36Sopenharmony_ci } 43462306a36Sopenharmony_ci} 43562306a36Sopenharmony_ci 43662306a36Sopenharmony_cistruct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic) 43762306a36Sopenharmony_ci{ 43862306a36Sopenharmony_ci return bic->icq.q->elevator->elevator_data; 43962306a36Sopenharmony_ci} 44062306a36Sopenharmony_ci 44162306a36Sopenharmony_ci/** 44262306a36Sopenharmony_ci * icq_to_bic - convert iocontext queue structure to bfq_io_cq. 44362306a36Sopenharmony_ci * @icq: the iocontext queue. 44462306a36Sopenharmony_ci */ 44562306a36Sopenharmony_cistatic struct bfq_io_cq *icq_to_bic(struct io_cq *icq) 44662306a36Sopenharmony_ci{ 44762306a36Sopenharmony_ci /* bic->icq is the first member, %NULL will convert to %NULL */ 44862306a36Sopenharmony_ci return container_of(icq, struct bfq_io_cq, icq); 44962306a36Sopenharmony_ci} 45062306a36Sopenharmony_ci 45162306a36Sopenharmony_ci/** 45262306a36Sopenharmony_ci * bfq_bic_lookup - search into @ioc a bic associated to @bfqd. 45362306a36Sopenharmony_ci * @q: the request queue. 45462306a36Sopenharmony_ci */ 45562306a36Sopenharmony_cistatic struct bfq_io_cq *bfq_bic_lookup(struct request_queue *q) 45662306a36Sopenharmony_ci{ 45762306a36Sopenharmony_ci struct bfq_io_cq *icq; 45862306a36Sopenharmony_ci unsigned long flags; 45962306a36Sopenharmony_ci 46062306a36Sopenharmony_ci if (!current->io_context) 46162306a36Sopenharmony_ci return NULL; 46262306a36Sopenharmony_ci 46362306a36Sopenharmony_ci spin_lock_irqsave(&q->queue_lock, flags); 46462306a36Sopenharmony_ci icq = icq_to_bic(ioc_lookup_icq(q)); 46562306a36Sopenharmony_ci spin_unlock_irqrestore(&q->queue_lock, flags); 46662306a36Sopenharmony_ci 46762306a36Sopenharmony_ci return icq; 46862306a36Sopenharmony_ci} 46962306a36Sopenharmony_ci 47062306a36Sopenharmony_ci/* 47162306a36Sopenharmony_ci * Scheduler run of queue, if there are requests pending and no one in the 47262306a36Sopenharmony_ci * driver that will restart queueing. 47362306a36Sopenharmony_ci */ 47462306a36Sopenharmony_civoid bfq_schedule_dispatch(struct bfq_data *bfqd) 47562306a36Sopenharmony_ci{ 47662306a36Sopenharmony_ci lockdep_assert_held(&bfqd->lock); 47762306a36Sopenharmony_ci 47862306a36Sopenharmony_ci if (bfqd->queued != 0) { 47962306a36Sopenharmony_ci bfq_log(bfqd, "schedule dispatch"); 48062306a36Sopenharmony_ci blk_mq_run_hw_queues(bfqd->queue, true); 48162306a36Sopenharmony_ci } 48262306a36Sopenharmony_ci} 48362306a36Sopenharmony_ci 48462306a36Sopenharmony_ci#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE) 48562306a36Sopenharmony_ci 48662306a36Sopenharmony_ci#define bfq_sample_valid(samples) ((samples) > 80) 48762306a36Sopenharmony_ci 48862306a36Sopenharmony_ci/* 48962306a36Sopenharmony_ci * Lifted from AS - choose which of rq1 and rq2 that is best served now. 49062306a36Sopenharmony_ci * We choose the request that is closer to the head right now. Distance 49162306a36Sopenharmony_ci * behind the head is penalized and only allowed to a certain extent. 49262306a36Sopenharmony_ci */ 49362306a36Sopenharmony_cistatic struct request *bfq_choose_req(struct bfq_data *bfqd, 49462306a36Sopenharmony_ci struct request *rq1, 49562306a36Sopenharmony_ci struct request *rq2, 49662306a36Sopenharmony_ci sector_t last) 49762306a36Sopenharmony_ci{ 49862306a36Sopenharmony_ci sector_t s1, s2, d1 = 0, d2 = 0; 49962306a36Sopenharmony_ci unsigned long back_max; 50062306a36Sopenharmony_ci#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */ 50162306a36Sopenharmony_ci#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */ 50262306a36Sopenharmony_ci unsigned int wrap = 0; /* bit mask: requests behind the disk head? */ 50362306a36Sopenharmony_ci 50462306a36Sopenharmony_ci if (!rq1 || rq1 == rq2) 50562306a36Sopenharmony_ci return rq2; 50662306a36Sopenharmony_ci if (!rq2) 50762306a36Sopenharmony_ci return rq1; 50862306a36Sopenharmony_ci 50962306a36Sopenharmony_ci if (rq_is_sync(rq1) && !rq_is_sync(rq2)) 51062306a36Sopenharmony_ci return rq1; 51162306a36Sopenharmony_ci else if (rq_is_sync(rq2) && !rq_is_sync(rq1)) 51262306a36Sopenharmony_ci return rq2; 51362306a36Sopenharmony_ci if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META)) 51462306a36Sopenharmony_ci return rq1; 51562306a36Sopenharmony_ci else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META)) 51662306a36Sopenharmony_ci return rq2; 51762306a36Sopenharmony_ci 51862306a36Sopenharmony_ci s1 = blk_rq_pos(rq1); 51962306a36Sopenharmony_ci s2 = blk_rq_pos(rq2); 52062306a36Sopenharmony_ci 52162306a36Sopenharmony_ci /* 52262306a36Sopenharmony_ci * By definition, 1KiB is 2 sectors. 52362306a36Sopenharmony_ci */ 52462306a36Sopenharmony_ci back_max = bfqd->bfq_back_max * 2; 52562306a36Sopenharmony_ci 52662306a36Sopenharmony_ci /* 52762306a36Sopenharmony_ci * Strict one way elevator _except_ in the case where we allow 52862306a36Sopenharmony_ci * short backward seeks which are biased as twice the cost of a 52962306a36Sopenharmony_ci * similar forward seek. 53062306a36Sopenharmony_ci */ 53162306a36Sopenharmony_ci if (s1 >= last) 53262306a36Sopenharmony_ci d1 = s1 - last; 53362306a36Sopenharmony_ci else if (s1 + back_max >= last) 53462306a36Sopenharmony_ci d1 = (last - s1) * bfqd->bfq_back_penalty; 53562306a36Sopenharmony_ci else 53662306a36Sopenharmony_ci wrap |= BFQ_RQ1_WRAP; 53762306a36Sopenharmony_ci 53862306a36Sopenharmony_ci if (s2 >= last) 53962306a36Sopenharmony_ci d2 = s2 - last; 54062306a36Sopenharmony_ci else if (s2 + back_max >= last) 54162306a36Sopenharmony_ci d2 = (last - s2) * bfqd->bfq_back_penalty; 54262306a36Sopenharmony_ci else 54362306a36Sopenharmony_ci wrap |= BFQ_RQ2_WRAP; 54462306a36Sopenharmony_ci 54562306a36Sopenharmony_ci /* Found required data */ 54662306a36Sopenharmony_ci 54762306a36Sopenharmony_ci /* 54862306a36Sopenharmony_ci * By doing switch() on the bit mask "wrap" we avoid having to 54962306a36Sopenharmony_ci * check two variables for all permutations: --> faster! 55062306a36Sopenharmony_ci */ 55162306a36Sopenharmony_ci switch (wrap) { 55262306a36Sopenharmony_ci case 0: /* common case for CFQ: rq1 and rq2 not wrapped */ 55362306a36Sopenharmony_ci if (d1 < d2) 55462306a36Sopenharmony_ci return rq1; 55562306a36Sopenharmony_ci else if (d2 < d1) 55662306a36Sopenharmony_ci return rq2; 55762306a36Sopenharmony_ci 55862306a36Sopenharmony_ci if (s1 >= s2) 55962306a36Sopenharmony_ci return rq1; 56062306a36Sopenharmony_ci else 56162306a36Sopenharmony_ci return rq2; 56262306a36Sopenharmony_ci 56362306a36Sopenharmony_ci case BFQ_RQ2_WRAP: 56462306a36Sopenharmony_ci return rq1; 56562306a36Sopenharmony_ci case BFQ_RQ1_WRAP: 56662306a36Sopenharmony_ci return rq2; 56762306a36Sopenharmony_ci case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */ 56862306a36Sopenharmony_ci default: 56962306a36Sopenharmony_ci /* 57062306a36Sopenharmony_ci * Since both rqs are wrapped, 57162306a36Sopenharmony_ci * start with the one that's further behind head 57262306a36Sopenharmony_ci * (--> only *one* back seek required), 57362306a36Sopenharmony_ci * since back seek takes more time than forward. 57462306a36Sopenharmony_ci */ 57562306a36Sopenharmony_ci if (s1 <= s2) 57662306a36Sopenharmony_ci return rq1; 57762306a36Sopenharmony_ci else 57862306a36Sopenharmony_ci return rq2; 57962306a36Sopenharmony_ci } 58062306a36Sopenharmony_ci} 58162306a36Sopenharmony_ci 58262306a36Sopenharmony_ci#define BFQ_LIMIT_INLINE_DEPTH 16 58362306a36Sopenharmony_ci 58462306a36Sopenharmony_ci#ifdef CONFIG_BFQ_GROUP_IOSCHED 58562306a36Sopenharmony_cistatic bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit) 58662306a36Sopenharmony_ci{ 58762306a36Sopenharmony_ci struct bfq_data *bfqd = bfqq->bfqd; 58862306a36Sopenharmony_ci struct bfq_entity *entity = &bfqq->entity; 58962306a36Sopenharmony_ci struct bfq_entity *inline_entities[BFQ_LIMIT_INLINE_DEPTH]; 59062306a36Sopenharmony_ci struct bfq_entity **entities = inline_entities; 59162306a36Sopenharmony_ci int depth, level, alloc_depth = BFQ_LIMIT_INLINE_DEPTH; 59262306a36Sopenharmony_ci int class_idx = bfqq->ioprio_class - 1; 59362306a36Sopenharmony_ci struct bfq_sched_data *sched_data; 59462306a36Sopenharmony_ci unsigned long wsum; 59562306a36Sopenharmony_ci bool ret = false; 59662306a36Sopenharmony_ci 59762306a36Sopenharmony_ci if (!entity->on_st_or_in_serv) 59862306a36Sopenharmony_ci return false; 59962306a36Sopenharmony_ci 60062306a36Sopenharmony_ciretry: 60162306a36Sopenharmony_ci spin_lock_irq(&bfqd->lock); 60262306a36Sopenharmony_ci /* +1 for bfqq entity, root cgroup not included */ 60362306a36Sopenharmony_ci depth = bfqg_to_blkg(bfqq_group(bfqq))->blkcg->css.cgroup->level + 1; 60462306a36Sopenharmony_ci if (depth > alloc_depth) { 60562306a36Sopenharmony_ci spin_unlock_irq(&bfqd->lock); 60662306a36Sopenharmony_ci if (entities != inline_entities) 60762306a36Sopenharmony_ci kfree(entities); 60862306a36Sopenharmony_ci entities = kmalloc_array(depth, sizeof(*entities), GFP_NOIO); 60962306a36Sopenharmony_ci if (!entities) 61062306a36Sopenharmony_ci return false; 61162306a36Sopenharmony_ci alloc_depth = depth; 61262306a36Sopenharmony_ci goto retry; 61362306a36Sopenharmony_ci } 61462306a36Sopenharmony_ci 61562306a36Sopenharmony_ci sched_data = entity->sched_data; 61662306a36Sopenharmony_ci /* Gather our ancestors as we need to traverse them in reverse order */ 61762306a36Sopenharmony_ci level = 0; 61862306a36Sopenharmony_ci for_each_entity(entity) { 61962306a36Sopenharmony_ci /* 62062306a36Sopenharmony_ci * If at some level entity is not even active, allow request 62162306a36Sopenharmony_ci * queueing so that BFQ knows there's work to do and activate 62262306a36Sopenharmony_ci * entities. 62362306a36Sopenharmony_ci */ 62462306a36Sopenharmony_ci if (!entity->on_st_or_in_serv) 62562306a36Sopenharmony_ci goto out; 62662306a36Sopenharmony_ci /* Uh, more parents than cgroup subsystem thinks? */ 62762306a36Sopenharmony_ci if (WARN_ON_ONCE(level >= depth)) 62862306a36Sopenharmony_ci break; 62962306a36Sopenharmony_ci entities[level++] = entity; 63062306a36Sopenharmony_ci } 63162306a36Sopenharmony_ci WARN_ON_ONCE(level != depth); 63262306a36Sopenharmony_ci for (level--; level >= 0; level--) { 63362306a36Sopenharmony_ci entity = entities[level]; 63462306a36Sopenharmony_ci if (level > 0) { 63562306a36Sopenharmony_ci wsum = bfq_entity_service_tree(entity)->wsum; 63662306a36Sopenharmony_ci } else { 63762306a36Sopenharmony_ci int i; 63862306a36Sopenharmony_ci /* 63962306a36Sopenharmony_ci * For bfqq itself we take into account service trees 64062306a36Sopenharmony_ci * of all higher priority classes and multiply their 64162306a36Sopenharmony_ci * weights so that low prio queue from higher class 64262306a36Sopenharmony_ci * gets more requests than high prio queue from lower 64362306a36Sopenharmony_ci * class. 64462306a36Sopenharmony_ci */ 64562306a36Sopenharmony_ci wsum = 0; 64662306a36Sopenharmony_ci for (i = 0; i <= class_idx; i++) { 64762306a36Sopenharmony_ci wsum = wsum * IOPRIO_BE_NR + 64862306a36Sopenharmony_ci sched_data->service_tree[i].wsum; 64962306a36Sopenharmony_ci } 65062306a36Sopenharmony_ci } 65162306a36Sopenharmony_ci if (!wsum) 65262306a36Sopenharmony_ci continue; 65362306a36Sopenharmony_ci limit = DIV_ROUND_CLOSEST(limit * entity->weight, wsum); 65462306a36Sopenharmony_ci if (entity->allocated >= limit) { 65562306a36Sopenharmony_ci bfq_log_bfqq(bfqq->bfqd, bfqq, 65662306a36Sopenharmony_ci "too many requests: allocated %d limit %d level %d", 65762306a36Sopenharmony_ci entity->allocated, limit, level); 65862306a36Sopenharmony_ci ret = true; 65962306a36Sopenharmony_ci break; 66062306a36Sopenharmony_ci } 66162306a36Sopenharmony_ci } 66262306a36Sopenharmony_ciout: 66362306a36Sopenharmony_ci spin_unlock_irq(&bfqd->lock); 66462306a36Sopenharmony_ci if (entities != inline_entities) 66562306a36Sopenharmony_ci kfree(entities); 66662306a36Sopenharmony_ci return ret; 66762306a36Sopenharmony_ci} 66862306a36Sopenharmony_ci#else 66962306a36Sopenharmony_cistatic bool bfqq_request_over_limit(struct bfq_queue *bfqq, int limit) 67062306a36Sopenharmony_ci{ 67162306a36Sopenharmony_ci return false; 67262306a36Sopenharmony_ci} 67362306a36Sopenharmony_ci#endif 67462306a36Sopenharmony_ci 67562306a36Sopenharmony_ci/* 67662306a36Sopenharmony_ci * Async I/O can easily starve sync I/O (both sync reads and sync 67762306a36Sopenharmony_ci * writes), by consuming all tags. Similarly, storms of sync writes, 67862306a36Sopenharmony_ci * such as those that sync(2) may trigger, can starve sync reads. 67962306a36Sopenharmony_ci * Limit depths of async I/O and sync writes so as to counter both 68062306a36Sopenharmony_ci * problems. 68162306a36Sopenharmony_ci * 68262306a36Sopenharmony_ci * Also if a bfq queue or its parent cgroup consume more tags than would be 68362306a36Sopenharmony_ci * appropriate for their weight, we trim the available tag depth to 1. This 68462306a36Sopenharmony_ci * avoids a situation where one cgroup can starve another cgroup from tags and 68562306a36Sopenharmony_ci * thus block service differentiation among cgroups. Note that because the 68662306a36Sopenharmony_ci * queue / cgroup already has many requests allocated and queued, this does not 68762306a36Sopenharmony_ci * significantly affect service guarantees coming from the BFQ scheduling 68862306a36Sopenharmony_ci * algorithm. 68962306a36Sopenharmony_ci */ 69062306a36Sopenharmony_cistatic void bfq_limit_depth(blk_opf_t opf, struct blk_mq_alloc_data *data) 69162306a36Sopenharmony_ci{ 69262306a36Sopenharmony_ci struct bfq_data *bfqd = data->q->elevator->elevator_data; 69362306a36Sopenharmony_ci struct bfq_io_cq *bic = bfq_bic_lookup(data->q); 69462306a36Sopenharmony_ci int depth; 69562306a36Sopenharmony_ci unsigned limit = data->q->nr_requests; 69662306a36Sopenharmony_ci unsigned int act_idx; 69762306a36Sopenharmony_ci 69862306a36Sopenharmony_ci /* Sync reads have full depth available */ 69962306a36Sopenharmony_ci if (op_is_sync(opf) && !op_is_write(opf)) { 70062306a36Sopenharmony_ci depth = 0; 70162306a36Sopenharmony_ci } else { 70262306a36Sopenharmony_ci depth = bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(opf)]; 70362306a36Sopenharmony_ci limit = (limit * depth) >> bfqd->full_depth_shift; 70462306a36Sopenharmony_ci } 70562306a36Sopenharmony_ci 70662306a36Sopenharmony_ci for (act_idx = 0; bic && act_idx < bfqd->num_actuators; act_idx++) { 70762306a36Sopenharmony_ci struct bfq_queue *bfqq = 70862306a36Sopenharmony_ci bic_to_bfqq(bic, op_is_sync(opf), act_idx); 70962306a36Sopenharmony_ci 71062306a36Sopenharmony_ci /* 71162306a36Sopenharmony_ci * Does queue (or any parent entity) exceed number of 71262306a36Sopenharmony_ci * requests that should be available to it? Heavily 71362306a36Sopenharmony_ci * limit depth so that it cannot consume more 71462306a36Sopenharmony_ci * available requests and thus starve other entities. 71562306a36Sopenharmony_ci */ 71662306a36Sopenharmony_ci if (bfqq && bfqq_request_over_limit(bfqq, limit)) { 71762306a36Sopenharmony_ci depth = 1; 71862306a36Sopenharmony_ci break; 71962306a36Sopenharmony_ci } 72062306a36Sopenharmony_ci } 72162306a36Sopenharmony_ci bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u", 72262306a36Sopenharmony_ci __func__, bfqd->wr_busy_queues, op_is_sync(opf), depth); 72362306a36Sopenharmony_ci if (depth) 72462306a36Sopenharmony_ci data->shallow_depth = depth; 72562306a36Sopenharmony_ci} 72662306a36Sopenharmony_ci 72762306a36Sopenharmony_cistatic struct bfq_queue * 72862306a36Sopenharmony_cibfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root, 72962306a36Sopenharmony_ci sector_t sector, struct rb_node **ret_parent, 73062306a36Sopenharmony_ci struct rb_node ***rb_link) 73162306a36Sopenharmony_ci{ 73262306a36Sopenharmony_ci struct rb_node **p, *parent; 73362306a36Sopenharmony_ci struct bfq_queue *bfqq = NULL; 73462306a36Sopenharmony_ci 73562306a36Sopenharmony_ci parent = NULL; 73662306a36Sopenharmony_ci p = &root->rb_node; 73762306a36Sopenharmony_ci while (*p) { 73862306a36Sopenharmony_ci struct rb_node **n; 73962306a36Sopenharmony_ci 74062306a36Sopenharmony_ci parent = *p; 74162306a36Sopenharmony_ci bfqq = rb_entry(parent, struct bfq_queue, pos_node); 74262306a36Sopenharmony_ci 74362306a36Sopenharmony_ci /* 74462306a36Sopenharmony_ci * Sort strictly based on sector. Smallest to the left, 74562306a36Sopenharmony_ci * largest to the right. 74662306a36Sopenharmony_ci */ 74762306a36Sopenharmony_ci if (sector > blk_rq_pos(bfqq->next_rq)) 74862306a36Sopenharmony_ci n = &(*p)->rb_right; 74962306a36Sopenharmony_ci else if (sector < blk_rq_pos(bfqq->next_rq)) 75062306a36Sopenharmony_ci n = &(*p)->rb_left; 75162306a36Sopenharmony_ci else 75262306a36Sopenharmony_ci break; 75362306a36Sopenharmony_ci p = n; 75462306a36Sopenharmony_ci bfqq = NULL; 75562306a36Sopenharmony_ci } 75662306a36Sopenharmony_ci 75762306a36Sopenharmony_ci *ret_parent = parent; 75862306a36Sopenharmony_ci if (rb_link) 75962306a36Sopenharmony_ci *rb_link = p; 76062306a36Sopenharmony_ci 76162306a36Sopenharmony_ci bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d", 76262306a36Sopenharmony_ci (unsigned long long)sector, 76362306a36Sopenharmony_ci bfqq ? bfqq->pid : 0); 76462306a36Sopenharmony_ci 76562306a36Sopenharmony_ci return bfqq; 76662306a36Sopenharmony_ci} 76762306a36Sopenharmony_ci 76862306a36Sopenharmony_cistatic bool bfq_too_late_for_merging(struct bfq_queue *bfqq) 76962306a36Sopenharmony_ci{ 77062306a36Sopenharmony_ci return bfqq->service_from_backlogged > 0 && 77162306a36Sopenharmony_ci time_is_before_jiffies(bfqq->first_IO_time + 77262306a36Sopenharmony_ci bfq_merge_time_limit); 77362306a36Sopenharmony_ci} 77462306a36Sopenharmony_ci 77562306a36Sopenharmony_ci/* 77662306a36Sopenharmony_ci * The following function is not marked as __cold because it is 77762306a36Sopenharmony_ci * actually cold, but for the same performance goal described in the 77862306a36Sopenharmony_ci * comments on the likely() at the beginning of 77962306a36Sopenharmony_ci * bfq_setup_cooperator(). Unexpectedly, to reach an even lower 78062306a36Sopenharmony_ci * execution time for the case where this function is not invoked, we 78162306a36Sopenharmony_ci * had to add an unlikely() in each involved if(). 78262306a36Sopenharmony_ci */ 78362306a36Sopenharmony_civoid __cold 78462306a36Sopenharmony_cibfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq) 78562306a36Sopenharmony_ci{ 78662306a36Sopenharmony_ci struct rb_node **p, *parent; 78762306a36Sopenharmony_ci struct bfq_queue *__bfqq; 78862306a36Sopenharmony_ci 78962306a36Sopenharmony_ci if (bfqq->pos_root) { 79062306a36Sopenharmony_ci rb_erase(&bfqq->pos_node, bfqq->pos_root); 79162306a36Sopenharmony_ci bfqq->pos_root = NULL; 79262306a36Sopenharmony_ci } 79362306a36Sopenharmony_ci 79462306a36Sopenharmony_ci /* oom_bfqq does not participate in queue merging */ 79562306a36Sopenharmony_ci if (bfqq == &bfqd->oom_bfqq) 79662306a36Sopenharmony_ci return; 79762306a36Sopenharmony_ci 79862306a36Sopenharmony_ci /* 79962306a36Sopenharmony_ci * bfqq cannot be merged any longer (see comments in 80062306a36Sopenharmony_ci * bfq_setup_cooperator): no point in adding bfqq into the 80162306a36Sopenharmony_ci * position tree. 80262306a36Sopenharmony_ci */ 80362306a36Sopenharmony_ci if (bfq_too_late_for_merging(bfqq)) 80462306a36Sopenharmony_ci return; 80562306a36Sopenharmony_ci 80662306a36Sopenharmony_ci if (bfq_class_idle(bfqq)) 80762306a36Sopenharmony_ci return; 80862306a36Sopenharmony_ci if (!bfqq->next_rq) 80962306a36Sopenharmony_ci return; 81062306a36Sopenharmony_ci 81162306a36Sopenharmony_ci bfqq->pos_root = &bfqq_group(bfqq)->rq_pos_tree; 81262306a36Sopenharmony_ci __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root, 81362306a36Sopenharmony_ci blk_rq_pos(bfqq->next_rq), &parent, &p); 81462306a36Sopenharmony_ci if (!__bfqq) { 81562306a36Sopenharmony_ci rb_link_node(&bfqq->pos_node, parent, p); 81662306a36Sopenharmony_ci rb_insert_color(&bfqq->pos_node, bfqq->pos_root); 81762306a36Sopenharmony_ci } else 81862306a36Sopenharmony_ci bfqq->pos_root = NULL; 81962306a36Sopenharmony_ci} 82062306a36Sopenharmony_ci 82162306a36Sopenharmony_ci/* 82262306a36Sopenharmony_ci * The following function returns false either if every active queue 82362306a36Sopenharmony_ci * must receive the same share of the throughput (symmetric scenario), 82462306a36Sopenharmony_ci * or, as a special case, if bfqq must receive a share of the 82562306a36Sopenharmony_ci * throughput lower than or equal to the share that every other active 82662306a36Sopenharmony_ci * queue must receive. If bfqq does sync I/O, then these are the only 82762306a36Sopenharmony_ci * two cases where bfqq happens to be guaranteed its share of the 82862306a36Sopenharmony_ci * throughput even if I/O dispatching is not plugged when bfqq remains 82962306a36Sopenharmony_ci * temporarily empty (for more details, see the comments in the 83062306a36Sopenharmony_ci * function bfq_better_to_idle()). For this reason, the return value 83162306a36Sopenharmony_ci * of this function is used to check whether I/O-dispatch plugging can 83262306a36Sopenharmony_ci * be avoided. 83362306a36Sopenharmony_ci * 83462306a36Sopenharmony_ci * The above first case (symmetric scenario) occurs when: 83562306a36Sopenharmony_ci * 1) all active queues have the same weight, 83662306a36Sopenharmony_ci * 2) all active queues belong to the same I/O-priority class, 83762306a36Sopenharmony_ci * 3) all active groups at the same level in the groups tree have the same 83862306a36Sopenharmony_ci * weight, 83962306a36Sopenharmony_ci * 4) all active groups at the same level in the groups tree have the same 84062306a36Sopenharmony_ci * number of children. 84162306a36Sopenharmony_ci * 84262306a36Sopenharmony_ci * Unfortunately, keeping the necessary state for evaluating exactly 84362306a36Sopenharmony_ci * the last two symmetry sub-conditions above would be quite complex 84462306a36Sopenharmony_ci * and time consuming. Therefore this function evaluates, instead, 84562306a36Sopenharmony_ci * only the following stronger three sub-conditions, for which it is 84662306a36Sopenharmony_ci * much easier to maintain the needed state: 84762306a36Sopenharmony_ci * 1) all active queues have the same weight, 84862306a36Sopenharmony_ci * 2) all active queues belong to the same I/O-priority class, 84962306a36Sopenharmony_ci * 3) there is at most one active group. 85062306a36Sopenharmony_ci * In particular, the last condition is always true if hierarchical 85162306a36Sopenharmony_ci * support or the cgroups interface are not enabled, thus no state 85262306a36Sopenharmony_ci * needs to be maintained in this case. 85362306a36Sopenharmony_ci */ 85462306a36Sopenharmony_cistatic bool bfq_asymmetric_scenario(struct bfq_data *bfqd, 85562306a36Sopenharmony_ci struct bfq_queue *bfqq) 85662306a36Sopenharmony_ci{ 85762306a36Sopenharmony_ci bool smallest_weight = bfqq && 85862306a36Sopenharmony_ci bfqq->weight_counter && 85962306a36Sopenharmony_ci bfqq->weight_counter == 86062306a36Sopenharmony_ci container_of( 86162306a36Sopenharmony_ci rb_first_cached(&bfqd->queue_weights_tree), 86262306a36Sopenharmony_ci struct bfq_weight_counter, 86362306a36Sopenharmony_ci weights_node); 86462306a36Sopenharmony_ci 86562306a36Sopenharmony_ci /* 86662306a36Sopenharmony_ci * For queue weights to differ, queue_weights_tree must contain 86762306a36Sopenharmony_ci * at least two nodes. 86862306a36Sopenharmony_ci */ 86962306a36Sopenharmony_ci bool varied_queue_weights = !smallest_weight && 87062306a36Sopenharmony_ci !RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) && 87162306a36Sopenharmony_ci (bfqd->queue_weights_tree.rb_root.rb_node->rb_left || 87262306a36Sopenharmony_ci bfqd->queue_weights_tree.rb_root.rb_node->rb_right); 87362306a36Sopenharmony_ci 87462306a36Sopenharmony_ci bool multiple_classes_busy = 87562306a36Sopenharmony_ci (bfqd->busy_queues[0] && bfqd->busy_queues[1]) || 87662306a36Sopenharmony_ci (bfqd->busy_queues[0] && bfqd->busy_queues[2]) || 87762306a36Sopenharmony_ci (bfqd->busy_queues[1] && bfqd->busy_queues[2]); 87862306a36Sopenharmony_ci 87962306a36Sopenharmony_ci return varied_queue_weights || multiple_classes_busy 88062306a36Sopenharmony_ci#ifdef CONFIG_BFQ_GROUP_IOSCHED 88162306a36Sopenharmony_ci || bfqd->num_groups_with_pending_reqs > 1 88262306a36Sopenharmony_ci#endif 88362306a36Sopenharmony_ci ; 88462306a36Sopenharmony_ci} 88562306a36Sopenharmony_ci 88662306a36Sopenharmony_ci/* 88762306a36Sopenharmony_ci * If the weight-counter tree passed as input contains no counter for 88862306a36Sopenharmony_ci * the weight of the input queue, then add that counter; otherwise just 88962306a36Sopenharmony_ci * increment the existing counter. 89062306a36Sopenharmony_ci * 89162306a36Sopenharmony_ci * Note that weight-counter trees contain few nodes in mostly symmetric 89262306a36Sopenharmony_ci * scenarios. For example, if all queues have the same weight, then the 89362306a36Sopenharmony_ci * weight-counter tree for the queues may contain at most one node. 89462306a36Sopenharmony_ci * This holds even if low_latency is on, because weight-raised queues 89562306a36Sopenharmony_ci * are not inserted in the tree. 89662306a36Sopenharmony_ci * In most scenarios, the rate at which nodes are created/destroyed 89762306a36Sopenharmony_ci * should be low too. 89862306a36Sopenharmony_ci */ 89962306a36Sopenharmony_civoid bfq_weights_tree_add(struct bfq_queue *bfqq) 90062306a36Sopenharmony_ci{ 90162306a36Sopenharmony_ci struct rb_root_cached *root = &bfqq->bfqd->queue_weights_tree; 90262306a36Sopenharmony_ci struct bfq_entity *entity = &bfqq->entity; 90362306a36Sopenharmony_ci struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 90462306a36Sopenharmony_ci bool leftmost = true; 90562306a36Sopenharmony_ci 90662306a36Sopenharmony_ci /* 90762306a36Sopenharmony_ci * Do not insert if the queue is already associated with a 90862306a36Sopenharmony_ci * counter, which happens if: 90962306a36Sopenharmony_ci * 1) a request arrival has caused the queue to become both 91062306a36Sopenharmony_ci * non-weight-raised, and hence change its weight, and 91162306a36Sopenharmony_ci * backlogged; in this respect, each of the two events 91262306a36Sopenharmony_ci * causes an invocation of this function, 91362306a36Sopenharmony_ci * 2) this is the invocation of this function caused by the 91462306a36Sopenharmony_ci * second event. This second invocation is actually useless, 91562306a36Sopenharmony_ci * and we handle this fact by exiting immediately. More 91662306a36Sopenharmony_ci * efficient or clearer solutions might possibly be adopted. 91762306a36Sopenharmony_ci */ 91862306a36Sopenharmony_ci if (bfqq->weight_counter) 91962306a36Sopenharmony_ci return; 92062306a36Sopenharmony_ci 92162306a36Sopenharmony_ci while (*new) { 92262306a36Sopenharmony_ci struct bfq_weight_counter *__counter = container_of(*new, 92362306a36Sopenharmony_ci struct bfq_weight_counter, 92462306a36Sopenharmony_ci weights_node); 92562306a36Sopenharmony_ci parent = *new; 92662306a36Sopenharmony_ci 92762306a36Sopenharmony_ci if (entity->weight == __counter->weight) { 92862306a36Sopenharmony_ci bfqq->weight_counter = __counter; 92962306a36Sopenharmony_ci goto inc_counter; 93062306a36Sopenharmony_ci } 93162306a36Sopenharmony_ci if (entity->weight < __counter->weight) 93262306a36Sopenharmony_ci new = &((*new)->rb_left); 93362306a36Sopenharmony_ci else { 93462306a36Sopenharmony_ci new = &((*new)->rb_right); 93562306a36Sopenharmony_ci leftmost = false; 93662306a36Sopenharmony_ci } 93762306a36Sopenharmony_ci } 93862306a36Sopenharmony_ci 93962306a36Sopenharmony_ci bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter), 94062306a36Sopenharmony_ci GFP_ATOMIC); 94162306a36Sopenharmony_ci 94262306a36Sopenharmony_ci /* 94362306a36Sopenharmony_ci * In the unlucky event of an allocation failure, we just 94462306a36Sopenharmony_ci * exit. This will cause the weight of queue to not be 94562306a36Sopenharmony_ci * considered in bfq_asymmetric_scenario, which, in its turn, 94662306a36Sopenharmony_ci * causes the scenario to be deemed wrongly symmetric in case 94762306a36Sopenharmony_ci * bfqq's weight would have been the only weight making the 94862306a36Sopenharmony_ci * scenario asymmetric. On the bright side, no unbalance will 94962306a36Sopenharmony_ci * however occur when bfqq becomes inactive again (the 95062306a36Sopenharmony_ci * invocation of this function is triggered by an activation 95162306a36Sopenharmony_ci * of queue). In fact, bfq_weights_tree_remove does nothing 95262306a36Sopenharmony_ci * if !bfqq->weight_counter. 95362306a36Sopenharmony_ci */ 95462306a36Sopenharmony_ci if (unlikely(!bfqq->weight_counter)) 95562306a36Sopenharmony_ci return; 95662306a36Sopenharmony_ci 95762306a36Sopenharmony_ci bfqq->weight_counter->weight = entity->weight; 95862306a36Sopenharmony_ci rb_link_node(&bfqq->weight_counter->weights_node, parent, new); 95962306a36Sopenharmony_ci rb_insert_color_cached(&bfqq->weight_counter->weights_node, root, 96062306a36Sopenharmony_ci leftmost); 96162306a36Sopenharmony_ci 96262306a36Sopenharmony_ciinc_counter: 96362306a36Sopenharmony_ci bfqq->weight_counter->num_active++; 96462306a36Sopenharmony_ci bfqq->ref++; 96562306a36Sopenharmony_ci} 96662306a36Sopenharmony_ci 96762306a36Sopenharmony_ci/* 96862306a36Sopenharmony_ci * Decrement the weight counter associated with the queue, and, if the 96962306a36Sopenharmony_ci * counter reaches 0, remove the counter from the tree. 97062306a36Sopenharmony_ci * See the comments to the function bfq_weights_tree_add() for considerations 97162306a36Sopenharmony_ci * about overhead. 97262306a36Sopenharmony_ci */ 97362306a36Sopenharmony_civoid bfq_weights_tree_remove(struct bfq_queue *bfqq) 97462306a36Sopenharmony_ci{ 97562306a36Sopenharmony_ci struct rb_root_cached *root; 97662306a36Sopenharmony_ci 97762306a36Sopenharmony_ci if (!bfqq->weight_counter) 97862306a36Sopenharmony_ci return; 97962306a36Sopenharmony_ci 98062306a36Sopenharmony_ci root = &bfqq->bfqd->queue_weights_tree; 98162306a36Sopenharmony_ci bfqq->weight_counter->num_active--; 98262306a36Sopenharmony_ci if (bfqq->weight_counter->num_active > 0) 98362306a36Sopenharmony_ci goto reset_entity_pointer; 98462306a36Sopenharmony_ci 98562306a36Sopenharmony_ci rb_erase_cached(&bfqq->weight_counter->weights_node, root); 98662306a36Sopenharmony_ci kfree(bfqq->weight_counter); 98762306a36Sopenharmony_ci 98862306a36Sopenharmony_cireset_entity_pointer: 98962306a36Sopenharmony_ci bfqq->weight_counter = NULL; 99062306a36Sopenharmony_ci bfq_put_queue(bfqq); 99162306a36Sopenharmony_ci} 99262306a36Sopenharmony_ci 99362306a36Sopenharmony_ci/* 99462306a36Sopenharmony_ci * Return expired entry, or NULL to just start from scratch in rbtree. 99562306a36Sopenharmony_ci */ 99662306a36Sopenharmony_cistatic struct request *bfq_check_fifo(struct bfq_queue *bfqq, 99762306a36Sopenharmony_ci struct request *last) 99862306a36Sopenharmony_ci{ 99962306a36Sopenharmony_ci struct request *rq; 100062306a36Sopenharmony_ci 100162306a36Sopenharmony_ci if (bfq_bfqq_fifo_expire(bfqq)) 100262306a36Sopenharmony_ci return NULL; 100362306a36Sopenharmony_ci 100462306a36Sopenharmony_ci bfq_mark_bfqq_fifo_expire(bfqq); 100562306a36Sopenharmony_ci 100662306a36Sopenharmony_ci rq = rq_entry_fifo(bfqq->fifo.next); 100762306a36Sopenharmony_ci 100862306a36Sopenharmony_ci if (rq == last || ktime_get_ns() < rq->fifo_time) 100962306a36Sopenharmony_ci return NULL; 101062306a36Sopenharmony_ci 101162306a36Sopenharmony_ci bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq); 101262306a36Sopenharmony_ci return rq; 101362306a36Sopenharmony_ci} 101462306a36Sopenharmony_ci 101562306a36Sopenharmony_cistatic struct request *bfq_find_next_rq(struct bfq_data *bfqd, 101662306a36Sopenharmony_ci struct bfq_queue *bfqq, 101762306a36Sopenharmony_ci struct request *last) 101862306a36Sopenharmony_ci{ 101962306a36Sopenharmony_ci struct rb_node *rbnext = rb_next(&last->rb_node); 102062306a36Sopenharmony_ci struct rb_node *rbprev = rb_prev(&last->rb_node); 102162306a36Sopenharmony_ci struct request *next, *prev = NULL; 102262306a36Sopenharmony_ci 102362306a36Sopenharmony_ci /* Follow expired path, else get first next available. */ 102462306a36Sopenharmony_ci next = bfq_check_fifo(bfqq, last); 102562306a36Sopenharmony_ci if (next) 102662306a36Sopenharmony_ci return next; 102762306a36Sopenharmony_ci 102862306a36Sopenharmony_ci if (rbprev) 102962306a36Sopenharmony_ci prev = rb_entry_rq(rbprev); 103062306a36Sopenharmony_ci 103162306a36Sopenharmony_ci if (rbnext) 103262306a36Sopenharmony_ci next = rb_entry_rq(rbnext); 103362306a36Sopenharmony_ci else { 103462306a36Sopenharmony_ci rbnext = rb_first(&bfqq->sort_list); 103562306a36Sopenharmony_ci if (rbnext && rbnext != &last->rb_node) 103662306a36Sopenharmony_ci next = rb_entry_rq(rbnext); 103762306a36Sopenharmony_ci } 103862306a36Sopenharmony_ci 103962306a36Sopenharmony_ci return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last)); 104062306a36Sopenharmony_ci} 104162306a36Sopenharmony_ci 104262306a36Sopenharmony_ci/* see the definition of bfq_async_charge_factor for details */ 104362306a36Sopenharmony_cistatic unsigned long bfq_serv_to_charge(struct request *rq, 104462306a36Sopenharmony_ci struct bfq_queue *bfqq) 104562306a36Sopenharmony_ci{ 104662306a36Sopenharmony_ci if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 || 104762306a36Sopenharmony_ci bfq_asymmetric_scenario(bfqq->bfqd, bfqq)) 104862306a36Sopenharmony_ci return blk_rq_sectors(rq); 104962306a36Sopenharmony_ci 105062306a36Sopenharmony_ci return blk_rq_sectors(rq) * bfq_async_charge_factor; 105162306a36Sopenharmony_ci} 105262306a36Sopenharmony_ci 105362306a36Sopenharmony_ci/** 105462306a36Sopenharmony_ci * bfq_updated_next_req - update the queue after a new next_rq selection. 105562306a36Sopenharmony_ci * @bfqd: the device data the queue belongs to. 105662306a36Sopenharmony_ci * @bfqq: the queue to update. 105762306a36Sopenharmony_ci * 105862306a36Sopenharmony_ci * If the first request of a queue changes we make sure that the queue 105962306a36Sopenharmony_ci * has enough budget to serve at least its first request (if the 106062306a36Sopenharmony_ci * request has grown). We do this because if the queue has not enough 106162306a36Sopenharmony_ci * budget for its first request, it has to go through two dispatch 106262306a36Sopenharmony_ci * rounds to actually get it dispatched. 106362306a36Sopenharmony_ci */ 106462306a36Sopenharmony_cistatic void bfq_updated_next_req(struct bfq_data *bfqd, 106562306a36Sopenharmony_ci struct bfq_queue *bfqq) 106662306a36Sopenharmony_ci{ 106762306a36Sopenharmony_ci struct bfq_entity *entity = &bfqq->entity; 106862306a36Sopenharmony_ci struct request *next_rq = bfqq->next_rq; 106962306a36Sopenharmony_ci unsigned long new_budget; 107062306a36Sopenharmony_ci 107162306a36Sopenharmony_ci if (!next_rq) 107262306a36Sopenharmony_ci return; 107362306a36Sopenharmony_ci 107462306a36Sopenharmony_ci if (bfqq == bfqd->in_service_queue) 107562306a36Sopenharmony_ci /* 107662306a36Sopenharmony_ci * In order not to break guarantees, budgets cannot be 107762306a36Sopenharmony_ci * changed after an entity has been selected. 107862306a36Sopenharmony_ci */ 107962306a36Sopenharmony_ci return; 108062306a36Sopenharmony_ci 108162306a36Sopenharmony_ci new_budget = max_t(unsigned long, 108262306a36Sopenharmony_ci max_t(unsigned long, bfqq->max_budget, 108362306a36Sopenharmony_ci bfq_serv_to_charge(next_rq, bfqq)), 108462306a36Sopenharmony_ci entity->service); 108562306a36Sopenharmony_ci if (entity->budget != new_budget) { 108662306a36Sopenharmony_ci entity->budget = new_budget; 108762306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu", 108862306a36Sopenharmony_ci new_budget); 108962306a36Sopenharmony_ci bfq_requeue_bfqq(bfqd, bfqq, false); 109062306a36Sopenharmony_ci } 109162306a36Sopenharmony_ci} 109262306a36Sopenharmony_ci 109362306a36Sopenharmony_cistatic unsigned int bfq_wr_duration(struct bfq_data *bfqd) 109462306a36Sopenharmony_ci{ 109562306a36Sopenharmony_ci u64 dur; 109662306a36Sopenharmony_ci 109762306a36Sopenharmony_ci dur = bfqd->rate_dur_prod; 109862306a36Sopenharmony_ci do_div(dur, bfqd->peak_rate); 109962306a36Sopenharmony_ci 110062306a36Sopenharmony_ci /* 110162306a36Sopenharmony_ci * Limit duration between 3 and 25 seconds. The upper limit 110262306a36Sopenharmony_ci * has been conservatively set after the following worst case: 110362306a36Sopenharmony_ci * on a QEMU/KVM virtual machine 110462306a36Sopenharmony_ci * - running in a slow PC 110562306a36Sopenharmony_ci * - with a virtual disk stacked on a slow low-end 5400rpm HDD 110662306a36Sopenharmony_ci * - serving a heavy I/O workload, such as the sequential reading 110762306a36Sopenharmony_ci * of several files 110862306a36Sopenharmony_ci * mplayer took 23 seconds to start, if constantly weight-raised. 110962306a36Sopenharmony_ci * 111062306a36Sopenharmony_ci * As for higher values than that accommodating the above bad 111162306a36Sopenharmony_ci * scenario, tests show that higher values would often yield 111262306a36Sopenharmony_ci * the opposite of the desired result, i.e., would worsen 111362306a36Sopenharmony_ci * responsiveness by allowing non-interactive applications to 111462306a36Sopenharmony_ci * preserve weight raising for too long. 111562306a36Sopenharmony_ci * 111662306a36Sopenharmony_ci * On the other end, lower values than 3 seconds make it 111762306a36Sopenharmony_ci * difficult for most interactive tasks to complete their jobs 111862306a36Sopenharmony_ci * before weight-raising finishes. 111962306a36Sopenharmony_ci */ 112062306a36Sopenharmony_ci return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000)); 112162306a36Sopenharmony_ci} 112262306a36Sopenharmony_ci 112362306a36Sopenharmony_ci/* switch back from soft real-time to interactive weight raising */ 112462306a36Sopenharmony_cistatic void switch_back_to_interactive_wr(struct bfq_queue *bfqq, 112562306a36Sopenharmony_ci struct bfq_data *bfqd) 112662306a36Sopenharmony_ci{ 112762306a36Sopenharmony_ci bfqq->wr_coeff = bfqd->bfq_wr_coeff; 112862306a36Sopenharmony_ci bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 112962306a36Sopenharmony_ci bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt; 113062306a36Sopenharmony_ci} 113162306a36Sopenharmony_ci 113262306a36Sopenharmony_cistatic void 113362306a36Sopenharmony_cibfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd, 113462306a36Sopenharmony_ci struct bfq_io_cq *bic, bool bfq_already_existing) 113562306a36Sopenharmony_ci{ 113662306a36Sopenharmony_ci unsigned int old_wr_coeff = 1; 113762306a36Sopenharmony_ci bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq); 113862306a36Sopenharmony_ci unsigned int a_idx = bfqq->actuator_idx; 113962306a36Sopenharmony_ci struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx]; 114062306a36Sopenharmony_ci 114162306a36Sopenharmony_ci if (bfqq_data->saved_has_short_ttime) 114262306a36Sopenharmony_ci bfq_mark_bfqq_has_short_ttime(bfqq); 114362306a36Sopenharmony_ci else 114462306a36Sopenharmony_ci bfq_clear_bfqq_has_short_ttime(bfqq); 114562306a36Sopenharmony_ci 114662306a36Sopenharmony_ci if (bfqq_data->saved_IO_bound) 114762306a36Sopenharmony_ci bfq_mark_bfqq_IO_bound(bfqq); 114862306a36Sopenharmony_ci else 114962306a36Sopenharmony_ci bfq_clear_bfqq_IO_bound(bfqq); 115062306a36Sopenharmony_ci 115162306a36Sopenharmony_ci bfqq->last_serv_time_ns = bfqq_data->saved_last_serv_time_ns; 115262306a36Sopenharmony_ci bfqq->inject_limit = bfqq_data->saved_inject_limit; 115362306a36Sopenharmony_ci bfqq->decrease_time_jif = bfqq_data->saved_decrease_time_jif; 115462306a36Sopenharmony_ci 115562306a36Sopenharmony_ci bfqq->entity.new_weight = bfqq_data->saved_weight; 115662306a36Sopenharmony_ci bfqq->ttime = bfqq_data->saved_ttime; 115762306a36Sopenharmony_ci bfqq->io_start_time = bfqq_data->saved_io_start_time; 115862306a36Sopenharmony_ci bfqq->tot_idle_time = bfqq_data->saved_tot_idle_time; 115962306a36Sopenharmony_ci /* 116062306a36Sopenharmony_ci * Restore weight coefficient only if low_latency is on 116162306a36Sopenharmony_ci */ 116262306a36Sopenharmony_ci if (bfqd->low_latency) { 116362306a36Sopenharmony_ci old_wr_coeff = bfqq->wr_coeff; 116462306a36Sopenharmony_ci bfqq->wr_coeff = bfqq_data->saved_wr_coeff; 116562306a36Sopenharmony_ci } 116662306a36Sopenharmony_ci bfqq->service_from_wr = bfqq_data->saved_service_from_wr; 116762306a36Sopenharmony_ci bfqq->wr_start_at_switch_to_srt = 116862306a36Sopenharmony_ci bfqq_data->saved_wr_start_at_switch_to_srt; 116962306a36Sopenharmony_ci bfqq->last_wr_start_finish = bfqq_data->saved_last_wr_start_finish; 117062306a36Sopenharmony_ci bfqq->wr_cur_max_time = bfqq_data->saved_wr_cur_max_time; 117162306a36Sopenharmony_ci 117262306a36Sopenharmony_ci if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) || 117362306a36Sopenharmony_ci time_is_before_jiffies(bfqq->last_wr_start_finish + 117462306a36Sopenharmony_ci bfqq->wr_cur_max_time))) { 117562306a36Sopenharmony_ci if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && 117662306a36Sopenharmony_ci !bfq_bfqq_in_large_burst(bfqq) && 117762306a36Sopenharmony_ci time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt + 117862306a36Sopenharmony_ci bfq_wr_duration(bfqd))) { 117962306a36Sopenharmony_ci switch_back_to_interactive_wr(bfqq, bfqd); 118062306a36Sopenharmony_ci } else { 118162306a36Sopenharmony_ci bfqq->wr_coeff = 1; 118262306a36Sopenharmony_ci bfq_log_bfqq(bfqq->bfqd, bfqq, 118362306a36Sopenharmony_ci "resume state: switching off wr"); 118462306a36Sopenharmony_ci } 118562306a36Sopenharmony_ci } 118662306a36Sopenharmony_ci 118762306a36Sopenharmony_ci /* make sure weight will be updated, however we got here */ 118862306a36Sopenharmony_ci bfqq->entity.prio_changed = 1; 118962306a36Sopenharmony_ci 119062306a36Sopenharmony_ci if (likely(!busy)) 119162306a36Sopenharmony_ci return; 119262306a36Sopenharmony_ci 119362306a36Sopenharmony_ci if (old_wr_coeff == 1 && bfqq->wr_coeff > 1) 119462306a36Sopenharmony_ci bfqd->wr_busy_queues++; 119562306a36Sopenharmony_ci else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1) 119662306a36Sopenharmony_ci bfqd->wr_busy_queues--; 119762306a36Sopenharmony_ci} 119862306a36Sopenharmony_ci 119962306a36Sopenharmony_cistatic int bfqq_process_refs(struct bfq_queue *bfqq) 120062306a36Sopenharmony_ci{ 120162306a36Sopenharmony_ci return bfqq->ref - bfqq->entity.allocated - 120262306a36Sopenharmony_ci bfqq->entity.on_st_or_in_serv - 120362306a36Sopenharmony_ci (bfqq->weight_counter != NULL) - bfqq->stable_ref; 120462306a36Sopenharmony_ci} 120562306a36Sopenharmony_ci 120662306a36Sopenharmony_ci/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */ 120762306a36Sopenharmony_cistatic void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq) 120862306a36Sopenharmony_ci{ 120962306a36Sopenharmony_ci struct bfq_queue *item; 121062306a36Sopenharmony_ci struct hlist_node *n; 121162306a36Sopenharmony_ci 121262306a36Sopenharmony_ci hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node) 121362306a36Sopenharmony_ci hlist_del_init(&item->burst_list_node); 121462306a36Sopenharmony_ci 121562306a36Sopenharmony_ci /* 121662306a36Sopenharmony_ci * Start the creation of a new burst list only if there is no 121762306a36Sopenharmony_ci * active queue. See comments on the conditional invocation of 121862306a36Sopenharmony_ci * bfq_handle_burst(). 121962306a36Sopenharmony_ci */ 122062306a36Sopenharmony_ci if (bfq_tot_busy_queues(bfqd) == 0) { 122162306a36Sopenharmony_ci hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 122262306a36Sopenharmony_ci bfqd->burst_size = 1; 122362306a36Sopenharmony_ci } else 122462306a36Sopenharmony_ci bfqd->burst_size = 0; 122562306a36Sopenharmony_ci 122662306a36Sopenharmony_ci bfqd->burst_parent_entity = bfqq->entity.parent; 122762306a36Sopenharmony_ci} 122862306a36Sopenharmony_ci 122962306a36Sopenharmony_ci/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */ 123062306a36Sopenharmony_cistatic void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 123162306a36Sopenharmony_ci{ 123262306a36Sopenharmony_ci /* Increment burst size to take into account also bfqq */ 123362306a36Sopenharmony_ci bfqd->burst_size++; 123462306a36Sopenharmony_ci 123562306a36Sopenharmony_ci if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) { 123662306a36Sopenharmony_ci struct bfq_queue *pos, *bfqq_item; 123762306a36Sopenharmony_ci struct hlist_node *n; 123862306a36Sopenharmony_ci 123962306a36Sopenharmony_ci /* 124062306a36Sopenharmony_ci * Enough queues have been activated shortly after each 124162306a36Sopenharmony_ci * other to consider this burst as large. 124262306a36Sopenharmony_ci */ 124362306a36Sopenharmony_ci bfqd->large_burst = true; 124462306a36Sopenharmony_ci 124562306a36Sopenharmony_ci /* 124662306a36Sopenharmony_ci * We can now mark all queues in the burst list as 124762306a36Sopenharmony_ci * belonging to a large burst. 124862306a36Sopenharmony_ci */ 124962306a36Sopenharmony_ci hlist_for_each_entry(bfqq_item, &bfqd->burst_list, 125062306a36Sopenharmony_ci burst_list_node) 125162306a36Sopenharmony_ci bfq_mark_bfqq_in_large_burst(bfqq_item); 125262306a36Sopenharmony_ci bfq_mark_bfqq_in_large_burst(bfqq); 125362306a36Sopenharmony_ci 125462306a36Sopenharmony_ci /* 125562306a36Sopenharmony_ci * From now on, and until the current burst finishes, any 125662306a36Sopenharmony_ci * new queue being activated shortly after the last queue 125762306a36Sopenharmony_ci * was inserted in the burst can be immediately marked as 125862306a36Sopenharmony_ci * belonging to a large burst. So the burst list is not 125962306a36Sopenharmony_ci * needed any more. Remove it. 126062306a36Sopenharmony_ci */ 126162306a36Sopenharmony_ci hlist_for_each_entry_safe(pos, n, &bfqd->burst_list, 126262306a36Sopenharmony_ci burst_list_node) 126362306a36Sopenharmony_ci hlist_del_init(&pos->burst_list_node); 126462306a36Sopenharmony_ci } else /* 126562306a36Sopenharmony_ci * Burst not yet large: add bfqq to the burst list. Do 126662306a36Sopenharmony_ci * not increment the ref counter for bfqq, because bfqq 126762306a36Sopenharmony_ci * is removed from the burst list before freeing bfqq 126862306a36Sopenharmony_ci * in put_queue. 126962306a36Sopenharmony_ci */ 127062306a36Sopenharmony_ci hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list); 127162306a36Sopenharmony_ci} 127262306a36Sopenharmony_ci 127362306a36Sopenharmony_ci/* 127462306a36Sopenharmony_ci * If many queues belonging to the same group happen to be created 127562306a36Sopenharmony_ci * shortly after each other, then the processes associated with these 127662306a36Sopenharmony_ci * queues have typically a common goal. In particular, bursts of queue 127762306a36Sopenharmony_ci * creations are usually caused by services or applications that spawn 127862306a36Sopenharmony_ci * many parallel threads/processes. Examples are systemd during boot, 127962306a36Sopenharmony_ci * or git grep. To help these processes get their job done as soon as 128062306a36Sopenharmony_ci * possible, it is usually better to not grant either weight-raising 128162306a36Sopenharmony_ci * or device idling to their queues, unless these queues must be 128262306a36Sopenharmony_ci * protected from the I/O flowing through other active queues. 128362306a36Sopenharmony_ci * 128462306a36Sopenharmony_ci * In this comment we describe, firstly, the reasons why this fact 128562306a36Sopenharmony_ci * holds, and, secondly, the next function, which implements the main 128662306a36Sopenharmony_ci * steps needed to properly mark these queues so that they can then be 128762306a36Sopenharmony_ci * treated in a different way. 128862306a36Sopenharmony_ci * 128962306a36Sopenharmony_ci * The above services or applications benefit mostly from a high 129062306a36Sopenharmony_ci * throughput: the quicker the requests of the activated queues are 129162306a36Sopenharmony_ci * cumulatively served, the sooner the target job of these queues gets 129262306a36Sopenharmony_ci * completed. As a consequence, weight-raising any of these queues, 129362306a36Sopenharmony_ci * which also implies idling the device for it, is almost always 129462306a36Sopenharmony_ci * counterproductive, unless there are other active queues to isolate 129562306a36Sopenharmony_ci * these new queues from. If there no other active queues, then 129662306a36Sopenharmony_ci * weight-raising these new queues just lowers throughput in most 129762306a36Sopenharmony_ci * cases. 129862306a36Sopenharmony_ci * 129962306a36Sopenharmony_ci * On the other hand, a burst of queue creations may be caused also by 130062306a36Sopenharmony_ci * the start of an application that does not consist of a lot of 130162306a36Sopenharmony_ci * parallel I/O-bound threads. In fact, with a complex application, 130262306a36Sopenharmony_ci * several short processes may need to be executed to start-up the 130362306a36Sopenharmony_ci * application. In this respect, to start an application as quickly as 130462306a36Sopenharmony_ci * possible, the best thing to do is in any case to privilege the I/O 130562306a36Sopenharmony_ci * related to the application with respect to all other 130662306a36Sopenharmony_ci * I/O. Therefore, the best strategy to start as quickly as possible 130762306a36Sopenharmony_ci * an application that causes a burst of queue creations is to 130862306a36Sopenharmony_ci * weight-raise all the queues created during the burst. This is the 130962306a36Sopenharmony_ci * exact opposite of the best strategy for the other type of bursts. 131062306a36Sopenharmony_ci * 131162306a36Sopenharmony_ci * In the end, to take the best action for each of the two cases, the 131262306a36Sopenharmony_ci * two types of bursts need to be distinguished. Fortunately, this 131362306a36Sopenharmony_ci * seems relatively easy, by looking at the sizes of the bursts. In 131462306a36Sopenharmony_ci * particular, we found a threshold such that only bursts with a 131562306a36Sopenharmony_ci * larger size than that threshold are apparently caused by 131662306a36Sopenharmony_ci * services or commands such as systemd or git grep. For brevity, 131762306a36Sopenharmony_ci * hereafter we call just 'large' these bursts. BFQ *does not* 131862306a36Sopenharmony_ci * weight-raise queues whose creation occurs in a large burst. In 131962306a36Sopenharmony_ci * addition, for each of these queues BFQ performs or does not perform 132062306a36Sopenharmony_ci * idling depending on which choice boosts the throughput more. The 132162306a36Sopenharmony_ci * exact choice depends on the device and request pattern at 132262306a36Sopenharmony_ci * hand. 132362306a36Sopenharmony_ci * 132462306a36Sopenharmony_ci * Unfortunately, false positives may occur while an interactive task 132562306a36Sopenharmony_ci * is starting (e.g., an application is being started). The 132662306a36Sopenharmony_ci * consequence is that the queues associated with the task do not 132762306a36Sopenharmony_ci * enjoy weight raising as expected. Fortunately these false positives 132862306a36Sopenharmony_ci * are very rare. They typically occur if some service happens to 132962306a36Sopenharmony_ci * start doing I/O exactly when the interactive task starts. 133062306a36Sopenharmony_ci * 133162306a36Sopenharmony_ci * Turning back to the next function, it is invoked only if there are 133262306a36Sopenharmony_ci * no active queues (apart from active queues that would belong to the 133362306a36Sopenharmony_ci * same, possible burst bfqq would belong to), and it implements all 133462306a36Sopenharmony_ci * the steps needed to detect the occurrence of a large burst and to 133562306a36Sopenharmony_ci * properly mark all the queues belonging to it (so that they can then 133662306a36Sopenharmony_ci * be treated in a different way). This goal is achieved by 133762306a36Sopenharmony_ci * maintaining a "burst list" that holds, temporarily, the queues that 133862306a36Sopenharmony_ci * belong to the burst in progress. The list is then used to mark 133962306a36Sopenharmony_ci * these queues as belonging to a large burst if the burst does become 134062306a36Sopenharmony_ci * large. The main steps are the following. 134162306a36Sopenharmony_ci * 134262306a36Sopenharmony_ci * . when the very first queue is created, the queue is inserted into the 134362306a36Sopenharmony_ci * list (as it could be the first queue in a possible burst) 134462306a36Sopenharmony_ci * 134562306a36Sopenharmony_ci * . if the current burst has not yet become large, and a queue Q that does 134662306a36Sopenharmony_ci * not yet belong to the burst is activated shortly after the last time 134762306a36Sopenharmony_ci * at which a new queue entered the burst list, then the function appends 134862306a36Sopenharmony_ci * Q to the burst list 134962306a36Sopenharmony_ci * 135062306a36Sopenharmony_ci * . if, as a consequence of the previous step, the burst size reaches 135162306a36Sopenharmony_ci * the large-burst threshold, then 135262306a36Sopenharmony_ci * 135362306a36Sopenharmony_ci * . all the queues in the burst list are marked as belonging to a 135462306a36Sopenharmony_ci * large burst 135562306a36Sopenharmony_ci * 135662306a36Sopenharmony_ci * . the burst list is deleted; in fact, the burst list already served 135762306a36Sopenharmony_ci * its purpose (keeping temporarily track of the queues in a burst, 135862306a36Sopenharmony_ci * so as to be able to mark them as belonging to a large burst in the 135962306a36Sopenharmony_ci * previous sub-step), and now is not needed any more 136062306a36Sopenharmony_ci * 136162306a36Sopenharmony_ci * . the device enters a large-burst mode 136262306a36Sopenharmony_ci * 136362306a36Sopenharmony_ci * . if a queue Q that does not belong to the burst is created while 136462306a36Sopenharmony_ci * the device is in large-burst mode and shortly after the last time 136562306a36Sopenharmony_ci * at which a queue either entered the burst list or was marked as 136662306a36Sopenharmony_ci * belonging to the current large burst, then Q is immediately marked 136762306a36Sopenharmony_ci * as belonging to a large burst. 136862306a36Sopenharmony_ci * 136962306a36Sopenharmony_ci * . if a queue Q that does not belong to the burst is created a while 137062306a36Sopenharmony_ci * later, i.e., not shortly after, than the last time at which a queue 137162306a36Sopenharmony_ci * either entered the burst list or was marked as belonging to the 137262306a36Sopenharmony_ci * current large burst, then the current burst is deemed as finished and: 137362306a36Sopenharmony_ci * 137462306a36Sopenharmony_ci * . the large-burst mode is reset if set 137562306a36Sopenharmony_ci * 137662306a36Sopenharmony_ci * . the burst list is emptied 137762306a36Sopenharmony_ci * 137862306a36Sopenharmony_ci * . Q is inserted in the burst list, as Q may be the first queue 137962306a36Sopenharmony_ci * in a possible new burst (then the burst list contains just Q 138062306a36Sopenharmony_ci * after this step). 138162306a36Sopenharmony_ci */ 138262306a36Sopenharmony_cistatic void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq) 138362306a36Sopenharmony_ci{ 138462306a36Sopenharmony_ci /* 138562306a36Sopenharmony_ci * If bfqq is already in the burst list or is part of a large 138662306a36Sopenharmony_ci * burst, or finally has just been split, then there is 138762306a36Sopenharmony_ci * nothing else to do. 138862306a36Sopenharmony_ci */ 138962306a36Sopenharmony_ci if (!hlist_unhashed(&bfqq->burst_list_node) || 139062306a36Sopenharmony_ci bfq_bfqq_in_large_burst(bfqq) || 139162306a36Sopenharmony_ci time_is_after_eq_jiffies(bfqq->split_time + 139262306a36Sopenharmony_ci msecs_to_jiffies(10))) 139362306a36Sopenharmony_ci return; 139462306a36Sopenharmony_ci 139562306a36Sopenharmony_ci /* 139662306a36Sopenharmony_ci * If bfqq's creation happens late enough, or bfqq belongs to 139762306a36Sopenharmony_ci * a different group than the burst group, then the current 139862306a36Sopenharmony_ci * burst is finished, and related data structures must be 139962306a36Sopenharmony_ci * reset. 140062306a36Sopenharmony_ci * 140162306a36Sopenharmony_ci * In this respect, consider the special case where bfqq is 140262306a36Sopenharmony_ci * the very first queue created after BFQ is selected for this 140362306a36Sopenharmony_ci * device. In this case, last_ins_in_burst and 140462306a36Sopenharmony_ci * burst_parent_entity are not yet significant when we get 140562306a36Sopenharmony_ci * here. But it is easy to verify that, whether or not the 140662306a36Sopenharmony_ci * following condition is true, bfqq will end up being 140762306a36Sopenharmony_ci * inserted into the burst list. In particular the list will 140862306a36Sopenharmony_ci * happen to contain only bfqq. And this is exactly what has 140962306a36Sopenharmony_ci * to happen, as bfqq may be the first queue of the first 141062306a36Sopenharmony_ci * burst. 141162306a36Sopenharmony_ci */ 141262306a36Sopenharmony_ci if (time_is_before_jiffies(bfqd->last_ins_in_burst + 141362306a36Sopenharmony_ci bfqd->bfq_burst_interval) || 141462306a36Sopenharmony_ci bfqq->entity.parent != bfqd->burst_parent_entity) { 141562306a36Sopenharmony_ci bfqd->large_burst = false; 141662306a36Sopenharmony_ci bfq_reset_burst_list(bfqd, bfqq); 141762306a36Sopenharmony_ci goto end; 141862306a36Sopenharmony_ci } 141962306a36Sopenharmony_ci 142062306a36Sopenharmony_ci /* 142162306a36Sopenharmony_ci * If we get here, then bfqq is being activated shortly after the 142262306a36Sopenharmony_ci * last queue. So, if the current burst is also large, we can mark 142362306a36Sopenharmony_ci * bfqq as belonging to this large burst immediately. 142462306a36Sopenharmony_ci */ 142562306a36Sopenharmony_ci if (bfqd->large_burst) { 142662306a36Sopenharmony_ci bfq_mark_bfqq_in_large_burst(bfqq); 142762306a36Sopenharmony_ci goto end; 142862306a36Sopenharmony_ci } 142962306a36Sopenharmony_ci 143062306a36Sopenharmony_ci /* 143162306a36Sopenharmony_ci * If we get here, then a large-burst state has not yet been 143262306a36Sopenharmony_ci * reached, but bfqq is being activated shortly after the last 143362306a36Sopenharmony_ci * queue. Then we add bfqq to the burst. 143462306a36Sopenharmony_ci */ 143562306a36Sopenharmony_ci bfq_add_to_burst(bfqd, bfqq); 143662306a36Sopenharmony_ciend: 143762306a36Sopenharmony_ci /* 143862306a36Sopenharmony_ci * At this point, bfqq either has been added to the current 143962306a36Sopenharmony_ci * burst or has caused the current burst to terminate and a 144062306a36Sopenharmony_ci * possible new burst to start. In particular, in the second 144162306a36Sopenharmony_ci * case, bfqq has become the first queue in the possible new 144262306a36Sopenharmony_ci * burst. In both cases last_ins_in_burst needs to be moved 144362306a36Sopenharmony_ci * forward. 144462306a36Sopenharmony_ci */ 144562306a36Sopenharmony_ci bfqd->last_ins_in_burst = jiffies; 144662306a36Sopenharmony_ci} 144762306a36Sopenharmony_ci 144862306a36Sopenharmony_cistatic int bfq_bfqq_budget_left(struct bfq_queue *bfqq) 144962306a36Sopenharmony_ci{ 145062306a36Sopenharmony_ci struct bfq_entity *entity = &bfqq->entity; 145162306a36Sopenharmony_ci 145262306a36Sopenharmony_ci return entity->budget - entity->service; 145362306a36Sopenharmony_ci} 145462306a36Sopenharmony_ci 145562306a36Sopenharmony_ci/* 145662306a36Sopenharmony_ci * If enough samples have been computed, return the current max budget 145762306a36Sopenharmony_ci * stored in bfqd, which is dynamically updated according to the 145862306a36Sopenharmony_ci * estimated disk peak rate; otherwise return the default max budget 145962306a36Sopenharmony_ci */ 146062306a36Sopenharmony_cistatic int bfq_max_budget(struct bfq_data *bfqd) 146162306a36Sopenharmony_ci{ 146262306a36Sopenharmony_ci if (bfqd->budgets_assigned < bfq_stats_min_budgets) 146362306a36Sopenharmony_ci return bfq_default_max_budget; 146462306a36Sopenharmony_ci else 146562306a36Sopenharmony_ci return bfqd->bfq_max_budget; 146662306a36Sopenharmony_ci} 146762306a36Sopenharmony_ci 146862306a36Sopenharmony_ci/* 146962306a36Sopenharmony_ci * Return min budget, which is a fraction of the current or default 147062306a36Sopenharmony_ci * max budget (trying with 1/32) 147162306a36Sopenharmony_ci */ 147262306a36Sopenharmony_cistatic int bfq_min_budget(struct bfq_data *bfqd) 147362306a36Sopenharmony_ci{ 147462306a36Sopenharmony_ci if (bfqd->budgets_assigned < bfq_stats_min_budgets) 147562306a36Sopenharmony_ci return bfq_default_max_budget / 32; 147662306a36Sopenharmony_ci else 147762306a36Sopenharmony_ci return bfqd->bfq_max_budget / 32; 147862306a36Sopenharmony_ci} 147962306a36Sopenharmony_ci 148062306a36Sopenharmony_ci/* 148162306a36Sopenharmony_ci * The next function, invoked after the input queue bfqq switches from 148262306a36Sopenharmony_ci * idle to busy, updates the budget of bfqq. The function also tells 148362306a36Sopenharmony_ci * whether the in-service queue should be expired, by returning 148462306a36Sopenharmony_ci * true. The purpose of expiring the in-service queue is to give bfqq 148562306a36Sopenharmony_ci * the chance to possibly preempt the in-service queue, and the reason 148662306a36Sopenharmony_ci * for preempting the in-service queue is to achieve one of the two 148762306a36Sopenharmony_ci * goals below. 148862306a36Sopenharmony_ci * 148962306a36Sopenharmony_ci * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has 149062306a36Sopenharmony_ci * expired because it has remained idle. In particular, bfqq may have 149162306a36Sopenharmony_ci * expired for one of the following two reasons: 149262306a36Sopenharmony_ci * 149362306a36Sopenharmony_ci * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling 149462306a36Sopenharmony_ci * and did not make it to issue a new request before its last 149562306a36Sopenharmony_ci * request was served; 149662306a36Sopenharmony_ci * 149762306a36Sopenharmony_ci * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue 149862306a36Sopenharmony_ci * a new request before the expiration of the idling-time. 149962306a36Sopenharmony_ci * 150062306a36Sopenharmony_ci * Even if bfqq has expired for one of the above reasons, the process 150162306a36Sopenharmony_ci * associated with the queue may be however issuing requests greedily, 150262306a36Sopenharmony_ci * and thus be sensitive to the bandwidth it receives (bfqq may have 150362306a36Sopenharmony_ci * remained idle for other reasons: CPU high load, bfqq not enjoying 150462306a36Sopenharmony_ci * idling, I/O throttling somewhere in the path from the process to 150562306a36Sopenharmony_ci * the I/O scheduler, ...). But if, after every expiration for one of 150662306a36Sopenharmony_ci * the above two reasons, bfqq has to wait for the service of at least 150762306a36Sopenharmony_ci * one full budget of another queue before being served again, then 150862306a36Sopenharmony_ci * bfqq is likely to get a much lower bandwidth or resource time than 150962306a36Sopenharmony_ci * its reserved ones. To address this issue, two countermeasures need 151062306a36Sopenharmony_ci * to be taken. 151162306a36Sopenharmony_ci * 151262306a36Sopenharmony_ci * First, the budget and the timestamps of bfqq need to be updated in 151362306a36Sopenharmony_ci * a special way on bfqq reactivation: they need to be updated as if 151462306a36Sopenharmony_ci * bfqq did not remain idle and did not expire. In fact, if they are 151562306a36Sopenharmony_ci * computed as if bfqq expired and remained idle until reactivation, 151662306a36Sopenharmony_ci * then the process associated with bfqq is treated as if, instead of 151762306a36Sopenharmony_ci * being greedy, it stopped issuing requests when bfqq remained idle, 151862306a36Sopenharmony_ci * and restarts issuing requests only on this reactivation. In other 151962306a36Sopenharmony_ci * words, the scheduler does not help the process recover the "service 152062306a36Sopenharmony_ci * hole" between bfqq expiration and reactivation. As a consequence, 152162306a36Sopenharmony_ci * the process receives a lower bandwidth than its reserved one. In 152262306a36Sopenharmony_ci * contrast, to recover this hole, the budget must be updated as if 152362306a36Sopenharmony_ci * bfqq was not expired at all before this reactivation, i.e., it must 152462306a36Sopenharmony_ci * be set to the value of the remaining budget when bfqq was 152562306a36Sopenharmony_ci * expired. Along the same line, timestamps need to be assigned the 152662306a36Sopenharmony_ci * value they had the last time bfqq was selected for service, i.e., 152762306a36Sopenharmony_ci * before last expiration. Thus timestamps need to be back-shifted 152862306a36Sopenharmony_ci * with respect to their normal computation (see [1] for more details 152962306a36Sopenharmony_ci * on this tricky aspect). 153062306a36Sopenharmony_ci * 153162306a36Sopenharmony_ci * Secondly, to allow the process to recover the hole, the in-service 153262306a36Sopenharmony_ci * queue must be expired too, to give bfqq the chance to preempt it 153362306a36Sopenharmony_ci * immediately. In fact, if bfqq has to wait for a full budget of the 153462306a36Sopenharmony_ci * in-service queue to be completed, then it may become impossible to 153562306a36Sopenharmony_ci * let the process recover the hole, even if the back-shifted 153662306a36Sopenharmony_ci * timestamps of bfqq are lower than those of the in-service queue. If 153762306a36Sopenharmony_ci * this happens for most or all of the holes, then the process may not 153862306a36Sopenharmony_ci * receive its reserved bandwidth. In this respect, it is worth noting 153962306a36Sopenharmony_ci * that, being the service of outstanding requests unpreemptible, a 154062306a36Sopenharmony_ci * little fraction of the holes may however be unrecoverable, thereby 154162306a36Sopenharmony_ci * causing a little loss of bandwidth. 154262306a36Sopenharmony_ci * 154362306a36Sopenharmony_ci * The last important point is detecting whether bfqq does need this 154462306a36Sopenharmony_ci * bandwidth recovery. In this respect, the next function deems the 154562306a36Sopenharmony_ci * process associated with bfqq greedy, and thus allows it to recover 154662306a36Sopenharmony_ci * the hole, if: 1) the process is waiting for the arrival of a new 154762306a36Sopenharmony_ci * request (which implies that bfqq expired for one of the above two 154862306a36Sopenharmony_ci * reasons), and 2) such a request has arrived soon. The first 154962306a36Sopenharmony_ci * condition is controlled through the flag non_blocking_wait_rq, 155062306a36Sopenharmony_ci * while the second through the flag arrived_in_time. If both 155162306a36Sopenharmony_ci * conditions hold, then the function computes the budget in the 155262306a36Sopenharmony_ci * above-described special way, and signals that the in-service queue 155362306a36Sopenharmony_ci * should be expired. Timestamp back-shifting is done later in 155462306a36Sopenharmony_ci * __bfq_activate_entity. 155562306a36Sopenharmony_ci * 155662306a36Sopenharmony_ci * 2. Reduce latency. Even if timestamps are not backshifted to let 155762306a36Sopenharmony_ci * the process associated with bfqq recover a service hole, bfqq may 155862306a36Sopenharmony_ci * however happen to have, after being (re)activated, a lower finish 155962306a36Sopenharmony_ci * timestamp than the in-service queue. That is, the next budget of 156062306a36Sopenharmony_ci * bfqq may have to be completed before the one of the in-service 156162306a36Sopenharmony_ci * queue. If this is the case, then preempting the in-service queue 156262306a36Sopenharmony_ci * allows this goal to be achieved, apart from the unpreemptible, 156362306a36Sopenharmony_ci * outstanding requests mentioned above. 156462306a36Sopenharmony_ci * 156562306a36Sopenharmony_ci * Unfortunately, regardless of which of the above two goals one wants 156662306a36Sopenharmony_ci * to achieve, service trees need first to be updated to know whether 156762306a36Sopenharmony_ci * the in-service queue must be preempted. To have service trees 156862306a36Sopenharmony_ci * correctly updated, the in-service queue must be expired and 156962306a36Sopenharmony_ci * rescheduled, and bfqq must be scheduled too. This is one of the 157062306a36Sopenharmony_ci * most costly operations (in future versions, the scheduling 157162306a36Sopenharmony_ci * mechanism may be re-designed in such a way to make it possible to 157262306a36Sopenharmony_ci * know whether preemption is needed without needing to update service 157362306a36Sopenharmony_ci * trees). In addition, queue preemptions almost always cause random 157462306a36Sopenharmony_ci * I/O, which may in turn cause loss of throughput. Finally, there may 157562306a36Sopenharmony_ci * even be no in-service queue when the next function is invoked (so, 157662306a36Sopenharmony_ci * no queue to compare timestamps with). Because of these facts, the 157762306a36Sopenharmony_ci * next function adopts the following simple scheme to avoid costly 157862306a36Sopenharmony_ci * operations, too frequent preemptions and too many dependencies on 157962306a36Sopenharmony_ci * the state of the scheduler: it requests the expiration of the 158062306a36Sopenharmony_ci * in-service queue (unconditionally) only for queues that need to 158162306a36Sopenharmony_ci * recover a hole. Then it delegates to other parts of the code the 158262306a36Sopenharmony_ci * responsibility of handling the above case 2. 158362306a36Sopenharmony_ci */ 158462306a36Sopenharmony_cistatic bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd, 158562306a36Sopenharmony_ci struct bfq_queue *bfqq, 158662306a36Sopenharmony_ci bool arrived_in_time) 158762306a36Sopenharmony_ci{ 158862306a36Sopenharmony_ci struct bfq_entity *entity = &bfqq->entity; 158962306a36Sopenharmony_ci 159062306a36Sopenharmony_ci /* 159162306a36Sopenharmony_ci * In the next compound condition, we check also whether there 159262306a36Sopenharmony_ci * is some budget left, because otherwise there is no point in 159362306a36Sopenharmony_ci * trying to go on serving bfqq with this same budget: bfqq 159462306a36Sopenharmony_ci * would be expired immediately after being selected for 159562306a36Sopenharmony_ci * service. This would only cause useless overhead. 159662306a36Sopenharmony_ci */ 159762306a36Sopenharmony_ci if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time && 159862306a36Sopenharmony_ci bfq_bfqq_budget_left(bfqq) > 0) { 159962306a36Sopenharmony_ci /* 160062306a36Sopenharmony_ci * We do not clear the flag non_blocking_wait_rq here, as 160162306a36Sopenharmony_ci * the latter is used in bfq_activate_bfqq to signal 160262306a36Sopenharmony_ci * that timestamps need to be back-shifted (and is 160362306a36Sopenharmony_ci * cleared right after). 160462306a36Sopenharmony_ci */ 160562306a36Sopenharmony_ci 160662306a36Sopenharmony_ci /* 160762306a36Sopenharmony_ci * In next assignment we rely on that either 160862306a36Sopenharmony_ci * entity->service or entity->budget are not updated 160962306a36Sopenharmony_ci * on expiration if bfqq is empty (see 161062306a36Sopenharmony_ci * __bfq_bfqq_recalc_budget). Thus both quantities 161162306a36Sopenharmony_ci * remain unchanged after such an expiration, and the 161262306a36Sopenharmony_ci * following statement therefore assigns to 161362306a36Sopenharmony_ci * entity->budget the remaining budget on such an 161462306a36Sopenharmony_ci * expiration. 161562306a36Sopenharmony_ci */ 161662306a36Sopenharmony_ci entity->budget = min_t(unsigned long, 161762306a36Sopenharmony_ci bfq_bfqq_budget_left(bfqq), 161862306a36Sopenharmony_ci bfqq->max_budget); 161962306a36Sopenharmony_ci 162062306a36Sopenharmony_ci /* 162162306a36Sopenharmony_ci * At this point, we have used entity->service to get 162262306a36Sopenharmony_ci * the budget left (needed for updating 162362306a36Sopenharmony_ci * entity->budget). Thus we finally can, and have to, 162462306a36Sopenharmony_ci * reset entity->service. The latter must be reset 162562306a36Sopenharmony_ci * because bfqq would otherwise be charged again for 162662306a36Sopenharmony_ci * the service it has received during its previous 162762306a36Sopenharmony_ci * service slot(s). 162862306a36Sopenharmony_ci */ 162962306a36Sopenharmony_ci entity->service = 0; 163062306a36Sopenharmony_ci 163162306a36Sopenharmony_ci return true; 163262306a36Sopenharmony_ci } 163362306a36Sopenharmony_ci 163462306a36Sopenharmony_ci /* 163562306a36Sopenharmony_ci * We can finally complete expiration, by setting service to 0. 163662306a36Sopenharmony_ci */ 163762306a36Sopenharmony_ci entity->service = 0; 163862306a36Sopenharmony_ci entity->budget = max_t(unsigned long, bfqq->max_budget, 163962306a36Sopenharmony_ci bfq_serv_to_charge(bfqq->next_rq, bfqq)); 164062306a36Sopenharmony_ci bfq_clear_bfqq_non_blocking_wait_rq(bfqq); 164162306a36Sopenharmony_ci return false; 164262306a36Sopenharmony_ci} 164362306a36Sopenharmony_ci 164462306a36Sopenharmony_ci/* 164562306a36Sopenharmony_ci * Return the farthest past time instant according to jiffies 164662306a36Sopenharmony_ci * macros. 164762306a36Sopenharmony_ci */ 164862306a36Sopenharmony_cistatic unsigned long bfq_smallest_from_now(void) 164962306a36Sopenharmony_ci{ 165062306a36Sopenharmony_ci return jiffies - MAX_JIFFY_OFFSET; 165162306a36Sopenharmony_ci} 165262306a36Sopenharmony_ci 165362306a36Sopenharmony_cistatic void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd, 165462306a36Sopenharmony_ci struct bfq_queue *bfqq, 165562306a36Sopenharmony_ci unsigned int old_wr_coeff, 165662306a36Sopenharmony_ci bool wr_or_deserves_wr, 165762306a36Sopenharmony_ci bool interactive, 165862306a36Sopenharmony_ci bool in_burst, 165962306a36Sopenharmony_ci bool soft_rt) 166062306a36Sopenharmony_ci{ 166162306a36Sopenharmony_ci if (old_wr_coeff == 1 && wr_or_deserves_wr) { 166262306a36Sopenharmony_ci /* start a weight-raising period */ 166362306a36Sopenharmony_ci if (interactive) { 166462306a36Sopenharmony_ci bfqq->service_from_wr = 0; 166562306a36Sopenharmony_ci bfqq->wr_coeff = bfqd->bfq_wr_coeff; 166662306a36Sopenharmony_ci bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 166762306a36Sopenharmony_ci } else { 166862306a36Sopenharmony_ci /* 166962306a36Sopenharmony_ci * No interactive weight raising in progress 167062306a36Sopenharmony_ci * here: assign minus infinity to 167162306a36Sopenharmony_ci * wr_start_at_switch_to_srt, to make sure 167262306a36Sopenharmony_ci * that, at the end of the soft-real-time 167362306a36Sopenharmony_ci * weight raising periods that is starting 167462306a36Sopenharmony_ci * now, no interactive weight-raising period 167562306a36Sopenharmony_ci * may be wrongly considered as still in 167662306a36Sopenharmony_ci * progress (and thus actually started by 167762306a36Sopenharmony_ci * mistake). 167862306a36Sopenharmony_ci */ 167962306a36Sopenharmony_ci bfqq->wr_start_at_switch_to_srt = 168062306a36Sopenharmony_ci bfq_smallest_from_now(); 168162306a36Sopenharmony_ci bfqq->wr_coeff = bfqd->bfq_wr_coeff * 168262306a36Sopenharmony_ci BFQ_SOFTRT_WEIGHT_FACTOR; 168362306a36Sopenharmony_ci bfqq->wr_cur_max_time = 168462306a36Sopenharmony_ci bfqd->bfq_wr_rt_max_time; 168562306a36Sopenharmony_ci } 168662306a36Sopenharmony_ci 168762306a36Sopenharmony_ci /* 168862306a36Sopenharmony_ci * If needed, further reduce budget to make sure it is 168962306a36Sopenharmony_ci * close to bfqq's backlog, so as to reduce the 169062306a36Sopenharmony_ci * scheduling-error component due to a too large 169162306a36Sopenharmony_ci * budget. Do not care about throughput consequences, 169262306a36Sopenharmony_ci * but only about latency. Finally, do not assign a 169362306a36Sopenharmony_ci * too small budget either, to avoid increasing 169462306a36Sopenharmony_ci * latency by causing too frequent expirations. 169562306a36Sopenharmony_ci */ 169662306a36Sopenharmony_ci bfqq->entity.budget = min_t(unsigned long, 169762306a36Sopenharmony_ci bfqq->entity.budget, 169862306a36Sopenharmony_ci 2 * bfq_min_budget(bfqd)); 169962306a36Sopenharmony_ci } else if (old_wr_coeff > 1) { 170062306a36Sopenharmony_ci if (interactive) { /* update wr coeff and duration */ 170162306a36Sopenharmony_ci bfqq->wr_coeff = bfqd->bfq_wr_coeff; 170262306a36Sopenharmony_ci bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 170362306a36Sopenharmony_ci } else if (in_burst) 170462306a36Sopenharmony_ci bfqq->wr_coeff = 1; 170562306a36Sopenharmony_ci else if (soft_rt) { 170662306a36Sopenharmony_ci /* 170762306a36Sopenharmony_ci * The application is now or still meeting the 170862306a36Sopenharmony_ci * requirements for being deemed soft rt. We 170962306a36Sopenharmony_ci * can then correctly and safely (re)charge 171062306a36Sopenharmony_ci * the weight-raising duration for the 171162306a36Sopenharmony_ci * application with the weight-raising 171262306a36Sopenharmony_ci * duration for soft rt applications. 171362306a36Sopenharmony_ci * 171462306a36Sopenharmony_ci * In particular, doing this recharge now, i.e., 171562306a36Sopenharmony_ci * before the weight-raising period for the 171662306a36Sopenharmony_ci * application finishes, reduces the probability 171762306a36Sopenharmony_ci * of the following negative scenario: 171862306a36Sopenharmony_ci * 1) the weight of a soft rt application is 171962306a36Sopenharmony_ci * raised at startup (as for any newly 172062306a36Sopenharmony_ci * created application), 172162306a36Sopenharmony_ci * 2) since the application is not interactive, 172262306a36Sopenharmony_ci * at a certain time weight-raising is 172362306a36Sopenharmony_ci * stopped for the application, 172462306a36Sopenharmony_ci * 3) at that time the application happens to 172562306a36Sopenharmony_ci * still have pending requests, and hence 172662306a36Sopenharmony_ci * is destined to not have a chance to be 172762306a36Sopenharmony_ci * deemed soft rt before these requests are 172862306a36Sopenharmony_ci * completed (see the comments to the 172962306a36Sopenharmony_ci * function bfq_bfqq_softrt_next_start() 173062306a36Sopenharmony_ci * for details on soft rt detection), 173162306a36Sopenharmony_ci * 4) these pending requests experience a high 173262306a36Sopenharmony_ci * latency because the application is not 173362306a36Sopenharmony_ci * weight-raised while they are pending. 173462306a36Sopenharmony_ci */ 173562306a36Sopenharmony_ci if (bfqq->wr_cur_max_time != 173662306a36Sopenharmony_ci bfqd->bfq_wr_rt_max_time) { 173762306a36Sopenharmony_ci bfqq->wr_start_at_switch_to_srt = 173862306a36Sopenharmony_ci bfqq->last_wr_start_finish; 173962306a36Sopenharmony_ci 174062306a36Sopenharmony_ci bfqq->wr_cur_max_time = 174162306a36Sopenharmony_ci bfqd->bfq_wr_rt_max_time; 174262306a36Sopenharmony_ci bfqq->wr_coeff = bfqd->bfq_wr_coeff * 174362306a36Sopenharmony_ci BFQ_SOFTRT_WEIGHT_FACTOR; 174462306a36Sopenharmony_ci } 174562306a36Sopenharmony_ci bfqq->last_wr_start_finish = jiffies; 174662306a36Sopenharmony_ci } 174762306a36Sopenharmony_ci } 174862306a36Sopenharmony_ci} 174962306a36Sopenharmony_ci 175062306a36Sopenharmony_cistatic bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd, 175162306a36Sopenharmony_ci struct bfq_queue *bfqq) 175262306a36Sopenharmony_ci{ 175362306a36Sopenharmony_ci return bfqq->dispatched == 0 && 175462306a36Sopenharmony_ci time_is_before_jiffies( 175562306a36Sopenharmony_ci bfqq->budget_timeout + 175662306a36Sopenharmony_ci bfqd->bfq_wr_min_idle_time); 175762306a36Sopenharmony_ci} 175862306a36Sopenharmony_ci 175962306a36Sopenharmony_ci 176062306a36Sopenharmony_ci/* 176162306a36Sopenharmony_ci * Return true if bfqq is in a higher priority class, or has a higher 176262306a36Sopenharmony_ci * weight than the in-service queue. 176362306a36Sopenharmony_ci */ 176462306a36Sopenharmony_cistatic bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq, 176562306a36Sopenharmony_ci struct bfq_queue *in_serv_bfqq) 176662306a36Sopenharmony_ci{ 176762306a36Sopenharmony_ci int bfqq_weight, in_serv_weight; 176862306a36Sopenharmony_ci 176962306a36Sopenharmony_ci if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class) 177062306a36Sopenharmony_ci return true; 177162306a36Sopenharmony_ci 177262306a36Sopenharmony_ci if (in_serv_bfqq->entity.parent == bfqq->entity.parent) { 177362306a36Sopenharmony_ci bfqq_weight = bfqq->entity.weight; 177462306a36Sopenharmony_ci in_serv_weight = in_serv_bfqq->entity.weight; 177562306a36Sopenharmony_ci } else { 177662306a36Sopenharmony_ci if (bfqq->entity.parent) 177762306a36Sopenharmony_ci bfqq_weight = bfqq->entity.parent->weight; 177862306a36Sopenharmony_ci else 177962306a36Sopenharmony_ci bfqq_weight = bfqq->entity.weight; 178062306a36Sopenharmony_ci if (in_serv_bfqq->entity.parent) 178162306a36Sopenharmony_ci in_serv_weight = in_serv_bfqq->entity.parent->weight; 178262306a36Sopenharmony_ci else 178362306a36Sopenharmony_ci in_serv_weight = in_serv_bfqq->entity.weight; 178462306a36Sopenharmony_ci } 178562306a36Sopenharmony_ci 178662306a36Sopenharmony_ci return bfqq_weight > in_serv_weight; 178762306a36Sopenharmony_ci} 178862306a36Sopenharmony_ci 178962306a36Sopenharmony_ci/* 179062306a36Sopenharmony_ci * Get the index of the actuator that will serve bio. 179162306a36Sopenharmony_ci */ 179262306a36Sopenharmony_cistatic unsigned int bfq_actuator_index(struct bfq_data *bfqd, struct bio *bio) 179362306a36Sopenharmony_ci{ 179462306a36Sopenharmony_ci unsigned int i; 179562306a36Sopenharmony_ci sector_t end; 179662306a36Sopenharmony_ci 179762306a36Sopenharmony_ci /* no search needed if one or zero ranges present */ 179862306a36Sopenharmony_ci if (bfqd->num_actuators == 1) 179962306a36Sopenharmony_ci return 0; 180062306a36Sopenharmony_ci 180162306a36Sopenharmony_ci /* bio_end_sector(bio) gives the sector after the last one */ 180262306a36Sopenharmony_ci end = bio_end_sector(bio) - 1; 180362306a36Sopenharmony_ci 180462306a36Sopenharmony_ci for (i = 0; i < bfqd->num_actuators; i++) { 180562306a36Sopenharmony_ci if (end >= bfqd->sector[i] && 180662306a36Sopenharmony_ci end < bfqd->sector[i] + bfqd->nr_sectors[i]) 180762306a36Sopenharmony_ci return i; 180862306a36Sopenharmony_ci } 180962306a36Sopenharmony_ci 181062306a36Sopenharmony_ci WARN_ONCE(true, 181162306a36Sopenharmony_ci "bfq_actuator_index: bio sector out of ranges: end=%llu\n", 181262306a36Sopenharmony_ci end); 181362306a36Sopenharmony_ci return 0; 181462306a36Sopenharmony_ci} 181562306a36Sopenharmony_ci 181662306a36Sopenharmony_cistatic bool bfq_better_to_idle(struct bfq_queue *bfqq); 181762306a36Sopenharmony_ci 181862306a36Sopenharmony_cistatic void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd, 181962306a36Sopenharmony_ci struct bfq_queue *bfqq, 182062306a36Sopenharmony_ci int old_wr_coeff, 182162306a36Sopenharmony_ci struct request *rq, 182262306a36Sopenharmony_ci bool *interactive) 182362306a36Sopenharmony_ci{ 182462306a36Sopenharmony_ci bool soft_rt, in_burst, wr_or_deserves_wr, 182562306a36Sopenharmony_ci bfqq_wants_to_preempt, 182662306a36Sopenharmony_ci idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq), 182762306a36Sopenharmony_ci /* 182862306a36Sopenharmony_ci * See the comments on 182962306a36Sopenharmony_ci * bfq_bfqq_update_budg_for_activation for 183062306a36Sopenharmony_ci * details on the usage of the next variable. 183162306a36Sopenharmony_ci */ 183262306a36Sopenharmony_ci arrived_in_time = ktime_get_ns() <= 183362306a36Sopenharmony_ci bfqq->ttime.last_end_request + 183462306a36Sopenharmony_ci bfqd->bfq_slice_idle * 3; 183562306a36Sopenharmony_ci unsigned int act_idx = bfq_actuator_index(bfqd, rq->bio); 183662306a36Sopenharmony_ci bool bfqq_non_merged_or_stably_merged = 183762306a36Sopenharmony_ci bfqq->bic || RQ_BIC(rq)->bfqq_data[act_idx].stably_merged; 183862306a36Sopenharmony_ci 183962306a36Sopenharmony_ci /* 184062306a36Sopenharmony_ci * bfqq deserves to be weight-raised if: 184162306a36Sopenharmony_ci * - it is sync, 184262306a36Sopenharmony_ci * - it does not belong to a large burst, 184362306a36Sopenharmony_ci * - it has been idle for enough time or is soft real-time, 184462306a36Sopenharmony_ci * - is linked to a bfq_io_cq (it is not shared in any sense), 184562306a36Sopenharmony_ci * - has a default weight (otherwise we assume the user wanted 184662306a36Sopenharmony_ci * to control its weight explicitly) 184762306a36Sopenharmony_ci */ 184862306a36Sopenharmony_ci in_burst = bfq_bfqq_in_large_burst(bfqq); 184962306a36Sopenharmony_ci soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 && 185062306a36Sopenharmony_ci !BFQQ_TOTALLY_SEEKY(bfqq) && 185162306a36Sopenharmony_ci !in_burst && 185262306a36Sopenharmony_ci time_is_before_jiffies(bfqq->soft_rt_next_start) && 185362306a36Sopenharmony_ci bfqq->dispatched == 0 && 185462306a36Sopenharmony_ci bfqq->entity.new_weight == 40; 185562306a36Sopenharmony_ci *interactive = !in_burst && idle_for_long_time && 185662306a36Sopenharmony_ci bfqq->entity.new_weight == 40; 185762306a36Sopenharmony_ci /* 185862306a36Sopenharmony_ci * Merged bfq_queues are kept out of weight-raising 185962306a36Sopenharmony_ci * (low-latency) mechanisms. The reason is that these queues 186062306a36Sopenharmony_ci * are usually created for non-interactive and 186162306a36Sopenharmony_ci * non-soft-real-time tasks. Yet this is not the case for 186262306a36Sopenharmony_ci * stably-merged queues. These queues are merged just because 186362306a36Sopenharmony_ci * they are created shortly after each other. So they may 186462306a36Sopenharmony_ci * easily serve the I/O of an interactive or soft-real time 186562306a36Sopenharmony_ci * application, if the application happens to spawn multiple 186662306a36Sopenharmony_ci * processes. So let also stably-merged queued enjoy weight 186762306a36Sopenharmony_ci * raising. 186862306a36Sopenharmony_ci */ 186962306a36Sopenharmony_ci wr_or_deserves_wr = bfqd->low_latency && 187062306a36Sopenharmony_ci (bfqq->wr_coeff > 1 || 187162306a36Sopenharmony_ci (bfq_bfqq_sync(bfqq) && bfqq_non_merged_or_stably_merged && 187262306a36Sopenharmony_ci (*interactive || soft_rt))); 187362306a36Sopenharmony_ci 187462306a36Sopenharmony_ci /* 187562306a36Sopenharmony_ci * Using the last flag, update budget and check whether bfqq 187662306a36Sopenharmony_ci * may want to preempt the in-service queue. 187762306a36Sopenharmony_ci */ 187862306a36Sopenharmony_ci bfqq_wants_to_preempt = 187962306a36Sopenharmony_ci bfq_bfqq_update_budg_for_activation(bfqd, bfqq, 188062306a36Sopenharmony_ci arrived_in_time); 188162306a36Sopenharmony_ci 188262306a36Sopenharmony_ci /* 188362306a36Sopenharmony_ci * If bfqq happened to be activated in a burst, but has been 188462306a36Sopenharmony_ci * idle for much more than an interactive queue, then we 188562306a36Sopenharmony_ci * assume that, in the overall I/O initiated in the burst, the 188662306a36Sopenharmony_ci * I/O associated with bfqq is finished. So bfqq does not need 188762306a36Sopenharmony_ci * to be treated as a queue belonging to a burst 188862306a36Sopenharmony_ci * anymore. Accordingly, we reset bfqq's in_large_burst flag 188962306a36Sopenharmony_ci * if set, and remove bfqq from the burst list if it's 189062306a36Sopenharmony_ci * there. We do not decrement burst_size, because the fact 189162306a36Sopenharmony_ci * that bfqq does not need to belong to the burst list any 189262306a36Sopenharmony_ci * more does not invalidate the fact that bfqq was created in 189362306a36Sopenharmony_ci * a burst. 189462306a36Sopenharmony_ci */ 189562306a36Sopenharmony_ci if (likely(!bfq_bfqq_just_created(bfqq)) && 189662306a36Sopenharmony_ci idle_for_long_time && 189762306a36Sopenharmony_ci time_is_before_jiffies( 189862306a36Sopenharmony_ci bfqq->budget_timeout + 189962306a36Sopenharmony_ci msecs_to_jiffies(10000))) { 190062306a36Sopenharmony_ci hlist_del_init(&bfqq->burst_list_node); 190162306a36Sopenharmony_ci bfq_clear_bfqq_in_large_burst(bfqq); 190262306a36Sopenharmony_ci } 190362306a36Sopenharmony_ci 190462306a36Sopenharmony_ci bfq_clear_bfqq_just_created(bfqq); 190562306a36Sopenharmony_ci 190662306a36Sopenharmony_ci if (bfqd->low_latency) { 190762306a36Sopenharmony_ci if (unlikely(time_is_after_jiffies(bfqq->split_time))) 190862306a36Sopenharmony_ci /* wraparound */ 190962306a36Sopenharmony_ci bfqq->split_time = 191062306a36Sopenharmony_ci jiffies - bfqd->bfq_wr_min_idle_time - 1; 191162306a36Sopenharmony_ci 191262306a36Sopenharmony_ci if (time_is_before_jiffies(bfqq->split_time + 191362306a36Sopenharmony_ci bfqd->bfq_wr_min_idle_time)) { 191462306a36Sopenharmony_ci bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq, 191562306a36Sopenharmony_ci old_wr_coeff, 191662306a36Sopenharmony_ci wr_or_deserves_wr, 191762306a36Sopenharmony_ci *interactive, 191862306a36Sopenharmony_ci in_burst, 191962306a36Sopenharmony_ci soft_rt); 192062306a36Sopenharmony_ci 192162306a36Sopenharmony_ci if (old_wr_coeff != bfqq->wr_coeff) 192262306a36Sopenharmony_ci bfqq->entity.prio_changed = 1; 192362306a36Sopenharmony_ci } 192462306a36Sopenharmony_ci } 192562306a36Sopenharmony_ci 192662306a36Sopenharmony_ci bfqq->last_idle_bklogged = jiffies; 192762306a36Sopenharmony_ci bfqq->service_from_backlogged = 0; 192862306a36Sopenharmony_ci bfq_clear_bfqq_softrt_update(bfqq); 192962306a36Sopenharmony_ci 193062306a36Sopenharmony_ci bfq_add_bfqq_busy(bfqq); 193162306a36Sopenharmony_ci 193262306a36Sopenharmony_ci /* 193362306a36Sopenharmony_ci * Expire in-service queue if preemption may be needed for 193462306a36Sopenharmony_ci * guarantees or throughput. As for guarantees, we care 193562306a36Sopenharmony_ci * explicitly about two cases. The first is that bfqq has to 193662306a36Sopenharmony_ci * recover a service hole, as explained in the comments on 193762306a36Sopenharmony_ci * bfq_bfqq_update_budg_for_activation(), i.e., that 193862306a36Sopenharmony_ci * bfqq_wants_to_preempt is true. However, if bfqq does not 193962306a36Sopenharmony_ci * carry time-critical I/O, then bfqq's bandwidth is less 194062306a36Sopenharmony_ci * important than that of queues that carry time-critical I/O. 194162306a36Sopenharmony_ci * So, as a further constraint, we consider this case only if 194262306a36Sopenharmony_ci * bfqq is at least as weight-raised, i.e., at least as time 194362306a36Sopenharmony_ci * critical, as the in-service queue. 194462306a36Sopenharmony_ci * 194562306a36Sopenharmony_ci * The second case is that bfqq is in a higher priority class, 194662306a36Sopenharmony_ci * or has a higher weight than the in-service queue. If this 194762306a36Sopenharmony_ci * condition does not hold, we don't care because, even if 194862306a36Sopenharmony_ci * bfqq does not start to be served immediately, the resulting 194962306a36Sopenharmony_ci * delay for bfqq's I/O is however lower or much lower than 195062306a36Sopenharmony_ci * the ideal completion time to be guaranteed to bfqq's I/O. 195162306a36Sopenharmony_ci * 195262306a36Sopenharmony_ci * In both cases, preemption is needed only if, according to 195362306a36Sopenharmony_ci * the timestamps of both bfqq and of the in-service queue, 195462306a36Sopenharmony_ci * bfqq actually is the next queue to serve. So, to reduce 195562306a36Sopenharmony_ci * useless preemptions, the return value of 195662306a36Sopenharmony_ci * next_queue_may_preempt() is considered in the next compound 195762306a36Sopenharmony_ci * condition too. Yet next_queue_may_preempt() just checks a 195862306a36Sopenharmony_ci * simple, necessary condition for bfqq to be the next queue 195962306a36Sopenharmony_ci * to serve. In fact, to evaluate a sufficient condition, the 196062306a36Sopenharmony_ci * timestamps of the in-service queue would need to be 196162306a36Sopenharmony_ci * updated, and this operation is quite costly (see the 196262306a36Sopenharmony_ci * comments on bfq_bfqq_update_budg_for_activation()). 196362306a36Sopenharmony_ci * 196462306a36Sopenharmony_ci * As for throughput, we ask bfq_better_to_idle() whether we 196562306a36Sopenharmony_ci * still need to plug I/O dispatching. If bfq_better_to_idle() 196662306a36Sopenharmony_ci * says no, then plugging is not needed any longer, either to 196762306a36Sopenharmony_ci * boost throughput or to perserve service guarantees. Then 196862306a36Sopenharmony_ci * the best option is to stop plugging I/O, as not doing so 196962306a36Sopenharmony_ci * would certainly lower throughput. We may end up in this 197062306a36Sopenharmony_ci * case if: (1) upon a dispatch attempt, we detected that it 197162306a36Sopenharmony_ci * was better to plug I/O dispatch, and to wait for a new 197262306a36Sopenharmony_ci * request to arrive for the currently in-service queue, but 197362306a36Sopenharmony_ci * (2) this switch of bfqq to busy changes the scenario. 197462306a36Sopenharmony_ci */ 197562306a36Sopenharmony_ci if (bfqd->in_service_queue && 197662306a36Sopenharmony_ci ((bfqq_wants_to_preempt && 197762306a36Sopenharmony_ci bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) || 197862306a36Sopenharmony_ci bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) || 197962306a36Sopenharmony_ci !bfq_better_to_idle(bfqd->in_service_queue)) && 198062306a36Sopenharmony_ci next_queue_may_preempt(bfqd)) 198162306a36Sopenharmony_ci bfq_bfqq_expire(bfqd, bfqd->in_service_queue, 198262306a36Sopenharmony_ci false, BFQQE_PREEMPTED); 198362306a36Sopenharmony_ci} 198462306a36Sopenharmony_ci 198562306a36Sopenharmony_cistatic void bfq_reset_inject_limit(struct bfq_data *bfqd, 198662306a36Sopenharmony_ci struct bfq_queue *bfqq) 198762306a36Sopenharmony_ci{ 198862306a36Sopenharmony_ci /* invalidate baseline total service time */ 198962306a36Sopenharmony_ci bfqq->last_serv_time_ns = 0; 199062306a36Sopenharmony_ci 199162306a36Sopenharmony_ci /* 199262306a36Sopenharmony_ci * Reset pointer in case we are waiting for 199362306a36Sopenharmony_ci * some request completion. 199462306a36Sopenharmony_ci */ 199562306a36Sopenharmony_ci bfqd->waited_rq = NULL; 199662306a36Sopenharmony_ci 199762306a36Sopenharmony_ci /* 199862306a36Sopenharmony_ci * If bfqq has a short think time, then start by setting the 199962306a36Sopenharmony_ci * inject limit to 0 prudentially, because the service time of 200062306a36Sopenharmony_ci * an injected I/O request may be higher than the think time 200162306a36Sopenharmony_ci * of bfqq, and therefore, if one request was injected when 200262306a36Sopenharmony_ci * bfqq remains empty, this injected request might delay the 200362306a36Sopenharmony_ci * service of the next I/O request for bfqq significantly. In 200462306a36Sopenharmony_ci * case bfqq can actually tolerate some injection, then the 200562306a36Sopenharmony_ci * adaptive update will however raise the limit soon. This 200662306a36Sopenharmony_ci * lucky circumstance holds exactly because bfqq has a short 200762306a36Sopenharmony_ci * think time, and thus, after remaining empty, is likely to 200862306a36Sopenharmony_ci * get new I/O enqueued---and then completed---before being 200962306a36Sopenharmony_ci * expired. This is the very pattern that gives the 201062306a36Sopenharmony_ci * limit-update algorithm the chance to measure the effect of 201162306a36Sopenharmony_ci * injection on request service times, and then to update the 201262306a36Sopenharmony_ci * limit accordingly. 201362306a36Sopenharmony_ci * 201462306a36Sopenharmony_ci * However, in the following special case, the inject limit is 201562306a36Sopenharmony_ci * left to 1 even if the think time is short: bfqq's I/O is 201662306a36Sopenharmony_ci * synchronized with that of some other queue, i.e., bfqq may 201762306a36Sopenharmony_ci * receive new I/O only after the I/O of the other queue is 201862306a36Sopenharmony_ci * completed. Keeping the inject limit to 1 allows the 201962306a36Sopenharmony_ci * blocking I/O to be served while bfqq is in service. And 202062306a36Sopenharmony_ci * this is very convenient both for bfqq and for overall 202162306a36Sopenharmony_ci * throughput, as explained in detail in the comments in 202262306a36Sopenharmony_ci * bfq_update_has_short_ttime(). 202362306a36Sopenharmony_ci * 202462306a36Sopenharmony_ci * On the opposite end, if bfqq has a long think time, then 202562306a36Sopenharmony_ci * start directly by 1, because: 202662306a36Sopenharmony_ci * a) on the bright side, keeping at most one request in 202762306a36Sopenharmony_ci * service in the drive is unlikely to cause any harm to the 202862306a36Sopenharmony_ci * latency of bfqq's requests, as the service time of a single 202962306a36Sopenharmony_ci * request is likely to be lower than the think time of bfqq; 203062306a36Sopenharmony_ci * b) on the downside, after becoming empty, bfqq is likely to 203162306a36Sopenharmony_ci * expire before getting its next request. With this request 203262306a36Sopenharmony_ci * arrival pattern, it is very hard to sample total service 203362306a36Sopenharmony_ci * times and update the inject limit accordingly (see comments 203462306a36Sopenharmony_ci * on bfq_update_inject_limit()). So the limit is likely to be 203562306a36Sopenharmony_ci * never, or at least seldom, updated. As a consequence, by 203662306a36Sopenharmony_ci * setting the limit to 1, we avoid that no injection ever 203762306a36Sopenharmony_ci * occurs with bfqq. On the downside, this proactive step 203862306a36Sopenharmony_ci * further reduces chances to actually compute the baseline 203962306a36Sopenharmony_ci * total service time. Thus it reduces chances to execute the 204062306a36Sopenharmony_ci * limit-update algorithm and possibly raise the limit to more 204162306a36Sopenharmony_ci * than 1. 204262306a36Sopenharmony_ci */ 204362306a36Sopenharmony_ci if (bfq_bfqq_has_short_ttime(bfqq)) 204462306a36Sopenharmony_ci bfqq->inject_limit = 0; 204562306a36Sopenharmony_ci else 204662306a36Sopenharmony_ci bfqq->inject_limit = 1; 204762306a36Sopenharmony_ci 204862306a36Sopenharmony_ci bfqq->decrease_time_jif = jiffies; 204962306a36Sopenharmony_ci} 205062306a36Sopenharmony_ci 205162306a36Sopenharmony_cistatic void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns) 205262306a36Sopenharmony_ci{ 205362306a36Sopenharmony_ci u64 tot_io_time = now_ns - bfqq->io_start_time; 205462306a36Sopenharmony_ci 205562306a36Sopenharmony_ci if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0) 205662306a36Sopenharmony_ci bfqq->tot_idle_time += 205762306a36Sopenharmony_ci now_ns - bfqq->ttime.last_end_request; 205862306a36Sopenharmony_ci 205962306a36Sopenharmony_ci if (unlikely(bfq_bfqq_just_created(bfqq))) 206062306a36Sopenharmony_ci return; 206162306a36Sopenharmony_ci 206262306a36Sopenharmony_ci /* 206362306a36Sopenharmony_ci * Must be busy for at least about 80% of the time to be 206462306a36Sopenharmony_ci * considered I/O bound. 206562306a36Sopenharmony_ci */ 206662306a36Sopenharmony_ci if (bfqq->tot_idle_time * 5 > tot_io_time) 206762306a36Sopenharmony_ci bfq_clear_bfqq_IO_bound(bfqq); 206862306a36Sopenharmony_ci else 206962306a36Sopenharmony_ci bfq_mark_bfqq_IO_bound(bfqq); 207062306a36Sopenharmony_ci 207162306a36Sopenharmony_ci /* 207262306a36Sopenharmony_ci * Keep an observation window of at most 200 ms in the past 207362306a36Sopenharmony_ci * from now. 207462306a36Sopenharmony_ci */ 207562306a36Sopenharmony_ci if (tot_io_time > 200 * NSEC_PER_MSEC) { 207662306a36Sopenharmony_ci bfqq->io_start_time = now_ns - (tot_io_time>>1); 207762306a36Sopenharmony_ci bfqq->tot_idle_time >>= 1; 207862306a36Sopenharmony_ci } 207962306a36Sopenharmony_ci} 208062306a36Sopenharmony_ci 208162306a36Sopenharmony_ci/* 208262306a36Sopenharmony_ci * Detect whether bfqq's I/O seems synchronized with that of some 208362306a36Sopenharmony_ci * other queue, i.e., whether bfqq, after remaining empty, happens to 208462306a36Sopenharmony_ci * receive new I/O only right after some I/O request of the other 208562306a36Sopenharmony_ci * queue has been completed. We call waker queue the other queue, and 208662306a36Sopenharmony_ci * we assume, for simplicity, that bfqq may have at most one waker 208762306a36Sopenharmony_ci * queue. 208862306a36Sopenharmony_ci * 208962306a36Sopenharmony_ci * A remarkable throughput boost can be reached by unconditionally 209062306a36Sopenharmony_ci * injecting the I/O of the waker queue, every time a new 209162306a36Sopenharmony_ci * bfq_dispatch_request happens to be invoked while I/O is being 209262306a36Sopenharmony_ci * plugged for bfqq. In addition to boosting throughput, this 209362306a36Sopenharmony_ci * unblocks bfqq's I/O, thereby improving bandwidth and latency for 209462306a36Sopenharmony_ci * bfqq. Note that these same results may be achieved with the general 209562306a36Sopenharmony_ci * injection mechanism, but less effectively. For details on this 209662306a36Sopenharmony_ci * aspect, see the comments on the choice of the queue for injection 209762306a36Sopenharmony_ci * in bfq_select_queue(). 209862306a36Sopenharmony_ci * 209962306a36Sopenharmony_ci * Turning back to the detection of a waker queue, a queue Q is deemed as a 210062306a36Sopenharmony_ci * waker queue for bfqq if, for three consecutive times, bfqq happens to become 210162306a36Sopenharmony_ci * non empty right after a request of Q has been completed within given 210262306a36Sopenharmony_ci * timeout. In this respect, even if bfqq is empty, we do not check for a waker 210362306a36Sopenharmony_ci * if it still has some in-flight I/O. In fact, in this case bfqq is actually 210462306a36Sopenharmony_ci * still being served by the drive, and may receive new I/O on the completion 210562306a36Sopenharmony_ci * of some of the in-flight requests. In particular, on the first time, Q is 210662306a36Sopenharmony_ci * tentatively set as a candidate waker queue, while on the third consecutive 210762306a36Sopenharmony_ci * time that Q is detected, the field waker_bfqq is set to Q, to confirm that Q 210862306a36Sopenharmony_ci * is a waker queue for bfqq. These detection steps are performed only if bfqq 210962306a36Sopenharmony_ci * has a long think time, so as to make it more likely that bfqq's I/O is 211062306a36Sopenharmony_ci * actually being blocked by a synchronization. This last filter, plus the 211162306a36Sopenharmony_ci * above three-times requirement and time limit for detection, make false 211262306a36Sopenharmony_ci * positives less likely. 211362306a36Sopenharmony_ci * 211462306a36Sopenharmony_ci * NOTE 211562306a36Sopenharmony_ci * 211662306a36Sopenharmony_ci * The sooner a waker queue is detected, the sooner throughput can be 211762306a36Sopenharmony_ci * boosted by injecting I/O from the waker queue. Fortunately, 211862306a36Sopenharmony_ci * detection is likely to be actually fast, for the following 211962306a36Sopenharmony_ci * reasons. While blocked by synchronization, bfqq has a long think 212062306a36Sopenharmony_ci * time. This implies that bfqq's inject limit is at least equal to 1 212162306a36Sopenharmony_ci * (see the comments in bfq_update_inject_limit()). So, thanks to 212262306a36Sopenharmony_ci * injection, the waker queue is likely to be served during the very 212362306a36Sopenharmony_ci * first I/O-plugging time interval for bfqq. This triggers the first 212462306a36Sopenharmony_ci * step of the detection mechanism. Thanks again to injection, the 212562306a36Sopenharmony_ci * candidate waker queue is then likely to be confirmed no later than 212662306a36Sopenharmony_ci * during the next I/O-plugging interval for bfqq. 212762306a36Sopenharmony_ci * 212862306a36Sopenharmony_ci * ISSUE 212962306a36Sopenharmony_ci * 213062306a36Sopenharmony_ci * On queue merging all waker information is lost. 213162306a36Sopenharmony_ci */ 213262306a36Sopenharmony_cistatic void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq, 213362306a36Sopenharmony_ci u64 now_ns) 213462306a36Sopenharmony_ci{ 213562306a36Sopenharmony_ci char waker_name[MAX_BFQQ_NAME_LENGTH]; 213662306a36Sopenharmony_ci 213762306a36Sopenharmony_ci if (!bfqd->last_completed_rq_bfqq || 213862306a36Sopenharmony_ci bfqd->last_completed_rq_bfqq == bfqq || 213962306a36Sopenharmony_ci bfq_bfqq_has_short_ttime(bfqq) || 214062306a36Sopenharmony_ci now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC || 214162306a36Sopenharmony_ci bfqd->last_completed_rq_bfqq == &bfqd->oom_bfqq || 214262306a36Sopenharmony_ci bfqq == &bfqd->oom_bfqq) 214362306a36Sopenharmony_ci return; 214462306a36Sopenharmony_ci 214562306a36Sopenharmony_ci /* 214662306a36Sopenharmony_ci * We reset waker detection logic also if too much time has passed 214762306a36Sopenharmony_ci * since the first detection. If wakeups are rare, pointless idling 214862306a36Sopenharmony_ci * doesn't hurt throughput that much. The condition below makes sure 214962306a36Sopenharmony_ci * we do not uselessly idle blocking waker in more than 1/64 cases. 215062306a36Sopenharmony_ci */ 215162306a36Sopenharmony_ci if (bfqd->last_completed_rq_bfqq != 215262306a36Sopenharmony_ci bfqq->tentative_waker_bfqq || 215362306a36Sopenharmony_ci now_ns > bfqq->waker_detection_started + 215462306a36Sopenharmony_ci 128 * (u64)bfqd->bfq_slice_idle) { 215562306a36Sopenharmony_ci /* 215662306a36Sopenharmony_ci * First synchronization detected with a 215762306a36Sopenharmony_ci * candidate waker queue, or with a different 215862306a36Sopenharmony_ci * candidate waker queue from the current one. 215962306a36Sopenharmony_ci */ 216062306a36Sopenharmony_ci bfqq->tentative_waker_bfqq = 216162306a36Sopenharmony_ci bfqd->last_completed_rq_bfqq; 216262306a36Sopenharmony_ci bfqq->num_waker_detections = 1; 216362306a36Sopenharmony_ci bfqq->waker_detection_started = now_ns; 216462306a36Sopenharmony_ci bfq_bfqq_name(bfqq->tentative_waker_bfqq, waker_name, 216562306a36Sopenharmony_ci MAX_BFQQ_NAME_LENGTH); 216662306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "set tentative waker %s", waker_name); 216762306a36Sopenharmony_ci } else /* Same tentative waker queue detected again */ 216862306a36Sopenharmony_ci bfqq->num_waker_detections++; 216962306a36Sopenharmony_ci 217062306a36Sopenharmony_ci if (bfqq->num_waker_detections == 3) { 217162306a36Sopenharmony_ci bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq; 217262306a36Sopenharmony_ci bfqq->tentative_waker_bfqq = NULL; 217362306a36Sopenharmony_ci bfq_bfqq_name(bfqq->waker_bfqq, waker_name, 217462306a36Sopenharmony_ci MAX_BFQQ_NAME_LENGTH); 217562306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "set waker %s", waker_name); 217662306a36Sopenharmony_ci 217762306a36Sopenharmony_ci /* 217862306a36Sopenharmony_ci * If the waker queue disappears, then 217962306a36Sopenharmony_ci * bfqq->waker_bfqq must be reset. To 218062306a36Sopenharmony_ci * this goal, we maintain in each 218162306a36Sopenharmony_ci * waker queue a list, woken_list, of 218262306a36Sopenharmony_ci * all the queues that reference the 218362306a36Sopenharmony_ci * waker queue through their 218462306a36Sopenharmony_ci * waker_bfqq pointer. When the waker 218562306a36Sopenharmony_ci * queue exits, the waker_bfqq pointer 218662306a36Sopenharmony_ci * of all the queues in the woken_list 218762306a36Sopenharmony_ci * is reset. 218862306a36Sopenharmony_ci * 218962306a36Sopenharmony_ci * In addition, if bfqq is already in 219062306a36Sopenharmony_ci * the woken_list of a waker queue, 219162306a36Sopenharmony_ci * then, before being inserted into 219262306a36Sopenharmony_ci * the woken_list of a new waker 219362306a36Sopenharmony_ci * queue, bfqq must be removed from 219462306a36Sopenharmony_ci * the woken_list of the old waker 219562306a36Sopenharmony_ci * queue. 219662306a36Sopenharmony_ci */ 219762306a36Sopenharmony_ci if (!hlist_unhashed(&bfqq->woken_list_node)) 219862306a36Sopenharmony_ci hlist_del_init(&bfqq->woken_list_node); 219962306a36Sopenharmony_ci hlist_add_head(&bfqq->woken_list_node, 220062306a36Sopenharmony_ci &bfqd->last_completed_rq_bfqq->woken_list); 220162306a36Sopenharmony_ci } 220262306a36Sopenharmony_ci} 220362306a36Sopenharmony_ci 220462306a36Sopenharmony_cistatic void bfq_add_request(struct request *rq) 220562306a36Sopenharmony_ci{ 220662306a36Sopenharmony_ci struct bfq_queue *bfqq = RQ_BFQQ(rq); 220762306a36Sopenharmony_ci struct bfq_data *bfqd = bfqq->bfqd; 220862306a36Sopenharmony_ci struct request *next_rq, *prev; 220962306a36Sopenharmony_ci unsigned int old_wr_coeff = bfqq->wr_coeff; 221062306a36Sopenharmony_ci bool interactive = false; 221162306a36Sopenharmony_ci u64 now_ns = ktime_get_ns(); 221262306a36Sopenharmony_ci 221362306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq)); 221462306a36Sopenharmony_ci bfqq->queued[rq_is_sync(rq)]++; 221562306a36Sopenharmony_ci /* 221662306a36Sopenharmony_ci * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it 221762306a36Sopenharmony_ci * may be read without holding the lock in bfq_has_work(). 221862306a36Sopenharmony_ci */ 221962306a36Sopenharmony_ci WRITE_ONCE(bfqd->queued, bfqd->queued + 1); 222062306a36Sopenharmony_ci 222162306a36Sopenharmony_ci if (bfq_bfqq_sync(bfqq) && RQ_BIC(rq)->requests <= 1) { 222262306a36Sopenharmony_ci bfq_check_waker(bfqd, bfqq, now_ns); 222362306a36Sopenharmony_ci 222462306a36Sopenharmony_ci /* 222562306a36Sopenharmony_ci * Periodically reset inject limit, to make sure that 222662306a36Sopenharmony_ci * the latter eventually drops in case workload 222762306a36Sopenharmony_ci * changes, see step (3) in the comments on 222862306a36Sopenharmony_ci * bfq_update_inject_limit(). 222962306a36Sopenharmony_ci */ 223062306a36Sopenharmony_ci if (time_is_before_eq_jiffies(bfqq->decrease_time_jif + 223162306a36Sopenharmony_ci msecs_to_jiffies(1000))) 223262306a36Sopenharmony_ci bfq_reset_inject_limit(bfqd, bfqq); 223362306a36Sopenharmony_ci 223462306a36Sopenharmony_ci /* 223562306a36Sopenharmony_ci * The following conditions must hold to setup a new 223662306a36Sopenharmony_ci * sampling of total service time, and then a new 223762306a36Sopenharmony_ci * update of the inject limit: 223862306a36Sopenharmony_ci * - bfqq is in service, because the total service 223962306a36Sopenharmony_ci * time is evaluated only for the I/O requests of 224062306a36Sopenharmony_ci * the queues in service; 224162306a36Sopenharmony_ci * - this is the right occasion to compute or to 224262306a36Sopenharmony_ci * lower the baseline total service time, because 224362306a36Sopenharmony_ci * there are actually no requests in the drive, 224462306a36Sopenharmony_ci * or 224562306a36Sopenharmony_ci * the baseline total service time is available, and 224662306a36Sopenharmony_ci * this is the right occasion to compute the other 224762306a36Sopenharmony_ci * quantity needed to update the inject limit, i.e., 224862306a36Sopenharmony_ci * the total service time caused by the amount of 224962306a36Sopenharmony_ci * injection allowed by the current value of the 225062306a36Sopenharmony_ci * limit. It is the right occasion because injection 225162306a36Sopenharmony_ci * has actually been performed during the service 225262306a36Sopenharmony_ci * hole, and there are still in-flight requests, 225362306a36Sopenharmony_ci * which are very likely to be exactly the injected 225462306a36Sopenharmony_ci * requests, or part of them; 225562306a36Sopenharmony_ci * - the minimum interval for sampling the total 225662306a36Sopenharmony_ci * service time and updating the inject limit has 225762306a36Sopenharmony_ci * elapsed. 225862306a36Sopenharmony_ci */ 225962306a36Sopenharmony_ci if (bfqq == bfqd->in_service_queue && 226062306a36Sopenharmony_ci (bfqd->tot_rq_in_driver == 0 || 226162306a36Sopenharmony_ci (bfqq->last_serv_time_ns > 0 && 226262306a36Sopenharmony_ci bfqd->rqs_injected && bfqd->tot_rq_in_driver > 0)) && 226362306a36Sopenharmony_ci time_is_before_eq_jiffies(bfqq->decrease_time_jif + 226462306a36Sopenharmony_ci msecs_to_jiffies(10))) { 226562306a36Sopenharmony_ci bfqd->last_empty_occupied_ns = ktime_get_ns(); 226662306a36Sopenharmony_ci /* 226762306a36Sopenharmony_ci * Start the state machine for measuring the 226862306a36Sopenharmony_ci * total service time of rq: setting 226962306a36Sopenharmony_ci * wait_dispatch will cause bfqd->waited_rq to 227062306a36Sopenharmony_ci * be set when rq will be dispatched. 227162306a36Sopenharmony_ci */ 227262306a36Sopenharmony_ci bfqd->wait_dispatch = true; 227362306a36Sopenharmony_ci /* 227462306a36Sopenharmony_ci * If there is no I/O in service in the drive, 227562306a36Sopenharmony_ci * then possible injection occurred before the 227662306a36Sopenharmony_ci * arrival of rq will not affect the total 227762306a36Sopenharmony_ci * service time of rq. So the injection limit 227862306a36Sopenharmony_ci * must not be updated as a function of such 227962306a36Sopenharmony_ci * total service time, unless new injection 228062306a36Sopenharmony_ci * occurs before rq is completed. To have the 228162306a36Sopenharmony_ci * injection limit updated only in the latter 228262306a36Sopenharmony_ci * case, reset rqs_injected here (rqs_injected 228362306a36Sopenharmony_ci * will be set in case injection is performed 228462306a36Sopenharmony_ci * on bfqq before rq is completed). 228562306a36Sopenharmony_ci */ 228662306a36Sopenharmony_ci if (bfqd->tot_rq_in_driver == 0) 228762306a36Sopenharmony_ci bfqd->rqs_injected = false; 228862306a36Sopenharmony_ci } 228962306a36Sopenharmony_ci } 229062306a36Sopenharmony_ci 229162306a36Sopenharmony_ci if (bfq_bfqq_sync(bfqq)) 229262306a36Sopenharmony_ci bfq_update_io_intensity(bfqq, now_ns); 229362306a36Sopenharmony_ci 229462306a36Sopenharmony_ci elv_rb_add(&bfqq->sort_list, rq); 229562306a36Sopenharmony_ci 229662306a36Sopenharmony_ci /* 229762306a36Sopenharmony_ci * Check if this request is a better next-serve candidate. 229862306a36Sopenharmony_ci */ 229962306a36Sopenharmony_ci prev = bfqq->next_rq; 230062306a36Sopenharmony_ci next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position); 230162306a36Sopenharmony_ci bfqq->next_rq = next_rq; 230262306a36Sopenharmony_ci 230362306a36Sopenharmony_ci /* 230462306a36Sopenharmony_ci * Adjust priority tree position, if next_rq changes. 230562306a36Sopenharmony_ci * See comments on bfq_pos_tree_add_move() for the unlikely(). 230662306a36Sopenharmony_ci */ 230762306a36Sopenharmony_ci if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq)) 230862306a36Sopenharmony_ci bfq_pos_tree_add_move(bfqd, bfqq); 230962306a36Sopenharmony_ci 231062306a36Sopenharmony_ci if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */ 231162306a36Sopenharmony_ci bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff, 231262306a36Sopenharmony_ci rq, &interactive); 231362306a36Sopenharmony_ci else { 231462306a36Sopenharmony_ci if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) && 231562306a36Sopenharmony_ci time_is_before_jiffies( 231662306a36Sopenharmony_ci bfqq->last_wr_start_finish + 231762306a36Sopenharmony_ci bfqd->bfq_wr_min_inter_arr_async)) { 231862306a36Sopenharmony_ci bfqq->wr_coeff = bfqd->bfq_wr_coeff; 231962306a36Sopenharmony_ci bfqq->wr_cur_max_time = bfq_wr_duration(bfqd); 232062306a36Sopenharmony_ci 232162306a36Sopenharmony_ci bfqd->wr_busy_queues++; 232262306a36Sopenharmony_ci bfqq->entity.prio_changed = 1; 232362306a36Sopenharmony_ci } 232462306a36Sopenharmony_ci if (prev != bfqq->next_rq) 232562306a36Sopenharmony_ci bfq_updated_next_req(bfqd, bfqq); 232662306a36Sopenharmony_ci } 232762306a36Sopenharmony_ci 232862306a36Sopenharmony_ci /* 232962306a36Sopenharmony_ci * Assign jiffies to last_wr_start_finish in the following 233062306a36Sopenharmony_ci * cases: 233162306a36Sopenharmony_ci * 233262306a36Sopenharmony_ci * . if bfqq is not going to be weight-raised, because, for 233362306a36Sopenharmony_ci * non weight-raised queues, last_wr_start_finish stores the 233462306a36Sopenharmony_ci * arrival time of the last request; as of now, this piece 233562306a36Sopenharmony_ci * of information is used only for deciding whether to 233662306a36Sopenharmony_ci * weight-raise async queues 233762306a36Sopenharmony_ci * 233862306a36Sopenharmony_ci * . if bfqq is not weight-raised, because, if bfqq is now 233962306a36Sopenharmony_ci * switching to weight-raised, then last_wr_start_finish 234062306a36Sopenharmony_ci * stores the time when weight-raising starts 234162306a36Sopenharmony_ci * 234262306a36Sopenharmony_ci * . if bfqq is interactive, because, regardless of whether 234362306a36Sopenharmony_ci * bfqq is currently weight-raised, the weight-raising 234462306a36Sopenharmony_ci * period must start or restart (this case is considered 234562306a36Sopenharmony_ci * separately because it is not detected by the above 234662306a36Sopenharmony_ci * conditions, if bfqq is already weight-raised) 234762306a36Sopenharmony_ci * 234862306a36Sopenharmony_ci * last_wr_start_finish has to be updated also if bfqq is soft 234962306a36Sopenharmony_ci * real-time, because the weight-raising period is constantly 235062306a36Sopenharmony_ci * restarted on idle-to-busy transitions for these queues, but 235162306a36Sopenharmony_ci * this is already done in bfq_bfqq_handle_idle_busy_switch if 235262306a36Sopenharmony_ci * needed. 235362306a36Sopenharmony_ci */ 235462306a36Sopenharmony_ci if (bfqd->low_latency && 235562306a36Sopenharmony_ci (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive)) 235662306a36Sopenharmony_ci bfqq->last_wr_start_finish = jiffies; 235762306a36Sopenharmony_ci} 235862306a36Sopenharmony_ci 235962306a36Sopenharmony_cistatic struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd, 236062306a36Sopenharmony_ci struct bio *bio, 236162306a36Sopenharmony_ci struct request_queue *q) 236262306a36Sopenharmony_ci{ 236362306a36Sopenharmony_ci struct bfq_queue *bfqq = bfqd->bio_bfqq; 236462306a36Sopenharmony_ci 236562306a36Sopenharmony_ci 236662306a36Sopenharmony_ci if (bfqq) 236762306a36Sopenharmony_ci return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio)); 236862306a36Sopenharmony_ci 236962306a36Sopenharmony_ci return NULL; 237062306a36Sopenharmony_ci} 237162306a36Sopenharmony_ci 237262306a36Sopenharmony_cistatic sector_t get_sdist(sector_t last_pos, struct request *rq) 237362306a36Sopenharmony_ci{ 237462306a36Sopenharmony_ci if (last_pos) 237562306a36Sopenharmony_ci return abs(blk_rq_pos(rq) - last_pos); 237662306a36Sopenharmony_ci 237762306a36Sopenharmony_ci return 0; 237862306a36Sopenharmony_ci} 237962306a36Sopenharmony_ci 238062306a36Sopenharmony_cistatic void bfq_remove_request(struct request_queue *q, 238162306a36Sopenharmony_ci struct request *rq) 238262306a36Sopenharmony_ci{ 238362306a36Sopenharmony_ci struct bfq_queue *bfqq = RQ_BFQQ(rq); 238462306a36Sopenharmony_ci struct bfq_data *bfqd = bfqq->bfqd; 238562306a36Sopenharmony_ci const int sync = rq_is_sync(rq); 238662306a36Sopenharmony_ci 238762306a36Sopenharmony_ci if (bfqq->next_rq == rq) { 238862306a36Sopenharmony_ci bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq); 238962306a36Sopenharmony_ci bfq_updated_next_req(bfqd, bfqq); 239062306a36Sopenharmony_ci } 239162306a36Sopenharmony_ci 239262306a36Sopenharmony_ci if (rq->queuelist.prev != &rq->queuelist) 239362306a36Sopenharmony_ci list_del_init(&rq->queuelist); 239462306a36Sopenharmony_ci bfqq->queued[sync]--; 239562306a36Sopenharmony_ci /* 239662306a36Sopenharmony_ci * Updating of 'bfqd->queued' is protected by 'bfqd->lock', however, it 239762306a36Sopenharmony_ci * may be read without holding the lock in bfq_has_work(). 239862306a36Sopenharmony_ci */ 239962306a36Sopenharmony_ci WRITE_ONCE(bfqd->queued, bfqd->queued - 1); 240062306a36Sopenharmony_ci elv_rb_del(&bfqq->sort_list, rq); 240162306a36Sopenharmony_ci 240262306a36Sopenharmony_ci elv_rqhash_del(q, rq); 240362306a36Sopenharmony_ci if (q->last_merge == rq) 240462306a36Sopenharmony_ci q->last_merge = NULL; 240562306a36Sopenharmony_ci 240662306a36Sopenharmony_ci if (RB_EMPTY_ROOT(&bfqq->sort_list)) { 240762306a36Sopenharmony_ci bfqq->next_rq = NULL; 240862306a36Sopenharmony_ci 240962306a36Sopenharmony_ci if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) { 241062306a36Sopenharmony_ci bfq_del_bfqq_busy(bfqq, false); 241162306a36Sopenharmony_ci /* 241262306a36Sopenharmony_ci * bfqq emptied. In normal operation, when 241362306a36Sopenharmony_ci * bfqq is empty, bfqq->entity.service and 241462306a36Sopenharmony_ci * bfqq->entity.budget must contain, 241562306a36Sopenharmony_ci * respectively, the service received and the 241662306a36Sopenharmony_ci * budget used last time bfqq emptied. These 241762306a36Sopenharmony_ci * facts do not hold in this case, as at least 241862306a36Sopenharmony_ci * this last removal occurred while bfqq is 241962306a36Sopenharmony_ci * not in service. To avoid inconsistencies, 242062306a36Sopenharmony_ci * reset both bfqq->entity.service and 242162306a36Sopenharmony_ci * bfqq->entity.budget, if bfqq has still a 242262306a36Sopenharmony_ci * process that may issue I/O requests to it. 242362306a36Sopenharmony_ci */ 242462306a36Sopenharmony_ci bfqq->entity.budget = bfqq->entity.service = 0; 242562306a36Sopenharmony_ci } 242662306a36Sopenharmony_ci 242762306a36Sopenharmony_ci /* 242862306a36Sopenharmony_ci * Remove queue from request-position tree as it is empty. 242962306a36Sopenharmony_ci */ 243062306a36Sopenharmony_ci if (bfqq->pos_root) { 243162306a36Sopenharmony_ci rb_erase(&bfqq->pos_node, bfqq->pos_root); 243262306a36Sopenharmony_ci bfqq->pos_root = NULL; 243362306a36Sopenharmony_ci } 243462306a36Sopenharmony_ci } else { 243562306a36Sopenharmony_ci /* see comments on bfq_pos_tree_add_move() for the unlikely() */ 243662306a36Sopenharmony_ci if (unlikely(!bfqd->nonrot_with_queueing)) 243762306a36Sopenharmony_ci bfq_pos_tree_add_move(bfqd, bfqq); 243862306a36Sopenharmony_ci } 243962306a36Sopenharmony_ci 244062306a36Sopenharmony_ci if (rq->cmd_flags & REQ_META) 244162306a36Sopenharmony_ci bfqq->meta_pending--; 244262306a36Sopenharmony_ci 244362306a36Sopenharmony_ci} 244462306a36Sopenharmony_ci 244562306a36Sopenharmony_cistatic bool bfq_bio_merge(struct request_queue *q, struct bio *bio, 244662306a36Sopenharmony_ci unsigned int nr_segs) 244762306a36Sopenharmony_ci{ 244862306a36Sopenharmony_ci struct bfq_data *bfqd = q->elevator->elevator_data; 244962306a36Sopenharmony_ci struct request *free = NULL; 245062306a36Sopenharmony_ci /* 245162306a36Sopenharmony_ci * bfq_bic_lookup grabs the queue_lock: invoke it now and 245262306a36Sopenharmony_ci * store its return value for later use, to avoid nesting 245362306a36Sopenharmony_ci * queue_lock inside the bfqd->lock. We assume that the bic 245462306a36Sopenharmony_ci * returned by bfq_bic_lookup does not go away before 245562306a36Sopenharmony_ci * bfqd->lock is taken. 245662306a36Sopenharmony_ci */ 245762306a36Sopenharmony_ci struct bfq_io_cq *bic = bfq_bic_lookup(q); 245862306a36Sopenharmony_ci bool ret; 245962306a36Sopenharmony_ci 246062306a36Sopenharmony_ci spin_lock_irq(&bfqd->lock); 246162306a36Sopenharmony_ci 246262306a36Sopenharmony_ci if (bic) { 246362306a36Sopenharmony_ci /* 246462306a36Sopenharmony_ci * Make sure cgroup info is uptodate for current process before 246562306a36Sopenharmony_ci * considering the merge. 246662306a36Sopenharmony_ci */ 246762306a36Sopenharmony_ci bfq_bic_update_cgroup(bic, bio); 246862306a36Sopenharmony_ci 246962306a36Sopenharmony_ci bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf), 247062306a36Sopenharmony_ci bfq_actuator_index(bfqd, bio)); 247162306a36Sopenharmony_ci } else { 247262306a36Sopenharmony_ci bfqd->bio_bfqq = NULL; 247362306a36Sopenharmony_ci } 247462306a36Sopenharmony_ci bfqd->bio_bic = bic; 247562306a36Sopenharmony_ci 247662306a36Sopenharmony_ci ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free); 247762306a36Sopenharmony_ci 247862306a36Sopenharmony_ci spin_unlock_irq(&bfqd->lock); 247962306a36Sopenharmony_ci if (free) 248062306a36Sopenharmony_ci blk_mq_free_request(free); 248162306a36Sopenharmony_ci 248262306a36Sopenharmony_ci return ret; 248362306a36Sopenharmony_ci} 248462306a36Sopenharmony_ci 248562306a36Sopenharmony_cistatic int bfq_request_merge(struct request_queue *q, struct request **req, 248662306a36Sopenharmony_ci struct bio *bio) 248762306a36Sopenharmony_ci{ 248862306a36Sopenharmony_ci struct bfq_data *bfqd = q->elevator->elevator_data; 248962306a36Sopenharmony_ci struct request *__rq; 249062306a36Sopenharmony_ci 249162306a36Sopenharmony_ci __rq = bfq_find_rq_fmerge(bfqd, bio, q); 249262306a36Sopenharmony_ci if (__rq && elv_bio_merge_ok(__rq, bio)) { 249362306a36Sopenharmony_ci *req = __rq; 249462306a36Sopenharmony_ci 249562306a36Sopenharmony_ci if (blk_discard_mergable(__rq)) 249662306a36Sopenharmony_ci return ELEVATOR_DISCARD_MERGE; 249762306a36Sopenharmony_ci return ELEVATOR_FRONT_MERGE; 249862306a36Sopenharmony_ci } 249962306a36Sopenharmony_ci 250062306a36Sopenharmony_ci return ELEVATOR_NO_MERGE; 250162306a36Sopenharmony_ci} 250262306a36Sopenharmony_ci 250362306a36Sopenharmony_cistatic void bfq_request_merged(struct request_queue *q, struct request *req, 250462306a36Sopenharmony_ci enum elv_merge type) 250562306a36Sopenharmony_ci{ 250662306a36Sopenharmony_ci if (type == ELEVATOR_FRONT_MERGE && 250762306a36Sopenharmony_ci rb_prev(&req->rb_node) && 250862306a36Sopenharmony_ci blk_rq_pos(req) < 250962306a36Sopenharmony_ci blk_rq_pos(container_of(rb_prev(&req->rb_node), 251062306a36Sopenharmony_ci struct request, rb_node))) { 251162306a36Sopenharmony_ci struct bfq_queue *bfqq = RQ_BFQQ(req); 251262306a36Sopenharmony_ci struct bfq_data *bfqd; 251362306a36Sopenharmony_ci struct request *prev, *next_rq; 251462306a36Sopenharmony_ci 251562306a36Sopenharmony_ci if (!bfqq) 251662306a36Sopenharmony_ci return; 251762306a36Sopenharmony_ci 251862306a36Sopenharmony_ci bfqd = bfqq->bfqd; 251962306a36Sopenharmony_ci 252062306a36Sopenharmony_ci /* Reposition request in its sort_list */ 252162306a36Sopenharmony_ci elv_rb_del(&bfqq->sort_list, req); 252262306a36Sopenharmony_ci elv_rb_add(&bfqq->sort_list, req); 252362306a36Sopenharmony_ci 252462306a36Sopenharmony_ci /* Choose next request to be served for bfqq */ 252562306a36Sopenharmony_ci prev = bfqq->next_rq; 252662306a36Sopenharmony_ci next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req, 252762306a36Sopenharmony_ci bfqd->last_position); 252862306a36Sopenharmony_ci bfqq->next_rq = next_rq; 252962306a36Sopenharmony_ci /* 253062306a36Sopenharmony_ci * If next_rq changes, update both the queue's budget to 253162306a36Sopenharmony_ci * fit the new request and the queue's position in its 253262306a36Sopenharmony_ci * rq_pos_tree. 253362306a36Sopenharmony_ci */ 253462306a36Sopenharmony_ci if (prev != bfqq->next_rq) { 253562306a36Sopenharmony_ci bfq_updated_next_req(bfqd, bfqq); 253662306a36Sopenharmony_ci /* 253762306a36Sopenharmony_ci * See comments on bfq_pos_tree_add_move() for 253862306a36Sopenharmony_ci * the unlikely(). 253962306a36Sopenharmony_ci */ 254062306a36Sopenharmony_ci if (unlikely(!bfqd->nonrot_with_queueing)) 254162306a36Sopenharmony_ci bfq_pos_tree_add_move(bfqd, bfqq); 254262306a36Sopenharmony_ci } 254362306a36Sopenharmony_ci } 254462306a36Sopenharmony_ci} 254562306a36Sopenharmony_ci 254662306a36Sopenharmony_ci/* 254762306a36Sopenharmony_ci * This function is called to notify the scheduler that the requests 254862306a36Sopenharmony_ci * rq and 'next' have been merged, with 'next' going away. BFQ 254962306a36Sopenharmony_ci * exploits this hook to address the following issue: if 'next' has a 255062306a36Sopenharmony_ci * fifo_time lower that rq, then the fifo_time of rq must be set to 255162306a36Sopenharmony_ci * the value of 'next', to not forget the greater age of 'next'. 255262306a36Sopenharmony_ci * 255362306a36Sopenharmony_ci * NOTE: in this function we assume that rq is in a bfq_queue, basing 255462306a36Sopenharmony_ci * on that rq is picked from the hash table q->elevator->hash, which, 255562306a36Sopenharmony_ci * in its turn, is filled only with I/O requests present in 255662306a36Sopenharmony_ci * bfq_queues, while BFQ is in use for the request queue q. In fact, 255762306a36Sopenharmony_ci * the function that fills this hash table (elv_rqhash_add) is called 255862306a36Sopenharmony_ci * only by bfq_insert_request. 255962306a36Sopenharmony_ci */ 256062306a36Sopenharmony_cistatic void bfq_requests_merged(struct request_queue *q, struct request *rq, 256162306a36Sopenharmony_ci struct request *next) 256262306a36Sopenharmony_ci{ 256362306a36Sopenharmony_ci struct bfq_queue *bfqq = RQ_BFQQ(rq), 256462306a36Sopenharmony_ci *next_bfqq = RQ_BFQQ(next); 256562306a36Sopenharmony_ci 256662306a36Sopenharmony_ci if (!bfqq) 256762306a36Sopenharmony_ci goto remove; 256862306a36Sopenharmony_ci 256962306a36Sopenharmony_ci /* 257062306a36Sopenharmony_ci * If next and rq belong to the same bfq_queue and next is older 257162306a36Sopenharmony_ci * than rq, then reposition rq in the fifo (by substituting next 257262306a36Sopenharmony_ci * with rq). Otherwise, if next and rq belong to different 257362306a36Sopenharmony_ci * bfq_queues, never reposition rq: in fact, we would have to 257462306a36Sopenharmony_ci * reposition it with respect to next's position in its own fifo, 257562306a36Sopenharmony_ci * which would most certainly be too expensive with respect to 257662306a36Sopenharmony_ci * the benefits. 257762306a36Sopenharmony_ci */ 257862306a36Sopenharmony_ci if (bfqq == next_bfqq && 257962306a36Sopenharmony_ci !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) && 258062306a36Sopenharmony_ci next->fifo_time < rq->fifo_time) { 258162306a36Sopenharmony_ci list_del_init(&rq->queuelist); 258262306a36Sopenharmony_ci list_replace_init(&next->queuelist, &rq->queuelist); 258362306a36Sopenharmony_ci rq->fifo_time = next->fifo_time; 258462306a36Sopenharmony_ci } 258562306a36Sopenharmony_ci 258662306a36Sopenharmony_ci if (bfqq->next_rq == next) 258762306a36Sopenharmony_ci bfqq->next_rq = rq; 258862306a36Sopenharmony_ci 258962306a36Sopenharmony_ci bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags); 259062306a36Sopenharmony_ciremove: 259162306a36Sopenharmony_ci /* Merged request may be in the IO scheduler. Remove it. */ 259262306a36Sopenharmony_ci if (!RB_EMPTY_NODE(&next->rb_node)) { 259362306a36Sopenharmony_ci bfq_remove_request(next->q, next); 259462306a36Sopenharmony_ci if (next_bfqq) 259562306a36Sopenharmony_ci bfqg_stats_update_io_remove(bfqq_group(next_bfqq), 259662306a36Sopenharmony_ci next->cmd_flags); 259762306a36Sopenharmony_ci } 259862306a36Sopenharmony_ci} 259962306a36Sopenharmony_ci 260062306a36Sopenharmony_ci/* Must be called with bfqq != NULL */ 260162306a36Sopenharmony_cistatic void bfq_bfqq_end_wr(struct bfq_queue *bfqq) 260262306a36Sopenharmony_ci{ 260362306a36Sopenharmony_ci /* 260462306a36Sopenharmony_ci * If bfqq has been enjoying interactive weight-raising, then 260562306a36Sopenharmony_ci * reset soft_rt_next_start. We do it for the following 260662306a36Sopenharmony_ci * reason. bfqq may have been conveying the I/O needed to load 260762306a36Sopenharmony_ci * a soft real-time application. Such an application actually 260862306a36Sopenharmony_ci * exhibits a soft real-time I/O pattern after it finishes 260962306a36Sopenharmony_ci * loading, and finally starts doing its job. But, if bfqq has 261062306a36Sopenharmony_ci * been receiving a lot of bandwidth so far (likely to happen 261162306a36Sopenharmony_ci * on a fast device), then soft_rt_next_start now contains a 261262306a36Sopenharmony_ci * high value that. So, without this reset, bfqq would be 261362306a36Sopenharmony_ci * prevented from being possibly considered as soft_rt for a 261462306a36Sopenharmony_ci * very long time. 261562306a36Sopenharmony_ci */ 261662306a36Sopenharmony_ci 261762306a36Sopenharmony_ci if (bfqq->wr_cur_max_time != 261862306a36Sopenharmony_ci bfqq->bfqd->bfq_wr_rt_max_time) 261962306a36Sopenharmony_ci bfqq->soft_rt_next_start = jiffies; 262062306a36Sopenharmony_ci 262162306a36Sopenharmony_ci if (bfq_bfqq_busy(bfqq)) 262262306a36Sopenharmony_ci bfqq->bfqd->wr_busy_queues--; 262362306a36Sopenharmony_ci bfqq->wr_coeff = 1; 262462306a36Sopenharmony_ci bfqq->wr_cur_max_time = 0; 262562306a36Sopenharmony_ci bfqq->last_wr_start_finish = jiffies; 262662306a36Sopenharmony_ci /* 262762306a36Sopenharmony_ci * Trigger a weight change on the next invocation of 262862306a36Sopenharmony_ci * __bfq_entity_update_weight_prio. 262962306a36Sopenharmony_ci */ 263062306a36Sopenharmony_ci bfqq->entity.prio_changed = 1; 263162306a36Sopenharmony_ci} 263262306a36Sopenharmony_ci 263362306a36Sopenharmony_civoid bfq_end_wr_async_queues(struct bfq_data *bfqd, 263462306a36Sopenharmony_ci struct bfq_group *bfqg) 263562306a36Sopenharmony_ci{ 263662306a36Sopenharmony_ci int i, j, k; 263762306a36Sopenharmony_ci 263862306a36Sopenharmony_ci for (k = 0; k < bfqd->num_actuators; k++) { 263962306a36Sopenharmony_ci for (i = 0; i < 2; i++) 264062306a36Sopenharmony_ci for (j = 0; j < IOPRIO_NR_LEVELS; j++) 264162306a36Sopenharmony_ci if (bfqg->async_bfqq[i][j][k]) 264262306a36Sopenharmony_ci bfq_bfqq_end_wr(bfqg->async_bfqq[i][j][k]); 264362306a36Sopenharmony_ci if (bfqg->async_idle_bfqq[k]) 264462306a36Sopenharmony_ci bfq_bfqq_end_wr(bfqg->async_idle_bfqq[k]); 264562306a36Sopenharmony_ci } 264662306a36Sopenharmony_ci} 264762306a36Sopenharmony_ci 264862306a36Sopenharmony_cistatic void bfq_end_wr(struct bfq_data *bfqd) 264962306a36Sopenharmony_ci{ 265062306a36Sopenharmony_ci struct bfq_queue *bfqq; 265162306a36Sopenharmony_ci int i; 265262306a36Sopenharmony_ci 265362306a36Sopenharmony_ci spin_lock_irq(&bfqd->lock); 265462306a36Sopenharmony_ci 265562306a36Sopenharmony_ci for (i = 0; i < bfqd->num_actuators; i++) { 265662306a36Sopenharmony_ci list_for_each_entry(bfqq, &bfqd->active_list[i], bfqq_list) 265762306a36Sopenharmony_ci bfq_bfqq_end_wr(bfqq); 265862306a36Sopenharmony_ci } 265962306a36Sopenharmony_ci list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list) 266062306a36Sopenharmony_ci bfq_bfqq_end_wr(bfqq); 266162306a36Sopenharmony_ci bfq_end_wr_async(bfqd); 266262306a36Sopenharmony_ci 266362306a36Sopenharmony_ci spin_unlock_irq(&bfqd->lock); 266462306a36Sopenharmony_ci} 266562306a36Sopenharmony_ci 266662306a36Sopenharmony_cistatic sector_t bfq_io_struct_pos(void *io_struct, bool request) 266762306a36Sopenharmony_ci{ 266862306a36Sopenharmony_ci if (request) 266962306a36Sopenharmony_ci return blk_rq_pos(io_struct); 267062306a36Sopenharmony_ci else 267162306a36Sopenharmony_ci return ((struct bio *)io_struct)->bi_iter.bi_sector; 267262306a36Sopenharmony_ci} 267362306a36Sopenharmony_ci 267462306a36Sopenharmony_cistatic int bfq_rq_close_to_sector(void *io_struct, bool request, 267562306a36Sopenharmony_ci sector_t sector) 267662306a36Sopenharmony_ci{ 267762306a36Sopenharmony_ci return abs(bfq_io_struct_pos(io_struct, request) - sector) <= 267862306a36Sopenharmony_ci BFQQ_CLOSE_THR; 267962306a36Sopenharmony_ci} 268062306a36Sopenharmony_ci 268162306a36Sopenharmony_cistatic struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd, 268262306a36Sopenharmony_ci struct bfq_queue *bfqq, 268362306a36Sopenharmony_ci sector_t sector) 268462306a36Sopenharmony_ci{ 268562306a36Sopenharmony_ci struct rb_root *root = &bfqq_group(bfqq)->rq_pos_tree; 268662306a36Sopenharmony_ci struct rb_node *parent, *node; 268762306a36Sopenharmony_ci struct bfq_queue *__bfqq; 268862306a36Sopenharmony_ci 268962306a36Sopenharmony_ci if (RB_EMPTY_ROOT(root)) 269062306a36Sopenharmony_ci return NULL; 269162306a36Sopenharmony_ci 269262306a36Sopenharmony_ci /* 269362306a36Sopenharmony_ci * First, if we find a request starting at the end of the last 269462306a36Sopenharmony_ci * request, choose it. 269562306a36Sopenharmony_ci */ 269662306a36Sopenharmony_ci __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL); 269762306a36Sopenharmony_ci if (__bfqq) 269862306a36Sopenharmony_ci return __bfqq; 269962306a36Sopenharmony_ci 270062306a36Sopenharmony_ci /* 270162306a36Sopenharmony_ci * If the exact sector wasn't found, the parent of the NULL leaf 270262306a36Sopenharmony_ci * will contain the closest sector (rq_pos_tree sorted by 270362306a36Sopenharmony_ci * next_request position). 270462306a36Sopenharmony_ci */ 270562306a36Sopenharmony_ci __bfqq = rb_entry(parent, struct bfq_queue, pos_node); 270662306a36Sopenharmony_ci if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 270762306a36Sopenharmony_ci return __bfqq; 270862306a36Sopenharmony_ci 270962306a36Sopenharmony_ci if (blk_rq_pos(__bfqq->next_rq) < sector) 271062306a36Sopenharmony_ci node = rb_next(&__bfqq->pos_node); 271162306a36Sopenharmony_ci else 271262306a36Sopenharmony_ci node = rb_prev(&__bfqq->pos_node); 271362306a36Sopenharmony_ci if (!node) 271462306a36Sopenharmony_ci return NULL; 271562306a36Sopenharmony_ci 271662306a36Sopenharmony_ci __bfqq = rb_entry(node, struct bfq_queue, pos_node); 271762306a36Sopenharmony_ci if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector)) 271862306a36Sopenharmony_ci return __bfqq; 271962306a36Sopenharmony_ci 272062306a36Sopenharmony_ci return NULL; 272162306a36Sopenharmony_ci} 272262306a36Sopenharmony_ci 272362306a36Sopenharmony_cistatic struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd, 272462306a36Sopenharmony_ci struct bfq_queue *cur_bfqq, 272562306a36Sopenharmony_ci sector_t sector) 272662306a36Sopenharmony_ci{ 272762306a36Sopenharmony_ci struct bfq_queue *bfqq; 272862306a36Sopenharmony_ci 272962306a36Sopenharmony_ci /* 273062306a36Sopenharmony_ci * We shall notice if some of the queues are cooperating, 273162306a36Sopenharmony_ci * e.g., working closely on the same area of the device. In 273262306a36Sopenharmony_ci * that case, we can group them together and: 1) don't waste 273362306a36Sopenharmony_ci * time idling, and 2) serve the union of their requests in 273462306a36Sopenharmony_ci * the best possible order for throughput. 273562306a36Sopenharmony_ci */ 273662306a36Sopenharmony_ci bfqq = bfqq_find_close(bfqd, cur_bfqq, sector); 273762306a36Sopenharmony_ci if (!bfqq || bfqq == cur_bfqq) 273862306a36Sopenharmony_ci return NULL; 273962306a36Sopenharmony_ci 274062306a36Sopenharmony_ci return bfqq; 274162306a36Sopenharmony_ci} 274262306a36Sopenharmony_ci 274362306a36Sopenharmony_cistatic struct bfq_queue * 274462306a36Sopenharmony_cibfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 274562306a36Sopenharmony_ci{ 274662306a36Sopenharmony_ci int process_refs, new_process_refs; 274762306a36Sopenharmony_ci struct bfq_queue *__bfqq; 274862306a36Sopenharmony_ci 274962306a36Sopenharmony_ci /* 275062306a36Sopenharmony_ci * If there are no process references on the new_bfqq, then it is 275162306a36Sopenharmony_ci * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain 275262306a36Sopenharmony_ci * may have dropped their last reference (not just their last process 275362306a36Sopenharmony_ci * reference). 275462306a36Sopenharmony_ci */ 275562306a36Sopenharmony_ci if (!bfqq_process_refs(new_bfqq)) 275662306a36Sopenharmony_ci return NULL; 275762306a36Sopenharmony_ci 275862306a36Sopenharmony_ci /* Avoid a circular list and skip interim queue merges. */ 275962306a36Sopenharmony_ci while ((__bfqq = new_bfqq->new_bfqq)) { 276062306a36Sopenharmony_ci if (__bfqq == bfqq) 276162306a36Sopenharmony_ci return NULL; 276262306a36Sopenharmony_ci new_bfqq = __bfqq; 276362306a36Sopenharmony_ci } 276462306a36Sopenharmony_ci 276562306a36Sopenharmony_ci process_refs = bfqq_process_refs(bfqq); 276662306a36Sopenharmony_ci new_process_refs = bfqq_process_refs(new_bfqq); 276762306a36Sopenharmony_ci /* 276862306a36Sopenharmony_ci * If the process for the bfqq has gone away, there is no 276962306a36Sopenharmony_ci * sense in merging the queues. 277062306a36Sopenharmony_ci */ 277162306a36Sopenharmony_ci if (process_refs == 0 || new_process_refs == 0) 277262306a36Sopenharmony_ci return NULL; 277362306a36Sopenharmony_ci 277462306a36Sopenharmony_ci /* 277562306a36Sopenharmony_ci * Make sure merged queues belong to the same parent. Parents could 277662306a36Sopenharmony_ci * have changed since the time we decided the two queues are suitable 277762306a36Sopenharmony_ci * for merging. 277862306a36Sopenharmony_ci */ 277962306a36Sopenharmony_ci if (new_bfqq->entity.parent != bfqq->entity.parent) 278062306a36Sopenharmony_ci return NULL; 278162306a36Sopenharmony_ci 278262306a36Sopenharmony_ci bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d", 278362306a36Sopenharmony_ci new_bfqq->pid); 278462306a36Sopenharmony_ci 278562306a36Sopenharmony_ci /* 278662306a36Sopenharmony_ci * Merging is just a redirection: the requests of the process 278762306a36Sopenharmony_ci * owning one of the two queues are redirected to the other queue. 278862306a36Sopenharmony_ci * The latter queue, in its turn, is set as shared if this is the 278962306a36Sopenharmony_ci * first time that the requests of some process are redirected to 279062306a36Sopenharmony_ci * it. 279162306a36Sopenharmony_ci * 279262306a36Sopenharmony_ci * We redirect bfqq to new_bfqq and not the opposite, because 279362306a36Sopenharmony_ci * we are in the context of the process owning bfqq, thus we 279462306a36Sopenharmony_ci * have the io_cq of this process. So we can immediately 279562306a36Sopenharmony_ci * configure this io_cq to redirect the requests of the 279662306a36Sopenharmony_ci * process to new_bfqq. In contrast, the io_cq of new_bfqq is 279762306a36Sopenharmony_ci * not available any more (new_bfqq->bic == NULL). 279862306a36Sopenharmony_ci * 279962306a36Sopenharmony_ci * Anyway, even in case new_bfqq coincides with the in-service 280062306a36Sopenharmony_ci * queue, redirecting requests the in-service queue is the 280162306a36Sopenharmony_ci * best option, as we feed the in-service queue with new 280262306a36Sopenharmony_ci * requests close to the last request served and, by doing so, 280362306a36Sopenharmony_ci * are likely to increase the throughput. 280462306a36Sopenharmony_ci */ 280562306a36Sopenharmony_ci bfqq->new_bfqq = new_bfqq; 280662306a36Sopenharmony_ci /* 280762306a36Sopenharmony_ci * The above assignment schedules the following redirections: 280862306a36Sopenharmony_ci * each time some I/O for bfqq arrives, the process that 280962306a36Sopenharmony_ci * generated that I/O is disassociated from bfqq and 281062306a36Sopenharmony_ci * associated with new_bfqq. Here we increases new_bfqq->ref 281162306a36Sopenharmony_ci * in advance, adding the number of processes that are 281262306a36Sopenharmony_ci * expected to be associated with new_bfqq as they happen to 281362306a36Sopenharmony_ci * issue I/O. 281462306a36Sopenharmony_ci */ 281562306a36Sopenharmony_ci new_bfqq->ref += process_refs; 281662306a36Sopenharmony_ci return new_bfqq; 281762306a36Sopenharmony_ci} 281862306a36Sopenharmony_ci 281962306a36Sopenharmony_cistatic bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq, 282062306a36Sopenharmony_ci struct bfq_queue *new_bfqq) 282162306a36Sopenharmony_ci{ 282262306a36Sopenharmony_ci if (bfq_too_late_for_merging(new_bfqq)) 282362306a36Sopenharmony_ci return false; 282462306a36Sopenharmony_ci 282562306a36Sopenharmony_ci if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) || 282662306a36Sopenharmony_ci (bfqq->ioprio_class != new_bfqq->ioprio_class)) 282762306a36Sopenharmony_ci return false; 282862306a36Sopenharmony_ci 282962306a36Sopenharmony_ci /* 283062306a36Sopenharmony_ci * If either of the queues has already been detected as seeky, 283162306a36Sopenharmony_ci * then merging it with the other queue is unlikely to lead to 283262306a36Sopenharmony_ci * sequential I/O. 283362306a36Sopenharmony_ci */ 283462306a36Sopenharmony_ci if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq)) 283562306a36Sopenharmony_ci return false; 283662306a36Sopenharmony_ci 283762306a36Sopenharmony_ci /* 283862306a36Sopenharmony_ci * Interleaved I/O is known to be done by (some) applications 283962306a36Sopenharmony_ci * only for reads, so it does not make sense to merge async 284062306a36Sopenharmony_ci * queues. 284162306a36Sopenharmony_ci */ 284262306a36Sopenharmony_ci if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq)) 284362306a36Sopenharmony_ci return false; 284462306a36Sopenharmony_ci 284562306a36Sopenharmony_ci return true; 284662306a36Sopenharmony_ci} 284762306a36Sopenharmony_ci 284862306a36Sopenharmony_cistatic bool idling_boosts_thr_without_issues(struct bfq_data *bfqd, 284962306a36Sopenharmony_ci struct bfq_queue *bfqq); 285062306a36Sopenharmony_ci 285162306a36Sopenharmony_cistatic struct bfq_queue * 285262306a36Sopenharmony_cibfq_setup_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq, 285362306a36Sopenharmony_ci struct bfq_queue *stable_merge_bfqq, 285462306a36Sopenharmony_ci struct bfq_iocq_bfqq_data *bfqq_data) 285562306a36Sopenharmony_ci{ 285662306a36Sopenharmony_ci int proc_ref = min(bfqq_process_refs(bfqq), 285762306a36Sopenharmony_ci bfqq_process_refs(stable_merge_bfqq)); 285862306a36Sopenharmony_ci struct bfq_queue *new_bfqq = NULL; 285962306a36Sopenharmony_ci 286062306a36Sopenharmony_ci bfqq_data->stable_merge_bfqq = NULL; 286162306a36Sopenharmony_ci if (idling_boosts_thr_without_issues(bfqd, bfqq) || proc_ref == 0) 286262306a36Sopenharmony_ci goto out; 286362306a36Sopenharmony_ci 286462306a36Sopenharmony_ci /* next function will take at least one ref */ 286562306a36Sopenharmony_ci new_bfqq = bfq_setup_merge(bfqq, stable_merge_bfqq); 286662306a36Sopenharmony_ci 286762306a36Sopenharmony_ci if (new_bfqq) { 286862306a36Sopenharmony_ci bfqq_data->stably_merged = true; 286962306a36Sopenharmony_ci if (new_bfqq->bic) { 287062306a36Sopenharmony_ci unsigned int new_a_idx = new_bfqq->actuator_idx; 287162306a36Sopenharmony_ci struct bfq_iocq_bfqq_data *new_bfqq_data = 287262306a36Sopenharmony_ci &new_bfqq->bic->bfqq_data[new_a_idx]; 287362306a36Sopenharmony_ci 287462306a36Sopenharmony_ci new_bfqq_data->stably_merged = true; 287562306a36Sopenharmony_ci } 287662306a36Sopenharmony_ci } 287762306a36Sopenharmony_ci 287862306a36Sopenharmony_ciout: 287962306a36Sopenharmony_ci /* deschedule stable merge, because done or aborted here */ 288062306a36Sopenharmony_ci bfq_put_stable_ref(stable_merge_bfqq); 288162306a36Sopenharmony_ci 288262306a36Sopenharmony_ci return new_bfqq; 288362306a36Sopenharmony_ci} 288462306a36Sopenharmony_ci 288562306a36Sopenharmony_ci/* 288662306a36Sopenharmony_ci * Attempt to schedule a merge of bfqq with the currently in-service 288762306a36Sopenharmony_ci * queue or with a close queue among the scheduled queues. Return 288862306a36Sopenharmony_ci * NULL if no merge was scheduled, a pointer to the shared bfq_queue 288962306a36Sopenharmony_ci * structure otherwise. 289062306a36Sopenharmony_ci * 289162306a36Sopenharmony_ci * The OOM queue is not allowed to participate to cooperation: in fact, since 289262306a36Sopenharmony_ci * the requests temporarily redirected to the OOM queue could be redirected 289362306a36Sopenharmony_ci * again to dedicated queues at any time, the state needed to correctly 289462306a36Sopenharmony_ci * handle merging with the OOM queue would be quite complex and expensive 289562306a36Sopenharmony_ci * to maintain. Besides, in such a critical condition as an out of memory, 289662306a36Sopenharmony_ci * the benefits of queue merging may be little relevant, or even negligible. 289762306a36Sopenharmony_ci * 289862306a36Sopenharmony_ci * WARNING: queue merging may impair fairness among non-weight raised 289962306a36Sopenharmony_ci * queues, for at least two reasons: 1) the original weight of a 290062306a36Sopenharmony_ci * merged queue may change during the merged state, 2) even being the 290162306a36Sopenharmony_ci * weight the same, a merged queue may be bloated with many more 290262306a36Sopenharmony_ci * requests than the ones produced by its originally-associated 290362306a36Sopenharmony_ci * process. 290462306a36Sopenharmony_ci */ 290562306a36Sopenharmony_cistatic struct bfq_queue * 290662306a36Sopenharmony_cibfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq, 290762306a36Sopenharmony_ci void *io_struct, bool request, struct bfq_io_cq *bic) 290862306a36Sopenharmony_ci{ 290962306a36Sopenharmony_ci struct bfq_queue *in_service_bfqq, *new_bfqq; 291062306a36Sopenharmony_ci unsigned int a_idx = bfqq->actuator_idx; 291162306a36Sopenharmony_ci struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx]; 291262306a36Sopenharmony_ci 291362306a36Sopenharmony_ci /* if a merge has already been setup, then proceed with that first */ 291462306a36Sopenharmony_ci if (bfqq->new_bfqq) 291562306a36Sopenharmony_ci return bfqq->new_bfqq; 291662306a36Sopenharmony_ci 291762306a36Sopenharmony_ci /* 291862306a36Sopenharmony_ci * Check delayed stable merge for rotational or non-queueing 291962306a36Sopenharmony_ci * devs. For this branch to be executed, bfqq must not be 292062306a36Sopenharmony_ci * currently merged with some other queue (i.e., bfqq->bic 292162306a36Sopenharmony_ci * must be non null). If we considered also merged queues, 292262306a36Sopenharmony_ci * then we should also check whether bfqq has already been 292362306a36Sopenharmony_ci * merged with bic->stable_merge_bfqq. But this would be 292462306a36Sopenharmony_ci * costly and complicated. 292562306a36Sopenharmony_ci */ 292662306a36Sopenharmony_ci if (unlikely(!bfqd->nonrot_with_queueing)) { 292762306a36Sopenharmony_ci /* 292862306a36Sopenharmony_ci * Make sure also that bfqq is sync, because 292962306a36Sopenharmony_ci * bic->stable_merge_bfqq may point to some queue (for 293062306a36Sopenharmony_ci * stable merging) also if bic is associated with a 293162306a36Sopenharmony_ci * sync queue, but this bfqq is async 293262306a36Sopenharmony_ci */ 293362306a36Sopenharmony_ci if (bfq_bfqq_sync(bfqq) && bfqq_data->stable_merge_bfqq && 293462306a36Sopenharmony_ci !bfq_bfqq_just_created(bfqq) && 293562306a36Sopenharmony_ci time_is_before_jiffies(bfqq->split_time + 293662306a36Sopenharmony_ci msecs_to_jiffies(bfq_late_stable_merging)) && 293762306a36Sopenharmony_ci time_is_before_jiffies(bfqq->creation_time + 293862306a36Sopenharmony_ci msecs_to_jiffies(bfq_late_stable_merging))) { 293962306a36Sopenharmony_ci struct bfq_queue *stable_merge_bfqq = 294062306a36Sopenharmony_ci bfqq_data->stable_merge_bfqq; 294162306a36Sopenharmony_ci 294262306a36Sopenharmony_ci return bfq_setup_stable_merge(bfqd, bfqq, 294362306a36Sopenharmony_ci stable_merge_bfqq, 294462306a36Sopenharmony_ci bfqq_data); 294562306a36Sopenharmony_ci } 294662306a36Sopenharmony_ci } 294762306a36Sopenharmony_ci 294862306a36Sopenharmony_ci /* 294962306a36Sopenharmony_ci * Do not perform queue merging if the device is non 295062306a36Sopenharmony_ci * rotational and performs internal queueing. In fact, such a 295162306a36Sopenharmony_ci * device reaches a high speed through internal parallelism 295262306a36Sopenharmony_ci * and pipelining. This means that, to reach a high 295362306a36Sopenharmony_ci * throughput, it must have many requests enqueued at the same 295462306a36Sopenharmony_ci * time. But, in this configuration, the internal scheduling 295562306a36Sopenharmony_ci * algorithm of the device does exactly the job of queue 295662306a36Sopenharmony_ci * merging: it reorders requests so as to obtain as much as 295762306a36Sopenharmony_ci * possible a sequential I/O pattern. As a consequence, with 295862306a36Sopenharmony_ci * the workload generated by processes doing interleaved I/O, 295962306a36Sopenharmony_ci * the throughput reached by the device is likely to be the 296062306a36Sopenharmony_ci * same, with and without queue merging. 296162306a36Sopenharmony_ci * 296262306a36Sopenharmony_ci * Disabling merging also provides a remarkable benefit in 296362306a36Sopenharmony_ci * terms of throughput. Merging tends to make many workloads 296462306a36Sopenharmony_ci * artificially more uneven, because of shared queues 296562306a36Sopenharmony_ci * remaining non empty for incomparably more time than 296662306a36Sopenharmony_ci * non-merged queues. This may accentuate workload 296762306a36Sopenharmony_ci * asymmetries. For example, if one of the queues in a set of 296862306a36Sopenharmony_ci * merged queues has a higher weight than a normal queue, then 296962306a36Sopenharmony_ci * the shared queue may inherit such a high weight and, by 297062306a36Sopenharmony_ci * staying almost always active, may force BFQ to perform I/O 297162306a36Sopenharmony_ci * plugging most of the time. This evidently makes it harder 297262306a36Sopenharmony_ci * for BFQ to let the device reach a high throughput. 297362306a36Sopenharmony_ci * 297462306a36Sopenharmony_ci * Finally, the likely() macro below is not used because one 297562306a36Sopenharmony_ci * of the two branches is more likely than the other, but to 297662306a36Sopenharmony_ci * have the code path after the following if() executed as 297762306a36Sopenharmony_ci * fast as possible for the case of a non rotational device 297862306a36Sopenharmony_ci * with queueing. We want it because this is the fastest kind 297962306a36Sopenharmony_ci * of device. On the opposite end, the likely() may lengthen 298062306a36Sopenharmony_ci * the execution time of BFQ for the case of slower devices 298162306a36Sopenharmony_ci * (rotational or at least without queueing). But in this case 298262306a36Sopenharmony_ci * the execution time of BFQ matters very little, if not at 298362306a36Sopenharmony_ci * all. 298462306a36Sopenharmony_ci */ 298562306a36Sopenharmony_ci if (likely(bfqd->nonrot_with_queueing)) 298662306a36Sopenharmony_ci return NULL; 298762306a36Sopenharmony_ci 298862306a36Sopenharmony_ci /* 298962306a36Sopenharmony_ci * Prevent bfqq from being merged if it has been created too 299062306a36Sopenharmony_ci * long ago. The idea is that true cooperating processes, and 299162306a36Sopenharmony_ci * thus their associated bfq_queues, are supposed to be 299262306a36Sopenharmony_ci * created shortly after each other. This is the case, e.g., 299362306a36Sopenharmony_ci * for KVM/QEMU and dump I/O threads. Basing on this 299462306a36Sopenharmony_ci * assumption, the following filtering greatly reduces the 299562306a36Sopenharmony_ci * probability that two non-cooperating processes, which just 299662306a36Sopenharmony_ci * happen to do close I/O for some short time interval, have 299762306a36Sopenharmony_ci * their queues merged by mistake. 299862306a36Sopenharmony_ci */ 299962306a36Sopenharmony_ci if (bfq_too_late_for_merging(bfqq)) 300062306a36Sopenharmony_ci return NULL; 300162306a36Sopenharmony_ci 300262306a36Sopenharmony_ci if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq)) 300362306a36Sopenharmony_ci return NULL; 300462306a36Sopenharmony_ci 300562306a36Sopenharmony_ci /* If there is only one backlogged queue, don't search. */ 300662306a36Sopenharmony_ci if (bfq_tot_busy_queues(bfqd) == 1) 300762306a36Sopenharmony_ci return NULL; 300862306a36Sopenharmony_ci 300962306a36Sopenharmony_ci in_service_bfqq = bfqd->in_service_queue; 301062306a36Sopenharmony_ci 301162306a36Sopenharmony_ci if (in_service_bfqq && in_service_bfqq != bfqq && 301262306a36Sopenharmony_ci likely(in_service_bfqq != &bfqd->oom_bfqq) && 301362306a36Sopenharmony_ci bfq_rq_close_to_sector(io_struct, request, 301462306a36Sopenharmony_ci bfqd->in_serv_last_pos) && 301562306a36Sopenharmony_ci bfqq->entity.parent == in_service_bfqq->entity.parent && 301662306a36Sopenharmony_ci bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) { 301762306a36Sopenharmony_ci new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq); 301862306a36Sopenharmony_ci if (new_bfqq) 301962306a36Sopenharmony_ci return new_bfqq; 302062306a36Sopenharmony_ci } 302162306a36Sopenharmony_ci /* 302262306a36Sopenharmony_ci * Check whether there is a cooperator among currently scheduled 302362306a36Sopenharmony_ci * queues. The only thing we need is that the bio/request is not 302462306a36Sopenharmony_ci * NULL, as we need it to establish whether a cooperator exists. 302562306a36Sopenharmony_ci */ 302662306a36Sopenharmony_ci new_bfqq = bfq_find_close_cooperator(bfqd, bfqq, 302762306a36Sopenharmony_ci bfq_io_struct_pos(io_struct, request)); 302862306a36Sopenharmony_ci 302962306a36Sopenharmony_ci if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) && 303062306a36Sopenharmony_ci bfq_may_be_close_cooperator(bfqq, new_bfqq)) 303162306a36Sopenharmony_ci return bfq_setup_merge(bfqq, new_bfqq); 303262306a36Sopenharmony_ci 303362306a36Sopenharmony_ci return NULL; 303462306a36Sopenharmony_ci} 303562306a36Sopenharmony_ci 303662306a36Sopenharmony_cistatic void bfq_bfqq_save_state(struct bfq_queue *bfqq) 303762306a36Sopenharmony_ci{ 303862306a36Sopenharmony_ci struct bfq_io_cq *bic = bfqq->bic; 303962306a36Sopenharmony_ci unsigned int a_idx = bfqq->actuator_idx; 304062306a36Sopenharmony_ci struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[a_idx]; 304162306a36Sopenharmony_ci 304262306a36Sopenharmony_ci /* 304362306a36Sopenharmony_ci * If !bfqq->bic, the queue is already shared or its requests 304462306a36Sopenharmony_ci * have already been redirected to a shared queue; both idle window 304562306a36Sopenharmony_ci * and weight raising state have already been saved. Do nothing. 304662306a36Sopenharmony_ci */ 304762306a36Sopenharmony_ci if (!bic) 304862306a36Sopenharmony_ci return; 304962306a36Sopenharmony_ci 305062306a36Sopenharmony_ci bfqq_data->saved_last_serv_time_ns = bfqq->last_serv_time_ns; 305162306a36Sopenharmony_ci bfqq_data->saved_inject_limit = bfqq->inject_limit; 305262306a36Sopenharmony_ci bfqq_data->saved_decrease_time_jif = bfqq->decrease_time_jif; 305362306a36Sopenharmony_ci 305462306a36Sopenharmony_ci bfqq_data->saved_weight = bfqq->entity.orig_weight; 305562306a36Sopenharmony_ci bfqq_data->saved_ttime = bfqq->ttime; 305662306a36Sopenharmony_ci bfqq_data->saved_has_short_ttime = 305762306a36Sopenharmony_ci bfq_bfqq_has_short_ttime(bfqq); 305862306a36Sopenharmony_ci bfqq_data->saved_IO_bound = bfq_bfqq_IO_bound(bfqq); 305962306a36Sopenharmony_ci bfqq_data->saved_io_start_time = bfqq->io_start_time; 306062306a36Sopenharmony_ci bfqq_data->saved_tot_idle_time = bfqq->tot_idle_time; 306162306a36Sopenharmony_ci bfqq_data->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq); 306262306a36Sopenharmony_ci bfqq_data->was_in_burst_list = 306362306a36Sopenharmony_ci !hlist_unhashed(&bfqq->burst_list_node); 306462306a36Sopenharmony_ci 306562306a36Sopenharmony_ci if (unlikely(bfq_bfqq_just_created(bfqq) && 306662306a36Sopenharmony_ci !bfq_bfqq_in_large_burst(bfqq) && 306762306a36Sopenharmony_ci bfqq->bfqd->low_latency)) { 306862306a36Sopenharmony_ci /* 306962306a36Sopenharmony_ci * bfqq being merged right after being created: bfqq 307062306a36Sopenharmony_ci * would have deserved interactive weight raising, but 307162306a36Sopenharmony_ci * did not make it to be set in a weight-raised state, 307262306a36Sopenharmony_ci * because of this early merge. Store directly the 307362306a36Sopenharmony_ci * weight-raising state that would have been assigned 307462306a36Sopenharmony_ci * to bfqq, so that to avoid that bfqq unjustly fails 307562306a36Sopenharmony_ci * to enjoy weight raising if split soon. 307662306a36Sopenharmony_ci */ 307762306a36Sopenharmony_ci bfqq_data->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff; 307862306a36Sopenharmony_ci bfqq_data->saved_wr_start_at_switch_to_srt = 307962306a36Sopenharmony_ci bfq_smallest_from_now(); 308062306a36Sopenharmony_ci bfqq_data->saved_wr_cur_max_time = 308162306a36Sopenharmony_ci bfq_wr_duration(bfqq->bfqd); 308262306a36Sopenharmony_ci bfqq_data->saved_last_wr_start_finish = jiffies; 308362306a36Sopenharmony_ci } else { 308462306a36Sopenharmony_ci bfqq_data->saved_wr_coeff = bfqq->wr_coeff; 308562306a36Sopenharmony_ci bfqq_data->saved_wr_start_at_switch_to_srt = 308662306a36Sopenharmony_ci bfqq->wr_start_at_switch_to_srt; 308762306a36Sopenharmony_ci bfqq_data->saved_service_from_wr = 308862306a36Sopenharmony_ci bfqq->service_from_wr; 308962306a36Sopenharmony_ci bfqq_data->saved_last_wr_start_finish = 309062306a36Sopenharmony_ci bfqq->last_wr_start_finish; 309162306a36Sopenharmony_ci bfqq_data->saved_wr_cur_max_time = bfqq->wr_cur_max_time; 309262306a36Sopenharmony_ci } 309362306a36Sopenharmony_ci} 309462306a36Sopenharmony_ci 309562306a36Sopenharmony_ci 309662306a36Sopenharmony_cistatic void 309762306a36Sopenharmony_cibfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq) 309862306a36Sopenharmony_ci{ 309962306a36Sopenharmony_ci if (cur_bfqq->entity.parent && 310062306a36Sopenharmony_ci cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq) 310162306a36Sopenharmony_ci cur_bfqq->entity.parent->last_bfqq_created = new_bfqq; 310262306a36Sopenharmony_ci else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq) 310362306a36Sopenharmony_ci cur_bfqq->bfqd->last_bfqq_created = new_bfqq; 310462306a36Sopenharmony_ci} 310562306a36Sopenharmony_ci 310662306a36Sopenharmony_civoid bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq) 310762306a36Sopenharmony_ci{ 310862306a36Sopenharmony_ci /* 310962306a36Sopenharmony_ci * To prevent bfqq's service guarantees from being violated, 311062306a36Sopenharmony_ci * bfqq may be left busy, i.e., queued for service, even if 311162306a36Sopenharmony_ci * empty (see comments in __bfq_bfqq_expire() for 311262306a36Sopenharmony_ci * details). But, if no process will send requests to bfqq any 311362306a36Sopenharmony_ci * longer, then there is no point in keeping bfqq queued for 311462306a36Sopenharmony_ci * service. In addition, keeping bfqq queued for service, but 311562306a36Sopenharmony_ci * with no process ref any longer, may have caused bfqq to be 311662306a36Sopenharmony_ci * freed when dequeued from service. But this is assumed to 311762306a36Sopenharmony_ci * never happen. 311862306a36Sopenharmony_ci */ 311962306a36Sopenharmony_ci if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) && 312062306a36Sopenharmony_ci bfqq != bfqd->in_service_queue) 312162306a36Sopenharmony_ci bfq_del_bfqq_busy(bfqq, false); 312262306a36Sopenharmony_ci 312362306a36Sopenharmony_ci bfq_reassign_last_bfqq(bfqq, NULL); 312462306a36Sopenharmony_ci 312562306a36Sopenharmony_ci bfq_put_queue(bfqq); 312662306a36Sopenharmony_ci} 312762306a36Sopenharmony_ci 312862306a36Sopenharmony_cistatic void 312962306a36Sopenharmony_cibfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic, 313062306a36Sopenharmony_ci struct bfq_queue *bfqq, struct bfq_queue *new_bfqq) 313162306a36Sopenharmony_ci{ 313262306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu", 313362306a36Sopenharmony_ci (unsigned long)new_bfqq->pid); 313462306a36Sopenharmony_ci /* Save weight raising and idle window of the merged queues */ 313562306a36Sopenharmony_ci bfq_bfqq_save_state(bfqq); 313662306a36Sopenharmony_ci bfq_bfqq_save_state(new_bfqq); 313762306a36Sopenharmony_ci if (bfq_bfqq_IO_bound(bfqq)) 313862306a36Sopenharmony_ci bfq_mark_bfqq_IO_bound(new_bfqq); 313962306a36Sopenharmony_ci bfq_clear_bfqq_IO_bound(bfqq); 314062306a36Sopenharmony_ci 314162306a36Sopenharmony_ci /* 314262306a36Sopenharmony_ci * The processes associated with bfqq are cooperators of the 314362306a36Sopenharmony_ci * processes associated with new_bfqq. So, if bfqq has a 314462306a36Sopenharmony_ci * waker, then assume that all these processes will be happy 314562306a36Sopenharmony_ci * to let bfqq's waker freely inject I/O when they have no 314662306a36Sopenharmony_ci * I/O. 314762306a36Sopenharmony_ci */ 314862306a36Sopenharmony_ci if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq && 314962306a36Sopenharmony_ci bfqq->waker_bfqq != new_bfqq) { 315062306a36Sopenharmony_ci new_bfqq->waker_bfqq = bfqq->waker_bfqq; 315162306a36Sopenharmony_ci new_bfqq->tentative_waker_bfqq = NULL; 315262306a36Sopenharmony_ci 315362306a36Sopenharmony_ci /* 315462306a36Sopenharmony_ci * If the waker queue disappears, then 315562306a36Sopenharmony_ci * new_bfqq->waker_bfqq must be reset. So insert 315662306a36Sopenharmony_ci * new_bfqq into the woken_list of the waker. See 315762306a36Sopenharmony_ci * bfq_check_waker for details. 315862306a36Sopenharmony_ci */ 315962306a36Sopenharmony_ci hlist_add_head(&new_bfqq->woken_list_node, 316062306a36Sopenharmony_ci &new_bfqq->waker_bfqq->woken_list); 316162306a36Sopenharmony_ci 316262306a36Sopenharmony_ci } 316362306a36Sopenharmony_ci 316462306a36Sopenharmony_ci /* 316562306a36Sopenharmony_ci * If bfqq is weight-raised, then let new_bfqq inherit 316662306a36Sopenharmony_ci * weight-raising. To reduce false positives, neglect the case 316762306a36Sopenharmony_ci * where bfqq has just been created, but has not yet made it 316862306a36Sopenharmony_ci * to be weight-raised (which may happen because EQM may merge 316962306a36Sopenharmony_ci * bfqq even before bfq_add_request is executed for the first 317062306a36Sopenharmony_ci * time for bfqq). Handling this case would however be very 317162306a36Sopenharmony_ci * easy, thanks to the flag just_created. 317262306a36Sopenharmony_ci */ 317362306a36Sopenharmony_ci if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) { 317462306a36Sopenharmony_ci new_bfqq->wr_coeff = bfqq->wr_coeff; 317562306a36Sopenharmony_ci new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time; 317662306a36Sopenharmony_ci new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish; 317762306a36Sopenharmony_ci new_bfqq->wr_start_at_switch_to_srt = 317862306a36Sopenharmony_ci bfqq->wr_start_at_switch_to_srt; 317962306a36Sopenharmony_ci if (bfq_bfqq_busy(new_bfqq)) 318062306a36Sopenharmony_ci bfqd->wr_busy_queues++; 318162306a36Sopenharmony_ci new_bfqq->entity.prio_changed = 1; 318262306a36Sopenharmony_ci } 318362306a36Sopenharmony_ci 318462306a36Sopenharmony_ci if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */ 318562306a36Sopenharmony_ci bfqq->wr_coeff = 1; 318662306a36Sopenharmony_ci bfqq->entity.prio_changed = 1; 318762306a36Sopenharmony_ci if (bfq_bfqq_busy(bfqq)) 318862306a36Sopenharmony_ci bfqd->wr_busy_queues--; 318962306a36Sopenharmony_ci } 319062306a36Sopenharmony_ci 319162306a36Sopenharmony_ci bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d", 319262306a36Sopenharmony_ci bfqd->wr_busy_queues); 319362306a36Sopenharmony_ci 319462306a36Sopenharmony_ci /* 319562306a36Sopenharmony_ci * Merge queues (that is, let bic redirect its requests to new_bfqq) 319662306a36Sopenharmony_ci */ 319762306a36Sopenharmony_ci bic_set_bfqq(bic, new_bfqq, true, bfqq->actuator_idx); 319862306a36Sopenharmony_ci bfq_mark_bfqq_coop(new_bfqq); 319962306a36Sopenharmony_ci /* 320062306a36Sopenharmony_ci * new_bfqq now belongs to at least two bics (it is a shared queue): 320162306a36Sopenharmony_ci * set new_bfqq->bic to NULL. bfqq either: 320262306a36Sopenharmony_ci * - does not belong to any bic any more, and hence bfqq->bic must 320362306a36Sopenharmony_ci * be set to NULL, or 320462306a36Sopenharmony_ci * - is a queue whose owning bics have already been redirected to a 320562306a36Sopenharmony_ci * different queue, hence the queue is destined to not belong to 320662306a36Sopenharmony_ci * any bic soon and bfqq->bic is already NULL (therefore the next 320762306a36Sopenharmony_ci * assignment causes no harm). 320862306a36Sopenharmony_ci */ 320962306a36Sopenharmony_ci new_bfqq->bic = NULL; 321062306a36Sopenharmony_ci /* 321162306a36Sopenharmony_ci * If the queue is shared, the pid is the pid of one of the associated 321262306a36Sopenharmony_ci * processes. Which pid depends on the exact sequence of merge events 321362306a36Sopenharmony_ci * the queue underwent. So printing such a pid is useless and confusing 321462306a36Sopenharmony_ci * because it reports a random pid between those of the associated 321562306a36Sopenharmony_ci * processes. 321662306a36Sopenharmony_ci * We mark such a queue with a pid -1, and then print SHARED instead of 321762306a36Sopenharmony_ci * a pid in logging messages. 321862306a36Sopenharmony_ci */ 321962306a36Sopenharmony_ci new_bfqq->pid = -1; 322062306a36Sopenharmony_ci bfqq->bic = NULL; 322162306a36Sopenharmony_ci 322262306a36Sopenharmony_ci bfq_reassign_last_bfqq(bfqq, new_bfqq); 322362306a36Sopenharmony_ci 322462306a36Sopenharmony_ci bfq_release_process_ref(bfqd, bfqq); 322562306a36Sopenharmony_ci} 322662306a36Sopenharmony_ci 322762306a36Sopenharmony_cistatic bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq, 322862306a36Sopenharmony_ci struct bio *bio) 322962306a36Sopenharmony_ci{ 323062306a36Sopenharmony_ci struct bfq_data *bfqd = q->elevator->elevator_data; 323162306a36Sopenharmony_ci bool is_sync = op_is_sync(bio->bi_opf); 323262306a36Sopenharmony_ci struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq; 323362306a36Sopenharmony_ci 323462306a36Sopenharmony_ci /* 323562306a36Sopenharmony_ci * Disallow merge of a sync bio into an async request. 323662306a36Sopenharmony_ci */ 323762306a36Sopenharmony_ci if (is_sync && !rq_is_sync(rq)) 323862306a36Sopenharmony_ci return false; 323962306a36Sopenharmony_ci 324062306a36Sopenharmony_ci /* 324162306a36Sopenharmony_ci * Lookup the bfqq that this bio will be queued with. Allow 324262306a36Sopenharmony_ci * merge only if rq is queued there. 324362306a36Sopenharmony_ci */ 324462306a36Sopenharmony_ci if (!bfqq) 324562306a36Sopenharmony_ci return false; 324662306a36Sopenharmony_ci 324762306a36Sopenharmony_ci /* 324862306a36Sopenharmony_ci * We take advantage of this function to perform an early merge 324962306a36Sopenharmony_ci * of the queues of possible cooperating processes. 325062306a36Sopenharmony_ci */ 325162306a36Sopenharmony_ci new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic); 325262306a36Sopenharmony_ci if (new_bfqq) { 325362306a36Sopenharmony_ci /* 325462306a36Sopenharmony_ci * bic still points to bfqq, then it has not yet been 325562306a36Sopenharmony_ci * redirected to some other bfq_queue, and a queue 325662306a36Sopenharmony_ci * merge between bfqq and new_bfqq can be safely 325762306a36Sopenharmony_ci * fulfilled, i.e., bic can be redirected to new_bfqq 325862306a36Sopenharmony_ci * and bfqq can be put. 325962306a36Sopenharmony_ci */ 326062306a36Sopenharmony_ci bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq, 326162306a36Sopenharmony_ci new_bfqq); 326262306a36Sopenharmony_ci /* 326362306a36Sopenharmony_ci * If we get here, bio will be queued into new_queue, 326462306a36Sopenharmony_ci * so use new_bfqq to decide whether bio and rq can be 326562306a36Sopenharmony_ci * merged. 326662306a36Sopenharmony_ci */ 326762306a36Sopenharmony_ci bfqq = new_bfqq; 326862306a36Sopenharmony_ci 326962306a36Sopenharmony_ci /* 327062306a36Sopenharmony_ci * Change also bqfd->bio_bfqq, as 327162306a36Sopenharmony_ci * bfqd->bio_bic now points to new_bfqq, and 327262306a36Sopenharmony_ci * this function may be invoked again (and then may 327362306a36Sopenharmony_ci * use again bqfd->bio_bfqq). 327462306a36Sopenharmony_ci */ 327562306a36Sopenharmony_ci bfqd->bio_bfqq = bfqq; 327662306a36Sopenharmony_ci } 327762306a36Sopenharmony_ci 327862306a36Sopenharmony_ci return bfqq == RQ_BFQQ(rq); 327962306a36Sopenharmony_ci} 328062306a36Sopenharmony_ci 328162306a36Sopenharmony_ci/* 328262306a36Sopenharmony_ci * Set the maximum time for the in-service queue to consume its 328362306a36Sopenharmony_ci * budget. This prevents seeky processes from lowering the throughput. 328462306a36Sopenharmony_ci * In practice, a time-slice service scheme is used with seeky 328562306a36Sopenharmony_ci * processes. 328662306a36Sopenharmony_ci */ 328762306a36Sopenharmony_cistatic void bfq_set_budget_timeout(struct bfq_data *bfqd, 328862306a36Sopenharmony_ci struct bfq_queue *bfqq) 328962306a36Sopenharmony_ci{ 329062306a36Sopenharmony_ci unsigned int timeout_coeff; 329162306a36Sopenharmony_ci 329262306a36Sopenharmony_ci if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time) 329362306a36Sopenharmony_ci timeout_coeff = 1; 329462306a36Sopenharmony_ci else 329562306a36Sopenharmony_ci timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight; 329662306a36Sopenharmony_ci 329762306a36Sopenharmony_ci bfqd->last_budget_start = ktime_get(); 329862306a36Sopenharmony_ci 329962306a36Sopenharmony_ci bfqq->budget_timeout = jiffies + 330062306a36Sopenharmony_ci bfqd->bfq_timeout * timeout_coeff; 330162306a36Sopenharmony_ci} 330262306a36Sopenharmony_ci 330362306a36Sopenharmony_cistatic void __bfq_set_in_service_queue(struct bfq_data *bfqd, 330462306a36Sopenharmony_ci struct bfq_queue *bfqq) 330562306a36Sopenharmony_ci{ 330662306a36Sopenharmony_ci if (bfqq) { 330762306a36Sopenharmony_ci bfq_clear_bfqq_fifo_expire(bfqq); 330862306a36Sopenharmony_ci 330962306a36Sopenharmony_ci bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8; 331062306a36Sopenharmony_ci 331162306a36Sopenharmony_ci if (time_is_before_jiffies(bfqq->last_wr_start_finish) && 331262306a36Sopenharmony_ci bfqq->wr_coeff > 1 && 331362306a36Sopenharmony_ci bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && 331462306a36Sopenharmony_ci time_is_before_jiffies(bfqq->budget_timeout)) { 331562306a36Sopenharmony_ci /* 331662306a36Sopenharmony_ci * For soft real-time queues, move the start 331762306a36Sopenharmony_ci * of the weight-raising period forward by the 331862306a36Sopenharmony_ci * time the queue has not received any 331962306a36Sopenharmony_ci * service. Otherwise, a relatively long 332062306a36Sopenharmony_ci * service delay is likely to cause the 332162306a36Sopenharmony_ci * weight-raising period of the queue to end, 332262306a36Sopenharmony_ci * because of the short duration of the 332362306a36Sopenharmony_ci * weight-raising period of a soft real-time 332462306a36Sopenharmony_ci * queue. It is worth noting that this move 332562306a36Sopenharmony_ci * is not so dangerous for the other queues, 332662306a36Sopenharmony_ci * because soft real-time queues are not 332762306a36Sopenharmony_ci * greedy. 332862306a36Sopenharmony_ci * 332962306a36Sopenharmony_ci * To not add a further variable, we use the 333062306a36Sopenharmony_ci * overloaded field budget_timeout to 333162306a36Sopenharmony_ci * determine for how long the queue has not 333262306a36Sopenharmony_ci * received service, i.e., how much time has 333362306a36Sopenharmony_ci * elapsed since the queue expired. However, 333462306a36Sopenharmony_ci * this is a little imprecise, because 333562306a36Sopenharmony_ci * budget_timeout is set to jiffies if bfqq 333662306a36Sopenharmony_ci * not only expires, but also remains with no 333762306a36Sopenharmony_ci * request. 333862306a36Sopenharmony_ci */ 333962306a36Sopenharmony_ci if (time_after(bfqq->budget_timeout, 334062306a36Sopenharmony_ci bfqq->last_wr_start_finish)) 334162306a36Sopenharmony_ci bfqq->last_wr_start_finish += 334262306a36Sopenharmony_ci jiffies - bfqq->budget_timeout; 334362306a36Sopenharmony_ci else 334462306a36Sopenharmony_ci bfqq->last_wr_start_finish = jiffies; 334562306a36Sopenharmony_ci } 334662306a36Sopenharmony_ci 334762306a36Sopenharmony_ci bfq_set_budget_timeout(bfqd, bfqq); 334862306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, 334962306a36Sopenharmony_ci "set_in_service_queue, cur-budget = %d", 335062306a36Sopenharmony_ci bfqq->entity.budget); 335162306a36Sopenharmony_ci } 335262306a36Sopenharmony_ci 335362306a36Sopenharmony_ci bfqd->in_service_queue = bfqq; 335462306a36Sopenharmony_ci bfqd->in_serv_last_pos = 0; 335562306a36Sopenharmony_ci} 335662306a36Sopenharmony_ci 335762306a36Sopenharmony_ci/* 335862306a36Sopenharmony_ci * Get and set a new queue for service. 335962306a36Sopenharmony_ci */ 336062306a36Sopenharmony_cistatic struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd) 336162306a36Sopenharmony_ci{ 336262306a36Sopenharmony_ci struct bfq_queue *bfqq = bfq_get_next_queue(bfqd); 336362306a36Sopenharmony_ci 336462306a36Sopenharmony_ci __bfq_set_in_service_queue(bfqd, bfqq); 336562306a36Sopenharmony_ci return bfqq; 336662306a36Sopenharmony_ci} 336762306a36Sopenharmony_ci 336862306a36Sopenharmony_cistatic void bfq_arm_slice_timer(struct bfq_data *bfqd) 336962306a36Sopenharmony_ci{ 337062306a36Sopenharmony_ci struct bfq_queue *bfqq = bfqd->in_service_queue; 337162306a36Sopenharmony_ci u32 sl; 337262306a36Sopenharmony_ci 337362306a36Sopenharmony_ci bfq_mark_bfqq_wait_request(bfqq); 337462306a36Sopenharmony_ci 337562306a36Sopenharmony_ci /* 337662306a36Sopenharmony_ci * We don't want to idle for seeks, but we do want to allow 337762306a36Sopenharmony_ci * fair distribution of slice time for a process doing back-to-back 337862306a36Sopenharmony_ci * seeks. So allow a little bit of time for him to submit a new rq. 337962306a36Sopenharmony_ci */ 338062306a36Sopenharmony_ci sl = bfqd->bfq_slice_idle; 338162306a36Sopenharmony_ci /* 338262306a36Sopenharmony_ci * Unless the queue is being weight-raised or the scenario is 338362306a36Sopenharmony_ci * asymmetric, grant only minimum idle time if the queue 338462306a36Sopenharmony_ci * is seeky. A long idling is preserved for a weight-raised 338562306a36Sopenharmony_ci * queue, or, more in general, in an asymmetric scenario, 338662306a36Sopenharmony_ci * because a long idling is needed for guaranteeing to a queue 338762306a36Sopenharmony_ci * its reserved share of the throughput (in particular, it is 338862306a36Sopenharmony_ci * needed if the queue has a higher weight than some other 338962306a36Sopenharmony_ci * queue). 339062306a36Sopenharmony_ci */ 339162306a36Sopenharmony_ci if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 && 339262306a36Sopenharmony_ci !bfq_asymmetric_scenario(bfqd, bfqq)) 339362306a36Sopenharmony_ci sl = min_t(u64, sl, BFQ_MIN_TT); 339462306a36Sopenharmony_ci else if (bfqq->wr_coeff > 1) 339562306a36Sopenharmony_ci sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC); 339662306a36Sopenharmony_ci 339762306a36Sopenharmony_ci bfqd->last_idling_start = ktime_get(); 339862306a36Sopenharmony_ci bfqd->last_idling_start_jiffies = jiffies; 339962306a36Sopenharmony_ci 340062306a36Sopenharmony_ci hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl), 340162306a36Sopenharmony_ci HRTIMER_MODE_REL); 340262306a36Sopenharmony_ci bfqg_stats_set_start_idle_time(bfqq_group(bfqq)); 340362306a36Sopenharmony_ci} 340462306a36Sopenharmony_ci 340562306a36Sopenharmony_ci/* 340662306a36Sopenharmony_ci * In autotuning mode, max_budget is dynamically recomputed as the 340762306a36Sopenharmony_ci * amount of sectors transferred in timeout at the estimated peak 340862306a36Sopenharmony_ci * rate. This enables BFQ to utilize a full timeslice with a full 340962306a36Sopenharmony_ci * budget, even if the in-service queue is served at peak rate. And 341062306a36Sopenharmony_ci * this maximises throughput with sequential workloads. 341162306a36Sopenharmony_ci */ 341262306a36Sopenharmony_cistatic unsigned long bfq_calc_max_budget(struct bfq_data *bfqd) 341362306a36Sopenharmony_ci{ 341462306a36Sopenharmony_ci return (u64)bfqd->peak_rate * USEC_PER_MSEC * 341562306a36Sopenharmony_ci jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT; 341662306a36Sopenharmony_ci} 341762306a36Sopenharmony_ci 341862306a36Sopenharmony_ci/* 341962306a36Sopenharmony_ci * Update parameters related to throughput and responsiveness, as a 342062306a36Sopenharmony_ci * function of the estimated peak rate. See comments on 342162306a36Sopenharmony_ci * bfq_calc_max_budget(), and on the ref_wr_duration array. 342262306a36Sopenharmony_ci */ 342362306a36Sopenharmony_cistatic void update_thr_responsiveness_params(struct bfq_data *bfqd) 342462306a36Sopenharmony_ci{ 342562306a36Sopenharmony_ci if (bfqd->bfq_user_max_budget == 0) { 342662306a36Sopenharmony_ci bfqd->bfq_max_budget = 342762306a36Sopenharmony_ci bfq_calc_max_budget(bfqd); 342862306a36Sopenharmony_ci bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget); 342962306a36Sopenharmony_ci } 343062306a36Sopenharmony_ci} 343162306a36Sopenharmony_ci 343262306a36Sopenharmony_cistatic void bfq_reset_rate_computation(struct bfq_data *bfqd, 343362306a36Sopenharmony_ci struct request *rq) 343462306a36Sopenharmony_ci{ 343562306a36Sopenharmony_ci if (rq != NULL) { /* new rq dispatch now, reset accordingly */ 343662306a36Sopenharmony_ci bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns(); 343762306a36Sopenharmony_ci bfqd->peak_rate_samples = 1; 343862306a36Sopenharmony_ci bfqd->sequential_samples = 0; 343962306a36Sopenharmony_ci bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size = 344062306a36Sopenharmony_ci blk_rq_sectors(rq); 344162306a36Sopenharmony_ci } else /* no new rq dispatched, just reset the number of samples */ 344262306a36Sopenharmony_ci bfqd->peak_rate_samples = 0; /* full re-init on next disp. */ 344362306a36Sopenharmony_ci 344462306a36Sopenharmony_ci bfq_log(bfqd, 344562306a36Sopenharmony_ci "reset_rate_computation at end, sample %u/%u tot_sects %llu", 344662306a36Sopenharmony_ci bfqd->peak_rate_samples, bfqd->sequential_samples, 344762306a36Sopenharmony_ci bfqd->tot_sectors_dispatched); 344862306a36Sopenharmony_ci} 344962306a36Sopenharmony_ci 345062306a36Sopenharmony_cistatic void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq) 345162306a36Sopenharmony_ci{ 345262306a36Sopenharmony_ci u32 rate, weight, divisor; 345362306a36Sopenharmony_ci 345462306a36Sopenharmony_ci /* 345562306a36Sopenharmony_ci * For the convergence property to hold (see comments on 345662306a36Sopenharmony_ci * bfq_update_peak_rate()) and for the assessment to be 345762306a36Sopenharmony_ci * reliable, a minimum number of samples must be present, and 345862306a36Sopenharmony_ci * a minimum amount of time must have elapsed. If not so, do 345962306a36Sopenharmony_ci * not compute new rate. Just reset parameters, to get ready 346062306a36Sopenharmony_ci * for a new evaluation attempt. 346162306a36Sopenharmony_ci */ 346262306a36Sopenharmony_ci if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES || 346362306a36Sopenharmony_ci bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL) 346462306a36Sopenharmony_ci goto reset_computation; 346562306a36Sopenharmony_ci 346662306a36Sopenharmony_ci /* 346762306a36Sopenharmony_ci * If a new request completion has occurred after last 346862306a36Sopenharmony_ci * dispatch, then, to approximate the rate at which requests 346962306a36Sopenharmony_ci * have been served by the device, it is more precise to 347062306a36Sopenharmony_ci * extend the observation interval to the last completion. 347162306a36Sopenharmony_ci */ 347262306a36Sopenharmony_ci bfqd->delta_from_first = 347362306a36Sopenharmony_ci max_t(u64, bfqd->delta_from_first, 347462306a36Sopenharmony_ci bfqd->last_completion - bfqd->first_dispatch); 347562306a36Sopenharmony_ci 347662306a36Sopenharmony_ci /* 347762306a36Sopenharmony_ci * Rate computed in sects/usec, and not sects/nsec, for 347862306a36Sopenharmony_ci * precision issues. 347962306a36Sopenharmony_ci */ 348062306a36Sopenharmony_ci rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT, 348162306a36Sopenharmony_ci div_u64(bfqd->delta_from_first, NSEC_PER_USEC)); 348262306a36Sopenharmony_ci 348362306a36Sopenharmony_ci /* 348462306a36Sopenharmony_ci * Peak rate not updated if: 348562306a36Sopenharmony_ci * - the percentage of sequential dispatches is below 3/4 of the 348662306a36Sopenharmony_ci * total, and rate is below the current estimated peak rate 348762306a36Sopenharmony_ci * - rate is unreasonably high (> 20M sectors/sec) 348862306a36Sopenharmony_ci */ 348962306a36Sopenharmony_ci if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 && 349062306a36Sopenharmony_ci rate <= bfqd->peak_rate) || 349162306a36Sopenharmony_ci rate > 20<<BFQ_RATE_SHIFT) 349262306a36Sopenharmony_ci goto reset_computation; 349362306a36Sopenharmony_ci 349462306a36Sopenharmony_ci /* 349562306a36Sopenharmony_ci * We have to update the peak rate, at last! To this purpose, 349662306a36Sopenharmony_ci * we use a low-pass filter. We compute the smoothing constant 349762306a36Sopenharmony_ci * of the filter as a function of the 'weight' of the new 349862306a36Sopenharmony_ci * measured rate. 349962306a36Sopenharmony_ci * 350062306a36Sopenharmony_ci * As can be seen in next formulas, we define this weight as a 350162306a36Sopenharmony_ci * quantity proportional to how sequential the workload is, 350262306a36Sopenharmony_ci * and to how long the observation time interval is. 350362306a36Sopenharmony_ci * 350462306a36Sopenharmony_ci * The weight runs from 0 to 8. The maximum value of the 350562306a36Sopenharmony_ci * weight, 8, yields the minimum value for the smoothing 350662306a36Sopenharmony_ci * constant. At this minimum value for the smoothing constant, 350762306a36Sopenharmony_ci * the measured rate contributes for half of the next value of 350862306a36Sopenharmony_ci * the estimated peak rate. 350962306a36Sopenharmony_ci * 351062306a36Sopenharmony_ci * So, the first step is to compute the weight as a function 351162306a36Sopenharmony_ci * of how sequential the workload is. Note that the weight 351262306a36Sopenharmony_ci * cannot reach 9, because bfqd->sequential_samples cannot 351362306a36Sopenharmony_ci * become equal to bfqd->peak_rate_samples, which, in its 351462306a36Sopenharmony_ci * turn, holds true because bfqd->sequential_samples is not 351562306a36Sopenharmony_ci * incremented for the first sample. 351662306a36Sopenharmony_ci */ 351762306a36Sopenharmony_ci weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples; 351862306a36Sopenharmony_ci 351962306a36Sopenharmony_ci /* 352062306a36Sopenharmony_ci * Second step: further refine the weight as a function of the 352162306a36Sopenharmony_ci * duration of the observation interval. 352262306a36Sopenharmony_ci */ 352362306a36Sopenharmony_ci weight = min_t(u32, 8, 352462306a36Sopenharmony_ci div_u64(weight * bfqd->delta_from_first, 352562306a36Sopenharmony_ci BFQ_RATE_REF_INTERVAL)); 352662306a36Sopenharmony_ci 352762306a36Sopenharmony_ci /* 352862306a36Sopenharmony_ci * Divisor ranging from 10, for minimum weight, to 2, for 352962306a36Sopenharmony_ci * maximum weight. 353062306a36Sopenharmony_ci */ 353162306a36Sopenharmony_ci divisor = 10 - weight; 353262306a36Sopenharmony_ci 353362306a36Sopenharmony_ci /* 353462306a36Sopenharmony_ci * Finally, update peak rate: 353562306a36Sopenharmony_ci * 353662306a36Sopenharmony_ci * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor 353762306a36Sopenharmony_ci */ 353862306a36Sopenharmony_ci bfqd->peak_rate *= divisor-1; 353962306a36Sopenharmony_ci bfqd->peak_rate /= divisor; 354062306a36Sopenharmony_ci rate /= divisor; /* smoothing constant alpha = 1/divisor */ 354162306a36Sopenharmony_ci 354262306a36Sopenharmony_ci bfqd->peak_rate += rate; 354362306a36Sopenharmony_ci 354462306a36Sopenharmony_ci /* 354562306a36Sopenharmony_ci * For a very slow device, bfqd->peak_rate can reach 0 (see 354662306a36Sopenharmony_ci * the minimum representable values reported in the comments 354762306a36Sopenharmony_ci * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid 354862306a36Sopenharmony_ci * divisions by zero where bfqd->peak_rate is used as a 354962306a36Sopenharmony_ci * divisor. 355062306a36Sopenharmony_ci */ 355162306a36Sopenharmony_ci bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate); 355262306a36Sopenharmony_ci 355362306a36Sopenharmony_ci update_thr_responsiveness_params(bfqd); 355462306a36Sopenharmony_ci 355562306a36Sopenharmony_cireset_computation: 355662306a36Sopenharmony_ci bfq_reset_rate_computation(bfqd, rq); 355762306a36Sopenharmony_ci} 355862306a36Sopenharmony_ci 355962306a36Sopenharmony_ci/* 356062306a36Sopenharmony_ci * Update the read/write peak rate (the main quantity used for 356162306a36Sopenharmony_ci * auto-tuning, see update_thr_responsiveness_params()). 356262306a36Sopenharmony_ci * 356362306a36Sopenharmony_ci * It is not trivial to estimate the peak rate (correctly): because of 356462306a36Sopenharmony_ci * the presence of sw and hw queues between the scheduler and the 356562306a36Sopenharmony_ci * device components that finally serve I/O requests, it is hard to 356662306a36Sopenharmony_ci * say exactly when a given dispatched request is served inside the 356762306a36Sopenharmony_ci * device, and for how long. As a consequence, it is hard to know 356862306a36Sopenharmony_ci * precisely at what rate a given set of requests is actually served 356962306a36Sopenharmony_ci * by the device. 357062306a36Sopenharmony_ci * 357162306a36Sopenharmony_ci * On the opposite end, the dispatch time of any request is trivially 357262306a36Sopenharmony_ci * available, and, from this piece of information, the "dispatch rate" 357362306a36Sopenharmony_ci * of requests can be immediately computed. So, the idea in the next 357462306a36Sopenharmony_ci * function is to use what is known, namely request dispatch times 357562306a36Sopenharmony_ci * (plus, when useful, request completion times), to estimate what is 357662306a36Sopenharmony_ci * unknown, namely in-device request service rate. 357762306a36Sopenharmony_ci * 357862306a36Sopenharmony_ci * The main issue is that, because of the above facts, the rate at 357962306a36Sopenharmony_ci * which a certain set of requests is dispatched over a certain time 358062306a36Sopenharmony_ci * interval can vary greatly with respect to the rate at which the 358162306a36Sopenharmony_ci * same requests are then served. But, since the size of any 358262306a36Sopenharmony_ci * intermediate queue is limited, and the service scheme is lossless 358362306a36Sopenharmony_ci * (no request is silently dropped), the following obvious convergence 358462306a36Sopenharmony_ci * property holds: the number of requests dispatched MUST become 358562306a36Sopenharmony_ci * closer and closer to the number of requests completed as the 358662306a36Sopenharmony_ci * observation interval grows. This is the key property used in 358762306a36Sopenharmony_ci * the next function to estimate the peak service rate as a function 358862306a36Sopenharmony_ci * of the observed dispatch rate. The function assumes to be invoked 358962306a36Sopenharmony_ci * on every request dispatch. 359062306a36Sopenharmony_ci */ 359162306a36Sopenharmony_cistatic void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq) 359262306a36Sopenharmony_ci{ 359362306a36Sopenharmony_ci u64 now_ns = ktime_get_ns(); 359462306a36Sopenharmony_ci 359562306a36Sopenharmony_ci if (bfqd->peak_rate_samples == 0) { /* first dispatch */ 359662306a36Sopenharmony_ci bfq_log(bfqd, "update_peak_rate: goto reset, samples %d", 359762306a36Sopenharmony_ci bfqd->peak_rate_samples); 359862306a36Sopenharmony_ci bfq_reset_rate_computation(bfqd, rq); 359962306a36Sopenharmony_ci goto update_last_values; /* will add one sample */ 360062306a36Sopenharmony_ci } 360162306a36Sopenharmony_ci 360262306a36Sopenharmony_ci /* 360362306a36Sopenharmony_ci * Device idle for very long: the observation interval lasting 360462306a36Sopenharmony_ci * up to this dispatch cannot be a valid observation interval 360562306a36Sopenharmony_ci * for computing a new peak rate (similarly to the late- 360662306a36Sopenharmony_ci * completion event in bfq_completed_request()). Go to 360762306a36Sopenharmony_ci * update_rate_and_reset to have the following three steps 360862306a36Sopenharmony_ci * taken: 360962306a36Sopenharmony_ci * - close the observation interval at the last (previous) 361062306a36Sopenharmony_ci * request dispatch or completion 361162306a36Sopenharmony_ci * - compute rate, if possible, for that observation interval 361262306a36Sopenharmony_ci * - start a new observation interval with this dispatch 361362306a36Sopenharmony_ci */ 361462306a36Sopenharmony_ci if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC && 361562306a36Sopenharmony_ci bfqd->tot_rq_in_driver == 0) 361662306a36Sopenharmony_ci goto update_rate_and_reset; 361762306a36Sopenharmony_ci 361862306a36Sopenharmony_ci /* Update sampling information */ 361962306a36Sopenharmony_ci bfqd->peak_rate_samples++; 362062306a36Sopenharmony_ci 362162306a36Sopenharmony_ci if ((bfqd->tot_rq_in_driver > 0 || 362262306a36Sopenharmony_ci now_ns - bfqd->last_completion < BFQ_MIN_TT) 362362306a36Sopenharmony_ci && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq)) 362462306a36Sopenharmony_ci bfqd->sequential_samples++; 362562306a36Sopenharmony_ci 362662306a36Sopenharmony_ci bfqd->tot_sectors_dispatched += blk_rq_sectors(rq); 362762306a36Sopenharmony_ci 362862306a36Sopenharmony_ci /* Reset max observed rq size every 32 dispatches */ 362962306a36Sopenharmony_ci if (likely(bfqd->peak_rate_samples % 32)) 363062306a36Sopenharmony_ci bfqd->last_rq_max_size = 363162306a36Sopenharmony_ci max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size); 363262306a36Sopenharmony_ci else 363362306a36Sopenharmony_ci bfqd->last_rq_max_size = blk_rq_sectors(rq); 363462306a36Sopenharmony_ci 363562306a36Sopenharmony_ci bfqd->delta_from_first = now_ns - bfqd->first_dispatch; 363662306a36Sopenharmony_ci 363762306a36Sopenharmony_ci /* Target observation interval not yet reached, go on sampling */ 363862306a36Sopenharmony_ci if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL) 363962306a36Sopenharmony_ci goto update_last_values; 364062306a36Sopenharmony_ci 364162306a36Sopenharmony_ciupdate_rate_and_reset: 364262306a36Sopenharmony_ci bfq_update_rate_reset(bfqd, rq); 364362306a36Sopenharmony_ciupdate_last_values: 364462306a36Sopenharmony_ci bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq); 364562306a36Sopenharmony_ci if (RQ_BFQQ(rq) == bfqd->in_service_queue) 364662306a36Sopenharmony_ci bfqd->in_serv_last_pos = bfqd->last_position; 364762306a36Sopenharmony_ci bfqd->last_dispatch = now_ns; 364862306a36Sopenharmony_ci} 364962306a36Sopenharmony_ci 365062306a36Sopenharmony_ci/* 365162306a36Sopenharmony_ci * Remove request from internal lists. 365262306a36Sopenharmony_ci */ 365362306a36Sopenharmony_cistatic void bfq_dispatch_remove(struct request_queue *q, struct request *rq) 365462306a36Sopenharmony_ci{ 365562306a36Sopenharmony_ci struct bfq_queue *bfqq = RQ_BFQQ(rq); 365662306a36Sopenharmony_ci 365762306a36Sopenharmony_ci /* 365862306a36Sopenharmony_ci * For consistency, the next instruction should have been 365962306a36Sopenharmony_ci * executed after removing the request from the queue and 366062306a36Sopenharmony_ci * dispatching it. We execute instead this instruction before 366162306a36Sopenharmony_ci * bfq_remove_request() (and hence introduce a temporary 366262306a36Sopenharmony_ci * inconsistency), for efficiency. In fact, should this 366362306a36Sopenharmony_ci * dispatch occur for a non in-service bfqq, this anticipated 366462306a36Sopenharmony_ci * increment prevents two counters related to bfqq->dispatched 366562306a36Sopenharmony_ci * from risking to be, first, uselessly decremented, and then 366662306a36Sopenharmony_ci * incremented again when the (new) value of bfqq->dispatched 366762306a36Sopenharmony_ci * happens to be taken into account. 366862306a36Sopenharmony_ci */ 366962306a36Sopenharmony_ci bfqq->dispatched++; 367062306a36Sopenharmony_ci bfq_update_peak_rate(q->elevator->elevator_data, rq); 367162306a36Sopenharmony_ci 367262306a36Sopenharmony_ci bfq_remove_request(q, rq); 367362306a36Sopenharmony_ci} 367462306a36Sopenharmony_ci 367562306a36Sopenharmony_ci/* 367662306a36Sopenharmony_ci * There is a case where idling does not have to be performed for 367762306a36Sopenharmony_ci * throughput concerns, but to preserve the throughput share of 367862306a36Sopenharmony_ci * the process associated with bfqq. 367962306a36Sopenharmony_ci * 368062306a36Sopenharmony_ci * To introduce this case, we can note that allowing the drive 368162306a36Sopenharmony_ci * to enqueue more than one request at a time, and hence 368262306a36Sopenharmony_ci * delegating de facto final scheduling decisions to the 368362306a36Sopenharmony_ci * drive's internal scheduler, entails loss of control on the 368462306a36Sopenharmony_ci * actual request service order. In particular, the critical 368562306a36Sopenharmony_ci * situation is when requests from different processes happen 368662306a36Sopenharmony_ci * to be present, at the same time, in the internal queue(s) 368762306a36Sopenharmony_ci * of the drive. In such a situation, the drive, by deciding 368862306a36Sopenharmony_ci * the service order of the internally-queued requests, does 368962306a36Sopenharmony_ci * determine also the actual throughput distribution among 369062306a36Sopenharmony_ci * these processes. But the drive typically has no notion or 369162306a36Sopenharmony_ci * concern about per-process throughput distribution, and 369262306a36Sopenharmony_ci * makes its decisions only on a per-request basis. Therefore, 369362306a36Sopenharmony_ci * the service distribution enforced by the drive's internal 369462306a36Sopenharmony_ci * scheduler is likely to coincide with the desired throughput 369562306a36Sopenharmony_ci * distribution only in a completely symmetric, or favorably 369662306a36Sopenharmony_ci * skewed scenario where: 369762306a36Sopenharmony_ci * (i-a) each of these processes must get the same throughput as 369862306a36Sopenharmony_ci * the others, 369962306a36Sopenharmony_ci * (i-b) in case (i-a) does not hold, it holds that the process 370062306a36Sopenharmony_ci * associated with bfqq must receive a lower or equal 370162306a36Sopenharmony_ci * throughput than any of the other processes; 370262306a36Sopenharmony_ci * (ii) the I/O of each process has the same properties, in 370362306a36Sopenharmony_ci * terms of locality (sequential or random), direction 370462306a36Sopenharmony_ci * (reads or writes), request sizes, greediness 370562306a36Sopenharmony_ci * (from I/O-bound to sporadic), and so on; 370662306a36Sopenharmony_ci 370762306a36Sopenharmony_ci * In fact, in such a scenario, the drive tends to treat the requests 370862306a36Sopenharmony_ci * of each process in about the same way as the requests of the 370962306a36Sopenharmony_ci * others, and thus to provide each of these processes with about the 371062306a36Sopenharmony_ci * same throughput. This is exactly the desired throughput 371162306a36Sopenharmony_ci * distribution if (i-a) holds, or, if (i-b) holds instead, this is an 371262306a36Sopenharmony_ci * even more convenient distribution for (the process associated with) 371362306a36Sopenharmony_ci * bfqq. 371462306a36Sopenharmony_ci * 371562306a36Sopenharmony_ci * In contrast, in any asymmetric or unfavorable scenario, device 371662306a36Sopenharmony_ci * idling (I/O-dispatch plugging) is certainly needed to guarantee 371762306a36Sopenharmony_ci * that bfqq receives its assigned fraction of the device throughput 371862306a36Sopenharmony_ci * (see [1] for details). 371962306a36Sopenharmony_ci * 372062306a36Sopenharmony_ci * The problem is that idling may significantly reduce throughput with 372162306a36Sopenharmony_ci * certain combinations of types of I/O and devices. An important 372262306a36Sopenharmony_ci * example is sync random I/O on flash storage with command 372362306a36Sopenharmony_ci * queueing. So, unless bfqq falls in cases where idling also boosts 372462306a36Sopenharmony_ci * throughput, it is important to check conditions (i-a), i(-b) and 372562306a36Sopenharmony_ci * (ii) accurately, so as to avoid idling when not strictly needed for 372662306a36Sopenharmony_ci * service guarantees. 372762306a36Sopenharmony_ci * 372862306a36Sopenharmony_ci * Unfortunately, it is extremely difficult to thoroughly check 372962306a36Sopenharmony_ci * condition (ii). And, in case there are active groups, it becomes 373062306a36Sopenharmony_ci * very difficult to check conditions (i-a) and (i-b) too. In fact, 373162306a36Sopenharmony_ci * if there are active groups, then, for conditions (i-a) or (i-b) to 373262306a36Sopenharmony_ci * become false 'indirectly', it is enough that an active group 373362306a36Sopenharmony_ci * contains more active processes or sub-groups than some other active 373462306a36Sopenharmony_ci * group. More precisely, for conditions (i-a) or (i-b) to become 373562306a36Sopenharmony_ci * false because of such a group, it is not even necessary that the 373662306a36Sopenharmony_ci * group is (still) active: it is sufficient that, even if the group 373762306a36Sopenharmony_ci * has become inactive, some of its descendant processes still have 373862306a36Sopenharmony_ci * some request already dispatched but still waiting for 373962306a36Sopenharmony_ci * completion. In fact, requests have still to be guaranteed their 374062306a36Sopenharmony_ci * share of the throughput even after being dispatched. In this 374162306a36Sopenharmony_ci * respect, it is easy to show that, if a group frequently becomes 374262306a36Sopenharmony_ci * inactive while still having in-flight requests, and if, when this 374362306a36Sopenharmony_ci * happens, the group is not considered in the calculation of whether 374462306a36Sopenharmony_ci * the scenario is asymmetric, then the group may fail to be 374562306a36Sopenharmony_ci * guaranteed its fair share of the throughput (basically because 374662306a36Sopenharmony_ci * idling may not be performed for the descendant processes of the 374762306a36Sopenharmony_ci * group, but it had to be). We address this issue with the following 374862306a36Sopenharmony_ci * bi-modal behavior, implemented in the function 374962306a36Sopenharmony_ci * bfq_asymmetric_scenario(). 375062306a36Sopenharmony_ci * 375162306a36Sopenharmony_ci * If there are groups with requests waiting for completion 375262306a36Sopenharmony_ci * (as commented above, some of these groups may even be 375362306a36Sopenharmony_ci * already inactive), then the scenario is tagged as 375462306a36Sopenharmony_ci * asymmetric, conservatively, without checking any of the 375562306a36Sopenharmony_ci * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq. 375662306a36Sopenharmony_ci * This behavior matches also the fact that groups are created 375762306a36Sopenharmony_ci * exactly if controlling I/O is a primary concern (to 375862306a36Sopenharmony_ci * preserve bandwidth and latency guarantees). 375962306a36Sopenharmony_ci * 376062306a36Sopenharmony_ci * On the opposite end, if there are no groups with requests waiting 376162306a36Sopenharmony_ci * for completion, then only conditions (i-a) and (i-b) are actually 376262306a36Sopenharmony_ci * controlled, i.e., provided that conditions (i-a) or (i-b) holds, 376362306a36Sopenharmony_ci * idling is not performed, regardless of whether condition (ii) 376462306a36Sopenharmony_ci * holds. In other words, only if conditions (i-a) and (i-b) do not 376562306a36Sopenharmony_ci * hold, then idling is allowed, and the device tends to be prevented 376662306a36Sopenharmony_ci * from queueing many requests, possibly of several processes. Since 376762306a36Sopenharmony_ci * there are no groups with requests waiting for completion, then, to 376862306a36Sopenharmony_ci * control conditions (i-a) and (i-b) it is enough to check just 376962306a36Sopenharmony_ci * whether all the queues with requests waiting for completion also 377062306a36Sopenharmony_ci * have the same weight. 377162306a36Sopenharmony_ci * 377262306a36Sopenharmony_ci * Not checking condition (ii) evidently exposes bfqq to the 377362306a36Sopenharmony_ci * risk of getting less throughput than its fair share. 377462306a36Sopenharmony_ci * However, for queues with the same weight, a further 377562306a36Sopenharmony_ci * mechanism, preemption, mitigates or even eliminates this 377662306a36Sopenharmony_ci * problem. And it does so without consequences on overall 377762306a36Sopenharmony_ci * throughput. This mechanism and its benefits are explained 377862306a36Sopenharmony_ci * in the next three paragraphs. 377962306a36Sopenharmony_ci * 378062306a36Sopenharmony_ci * Even if a queue, say Q, is expired when it remains idle, Q 378162306a36Sopenharmony_ci * can still preempt the new in-service queue if the next 378262306a36Sopenharmony_ci * request of Q arrives soon (see the comments on 378362306a36Sopenharmony_ci * bfq_bfqq_update_budg_for_activation). If all queues and 378462306a36Sopenharmony_ci * groups have the same weight, this form of preemption, 378562306a36Sopenharmony_ci * combined with the hole-recovery heuristic described in the 378662306a36Sopenharmony_ci * comments on function bfq_bfqq_update_budg_for_activation, 378762306a36Sopenharmony_ci * are enough to preserve a correct bandwidth distribution in 378862306a36Sopenharmony_ci * the mid term, even without idling. In fact, even if not 378962306a36Sopenharmony_ci * idling allows the internal queues of the device to contain 379062306a36Sopenharmony_ci * many requests, and thus to reorder requests, we can rather 379162306a36Sopenharmony_ci * safely assume that the internal scheduler still preserves a 379262306a36Sopenharmony_ci * minimum of mid-term fairness. 379362306a36Sopenharmony_ci * 379462306a36Sopenharmony_ci * More precisely, this preemption-based, idleless approach 379562306a36Sopenharmony_ci * provides fairness in terms of IOPS, and not sectors per 379662306a36Sopenharmony_ci * second. This can be seen with a simple example. Suppose 379762306a36Sopenharmony_ci * that there are two queues with the same weight, but that 379862306a36Sopenharmony_ci * the first queue receives requests of 8 sectors, while the 379962306a36Sopenharmony_ci * second queue receives requests of 1024 sectors. In 380062306a36Sopenharmony_ci * addition, suppose that each of the two queues contains at 380162306a36Sopenharmony_ci * most one request at a time, which implies that each queue 380262306a36Sopenharmony_ci * always remains idle after it is served. Finally, after 380362306a36Sopenharmony_ci * remaining idle, each queue receives very quickly a new 380462306a36Sopenharmony_ci * request. It follows that the two queues are served 380562306a36Sopenharmony_ci * alternatively, preempting each other if needed. This 380662306a36Sopenharmony_ci * implies that, although both queues have the same weight, 380762306a36Sopenharmony_ci * the queue with large requests receives a service that is 380862306a36Sopenharmony_ci * 1024/8 times as high as the service received by the other 380962306a36Sopenharmony_ci * queue. 381062306a36Sopenharmony_ci * 381162306a36Sopenharmony_ci * The motivation for using preemption instead of idling (for 381262306a36Sopenharmony_ci * queues with the same weight) is that, by not idling, 381362306a36Sopenharmony_ci * service guarantees are preserved (completely or at least in 381462306a36Sopenharmony_ci * part) without minimally sacrificing throughput. And, if 381562306a36Sopenharmony_ci * there is no active group, then the primary expectation for 381662306a36Sopenharmony_ci * this device is probably a high throughput. 381762306a36Sopenharmony_ci * 381862306a36Sopenharmony_ci * We are now left only with explaining the two sub-conditions in the 381962306a36Sopenharmony_ci * additional compound condition that is checked below for deciding 382062306a36Sopenharmony_ci * whether the scenario is asymmetric. To explain the first 382162306a36Sopenharmony_ci * sub-condition, we need to add that the function 382262306a36Sopenharmony_ci * bfq_asymmetric_scenario checks the weights of only 382362306a36Sopenharmony_ci * non-weight-raised queues, for efficiency reasons (see comments on 382462306a36Sopenharmony_ci * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised 382562306a36Sopenharmony_ci * is checked explicitly here. More precisely, the compound condition 382662306a36Sopenharmony_ci * below takes into account also the fact that, even if bfqq is being 382762306a36Sopenharmony_ci * weight-raised, the scenario is still symmetric if all queues with 382862306a36Sopenharmony_ci * requests waiting for completion happen to be 382962306a36Sopenharmony_ci * weight-raised. Actually, we should be even more precise here, and 383062306a36Sopenharmony_ci * differentiate between interactive weight raising and soft real-time 383162306a36Sopenharmony_ci * weight raising. 383262306a36Sopenharmony_ci * 383362306a36Sopenharmony_ci * The second sub-condition checked in the compound condition is 383462306a36Sopenharmony_ci * whether there is a fair amount of already in-flight I/O not 383562306a36Sopenharmony_ci * belonging to bfqq. If so, I/O dispatching is to be plugged, for the 383662306a36Sopenharmony_ci * following reason. The drive may decide to serve in-flight 383762306a36Sopenharmony_ci * non-bfqq's I/O requests before bfqq's ones, thereby delaying the 383862306a36Sopenharmony_ci * arrival of new I/O requests for bfqq (recall that bfqq is sync). If 383962306a36Sopenharmony_ci * I/O-dispatching is not plugged, then, while bfqq remains empty, a 384062306a36Sopenharmony_ci * basically uncontrolled amount of I/O from other queues may be 384162306a36Sopenharmony_ci * dispatched too, possibly causing the service of bfqq's I/O to be 384262306a36Sopenharmony_ci * delayed even longer in the drive. This problem gets more and more 384362306a36Sopenharmony_ci * serious as the speed and the queue depth of the drive grow, 384462306a36Sopenharmony_ci * because, as these two quantities grow, the probability to find no 384562306a36Sopenharmony_ci * queue busy but many requests in flight grows too. By contrast, 384662306a36Sopenharmony_ci * plugging I/O dispatching minimizes the delay induced by already 384762306a36Sopenharmony_ci * in-flight I/O, and enables bfqq to recover the bandwidth it may 384862306a36Sopenharmony_ci * lose because of this delay. 384962306a36Sopenharmony_ci * 385062306a36Sopenharmony_ci * As a side note, it is worth considering that the above 385162306a36Sopenharmony_ci * device-idling countermeasures may however fail in the following 385262306a36Sopenharmony_ci * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled 385362306a36Sopenharmony_ci * in a time period during which all symmetry sub-conditions hold, and 385462306a36Sopenharmony_ci * therefore the device is allowed to enqueue many requests, but at 385562306a36Sopenharmony_ci * some later point in time some sub-condition stops to hold, then it 385662306a36Sopenharmony_ci * may become impossible to make requests be served in the desired 385762306a36Sopenharmony_ci * order until all the requests already queued in the device have been 385862306a36Sopenharmony_ci * served. The last sub-condition commented above somewhat mitigates 385962306a36Sopenharmony_ci * this problem for weight-raised queues. 386062306a36Sopenharmony_ci * 386162306a36Sopenharmony_ci * However, as an additional mitigation for this problem, we preserve 386262306a36Sopenharmony_ci * plugging for a special symmetric case that may suddenly turn into 386362306a36Sopenharmony_ci * asymmetric: the case where only bfqq is busy. In this case, not 386462306a36Sopenharmony_ci * expiring bfqq does not cause any harm to any other queues in terms 386562306a36Sopenharmony_ci * of service guarantees. In contrast, it avoids the following unlucky 386662306a36Sopenharmony_ci * sequence of events: (1) bfqq is expired, (2) a new queue with a 386762306a36Sopenharmony_ci * lower weight than bfqq becomes busy (or more queues), (3) the new 386862306a36Sopenharmony_ci * queue is served until a new request arrives for bfqq, (4) when bfqq 386962306a36Sopenharmony_ci * is finally served, there are so many requests of the new queue in 387062306a36Sopenharmony_ci * the drive that the pending requests for bfqq take a lot of time to 387162306a36Sopenharmony_ci * be served. In particular, event (2) may case even already 387262306a36Sopenharmony_ci * dispatched requests of bfqq to be delayed, inside the drive. So, to 387362306a36Sopenharmony_ci * avoid this series of events, the scenario is preventively declared 387462306a36Sopenharmony_ci * as asymmetric also if bfqq is the only busy queues 387562306a36Sopenharmony_ci */ 387662306a36Sopenharmony_cistatic bool idling_needed_for_service_guarantees(struct bfq_data *bfqd, 387762306a36Sopenharmony_ci struct bfq_queue *bfqq) 387862306a36Sopenharmony_ci{ 387962306a36Sopenharmony_ci int tot_busy_queues = bfq_tot_busy_queues(bfqd); 388062306a36Sopenharmony_ci 388162306a36Sopenharmony_ci /* No point in idling for bfqq if it won't get requests any longer */ 388262306a36Sopenharmony_ci if (unlikely(!bfqq_process_refs(bfqq))) 388362306a36Sopenharmony_ci return false; 388462306a36Sopenharmony_ci 388562306a36Sopenharmony_ci return (bfqq->wr_coeff > 1 && 388662306a36Sopenharmony_ci (bfqd->wr_busy_queues < tot_busy_queues || 388762306a36Sopenharmony_ci bfqd->tot_rq_in_driver >= bfqq->dispatched + 4)) || 388862306a36Sopenharmony_ci bfq_asymmetric_scenario(bfqd, bfqq) || 388962306a36Sopenharmony_ci tot_busy_queues == 1; 389062306a36Sopenharmony_ci} 389162306a36Sopenharmony_ci 389262306a36Sopenharmony_cistatic bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq, 389362306a36Sopenharmony_ci enum bfqq_expiration reason) 389462306a36Sopenharmony_ci{ 389562306a36Sopenharmony_ci /* 389662306a36Sopenharmony_ci * If this bfqq is shared between multiple processes, check 389762306a36Sopenharmony_ci * to make sure that those processes are still issuing I/Os 389862306a36Sopenharmony_ci * within the mean seek distance. If not, it may be time to 389962306a36Sopenharmony_ci * break the queues apart again. 390062306a36Sopenharmony_ci */ 390162306a36Sopenharmony_ci if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq)) 390262306a36Sopenharmony_ci bfq_mark_bfqq_split_coop(bfqq); 390362306a36Sopenharmony_ci 390462306a36Sopenharmony_ci /* 390562306a36Sopenharmony_ci * Consider queues with a higher finish virtual time than 390662306a36Sopenharmony_ci * bfqq. If idling_needed_for_service_guarantees(bfqq) returns 390762306a36Sopenharmony_ci * true, then bfqq's bandwidth would be violated if an 390862306a36Sopenharmony_ci * uncontrolled amount of I/O from these queues were 390962306a36Sopenharmony_ci * dispatched while bfqq is waiting for its new I/O to 391062306a36Sopenharmony_ci * arrive. This is exactly what may happen if this is a forced 391162306a36Sopenharmony_ci * expiration caused by a preemption attempt, and if bfqq is 391262306a36Sopenharmony_ci * not re-scheduled. To prevent this from happening, re-queue 391362306a36Sopenharmony_ci * bfqq if it needs I/O-dispatch plugging, even if it is 391462306a36Sopenharmony_ci * empty. By doing so, bfqq is granted to be served before the 391562306a36Sopenharmony_ci * above queues (provided that bfqq is of course eligible). 391662306a36Sopenharmony_ci */ 391762306a36Sopenharmony_ci if (RB_EMPTY_ROOT(&bfqq->sort_list) && 391862306a36Sopenharmony_ci !(reason == BFQQE_PREEMPTED && 391962306a36Sopenharmony_ci idling_needed_for_service_guarantees(bfqd, bfqq))) { 392062306a36Sopenharmony_ci if (bfqq->dispatched == 0) 392162306a36Sopenharmony_ci /* 392262306a36Sopenharmony_ci * Overloading budget_timeout field to store 392362306a36Sopenharmony_ci * the time at which the queue remains with no 392462306a36Sopenharmony_ci * backlog and no outstanding request; used by 392562306a36Sopenharmony_ci * the weight-raising mechanism. 392662306a36Sopenharmony_ci */ 392762306a36Sopenharmony_ci bfqq->budget_timeout = jiffies; 392862306a36Sopenharmony_ci 392962306a36Sopenharmony_ci bfq_del_bfqq_busy(bfqq, true); 393062306a36Sopenharmony_ci } else { 393162306a36Sopenharmony_ci bfq_requeue_bfqq(bfqd, bfqq, true); 393262306a36Sopenharmony_ci /* 393362306a36Sopenharmony_ci * Resort priority tree of potential close cooperators. 393462306a36Sopenharmony_ci * See comments on bfq_pos_tree_add_move() for the unlikely(). 393562306a36Sopenharmony_ci */ 393662306a36Sopenharmony_ci if (unlikely(!bfqd->nonrot_with_queueing && 393762306a36Sopenharmony_ci !RB_EMPTY_ROOT(&bfqq->sort_list))) 393862306a36Sopenharmony_ci bfq_pos_tree_add_move(bfqd, bfqq); 393962306a36Sopenharmony_ci } 394062306a36Sopenharmony_ci 394162306a36Sopenharmony_ci /* 394262306a36Sopenharmony_ci * All in-service entities must have been properly deactivated 394362306a36Sopenharmony_ci * or requeued before executing the next function, which 394462306a36Sopenharmony_ci * resets all in-service entities as no more in service. This 394562306a36Sopenharmony_ci * may cause bfqq to be freed. If this happens, the next 394662306a36Sopenharmony_ci * function returns true. 394762306a36Sopenharmony_ci */ 394862306a36Sopenharmony_ci return __bfq_bfqd_reset_in_service(bfqd); 394962306a36Sopenharmony_ci} 395062306a36Sopenharmony_ci 395162306a36Sopenharmony_ci/** 395262306a36Sopenharmony_ci * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior. 395362306a36Sopenharmony_ci * @bfqd: device data. 395462306a36Sopenharmony_ci * @bfqq: queue to update. 395562306a36Sopenharmony_ci * @reason: reason for expiration. 395662306a36Sopenharmony_ci * 395762306a36Sopenharmony_ci * Handle the feedback on @bfqq budget at queue expiration. 395862306a36Sopenharmony_ci * See the body for detailed comments. 395962306a36Sopenharmony_ci */ 396062306a36Sopenharmony_cistatic void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd, 396162306a36Sopenharmony_ci struct bfq_queue *bfqq, 396262306a36Sopenharmony_ci enum bfqq_expiration reason) 396362306a36Sopenharmony_ci{ 396462306a36Sopenharmony_ci struct request *next_rq; 396562306a36Sopenharmony_ci int budget, min_budget; 396662306a36Sopenharmony_ci 396762306a36Sopenharmony_ci min_budget = bfq_min_budget(bfqd); 396862306a36Sopenharmony_ci 396962306a36Sopenharmony_ci if (bfqq->wr_coeff == 1) 397062306a36Sopenharmony_ci budget = bfqq->max_budget; 397162306a36Sopenharmony_ci else /* 397262306a36Sopenharmony_ci * Use a constant, low budget for weight-raised queues, 397362306a36Sopenharmony_ci * to help achieve a low latency. Keep it slightly higher 397462306a36Sopenharmony_ci * than the minimum possible budget, to cause a little 397562306a36Sopenharmony_ci * bit fewer expirations. 397662306a36Sopenharmony_ci */ 397762306a36Sopenharmony_ci budget = 2 * min_budget; 397862306a36Sopenharmony_ci 397962306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d", 398062306a36Sopenharmony_ci bfqq->entity.budget, bfq_bfqq_budget_left(bfqq)); 398162306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d", 398262306a36Sopenharmony_ci budget, bfq_min_budget(bfqd)); 398362306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d", 398462306a36Sopenharmony_ci bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue)); 398562306a36Sopenharmony_ci 398662306a36Sopenharmony_ci if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) { 398762306a36Sopenharmony_ci switch (reason) { 398862306a36Sopenharmony_ci /* 398962306a36Sopenharmony_ci * Caveat: in all the following cases we trade latency 399062306a36Sopenharmony_ci * for throughput. 399162306a36Sopenharmony_ci */ 399262306a36Sopenharmony_ci case BFQQE_TOO_IDLE: 399362306a36Sopenharmony_ci /* 399462306a36Sopenharmony_ci * This is the only case where we may reduce 399562306a36Sopenharmony_ci * the budget: if there is no request of the 399662306a36Sopenharmony_ci * process still waiting for completion, then 399762306a36Sopenharmony_ci * we assume (tentatively) that the timer has 399862306a36Sopenharmony_ci * expired because the batch of requests of 399962306a36Sopenharmony_ci * the process could have been served with a 400062306a36Sopenharmony_ci * smaller budget. Hence, betting that 400162306a36Sopenharmony_ci * process will behave in the same way when it 400262306a36Sopenharmony_ci * becomes backlogged again, we reduce its 400362306a36Sopenharmony_ci * next budget. As long as we guess right, 400462306a36Sopenharmony_ci * this budget cut reduces the latency 400562306a36Sopenharmony_ci * experienced by the process. 400662306a36Sopenharmony_ci * 400762306a36Sopenharmony_ci * However, if there are still outstanding 400862306a36Sopenharmony_ci * requests, then the process may have not yet 400962306a36Sopenharmony_ci * issued its next request just because it is 401062306a36Sopenharmony_ci * still waiting for the completion of some of 401162306a36Sopenharmony_ci * the still outstanding ones. So in this 401262306a36Sopenharmony_ci * subcase we do not reduce its budget, on the 401362306a36Sopenharmony_ci * contrary we increase it to possibly boost 401462306a36Sopenharmony_ci * the throughput, as discussed in the 401562306a36Sopenharmony_ci * comments to the BUDGET_TIMEOUT case. 401662306a36Sopenharmony_ci */ 401762306a36Sopenharmony_ci if (bfqq->dispatched > 0) /* still outstanding reqs */ 401862306a36Sopenharmony_ci budget = min(budget * 2, bfqd->bfq_max_budget); 401962306a36Sopenharmony_ci else { 402062306a36Sopenharmony_ci if (budget > 5 * min_budget) 402162306a36Sopenharmony_ci budget -= 4 * min_budget; 402262306a36Sopenharmony_ci else 402362306a36Sopenharmony_ci budget = min_budget; 402462306a36Sopenharmony_ci } 402562306a36Sopenharmony_ci break; 402662306a36Sopenharmony_ci case BFQQE_BUDGET_TIMEOUT: 402762306a36Sopenharmony_ci /* 402862306a36Sopenharmony_ci * We double the budget here because it gives 402962306a36Sopenharmony_ci * the chance to boost the throughput if this 403062306a36Sopenharmony_ci * is not a seeky process (and has bumped into 403162306a36Sopenharmony_ci * this timeout because of, e.g., ZBR). 403262306a36Sopenharmony_ci */ 403362306a36Sopenharmony_ci budget = min(budget * 2, bfqd->bfq_max_budget); 403462306a36Sopenharmony_ci break; 403562306a36Sopenharmony_ci case BFQQE_BUDGET_EXHAUSTED: 403662306a36Sopenharmony_ci /* 403762306a36Sopenharmony_ci * The process still has backlog, and did not 403862306a36Sopenharmony_ci * let either the budget timeout or the disk 403962306a36Sopenharmony_ci * idling timeout expire. Hence it is not 404062306a36Sopenharmony_ci * seeky, has a short thinktime and may be 404162306a36Sopenharmony_ci * happy with a higher budget too. So 404262306a36Sopenharmony_ci * definitely increase the budget of this good 404362306a36Sopenharmony_ci * candidate to boost the disk throughput. 404462306a36Sopenharmony_ci */ 404562306a36Sopenharmony_ci budget = min(budget * 4, bfqd->bfq_max_budget); 404662306a36Sopenharmony_ci break; 404762306a36Sopenharmony_ci case BFQQE_NO_MORE_REQUESTS: 404862306a36Sopenharmony_ci /* 404962306a36Sopenharmony_ci * For queues that expire for this reason, it 405062306a36Sopenharmony_ci * is particularly important to keep the 405162306a36Sopenharmony_ci * budget close to the actual service they 405262306a36Sopenharmony_ci * need. Doing so reduces the timestamp 405362306a36Sopenharmony_ci * misalignment problem described in the 405462306a36Sopenharmony_ci * comments in the body of 405562306a36Sopenharmony_ci * __bfq_activate_entity. In fact, suppose 405662306a36Sopenharmony_ci * that a queue systematically expires for 405762306a36Sopenharmony_ci * BFQQE_NO_MORE_REQUESTS and presents a 405862306a36Sopenharmony_ci * new request in time to enjoy timestamp 405962306a36Sopenharmony_ci * back-shifting. The larger the budget of the 406062306a36Sopenharmony_ci * queue is with respect to the service the 406162306a36Sopenharmony_ci * queue actually requests in each service 406262306a36Sopenharmony_ci * slot, the more times the queue can be 406362306a36Sopenharmony_ci * reactivated with the same virtual finish 406462306a36Sopenharmony_ci * time. It follows that, even if this finish 406562306a36Sopenharmony_ci * time is pushed to the system virtual time 406662306a36Sopenharmony_ci * to reduce the consequent timestamp 406762306a36Sopenharmony_ci * misalignment, the queue unjustly enjoys for 406862306a36Sopenharmony_ci * many re-activations a lower finish time 406962306a36Sopenharmony_ci * than all newly activated queues. 407062306a36Sopenharmony_ci * 407162306a36Sopenharmony_ci * The service needed by bfqq is measured 407262306a36Sopenharmony_ci * quite precisely by bfqq->entity.service. 407362306a36Sopenharmony_ci * Since bfqq does not enjoy device idling, 407462306a36Sopenharmony_ci * bfqq->entity.service is equal to the number 407562306a36Sopenharmony_ci * of sectors that the process associated with 407662306a36Sopenharmony_ci * bfqq requested to read/write before waiting 407762306a36Sopenharmony_ci * for request completions, or blocking for 407862306a36Sopenharmony_ci * other reasons. 407962306a36Sopenharmony_ci */ 408062306a36Sopenharmony_ci budget = max_t(int, bfqq->entity.service, min_budget); 408162306a36Sopenharmony_ci break; 408262306a36Sopenharmony_ci default: 408362306a36Sopenharmony_ci return; 408462306a36Sopenharmony_ci } 408562306a36Sopenharmony_ci } else if (!bfq_bfqq_sync(bfqq)) { 408662306a36Sopenharmony_ci /* 408762306a36Sopenharmony_ci * Async queues get always the maximum possible 408862306a36Sopenharmony_ci * budget, as for them we do not care about latency 408962306a36Sopenharmony_ci * (in addition, their ability to dispatch is limited 409062306a36Sopenharmony_ci * by the charging factor). 409162306a36Sopenharmony_ci */ 409262306a36Sopenharmony_ci budget = bfqd->bfq_max_budget; 409362306a36Sopenharmony_ci } 409462306a36Sopenharmony_ci 409562306a36Sopenharmony_ci bfqq->max_budget = budget; 409662306a36Sopenharmony_ci 409762306a36Sopenharmony_ci if (bfqd->budgets_assigned >= bfq_stats_min_budgets && 409862306a36Sopenharmony_ci !bfqd->bfq_user_max_budget) 409962306a36Sopenharmony_ci bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget); 410062306a36Sopenharmony_ci 410162306a36Sopenharmony_ci /* 410262306a36Sopenharmony_ci * If there is still backlog, then assign a new budget, making 410362306a36Sopenharmony_ci * sure that it is large enough for the next request. Since 410462306a36Sopenharmony_ci * the finish time of bfqq must be kept in sync with the 410562306a36Sopenharmony_ci * budget, be sure to call __bfq_bfqq_expire() *after* this 410662306a36Sopenharmony_ci * update. 410762306a36Sopenharmony_ci * 410862306a36Sopenharmony_ci * If there is no backlog, then no need to update the budget; 410962306a36Sopenharmony_ci * it will be updated on the arrival of a new request. 411062306a36Sopenharmony_ci */ 411162306a36Sopenharmony_ci next_rq = bfqq->next_rq; 411262306a36Sopenharmony_ci if (next_rq) 411362306a36Sopenharmony_ci bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget, 411462306a36Sopenharmony_ci bfq_serv_to_charge(next_rq, bfqq)); 411562306a36Sopenharmony_ci 411662306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d", 411762306a36Sopenharmony_ci next_rq ? blk_rq_sectors(next_rq) : 0, 411862306a36Sopenharmony_ci bfqq->entity.budget); 411962306a36Sopenharmony_ci} 412062306a36Sopenharmony_ci 412162306a36Sopenharmony_ci/* 412262306a36Sopenharmony_ci * Return true if the process associated with bfqq is "slow". The slow 412362306a36Sopenharmony_ci * flag is used, in addition to the budget timeout, to reduce the 412462306a36Sopenharmony_ci * amount of service provided to seeky processes, and thus reduce 412562306a36Sopenharmony_ci * their chances to lower the throughput. More details in the comments 412662306a36Sopenharmony_ci * on the function bfq_bfqq_expire(). 412762306a36Sopenharmony_ci * 412862306a36Sopenharmony_ci * An important observation is in order: as discussed in the comments 412962306a36Sopenharmony_ci * on the function bfq_update_peak_rate(), with devices with internal 413062306a36Sopenharmony_ci * queues, it is hard if ever possible to know when and for how long 413162306a36Sopenharmony_ci * an I/O request is processed by the device (apart from the trivial 413262306a36Sopenharmony_ci * I/O pattern where a new request is dispatched only after the 413362306a36Sopenharmony_ci * previous one has been completed). This makes it hard to evaluate 413462306a36Sopenharmony_ci * the real rate at which the I/O requests of each bfq_queue are 413562306a36Sopenharmony_ci * served. In fact, for an I/O scheduler like BFQ, serving a 413662306a36Sopenharmony_ci * bfq_queue means just dispatching its requests during its service 413762306a36Sopenharmony_ci * slot (i.e., until the budget of the queue is exhausted, or the 413862306a36Sopenharmony_ci * queue remains idle, or, finally, a timeout fires). But, during the 413962306a36Sopenharmony_ci * service slot of a bfq_queue, around 100 ms at most, the device may 414062306a36Sopenharmony_ci * be even still processing requests of bfq_queues served in previous 414162306a36Sopenharmony_ci * service slots. On the opposite end, the requests of the in-service 414262306a36Sopenharmony_ci * bfq_queue may be completed after the service slot of the queue 414362306a36Sopenharmony_ci * finishes. 414462306a36Sopenharmony_ci * 414562306a36Sopenharmony_ci * Anyway, unless more sophisticated solutions are used 414662306a36Sopenharmony_ci * (where possible), the sum of the sizes of the requests dispatched 414762306a36Sopenharmony_ci * during the service slot of a bfq_queue is probably the only 414862306a36Sopenharmony_ci * approximation available for the service received by the bfq_queue 414962306a36Sopenharmony_ci * during its service slot. And this sum is the quantity used in this 415062306a36Sopenharmony_ci * function to evaluate the I/O speed of a process. 415162306a36Sopenharmony_ci */ 415262306a36Sopenharmony_cistatic bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq, 415362306a36Sopenharmony_ci bool compensate, unsigned long *delta_ms) 415462306a36Sopenharmony_ci{ 415562306a36Sopenharmony_ci ktime_t delta_ktime; 415662306a36Sopenharmony_ci u32 delta_usecs; 415762306a36Sopenharmony_ci bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */ 415862306a36Sopenharmony_ci 415962306a36Sopenharmony_ci if (!bfq_bfqq_sync(bfqq)) 416062306a36Sopenharmony_ci return false; 416162306a36Sopenharmony_ci 416262306a36Sopenharmony_ci if (compensate) 416362306a36Sopenharmony_ci delta_ktime = bfqd->last_idling_start; 416462306a36Sopenharmony_ci else 416562306a36Sopenharmony_ci delta_ktime = ktime_get(); 416662306a36Sopenharmony_ci delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start); 416762306a36Sopenharmony_ci delta_usecs = ktime_to_us(delta_ktime); 416862306a36Sopenharmony_ci 416962306a36Sopenharmony_ci /* don't use too short time intervals */ 417062306a36Sopenharmony_ci if (delta_usecs < 1000) { 417162306a36Sopenharmony_ci if (blk_queue_nonrot(bfqd->queue)) 417262306a36Sopenharmony_ci /* 417362306a36Sopenharmony_ci * give same worst-case guarantees as idling 417462306a36Sopenharmony_ci * for seeky 417562306a36Sopenharmony_ci */ 417662306a36Sopenharmony_ci *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC; 417762306a36Sopenharmony_ci else /* charge at least one seek */ 417862306a36Sopenharmony_ci *delta_ms = bfq_slice_idle / NSEC_PER_MSEC; 417962306a36Sopenharmony_ci 418062306a36Sopenharmony_ci return slow; 418162306a36Sopenharmony_ci } 418262306a36Sopenharmony_ci 418362306a36Sopenharmony_ci *delta_ms = delta_usecs / USEC_PER_MSEC; 418462306a36Sopenharmony_ci 418562306a36Sopenharmony_ci /* 418662306a36Sopenharmony_ci * Use only long (> 20ms) intervals to filter out excessive 418762306a36Sopenharmony_ci * spikes in service rate estimation. 418862306a36Sopenharmony_ci */ 418962306a36Sopenharmony_ci if (delta_usecs > 20000) { 419062306a36Sopenharmony_ci /* 419162306a36Sopenharmony_ci * Caveat for rotational devices: processes doing I/O 419262306a36Sopenharmony_ci * in the slower disk zones tend to be slow(er) even 419362306a36Sopenharmony_ci * if not seeky. In this respect, the estimated peak 419462306a36Sopenharmony_ci * rate is likely to be an average over the disk 419562306a36Sopenharmony_ci * surface. Accordingly, to not be too harsh with 419662306a36Sopenharmony_ci * unlucky processes, a process is deemed slow only if 419762306a36Sopenharmony_ci * its rate has been lower than half of the estimated 419862306a36Sopenharmony_ci * peak rate. 419962306a36Sopenharmony_ci */ 420062306a36Sopenharmony_ci slow = bfqq->entity.service < bfqd->bfq_max_budget / 2; 420162306a36Sopenharmony_ci } 420262306a36Sopenharmony_ci 420362306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow); 420462306a36Sopenharmony_ci 420562306a36Sopenharmony_ci return slow; 420662306a36Sopenharmony_ci} 420762306a36Sopenharmony_ci 420862306a36Sopenharmony_ci/* 420962306a36Sopenharmony_ci * To be deemed as soft real-time, an application must meet two 421062306a36Sopenharmony_ci * requirements. First, the application must not require an average 421162306a36Sopenharmony_ci * bandwidth higher than the approximate bandwidth required to playback or 421262306a36Sopenharmony_ci * record a compressed high-definition video. 421362306a36Sopenharmony_ci * The next function is invoked on the completion of the last request of a 421462306a36Sopenharmony_ci * batch, to compute the next-start time instant, soft_rt_next_start, such 421562306a36Sopenharmony_ci * that, if the next request of the application does not arrive before 421662306a36Sopenharmony_ci * soft_rt_next_start, then the above requirement on the bandwidth is met. 421762306a36Sopenharmony_ci * 421862306a36Sopenharmony_ci * The second requirement is that the request pattern of the application is 421962306a36Sopenharmony_ci * isochronous, i.e., that, after issuing a request or a batch of requests, 422062306a36Sopenharmony_ci * the application stops issuing new requests until all its pending requests 422162306a36Sopenharmony_ci * have been completed. After that, the application may issue a new batch, 422262306a36Sopenharmony_ci * and so on. 422362306a36Sopenharmony_ci * For this reason the next function is invoked to compute 422462306a36Sopenharmony_ci * soft_rt_next_start only for applications that meet this requirement, 422562306a36Sopenharmony_ci * whereas soft_rt_next_start is set to infinity for applications that do 422662306a36Sopenharmony_ci * not. 422762306a36Sopenharmony_ci * 422862306a36Sopenharmony_ci * Unfortunately, even a greedy (i.e., I/O-bound) application may 422962306a36Sopenharmony_ci * happen to meet, occasionally or systematically, both the above 423062306a36Sopenharmony_ci * bandwidth and isochrony requirements. This may happen at least in 423162306a36Sopenharmony_ci * the following circumstances. First, if the CPU load is high. The 423262306a36Sopenharmony_ci * application may stop issuing requests while the CPUs are busy 423362306a36Sopenharmony_ci * serving other processes, then restart, then stop again for a while, 423462306a36Sopenharmony_ci * and so on. The other circumstances are related to the storage 423562306a36Sopenharmony_ci * device: the storage device is highly loaded or reaches a low-enough 423662306a36Sopenharmony_ci * throughput with the I/O of the application (e.g., because the I/O 423762306a36Sopenharmony_ci * is random and/or the device is slow). In all these cases, the 423862306a36Sopenharmony_ci * I/O of the application may be simply slowed down enough to meet 423962306a36Sopenharmony_ci * the bandwidth and isochrony requirements. To reduce the probability 424062306a36Sopenharmony_ci * that greedy applications are deemed as soft real-time in these 424162306a36Sopenharmony_ci * corner cases, a further rule is used in the computation of 424262306a36Sopenharmony_ci * soft_rt_next_start: the return value of this function is forced to 424362306a36Sopenharmony_ci * be higher than the maximum between the following two quantities. 424462306a36Sopenharmony_ci * 424562306a36Sopenharmony_ci * (a) Current time plus: (1) the maximum time for which the arrival 424662306a36Sopenharmony_ci * of a request is waited for when a sync queue becomes idle, 424762306a36Sopenharmony_ci * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We 424862306a36Sopenharmony_ci * postpone for a moment the reason for adding a few extra 424962306a36Sopenharmony_ci * jiffies; we get back to it after next item (b). Lower-bounding 425062306a36Sopenharmony_ci * the return value of this function with the current time plus 425162306a36Sopenharmony_ci * bfqd->bfq_slice_idle tends to filter out greedy applications, 425262306a36Sopenharmony_ci * because the latter issue their next request as soon as possible 425362306a36Sopenharmony_ci * after the last one has been completed. In contrast, a soft 425462306a36Sopenharmony_ci * real-time application spends some time processing data, after a 425562306a36Sopenharmony_ci * batch of its requests has been completed. 425662306a36Sopenharmony_ci * 425762306a36Sopenharmony_ci * (b) Current value of bfqq->soft_rt_next_start. As pointed out 425862306a36Sopenharmony_ci * above, greedy applications may happen to meet both the 425962306a36Sopenharmony_ci * bandwidth and isochrony requirements under heavy CPU or 426062306a36Sopenharmony_ci * storage-device load. In more detail, in these scenarios, these 426162306a36Sopenharmony_ci * applications happen, only for limited time periods, to do I/O 426262306a36Sopenharmony_ci * slowly enough to meet all the requirements described so far, 426362306a36Sopenharmony_ci * including the filtering in above item (a). These slow-speed 426462306a36Sopenharmony_ci * time intervals are usually interspersed between other time 426562306a36Sopenharmony_ci * intervals during which these applications do I/O at a very high 426662306a36Sopenharmony_ci * speed. Fortunately, exactly because of the high speed of the 426762306a36Sopenharmony_ci * I/O in the high-speed intervals, the values returned by this 426862306a36Sopenharmony_ci * function happen to be so high, near the end of any such 426962306a36Sopenharmony_ci * high-speed interval, to be likely to fall *after* the end of 427062306a36Sopenharmony_ci * the low-speed time interval that follows. These high values are 427162306a36Sopenharmony_ci * stored in bfqq->soft_rt_next_start after each invocation of 427262306a36Sopenharmony_ci * this function. As a consequence, if the last value of 427362306a36Sopenharmony_ci * bfqq->soft_rt_next_start is constantly used to lower-bound the 427462306a36Sopenharmony_ci * next value that this function may return, then, from the very 427562306a36Sopenharmony_ci * beginning of a low-speed interval, bfqq->soft_rt_next_start is 427662306a36Sopenharmony_ci * likely to be constantly kept so high that any I/O request 427762306a36Sopenharmony_ci * issued during the low-speed interval is considered as arriving 427862306a36Sopenharmony_ci * to soon for the application to be deemed as soft 427962306a36Sopenharmony_ci * real-time. Then, in the high-speed interval that follows, the 428062306a36Sopenharmony_ci * application will not be deemed as soft real-time, just because 428162306a36Sopenharmony_ci * it will do I/O at a high speed. And so on. 428262306a36Sopenharmony_ci * 428362306a36Sopenharmony_ci * Getting back to the filtering in item (a), in the following two 428462306a36Sopenharmony_ci * cases this filtering might be easily passed by a greedy 428562306a36Sopenharmony_ci * application, if the reference quantity was just 428662306a36Sopenharmony_ci * bfqd->bfq_slice_idle: 428762306a36Sopenharmony_ci * 1) HZ is so low that the duration of a jiffy is comparable to or 428862306a36Sopenharmony_ci * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow 428962306a36Sopenharmony_ci * devices with HZ=100. The time granularity may be so coarse 429062306a36Sopenharmony_ci * that the approximation, in jiffies, of bfqd->bfq_slice_idle 429162306a36Sopenharmony_ci * is rather lower than the exact value. 429262306a36Sopenharmony_ci * 2) jiffies, instead of increasing at a constant rate, may stop increasing 429362306a36Sopenharmony_ci * for a while, then suddenly 'jump' by several units to recover the lost 429462306a36Sopenharmony_ci * increments. This seems to happen, e.g., inside virtual machines. 429562306a36Sopenharmony_ci * To address this issue, in the filtering in (a) we do not use as a 429662306a36Sopenharmony_ci * reference time interval just bfqd->bfq_slice_idle, but 429762306a36Sopenharmony_ci * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the 429862306a36Sopenharmony_ci * minimum number of jiffies for which the filter seems to be quite 429962306a36Sopenharmony_ci * precise also in embedded systems and KVM/QEMU virtual machines. 430062306a36Sopenharmony_ci */ 430162306a36Sopenharmony_cistatic unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd, 430262306a36Sopenharmony_ci struct bfq_queue *bfqq) 430362306a36Sopenharmony_ci{ 430462306a36Sopenharmony_ci return max3(bfqq->soft_rt_next_start, 430562306a36Sopenharmony_ci bfqq->last_idle_bklogged + 430662306a36Sopenharmony_ci HZ * bfqq->service_from_backlogged / 430762306a36Sopenharmony_ci bfqd->bfq_wr_max_softrt_rate, 430862306a36Sopenharmony_ci jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4); 430962306a36Sopenharmony_ci} 431062306a36Sopenharmony_ci 431162306a36Sopenharmony_ci/** 431262306a36Sopenharmony_ci * bfq_bfqq_expire - expire a queue. 431362306a36Sopenharmony_ci * @bfqd: device owning the queue. 431462306a36Sopenharmony_ci * @bfqq: the queue to expire. 431562306a36Sopenharmony_ci * @compensate: if true, compensate for the time spent idling. 431662306a36Sopenharmony_ci * @reason: the reason causing the expiration. 431762306a36Sopenharmony_ci * 431862306a36Sopenharmony_ci * If the process associated with bfqq does slow I/O (e.g., because it 431962306a36Sopenharmony_ci * issues random requests), we charge bfqq with the time it has been 432062306a36Sopenharmony_ci * in service instead of the service it has received (see 432162306a36Sopenharmony_ci * bfq_bfqq_charge_time for details on how this goal is achieved). As 432262306a36Sopenharmony_ci * a consequence, bfqq will typically get higher timestamps upon 432362306a36Sopenharmony_ci * reactivation, and hence it will be rescheduled as if it had 432462306a36Sopenharmony_ci * received more service than what it has actually received. In the 432562306a36Sopenharmony_ci * end, bfqq receives less service in proportion to how slowly its 432662306a36Sopenharmony_ci * associated process consumes its budgets (and hence how seriously it 432762306a36Sopenharmony_ci * tends to lower the throughput). In addition, this time-charging 432862306a36Sopenharmony_ci * strategy guarantees time fairness among slow processes. In 432962306a36Sopenharmony_ci * contrast, if the process associated with bfqq is not slow, we 433062306a36Sopenharmony_ci * charge bfqq exactly with the service it has received. 433162306a36Sopenharmony_ci * 433262306a36Sopenharmony_ci * Charging time to the first type of queues and the exact service to 433362306a36Sopenharmony_ci * the other has the effect of using the WF2Q+ policy to schedule the 433462306a36Sopenharmony_ci * former on a timeslice basis, without violating service domain 433562306a36Sopenharmony_ci * guarantees among the latter. 433662306a36Sopenharmony_ci */ 433762306a36Sopenharmony_civoid bfq_bfqq_expire(struct bfq_data *bfqd, 433862306a36Sopenharmony_ci struct bfq_queue *bfqq, 433962306a36Sopenharmony_ci bool compensate, 434062306a36Sopenharmony_ci enum bfqq_expiration reason) 434162306a36Sopenharmony_ci{ 434262306a36Sopenharmony_ci bool slow; 434362306a36Sopenharmony_ci unsigned long delta = 0; 434462306a36Sopenharmony_ci struct bfq_entity *entity = &bfqq->entity; 434562306a36Sopenharmony_ci 434662306a36Sopenharmony_ci /* 434762306a36Sopenharmony_ci * Check whether the process is slow (see bfq_bfqq_is_slow). 434862306a36Sopenharmony_ci */ 434962306a36Sopenharmony_ci slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, &delta); 435062306a36Sopenharmony_ci 435162306a36Sopenharmony_ci /* 435262306a36Sopenharmony_ci * As above explained, charge slow (typically seeky) and 435362306a36Sopenharmony_ci * timed-out queues with the time and not the service 435462306a36Sopenharmony_ci * received, to favor sequential workloads. 435562306a36Sopenharmony_ci * 435662306a36Sopenharmony_ci * Processes doing I/O in the slower disk zones will tend to 435762306a36Sopenharmony_ci * be slow(er) even if not seeky. Therefore, since the 435862306a36Sopenharmony_ci * estimated peak rate is actually an average over the disk 435962306a36Sopenharmony_ci * surface, these processes may timeout just for bad luck. To 436062306a36Sopenharmony_ci * avoid punishing them, do not charge time to processes that 436162306a36Sopenharmony_ci * succeeded in consuming at least 2/3 of their budget. This 436262306a36Sopenharmony_ci * allows BFQ to preserve enough elasticity to still perform 436362306a36Sopenharmony_ci * bandwidth, and not time, distribution with little unlucky 436462306a36Sopenharmony_ci * or quasi-sequential processes. 436562306a36Sopenharmony_ci */ 436662306a36Sopenharmony_ci if (bfqq->wr_coeff == 1 && 436762306a36Sopenharmony_ci (slow || 436862306a36Sopenharmony_ci (reason == BFQQE_BUDGET_TIMEOUT && 436962306a36Sopenharmony_ci bfq_bfqq_budget_left(bfqq) >= entity->budget / 3))) 437062306a36Sopenharmony_ci bfq_bfqq_charge_time(bfqd, bfqq, delta); 437162306a36Sopenharmony_ci 437262306a36Sopenharmony_ci if (bfqd->low_latency && bfqq->wr_coeff == 1) 437362306a36Sopenharmony_ci bfqq->last_wr_start_finish = jiffies; 437462306a36Sopenharmony_ci 437562306a36Sopenharmony_ci if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 && 437662306a36Sopenharmony_ci RB_EMPTY_ROOT(&bfqq->sort_list)) { 437762306a36Sopenharmony_ci /* 437862306a36Sopenharmony_ci * If we get here, and there are no outstanding 437962306a36Sopenharmony_ci * requests, then the request pattern is isochronous 438062306a36Sopenharmony_ci * (see the comments on the function 438162306a36Sopenharmony_ci * bfq_bfqq_softrt_next_start()). Therefore we can 438262306a36Sopenharmony_ci * compute soft_rt_next_start. 438362306a36Sopenharmony_ci * 438462306a36Sopenharmony_ci * If, instead, the queue still has outstanding 438562306a36Sopenharmony_ci * requests, then we have to wait for the completion 438662306a36Sopenharmony_ci * of all the outstanding requests to discover whether 438762306a36Sopenharmony_ci * the request pattern is actually isochronous. 438862306a36Sopenharmony_ci */ 438962306a36Sopenharmony_ci if (bfqq->dispatched == 0) 439062306a36Sopenharmony_ci bfqq->soft_rt_next_start = 439162306a36Sopenharmony_ci bfq_bfqq_softrt_next_start(bfqd, bfqq); 439262306a36Sopenharmony_ci else if (bfqq->dispatched > 0) { 439362306a36Sopenharmony_ci /* 439462306a36Sopenharmony_ci * Schedule an update of soft_rt_next_start to when 439562306a36Sopenharmony_ci * the task may be discovered to be isochronous. 439662306a36Sopenharmony_ci */ 439762306a36Sopenharmony_ci bfq_mark_bfqq_softrt_update(bfqq); 439862306a36Sopenharmony_ci } 439962306a36Sopenharmony_ci } 440062306a36Sopenharmony_ci 440162306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, 440262306a36Sopenharmony_ci "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason, 440362306a36Sopenharmony_ci slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq)); 440462306a36Sopenharmony_ci 440562306a36Sopenharmony_ci /* 440662306a36Sopenharmony_ci * bfqq expired, so no total service time needs to be computed 440762306a36Sopenharmony_ci * any longer: reset state machine for measuring total service 440862306a36Sopenharmony_ci * times. 440962306a36Sopenharmony_ci */ 441062306a36Sopenharmony_ci bfqd->rqs_injected = bfqd->wait_dispatch = false; 441162306a36Sopenharmony_ci bfqd->waited_rq = NULL; 441262306a36Sopenharmony_ci 441362306a36Sopenharmony_ci /* 441462306a36Sopenharmony_ci * Increase, decrease or leave budget unchanged according to 441562306a36Sopenharmony_ci * reason. 441662306a36Sopenharmony_ci */ 441762306a36Sopenharmony_ci __bfq_bfqq_recalc_budget(bfqd, bfqq, reason); 441862306a36Sopenharmony_ci if (__bfq_bfqq_expire(bfqd, bfqq, reason)) 441962306a36Sopenharmony_ci /* bfqq is gone, no more actions on it */ 442062306a36Sopenharmony_ci return; 442162306a36Sopenharmony_ci 442262306a36Sopenharmony_ci /* mark bfqq as waiting a request only if a bic still points to it */ 442362306a36Sopenharmony_ci if (!bfq_bfqq_busy(bfqq) && 442462306a36Sopenharmony_ci reason != BFQQE_BUDGET_TIMEOUT && 442562306a36Sopenharmony_ci reason != BFQQE_BUDGET_EXHAUSTED) { 442662306a36Sopenharmony_ci bfq_mark_bfqq_non_blocking_wait_rq(bfqq); 442762306a36Sopenharmony_ci /* 442862306a36Sopenharmony_ci * Not setting service to 0, because, if the next rq 442962306a36Sopenharmony_ci * arrives in time, the queue will go on receiving 443062306a36Sopenharmony_ci * service with this same budget (as if it never expired) 443162306a36Sopenharmony_ci */ 443262306a36Sopenharmony_ci } else 443362306a36Sopenharmony_ci entity->service = 0; 443462306a36Sopenharmony_ci 443562306a36Sopenharmony_ci /* 443662306a36Sopenharmony_ci * Reset the received-service counter for every parent entity. 443762306a36Sopenharmony_ci * Differently from what happens with bfqq->entity.service, 443862306a36Sopenharmony_ci * the resetting of this counter never needs to be postponed 443962306a36Sopenharmony_ci * for parent entities. In fact, in case bfqq may have a 444062306a36Sopenharmony_ci * chance to go on being served using the last, partially 444162306a36Sopenharmony_ci * consumed budget, bfqq->entity.service needs to be kept, 444262306a36Sopenharmony_ci * because if bfqq then actually goes on being served using 444362306a36Sopenharmony_ci * the same budget, the last value of bfqq->entity.service is 444462306a36Sopenharmony_ci * needed to properly decrement bfqq->entity.budget by the 444562306a36Sopenharmony_ci * portion already consumed. In contrast, it is not necessary 444662306a36Sopenharmony_ci * to keep entity->service for parent entities too, because 444762306a36Sopenharmony_ci * the bubble up of the new value of bfqq->entity.budget will 444862306a36Sopenharmony_ci * make sure that the budgets of parent entities are correct, 444962306a36Sopenharmony_ci * even in case bfqq and thus parent entities go on receiving 445062306a36Sopenharmony_ci * service with the same budget. 445162306a36Sopenharmony_ci */ 445262306a36Sopenharmony_ci entity = entity->parent; 445362306a36Sopenharmony_ci for_each_entity(entity) 445462306a36Sopenharmony_ci entity->service = 0; 445562306a36Sopenharmony_ci} 445662306a36Sopenharmony_ci 445762306a36Sopenharmony_ci/* 445862306a36Sopenharmony_ci * Budget timeout is not implemented through a dedicated timer, but 445962306a36Sopenharmony_ci * just checked on request arrivals and completions, as well as on 446062306a36Sopenharmony_ci * idle timer expirations. 446162306a36Sopenharmony_ci */ 446262306a36Sopenharmony_cistatic bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq) 446362306a36Sopenharmony_ci{ 446462306a36Sopenharmony_ci return time_is_before_eq_jiffies(bfqq->budget_timeout); 446562306a36Sopenharmony_ci} 446662306a36Sopenharmony_ci 446762306a36Sopenharmony_ci/* 446862306a36Sopenharmony_ci * If we expire a queue that is actively waiting (i.e., with the 446962306a36Sopenharmony_ci * device idled) for the arrival of a new request, then we may incur 447062306a36Sopenharmony_ci * the timestamp misalignment problem described in the body of the 447162306a36Sopenharmony_ci * function __bfq_activate_entity. Hence we return true only if this 447262306a36Sopenharmony_ci * condition does not hold, or if the queue is slow enough to deserve 447362306a36Sopenharmony_ci * only to be kicked off for preserving a high throughput. 447462306a36Sopenharmony_ci */ 447562306a36Sopenharmony_cistatic bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq) 447662306a36Sopenharmony_ci{ 447762306a36Sopenharmony_ci bfq_log_bfqq(bfqq->bfqd, bfqq, 447862306a36Sopenharmony_ci "may_budget_timeout: wait_request %d left %d timeout %d", 447962306a36Sopenharmony_ci bfq_bfqq_wait_request(bfqq), 448062306a36Sopenharmony_ci bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3, 448162306a36Sopenharmony_ci bfq_bfqq_budget_timeout(bfqq)); 448262306a36Sopenharmony_ci 448362306a36Sopenharmony_ci return (!bfq_bfqq_wait_request(bfqq) || 448462306a36Sopenharmony_ci bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3) 448562306a36Sopenharmony_ci && 448662306a36Sopenharmony_ci bfq_bfqq_budget_timeout(bfqq); 448762306a36Sopenharmony_ci} 448862306a36Sopenharmony_ci 448962306a36Sopenharmony_cistatic bool idling_boosts_thr_without_issues(struct bfq_data *bfqd, 449062306a36Sopenharmony_ci struct bfq_queue *bfqq) 449162306a36Sopenharmony_ci{ 449262306a36Sopenharmony_ci bool rot_without_queueing = 449362306a36Sopenharmony_ci !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag, 449462306a36Sopenharmony_ci bfqq_sequential_and_IO_bound, 449562306a36Sopenharmony_ci idling_boosts_thr; 449662306a36Sopenharmony_ci 449762306a36Sopenharmony_ci /* No point in idling for bfqq if it won't get requests any longer */ 449862306a36Sopenharmony_ci if (unlikely(!bfqq_process_refs(bfqq))) 449962306a36Sopenharmony_ci return false; 450062306a36Sopenharmony_ci 450162306a36Sopenharmony_ci bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) && 450262306a36Sopenharmony_ci bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq); 450362306a36Sopenharmony_ci 450462306a36Sopenharmony_ci /* 450562306a36Sopenharmony_ci * The next variable takes into account the cases where idling 450662306a36Sopenharmony_ci * boosts the throughput. 450762306a36Sopenharmony_ci * 450862306a36Sopenharmony_ci * The value of the variable is computed considering, first, that 450962306a36Sopenharmony_ci * idling is virtually always beneficial for the throughput if: 451062306a36Sopenharmony_ci * (a) the device is not NCQ-capable and rotational, or 451162306a36Sopenharmony_ci * (b) regardless of the presence of NCQ, the device is rotational and 451262306a36Sopenharmony_ci * the request pattern for bfqq is I/O-bound and sequential, or 451362306a36Sopenharmony_ci * (c) regardless of whether it is rotational, the device is 451462306a36Sopenharmony_ci * not NCQ-capable and the request pattern for bfqq is 451562306a36Sopenharmony_ci * I/O-bound and sequential. 451662306a36Sopenharmony_ci * 451762306a36Sopenharmony_ci * Secondly, and in contrast to the above item (b), idling an 451862306a36Sopenharmony_ci * NCQ-capable flash-based device would not boost the 451962306a36Sopenharmony_ci * throughput even with sequential I/O; rather it would lower 452062306a36Sopenharmony_ci * the throughput in proportion to how fast the device 452162306a36Sopenharmony_ci * is. Accordingly, the next variable is true if any of the 452262306a36Sopenharmony_ci * above conditions (a), (b) or (c) is true, and, in 452362306a36Sopenharmony_ci * particular, happens to be false if bfqd is an NCQ-capable 452462306a36Sopenharmony_ci * flash-based device. 452562306a36Sopenharmony_ci */ 452662306a36Sopenharmony_ci idling_boosts_thr = rot_without_queueing || 452762306a36Sopenharmony_ci ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) && 452862306a36Sopenharmony_ci bfqq_sequential_and_IO_bound); 452962306a36Sopenharmony_ci 453062306a36Sopenharmony_ci /* 453162306a36Sopenharmony_ci * The return value of this function is equal to that of 453262306a36Sopenharmony_ci * idling_boosts_thr, unless a special case holds. In this 453362306a36Sopenharmony_ci * special case, described below, idling may cause problems to 453462306a36Sopenharmony_ci * weight-raised queues. 453562306a36Sopenharmony_ci * 453662306a36Sopenharmony_ci * When the request pool is saturated (e.g., in the presence 453762306a36Sopenharmony_ci * of write hogs), if the processes associated with 453862306a36Sopenharmony_ci * non-weight-raised queues ask for requests at a lower rate, 453962306a36Sopenharmony_ci * then processes associated with weight-raised queues have a 454062306a36Sopenharmony_ci * higher probability to get a request from the pool 454162306a36Sopenharmony_ci * immediately (or at least soon) when they need one. Thus 454262306a36Sopenharmony_ci * they have a higher probability to actually get a fraction 454362306a36Sopenharmony_ci * of the device throughput proportional to their high 454462306a36Sopenharmony_ci * weight. This is especially true with NCQ-capable drives, 454562306a36Sopenharmony_ci * which enqueue several requests in advance, and further 454662306a36Sopenharmony_ci * reorder internally-queued requests. 454762306a36Sopenharmony_ci * 454862306a36Sopenharmony_ci * For this reason, we force to false the return value if 454962306a36Sopenharmony_ci * there are weight-raised busy queues. In this case, and if 455062306a36Sopenharmony_ci * bfqq is not weight-raised, this guarantees that the device 455162306a36Sopenharmony_ci * is not idled for bfqq (if, instead, bfqq is weight-raised, 455262306a36Sopenharmony_ci * then idling will be guaranteed by another variable, see 455362306a36Sopenharmony_ci * below). Combined with the timestamping rules of BFQ (see 455462306a36Sopenharmony_ci * [1] for details), this behavior causes bfqq, and hence any 455562306a36Sopenharmony_ci * sync non-weight-raised queue, to get a lower number of 455662306a36Sopenharmony_ci * requests served, and thus to ask for a lower number of 455762306a36Sopenharmony_ci * requests from the request pool, before the busy 455862306a36Sopenharmony_ci * weight-raised queues get served again. This often mitigates 455962306a36Sopenharmony_ci * starvation problems in the presence of heavy write 456062306a36Sopenharmony_ci * workloads and NCQ, thereby guaranteeing a higher 456162306a36Sopenharmony_ci * application and system responsiveness in these hostile 456262306a36Sopenharmony_ci * scenarios. 456362306a36Sopenharmony_ci */ 456462306a36Sopenharmony_ci return idling_boosts_thr && 456562306a36Sopenharmony_ci bfqd->wr_busy_queues == 0; 456662306a36Sopenharmony_ci} 456762306a36Sopenharmony_ci 456862306a36Sopenharmony_ci/* 456962306a36Sopenharmony_ci * For a queue that becomes empty, device idling is allowed only if 457062306a36Sopenharmony_ci * this function returns true for that queue. As a consequence, since 457162306a36Sopenharmony_ci * device idling plays a critical role for both throughput boosting 457262306a36Sopenharmony_ci * and service guarantees, the return value of this function plays a 457362306a36Sopenharmony_ci * critical role as well. 457462306a36Sopenharmony_ci * 457562306a36Sopenharmony_ci * In a nutshell, this function returns true only if idling is 457662306a36Sopenharmony_ci * beneficial for throughput or, even if detrimental for throughput, 457762306a36Sopenharmony_ci * idling is however necessary to preserve service guarantees (low 457862306a36Sopenharmony_ci * latency, desired throughput distribution, ...). In particular, on 457962306a36Sopenharmony_ci * NCQ-capable devices, this function tries to return false, so as to 458062306a36Sopenharmony_ci * help keep the drives' internal queues full, whenever this helps the 458162306a36Sopenharmony_ci * device boost the throughput without causing any service-guarantee 458262306a36Sopenharmony_ci * issue. 458362306a36Sopenharmony_ci * 458462306a36Sopenharmony_ci * Most of the issues taken into account to get the return value of 458562306a36Sopenharmony_ci * this function are not trivial. We discuss these issues in the two 458662306a36Sopenharmony_ci * functions providing the main pieces of information needed by this 458762306a36Sopenharmony_ci * function. 458862306a36Sopenharmony_ci */ 458962306a36Sopenharmony_cistatic bool bfq_better_to_idle(struct bfq_queue *bfqq) 459062306a36Sopenharmony_ci{ 459162306a36Sopenharmony_ci struct bfq_data *bfqd = bfqq->bfqd; 459262306a36Sopenharmony_ci bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar; 459362306a36Sopenharmony_ci 459462306a36Sopenharmony_ci /* No point in idling for bfqq if it won't get requests any longer */ 459562306a36Sopenharmony_ci if (unlikely(!bfqq_process_refs(bfqq))) 459662306a36Sopenharmony_ci return false; 459762306a36Sopenharmony_ci 459862306a36Sopenharmony_ci if (unlikely(bfqd->strict_guarantees)) 459962306a36Sopenharmony_ci return true; 460062306a36Sopenharmony_ci 460162306a36Sopenharmony_ci /* 460262306a36Sopenharmony_ci * Idling is performed only if slice_idle > 0. In addition, we 460362306a36Sopenharmony_ci * do not idle if 460462306a36Sopenharmony_ci * (a) bfqq is async 460562306a36Sopenharmony_ci * (b) bfqq is in the idle io prio class: in this case we do 460662306a36Sopenharmony_ci * not idle because we want to minimize the bandwidth that 460762306a36Sopenharmony_ci * queues in this class can steal to higher-priority queues 460862306a36Sopenharmony_ci */ 460962306a36Sopenharmony_ci if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) || 461062306a36Sopenharmony_ci bfq_class_idle(bfqq)) 461162306a36Sopenharmony_ci return false; 461262306a36Sopenharmony_ci 461362306a36Sopenharmony_ci idling_boosts_thr_with_no_issue = 461462306a36Sopenharmony_ci idling_boosts_thr_without_issues(bfqd, bfqq); 461562306a36Sopenharmony_ci 461662306a36Sopenharmony_ci idling_needed_for_service_guar = 461762306a36Sopenharmony_ci idling_needed_for_service_guarantees(bfqd, bfqq); 461862306a36Sopenharmony_ci 461962306a36Sopenharmony_ci /* 462062306a36Sopenharmony_ci * We have now the two components we need to compute the 462162306a36Sopenharmony_ci * return value of the function, which is true only if idling 462262306a36Sopenharmony_ci * either boosts the throughput (without issues), or is 462362306a36Sopenharmony_ci * necessary to preserve service guarantees. 462462306a36Sopenharmony_ci */ 462562306a36Sopenharmony_ci return idling_boosts_thr_with_no_issue || 462662306a36Sopenharmony_ci idling_needed_for_service_guar; 462762306a36Sopenharmony_ci} 462862306a36Sopenharmony_ci 462962306a36Sopenharmony_ci/* 463062306a36Sopenharmony_ci * If the in-service queue is empty but the function bfq_better_to_idle 463162306a36Sopenharmony_ci * returns true, then: 463262306a36Sopenharmony_ci * 1) the queue must remain in service and cannot be expired, and 463362306a36Sopenharmony_ci * 2) the device must be idled to wait for the possible arrival of a new 463462306a36Sopenharmony_ci * request for the queue. 463562306a36Sopenharmony_ci * See the comments on the function bfq_better_to_idle for the reasons 463662306a36Sopenharmony_ci * why performing device idling is the best choice to boost the throughput 463762306a36Sopenharmony_ci * and preserve service guarantees when bfq_better_to_idle itself 463862306a36Sopenharmony_ci * returns true. 463962306a36Sopenharmony_ci */ 464062306a36Sopenharmony_cistatic bool bfq_bfqq_must_idle(struct bfq_queue *bfqq) 464162306a36Sopenharmony_ci{ 464262306a36Sopenharmony_ci return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq); 464362306a36Sopenharmony_ci} 464462306a36Sopenharmony_ci 464562306a36Sopenharmony_ci/* 464662306a36Sopenharmony_ci * This function chooses the queue from which to pick the next extra 464762306a36Sopenharmony_ci * I/O request to inject, if it finds a compatible queue. See the 464862306a36Sopenharmony_ci * comments on bfq_update_inject_limit() for details on the injection 464962306a36Sopenharmony_ci * mechanism, and for the definitions of the quantities mentioned 465062306a36Sopenharmony_ci * below. 465162306a36Sopenharmony_ci */ 465262306a36Sopenharmony_cistatic struct bfq_queue * 465362306a36Sopenharmony_cibfq_choose_bfqq_for_injection(struct bfq_data *bfqd) 465462306a36Sopenharmony_ci{ 465562306a36Sopenharmony_ci struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue; 465662306a36Sopenharmony_ci unsigned int limit = in_serv_bfqq->inject_limit; 465762306a36Sopenharmony_ci int i; 465862306a36Sopenharmony_ci 465962306a36Sopenharmony_ci /* 466062306a36Sopenharmony_ci * If 466162306a36Sopenharmony_ci * - bfqq is not weight-raised and therefore does not carry 466262306a36Sopenharmony_ci * time-critical I/O, 466362306a36Sopenharmony_ci * or 466462306a36Sopenharmony_ci * - regardless of whether bfqq is weight-raised, bfqq has 466562306a36Sopenharmony_ci * however a long think time, during which it can absorb the 466662306a36Sopenharmony_ci * effect of an appropriate number of extra I/O requests 466762306a36Sopenharmony_ci * from other queues (see bfq_update_inject_limit for 466862306a36Sopenharmony_ci * details on the computation of this number); 466962306a36Sopenharmony_ci * then injection can be performed without restrictions. 467062306a36Sopenharmony_ci */ 467162306a36Sopenharmony_ci bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 || 467262306a36Sopenharmony_ci !bfq_bfqq_has_short_ttime(in_serv_bfqq); 467362306a36Sopenharmony_ci 467462306a36Sopenharmony_ci /* 467562306a36Sopenharmony_ci * If 467662306a36Sopenharmony_ci * - the baseline total service time could not be sampled yet, 467762306a36Sopenharmony_ci * so the inject limit happens to be still 0, and 467862306a36Sopenharmony_ci * - a lot of time has elapsed since the plugging of I/O 467962306a36Sopenharmony_ci * dispatching started, so drive speed is being wasted 468062306a36Sopenharmony_ci * significantly; 468162306a36Sopenharmony_ci * then temporarily raise inject limit to one request. 468262306a36Sopenharmony_ci */ 468362306a36Sopenharmony_ci if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 && 468462306a36Sopenharmony_ci bfq_bfqq_wait_request(in_serv_bfqq) && 468562306a36Sopenharmony_ci time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies + 468662306a36Sopenharmony_ci bfqd->bfq_slice_idle) 468762306a36Sopenharmony_ci ) 468862306a36Sopenharmony_ci limit = 1; 468962306a36Sopenharmony_ci 469062306a36Sopenharmony_ci if (bfqd->tot_rq_in_driver >= limit) 469162306a36Sopenharmony_ci return NULL; 469262306a36Sopenharmony_ci 469362306a36Sopenharmony_ci /* 469462306a36Sopenharmony_ci * Linear search of the source queue for injection; but, with 469562306a36Sopenharmony_ci * a high probability, very few steps are needed to find a 469662306a36Sopenharmony_ci * candidate queue, i.e., a queue with enough budget left for 469762306a36Sopenharmony_ci * its next request. In fact: 469862306a36Sopenharmony_ci * - BFQ dynamically updates the budget of every queue so as 469962306a36Sopenharmony_ci * to accommodate the expected backlog of the queue; 470062306a36Sopenharmony_ci * - if a queue gets all its requests dispatched as injected 470162306a36Sopenharmony_ci * service, then the queue is removed from the active list 470262306a36Sopenharmony_ci * (and re-added only if it gets new requests, but then it 470362306a36Sopenharmony_ci * is assigned again enough budget for its new backlog). 470462306a36Sopenharmony_ci */ 470562306a36Sopenharmony_ci for (i = 0; i < bfqd->num_actuators; i++) { 470662306a36Sopenharmony_ci list_for_each_entry(bfqq, &bfqd->active_list[i], bfqq_list) 470762306a36Sopenharmony_ci if (!RB_EMPTY_ROOT(&bfqq->sort_list) && 470862306a36Sopenharmony_ci (in_serv_always_inject || bfqq->wr_coeff > 1) && 470962306a36Sopenharmony_ci bfq_serv_to_charge(bfqq->next_rq, bfqq) <= 471062306a36Sopenharmony_ci bfq_bfqq_budget_left(bfqq)) { 471162306a36Sopenharmony_ci /* 471262306a36Sopenharmony_ci * Allow for only one large in-flight request 471362306a36Sopenharmony_ci * on non-rotational devices, for the 471462306a36Sopenharmony_ci * following reason. On non-rotationl drives, 471562306a36Sopenharmony_ci * large requests take much longer than 471662306a36Sopenharmony_ci * smaller requests to be served. In addition, 471762306a36Sopenharmony_ci * the drive prefers to serve large requests 471862306a36Sopenharmony_ci * w.r.t. to small ones, if it can choose. So, 471962306a36Sopenharmony_ci * having more than one large requests queued 472062306a36Sopenharmony_ci * in the drive may easily make the next first 472162306a36Sopenharmony_ci * request of the in-service queue wait for so 472262306a36Sopenharmony_ci * long to break bfqq's service guarantees. On 472362306a36Sopenharmony_ci * the bright side, large requests let the 472462306a36Sopenharmony_ci * drive reach a very high throughput, even if 472562306a36Sopenharmony_ci * there is only one in-flight large request 472662306a36Sopenharmony_ci * at a time. 472762306a36Sopenharmony_ci */ 472862306a36Sopenharmony_ci if (blk_queue_nonrot(bfqd->queue) && 472962306a36Sopenharmony_ci blk_rq_sectors(bfqq->next_rq) >= 473062306a36Sopenharmony_ci BFQQ_SECT_THR_NONROT && 473162306a36Sopenharmony_ci bfqd->tot_rq_in_driver >= 1) 473262306a36Sopenharmony_ci continue; 473362306a36Sopenharmony_ci else { 473462306a36Sopenharmony_ci bfqd->rqs_injected = true; 473562306a36Sopenharmony_ci return bfqq; 473662306a36Sopenharmony_ci } 473762306a36Sopenharmony_ci } 473862306a36Sopenharmony_ci } 473962306a36Sopenharmony_ci 474062306a36Sopenharmony_ci return NULL; 474162306a36Sopenharmony_ci} 474262306a36Sopenharmony_ci 474362306a36Sopenharmony_cistatic struct bfq_queue * 474462306a36Sopenharmony_cibfq_find_active_bfqq_for_actuator(struct bfq_data *bfqd, int idx) 474562306a36Sopenharmony_ci{ 474662306a36Sopenharmony_ci struct bfq_queue *bfqq; 474762306a36Sopenharmony_ci 474862306a36Sopenharmony_ci if (bfqd->in_service_queue && 474962306a36Sopenharmony_ci bfqd->in_service_queue->actuator_idx == idx) 475062306a36Sopenharmony_ci return bfqd->in_service_queue; 475162306a36Sopenharmony_ci 475262306a36Sopenharmony_ci list_for_each_entry(bfqq, &bfqd->active_list[idx], bfqq_list) { 475362306a36Sopenharmony_ci if (!RB_EMPTY_ROOT(&bfqq->sort_list) && 475462306a36Sopenharmony_ci bfq_serv_to_charge(bfqq->next_rq, bfqq) <= 475562306a36Sopenharmony_ci bfq_bfqq_budget_left(bfqq)) { 475662306a36Sopenharmony_ci return bfqq; 475762306a36Sopenharmony_ci } 475862306a36Sopenharmony_ci } 475962306a36Sopenharmony_ci 476062306a36Sopenharmony_ci return NULL; 476162306a36Sopenharmony_ci} 476262306a36Sopenharmony_ci 476362306a36Sopenharmony_ci/* 476462306a36Sopenharmony_ci * Perform a linear scan of each actuator, until an actuator is found 476562306a36Sopenharmony_ci * for which the following three conditions hold: the load of the 476662306a36Sopenharmony_ci * actuator is below the threshold (see comments on 476762306a36Sopenharmony_ci * actuator_load_threshold for details) and lower than that of the 476862306a36Sopenharmony_ci * next actuator (comments on this extra condition below), and there 476962306a36Sopenharmony_ci * is a queue that contains I/O for that actuator. On success, return 477062306a36Sopenharmony_ci * that queue. 477162306a36Sopenharmony_ci * 477262306a36Sopenharmony_ci * Performing a plain linear scan entails a prioritization among 477362306a36Sopenharmony_ci * actuators. The extra condition above breaks this prioritization and 477462306a36Sopenharmony_ci * tends to distribute injection uniformly across actuators. 477562306a36Sopenharmony_ci */ 477662306a36Sopenharmony_cistatic struct bfq_queue * 477762306a36Sopenharmony_cibfq_find_bfqq_for_underused_actuator(struct bfq_data *bfqd) 477862306a36Sopenharmony_ci{ 477962306a36Sopenharmony_ci int i; 478062306a36Sopenharmony_ci 478162306a36Sopenharmony_ci for (i = 0 ; i < bfqd->num_actuators; i++) { 478262306a36Sopenharmony_ci if (bfqd->rq_in_driver[i] < bfqd->actuator_load_threshold && 478362306a36Sopenharmony_ci (i == bfqd->num_actuators - 1 || 478462306a36Sopenharmony_ci bfqd->rq_in_driver[i] < bfqd->rq_in_driver[i+1])) { 478562306a36Sopenharmony_ci struct bfq_queue *bfqq = 478662306a36Sopenharmony_ci bfq_find_active_bfqq_for_actuator(bfqd, i); 478762306a36Sopenharmony_ci 478862306a36Sopenharmony_ci if (bfqq) 478962306a36Sopenharmony_ci return bfqq; 479062306a36Sopenharmony_ci } 479162306a36Sopenharmony_ci } 479262306a36Sopenharmony_ci 479362306a36Sopenharmony_ci return NULL; 479462306a36Sopenharmony_ci} 479562306a36Sopenharmony_ci 479662306a36Sopenharmony_ci 479762306a36Sopenharmony_ci/* 479862306a36Sopenharmony_ci * Select a queue for service. If we have a current queue in service, 479962306a36Sopenharmony_ci * check whether to continue servicing it, or retrieve and set a new one. 480062306a36Sopenharmony_ci */ 480162306a36Sopenharmony_cistatic struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd) 480262306a36Sopenharmony_ci{ 480362306a36Sopenharmony_ci struct bfq_queue *bfqq, *inject_bfqq; 480462306a36Sopenharmony_ci struct request *next_rq; 480562306a36Sopenharmony_ci enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT; 480662306a36Sopenharmony_ci 480762306a36Sopenharmony_ci bfqq = bfqd->in_service_queue; 480862306a36Sopenharmony_ci if (!bfqq) 480962306a36Sopenharmony_ci goto new_queue; 481062306a36Sopenharmony_ci 481162306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue"); 481262306a36Sopenharmony_ci 481362306a36Sopenharmony_ci /* 481462306a36Sopenharmony_ci * Do not expire bfqq for budget timeout if bfqq may be about 481562306a36Sopenharmony_ci * to enjoy device idling. The reason why, in this case, we 481662306a36Sopenharmony_ci * prevent bfqq from expiring is the same as in the comments 481762306a36Sopenharmony_ci * on the case where bfq_bfqq_must_idle() returns true, in 481862306a36Sopenharmony_ci * bfq_completed_request(). 481962306a36Sopenharmony_ci */ 482062306a36Sopenharmony_ci if (bfq_may_expire_for_budg_timeout(bfqq) && 482162306a36Sopenharmony_ci !bfq_bfqq_must_idle(bfqq)) 482262306a36Sopenharmony_ci goto expire; 482362306a36Sopenharmony_ci 482462306a36Sopenharmony_cicheck_queue: 482562306a36Sopenharmony_ci /* 482662306a36Sopenharmony_ci * If some actuator is underutilized, but the in-service 482762306a36Sopenharmony_ci * queue does not contain I/O for that actuator, then try to 482862306a36Sopenharmony_ci * inject I/O for that actuator. 482962306a36Sopenharmony_ci */ 483062306a36Sopenharmony_ci inject_bfqq = bfq_find_bfqq_for_underused_actuator(bfqd); 483162306a36Sopenharmony_ci if (inject_bfqq && inject_bfqq != bfqq) 483262306a36Sopenharmony_ci return inject_bfqq; 483362306a36Sopenharmony_ci 483462306a36Sopenharmony_ci /* 483562306a36Sopenharmony_ci * This loop is rarely executed more than once. Even when it 483662306a36Sopenharmony_ci * happens, it is much more convenient to re-execute this loop 483762306a36Sopenharmony_ci * than to return NULL and trigger a new dispatch to get a 483862306a36Sopenharmony_ci * request served. 483962306a36Sopenharmony_ci */ 484062306a36Sopenharmony_ci next_rq = bfqq->next_rq; 484162306a36Sopenharmony_ci /* 484262306a36Sopenharmony_ci * If bfqq has requests queued and it has enough budget left to 484362306a36Sopenharmony_ci * serve them, keep the queue, otherwise expire it. 484462306a36Sopenharmony_ci */ 484562306a36Sopenharmony_ci if (next_rq) { 484662306a36Sopenharmony_ci if (bfq_serv_to_charge(next_rq, bfqq) > 484762306a36Sopenharmony_ci bfq_bfqq_budget_left(bfqq)) { 484862306a36Sopenharmony_ci /* 484962306a36Sopenharmony_ci * Expire the queue for budget exhaustion, 485062306a36Sopenharmony_ci * which makes sure that the next budget is 485162306a36Sopenharmony_ci * enough to serve the next request, even if 485262306a36Sopenharmony_ci * it comes from the fifo expired path. 485362306a36Sopenharmony_ci */ 485462306a36Sopenharmony_ci reason = BFQQE_BUDGET_EXHAUSTED; 485562306a36Sopenharmony_ci goto expire; 485662306a36Sopenharmony_ci } else { 485762306a36Sopenharmony_ci /* 485862306a36Sopenharmony_ci * The idle timer may be pending because we may 485962306a36Sopenharmony_ci * not disable disk idling even when a new request 486062306a36Sopenharmony_ci * arrives. 486162306a36Sopenharmony_ci */ 486262306a36Sopenharmony_ci if (bfq_bfqq_wait_request(bfqq)) { 486362306a36Sopenharmony_ci /* 486462306a36Sopenharmony_ci * If we get here: 1) at least a new request 486562306a36Sopenharmony_ci * has arrived but we have not disabled the 486662306a36Sopenharmony_ci * timer because the request was too small, 486762306a36Sopenharmony_ci * 2) then the block layer has unplugged 486862306a36Sopenharmony_ci * the device, causing the dispatch to be 486962306a36Sopenharmony_ci * invoked. 487062306a36Sopenharmony_ci * 487162306a36Sopenharmony_ci * Since the device is unplugged, now the 487262306a36Sopenharmony_ci * requests are probably large enough to 487362306a36Sopenharmony_ci * provide a reasonable throughput. 487462306a36Sopenharmony_ci * So we disable idling. 487562306a36Sopenharmony_ci */ 487662306a36Sopenharmony_ci bfq_clear_bfqq_wait_request(bfqq); 487762306a36Sopenharmony_ci hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 487862306a36Sopenharmony_ci } 487962306a36Sopenharmony_ci goto keep_queue; 488062306a36Sopenharmony_ci } 488162306a36Sopenharmony_ci } 488262306a36Sopenharmony_ci 488362306a36Sopenharmony_ci /* 488462306a36Sopenharmony_ci * No requests pending. However, if the in-service queue is idling 488562306a36Sopenharmony_ci * for a new request, or has requests waiting for a completion and 488662306a36Sopenharmony_ci * may idle after their completion, then keep it anyway. 488762306a36Sopenharmony_ci * 488862306a36Sopenharmony_ci * Yet, inject service from other queues if it boosts 488962306a36Sopenharmony_ci * throughput and is possible. 489062306a36Sopenharmony_ci */ 489162306a36Sopenharmony_ci if (bfq_bfqq_wait_request(bfqq) || 489262306a36Sopenharmony_ci (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) { 489362306a36Sopenharmony_ci unsigned int act_idx = bfqq->actuator_idx; 489462306a36Sopenharmony_ci struct bfq_queue *async_bfqq = NULL; 489562306a36Sopenharmony_ci struct bfq_queue *blocked_bfqq = 489662306a36Sopenharmony_ci !hlist_empty(&bfqq->woken_list) ? 489762306a36Sopenharmony_ci container_of(bfqq->woken_list.first, 489862306a36Sopenharmony_ci struct bfq_queue, 489962306a36Sopenharmony_ci woken_list_node) 490062306a36Sopenharmony_ci : NULL; 490162306a36Sopenharmony_ci 490262306a36Sopenharmony_ci if (bfqq->bic && bfqq->bic->bfqq[0][act_idx] && 490362306a36Sopenharmony_ci bfq_bfqq_busy(bfqq->bic->bfqq[0][act_idx]) && 490462306a36Sopenharmony_ci bfqq->bic->bfqq[0][act_idx]->next_rq) 490562306a36Sopenharmony_ci async_bfqq = bfqq->bic->bfqq[0][act_idx]; 490662306a36Sopenharmony_ci /* 490762306a36Sopenharmony_ci * The next four mutually-exclusive ifs decide 490862306a36Sopenharmony_ci * whether to try injection, and choose the queue to 490962306a36Sopenharmony_ci * pick an I/O request from. 491062306a36Sopenharmony_ci * 491162306a36Sopenharmony_ci * The first if checks whether the process associated 491262306a36Sopenharmony_ci * with bfqq has also async I/O pending. If so, it 491362306a36Sopenharmony_ci * injects such I/O unconditionally. Injecting async 491462306a36Sopenharmony_ci * I/O from the same process can cause no harm to the 491562306a36Sopenharmony_ci * process. On the contrary, it can only increase 491662306a36Sopenharmony_ci * bandwidth and reduce latency for the process. 491762306a36Sopenharmony_ci * 491862306a36Sopenharmony_ci * The second if checks whether there happens to be a 491962306a36Sopenharmony_ci * non-empty waker queue for bfqq, i.e., a queue whose 492062306a36Sopenharmony_ci * I/O needs to be completed for bfqq to receive new 492162306a36Sopenharmony_ci * I/O. This happens, e.g., if bfqq is associated with 492262306a36Sopenharmony_ci * a process that does some sync. A sync generates 492362306a36Sopenharmony_ci * extra blocking I/O, which must be completed before 492462306a36Sopenharmony_ci * the process associated with bfqq can go on with its 492562306a36Sopenharmony_ci * I/O. If the I/O of the waker queue is not served, 492662306a36Sopenharmony_ci * then bfqq remains empty, and no I/O is dispatched, 492762306a36Sopenharmony_ci * until the idle timeout fires for bfqq. This is 492862306a36Sopenharmony_ci * likely to result in lower bandwidth and higher 492962306a36Sopenharmony_ci * latencies for bfqq, and in a severe loss of total 493062306a36Sopenharmony_ci * throughput. The best action to take is therefore to 493162306a36Sopenharmony_ci * serve the waker queue as soon as possible. So do it 493262306a36Sopenharmony_ci * (without relying on the third alternative below for 493362306a36Sopenharmony_ci * eventually serving waker_bfqq's I/O; see the last 493462306a36Sopenharmony_ci * paragraph for further details). This systematic 493562306a36Sopenharmony_ci * injection of I/O from the waker queue does not 493662306a36Sopenharmony_ci * cause any delay to bfqq's I/O. On the contrary, 493762306a36Sopenharmony_ci * next bfqq's I/O is brought forward dramatically, 493862306a36Sopenharmony_ci * for it is not blocked for milliseconds. 493962306a36Sopenharmony_ci * 494062306a36Sopenharmony_ci * The third if checks whether there is a queue woken 494162306a36Sopenharmony_ci * by bfqq, and currently with pending I/O. Such a 494262306a36Sopenharmony_ci * woken queue does not steal bandwidth from bfqq, 494362306a36Sopenharmony_ci * because it remains soon without I/O if bfqq is not 494462306a36Sopenharmony_ci * served. So there is virtually no risk of loss of 494562306a36Sopenharmony_ci * bandwidth for bfqq if this woken queue has I/O 494662306a36Sopenharmony_ci * dispatched while bfqq is waiting for new I/O. 494762306a36Sopenharmony_ci * 494862306a36Sopenharmony_ci * The fourth if checks whether bfqq is a queue for 494962306a36Sopenharmony_ci * which it is better to avoid injection. It is so if 495062306a36Sopenharmony_ci * bfqq delivers more throughput when served without 495162306a36Sopenharmony_ci * any further I/O from other queues in the middle, or 495262306a36Sopenharmony_ci * if the service times of bfqq's I/O requests both 495362306a36Sopenharmony_ci * count more than overall throughput, and may be 495462306a36Sopenharmony_ci * easily increased by injection (this happens if bfqq 495562306a36Sopenharmony_ci * has a short think time). If none of these 495662306a36Sopenharmony_ci * conditions holds, then a candidate queue for 495762306a36Sopenharmony_ci * injection is looked for through 495862306a36Sopenharmony_ci * bfq_choose_bfqq_for_injection(). Note that the 495962306a36Sopenharmony_ci * latter may return NULL (for example if the inject 496062306a36Sopenharmony_ci * limit for bfqq is currently 0). 496162306a36Sopenharmony_ci * 496262306a36Sopenharmony_ci * NOTE: motivation for the second alternative 496362306a36Sopenharmony_ci * 496462306a36Sopenharmony_ci * Thanks to the way the inject limit is updated in 496562306a36Sopenharmony_ci * bfq_update_has_short_ttime(), it is rather likely 496662306a36Sopenharmony_ci * that, if I/O is being plugged for bfqq and the 496762306a36Sopenharmony_ci * waker queue has pending I/O requests that are 496862306a36Sopenharmony_ci * blocking bfqq's I/O, then the fourth alternative 496962306a36Sopenharmony_ci * above lets the waker queue get served before the 497062306a36Sopenharmony_ci * I/O-plugging timeout fires. So one may deem the 497162306a36Sopenharmony_ci * second alternative superfluous. It is not, because 497262306a36Sopenharmony_ci * the fourth alternative may be way less effective in 497362306a36Sopenharmony_ci * case of a synchronization. For two main 497462306a36Sopenharmony_ci * reasons. First, throughput may be low because the 497562306a36Sopenharmony_ci * inject limit may be too low to guarantee the same 497662306a36Sopenharmony_ci * amount of injected I/O, from the waker queue or 497762306a36Sopenharmony_ci * other queues, that the second alternative 497862306a36Sopenharmony_ci * guarantees (the second alternative unconditionally 497962306a36Sopenharmony_ci * injects a pending I/O request of the waker queue 498062306a36Sopenharmony_ci * for each bfq_dispatch_request()). Second, with the 498162306a36Sopenharmony_ci * fourth alternative, the duration of the plugging, 498262306a36Sopenharmony_ci * i.e., the time before bfqq finally receives new I/O, 498362306a36Sopenharmony_ci * may not be minimized, because the waker queue may 498462306a36Sopenharmony_ci * happen to be served only after other queues. 498562306a36Sopenharmony_ci */ 498662306a36Sopenharmony_ci if (async_bfqq && 498762306a36Sopenharmony_ci icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic && 498862306a36Sopenharmony_ci bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <= 498962306a36Sopenharmony_ci bfq_bfqq_budget_left(async_bfqq)) 499062306a36Sopenharmony_ci bfqq = async_bfqq; 499162306a36Sopenharmony_ci else if (bfqq->waker_bfqq && 499262306a36Sopenharmony_ci bfq_bfqq_busy(bfqq->waker_bfqq) && 499362306a36Sopenharmony_ci bfqq->waker_bfqq->next_rq && 499462306a36Sopenharmony_ci bfq_serv_to_charge(bfqq->waker_bfqq->next_rq, 499562306a36Sopenharmony_ci bfqq->waker_bfqq) <= 499662306a36Sopenharmony_ci bfq_bfqq_budget_left(bfqq->waker_bfqq) 499762306a36Sopenharmony_ci ) 499862306a36Sopenharmony_ci bfqq = bfqq->waker_bfqq; 499962306a36Sopenharmony_ci else if (blocked_bfqq && 500062306a36Sopenharmony_ci bfq_bfqq_busy(blocked_bfqq) && 500162306a36Sopenharmony_ci blocked_bfqq->next_rq && 500262306a36Sopenharmony_ci bfq_serv_to_charge(blocked_bfqq->next_rq, 500362306a36Sopenharmony_ci blocked_bfqq) <= 500462306a36Sopenharmony_ci bfq_bfqq_budget_left(blocked_bfqq) 500562306a36Sopenharmony_ci ) 500662306a36Sopenharmony_ci bfqq = blocked_bfqq; 500762306a36Sopenharmony_ci else if (!idling_boosts_thr_without_issues(bfqd, bfqq) && 500862306a36Sopenharmony_ci (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 || 500962306a36Sopenharmony_ci !bfq_bfqq_has_short_ttime(bfqq))) 501062306a36Sopenharmony_ci bfqq = bfq_choose_bfqq_for_injection(bfqd); 501162306a36Sopenharmony_ci else 501262306a36Sopenharmony_ci bfqq = NULL; 501362306a36Sopenharmony_ci 501462306a36Sopenharmony_ci goto keep_queue; 501562306a36Sopenharmony_ci } 501662306a36Sopenharmony_ci 501762306a36Sopenharmony_ci reason = BFQQE_NO_MORE_REQUESTS; 501862306a36Sopenharmony_ciexpire: 501962306a36Sopenharmony_ci bfq_bfqq_expire(bfqd, bfqq, false, reason); 502062306a36Sopenharmony_cinew_queue: 502162306a36Sopenharmony_ci bfqq = bfq_set_in_service_queue(bfqd); 502262306a36Sopenharmony_ci if (bfqq) { 502362306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue"); 502462306a36Sopenharmony_ci goto check_queue; 502562306a36Sopenharmony_ci } 502662306a36Sopenharmony_cikeep_queue: 502762306a36Sopenharmony_ci if (bfqq) 502862306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue"); 502962306a36Sopenharmony_ci else 503062306a36Sopenharmony_ci bfq_log(bfqd, "select_queue: no queue returned"); 503162306a36Sopenharmony_ci 503262306a36Sopenharmony_ci return bfqq; 503362306a36Sopenharmony_ci} 503462306a36Sopenharmony_ci 503562306a36Sopenharmony_cistatic void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq) 503662306a36Sopenharmony_ci{ 503762306a36Sopenharmony_ci struct bfq_entity *entity = &bfqq->entity; 503862306a36Sopenharmony_ci 503962306a36Sopenharmony_ci if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */ 504062306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, 504162306a36Sopenharmony_ci "raising period dur %u/%u msec, old coeff %u, w %d(%d)", 504262306a36Sopenharmony_ci jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish), 504362306a36Sopenharmony_ci jiffies_to_msecs(bfqq->wr_cur_max_time), 504462306a36Sopenharmony_ci bfqq->wr_coeff, 504562306a36Sopenharmony_ci bfqq->entity.weight, bfqq->entity.orig_weight); 504662306a36Sopenharmony_ci 504762306a36Sopenharmony_ci if (entity->prio_changed) 504862306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change"); 504962306a36Sopenharmony_ci 505062306a36Sopenharmony_ci /* 505162306a36Sopenharmony_ci * If the queue was activated in a burst, or too much 505262306a36Sopenharmony_ci * time has elapsed from the beginning of this 505362306a36Sopenharmony_ci * weight-raising period, then end weight raising. 505462306a36Sopenharmony_ci */ 505562306a36Sopenharmony_ci if (bfq_bfqq_in_large_burst(bfqq)) 505662306a36Sopenharmony_ci bfq_bfqq_end_wr(bfqq); 505762306a36Sopenharmony_ci else if (time_is_before_jiffies(bfqq->last_wr_start_finish + 505862306a36Sopenharmony_ci bfqq->wr_cur_max_time)) { 505962306a36Sopenharmony_ci if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time || 506062306a36Sopenharmony_ci time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt + 506162306a36Sopenharmony_ci bfq_wr_duration(bfqd))) { 506262306a36Sopenharmony_ci /* 506362306a36Sopenharmony_ci * Either in interactive weight 506462306a36Sopenharmony_ci * raising, or in soft_rt weight 506562306a36Sopenharmony_ci * raising with the 506662306a36Sopenharmony_ci * interactive-weight-raising period 506762306a36Sopenharmony_ci * elapsed (so no switch back to 506862306a36Sopenharmony_ci * interactive weight raising). 506962306a36Sopenharmony_ci */ 507062306a36Sopenharmony_ci bfq_bfqq_end_wr(bfqq); 507162306a36Sopenharmony_ci } else { /* 507262306a36Sopenharmony_ci * soft_rt finishing while still in 507362306a36Sopenharmony_ci * interactive period, switch back to 507462306a36Sopenharmony_ci * interactive weight raising 507562306a36Sopenharmony_ci */ 507662306a36Sopenharmony_ci switch_back_to_interactive_wr(bfqq, bfqd); 507762306a36Sopenharmony_ci bfqq->entity.prio_changed = 1; 507862306a36Sopenharmony_ci } 507962306a36Sopenharmony_ci } 508062306a36Sopenharmony_ci if (bfqq->wr_coeff > 1 && 508162306a36Sopenharmony_ci bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time && 508262306a36Sopenharmony_ci bfqq->service_from_wr > max_service_from_wr) { 508362306a36Sopenharmony_ci /* see comments on max_service_from_wr */ 508462306a36Sopenharmony_ci bfq_bfqq_end_wr(bfqq); 508562306a36Sopenharmony_ci } 508662306a36Sopenharmony_ci } 508762306a36Sopenharmony_ci /* 508862306a36Sopenharmony_ci * To improve latency (for this or other queues), immediately 508962306a36Sopenharmony_ci * update weight both if it must be raised and if it must be 509062306a36Sopenharmony_ci * lowered. Since, entity may be on some active tree here, and 509162306a36Sopenharmony_ci * might have a pending change of its ioprio class, invoke 509262306a36Sopenharmony_ci * next function with the last parameter unset (see the 509362306a36Sopenharmony_ci * comments on the function). 509462306a36Sopenharmony_ci */ 509562306a36Sopenharmony_ci if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1)) 509662306a36Sopenharmony_ci __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity), 509762306a36Sopenharmony_ci entity, false); 509862306a36Sopenharmony_ci} 509962306a36Sopenharmony_ci 510062306a36Sopenharmony_ci/* 510162306a36Sopenharmony_ci * Dispatch next request from bfqq. 510262306a36Sopenharmony_ci */ 510362306a36Sopenharmony_cistatic struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd, 510462306a36Sopenharmony_ci struct bfq_queue *bfqq) 510562306a36Sopenharmony_ci{ 510662306a36Sopenharmony_ci struct request *rq = bfqq->next_rq; 510762306a36Sopenharmony_ci unsigned long service_to_charge; 510862306a36Sopenharmony_ci 510962306a36Sopenharmony_ci service_to_charge = bfq_serv_to_charge(rq, bfqq); 511062306a36Sopenharmony_ci 511162306a36Sopenharmony_ci bfq_bfqq_served(bfqq, service_to_charge); 511262306a36Sopenharmony_ci 511362306a36Sopenharmony_ci if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) { 511462306a36Sopenharmony_ci bfqd->wait_dispatch = false; 511562306a36Sopenharmony_ci bfqd->waited_rq = rq; 511662306a36Sopenharmony_ci } 511762306a36Sopenharmony_ci 511862306a36Sopenharmony_ci bfq_dispatch_remove(bfqd->queue, rq); 511962306a36Sopenharmony_ci 512062306a36Sopenharmony_ci if (bfqq != bfqd->in_service_queue) 512162306a36Sopenharmony_ci return rq; 512262306a36Sopenharmony_ci 512362306a36Sopenharmony_ci /* 512462306a36Sopenharmony_ci * If weight raising has to terminate for bfqq, then next 512562306a36Sopenharmony_ci * function causes an immediate update of bfqq's weight, 512662306a36Sopenharmony_ci * without waiting for next activation. As a consequence, on 512762306a36Sopenharmony_ci * expiration, bfqq will be timestamped as if has never been 512862306a36Sopenharmony_ci * weight-raised during this service slot, even if it has 512962306a36Sopenharmony_ci * received part or even most of the service as a 513062306a36Sopenharmony_ci * weight-raised queue. This inflates bfqq's timestamps, which 513162306a36Sopenharmony_ci * is beneficial, as bfqq is then more willing to leave the 513262306a36Sopenharmony_ci * device immediately to possible other weight-raised queues. 513362306a36Sopenharmony_ci */ 513462306a36Sopenharmony_ci bfq_update_wr_data(bfqd, bfqq); 513562306a36Sopenharmony_ci 513662306a36Sopenharmony_ci /* 513762306a36Sopenharmony_ci * Expire bfqq, pretending that its budget expired, if bfqq 513862306a36Sopenharmony_ci * belongs to CLASS_IDLE and other queues are waiting for 513962306a36Sopenharmony_ci * service. 514062306a36Sopenharmony_ci */ 514162306a36Sopenharmony_ci if (bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)) 514262306a36Sopenharmony_ci bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED); 514362306a36Sopenharmony_ci 514462306a36Sopenharmony_ci return rq; 514562306a36Sopenharmony_ci} 514662306a36Sopenharmony_ci 514762306a36Sopenharmony_cistatic bool bfq_has_work(struct blk_mq_hw_ctx *hctx) 514862306a36Sopenharmony_ci{ 514962306a36Sopenharmony_ci struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 515062306a36Sopenharmony_ci 515162306a36Sopenharmony_ci /* 515262306a36Sopenharmony_ci * Avoiding lock: a race on bfqd->queued should cause at 515362306a36Sopenharmony_ci * most a call to dispatch for nothing 515462306a36Sopenharmony_ci */ 515562306a36Sopenharmony_ci return !list_empty_careful(&bfqd->dispatch) || 515662306a36Sopenharmony_ci READ_ONCE(bfqd->queued); 515762306a36Sopenharmony_ci} 515862306a36Sopenharmony_ci 515962306a36Sopenharmony_cistatic struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 516062306a36Sopenharmony_ci{ 516162306a36Sopenharmony_ci struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 516262306a36Sopenharmony_ci struct request *rq = NULL; 516362306a36Sopenharmony_ci struct bfq_queue *bfqq = NULL; 516462306a36Sopenharmony_ci 516562306a36Sopenharmony_ci if (!list_empty(&bfqd->dispatch)) { 516662306a36Sopenharmony_ci rq = list_first_entry(&bfqd->dispatch, struct request, 516762306a36Sopenharmony_ci queuelist); 516862306a36Sopenharmony_ci list_del_init(&rq->queuelist); 516962306a36Sopenharmony_ci 517062306a36Sopenharmony_ci bfqq = RQ_BFQQ(rq); 517162306a36Sopenharmony_ci 517262306a36Sopenharmony_ci if (bfqq) { 517362306a36Sopenharmony_ci /* 517462306a36Sopenharmony_ci * Increment counters here, because this 517562306a36Sopenharmony_ci * dispatch does not follow the standard 517662306a36Sopenharmony_ci * dispatch flow (where counters are 517762306a36Sopenharmony_ci * incremented) 517862306a36Sopenharmony_ci */ 517962306a36Sopenharmony_ci bfqq->dispatched++; 518062306a36Sopenharmony_ci 518162306a36Sopenharmony_ci goto inc_in_driver_start_rq; 518262306a36Sopenharmony_ci } 518362306a36Sopenharmony_ci 518462306a36Sopenharmony_ci /* 518562306a36Sopenharmony_ci * We exploit the bfq_finish_requeue_request hook to 518662306a36Sopenharmony_ci * decrement tot_rq_in_driver, but 518762306a36Sopenharmony_ci * bfq_finish_requeue_request will not be invoked on 518862306a36Sopenharmony_ci * this request. So, to avoid unbalance, just start 518962306a36Sopenharmony_ci * this request, without incrementing tot_rq_in_driver. As 519062306a36Sopenharmony_ci * a negative consequence, tot_rq_in_driver is deceptively 519162306a36Sopenharmony_ci * lower than it should be while this request is in 519262306a36Sopenharmony_ci * service. This may cause bfq_schedule_dispatch to be 519362306a36Sopenharmony_ci * invoked uselessly. 519462306a36Sopenharmony_ci * 519562306a36Sopenharmony_ci * As for implementing an exact solution, the 519662306a36Sopenharmony_ci * bfq_finish_requeue_request hook, if defined, is 519762306a36Sopenharmony_ci * probably invoked also on this request. So, by 519862306a36Sopenharmony_ci * exploiting this hook, we could 1) increment 519962306a36Sopenharmony_ci * tot_rq_in_driver here, and 2) decrement it in 520062306a36Sopenharmony_ci * bfq_finish_requeue_request. Such a solution would 520162306a36Sopenharmony_ci * let the value of the counter be always accurate, 520262306a36Sopenharmony_ci * but it would entail using an extra interface 520362306a36Sopenharmony_ci * function. This cost seems higher than the benefit, 520462306a36Sopenharmony_ci * being the frequency of non-elevator-private 520562306a36Sopenharmony_ci * requests very low. 520662306a36Sopenharmony_ci */ 520762306a36Sopenharmony_ci goto start_rq; 520862306a36Sopenharmony_ci } 520962306a36Sopenharmony_ci 521062306a36Sopenharmony_ci bfq_log(bfqd, "dispatch requests: %d busy queues", 521162306a36Sopenharmony_ci bfq_tot_busy_queues(bfqd)); 521262306a36Sopenharmony_ci 521362306a36Sopenharmony_ci if (bfq_tot_busy_queues(bfqd) == 0) 521462306a36Sopenharmony_ci goto exit; 521562306a36Sopenharmony_ci 521662306a36Sopenharmony_ci /* 521762306a36Sopenharmony_ci * Force device to serve one request at a time if 521862306a36Sopenharmony_ci * strict_guarantees is true. Forcing this service scheme is 521962306a36Sopenharmony_ci * currently the ONLY way to guarantee that the request 522062306a36Sopenharmony_ci * service order enforced by the scheduler is respected by a 522162306a36Sopenharmony_ci * queueing device. Otherwise the device is free even to make 522262306a36Sopenharmony_ci * some unlucky request wait for as long as the device 522362306a36Sopenharmony_ci * wishes. 522462306a36Sopenharmony_ci * 522562306a36Sopenharmony_ci * Of course, serving one request at a time may cause loss of 522662306a36Sopenharmony_ci * throughput. 522762306a36Sopenharmony_ci */ 522862306a36Sopenharmony_ci if (bfqd->strict_guarantees && bfqd->tot_rq_in_driver > 0) 522962306a36Sopenharmony_ci goto exit; 523062306a36Sopenharmony_ci 523162306a36Sopenharmony_ci bfqq = bfq_select_queue(bfqd); 523262306a36Sopenharmony_ci if (!bfqq) 523362306a36Sopenharmony_ci goto exit; 523462306a36Sopenharmony_ci 523562306a36Sopenharmony_ci rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq); 523662306a36Sopenharmony_ci 523762306a36Sopenharmony_ci if (rq) { 523862306a36Sopenharmony_ciinc_in_driver_start_rq: 523962306a36Sopenharmony_ci bfqd->rq_in_driver[bfqq->actuator_idx]++; 524062306a36Sopenharmony_ci bfqd->tot_rq_in_driver++; 524162306a36Sopenharmony_cistart_rq: 524262306a36Sopenharmony_ci rq->rq_flags |= RQF_STARTED; 524362306a36Sopenharmony_ci } 524462306a36Sopenharmony_ciexit: 524562306a36Sopenharmony_ci return rq; 524662306a36Sopenharmony_ci} 524762306a36Sopenharmony_ci 524862306a36Sopenharmony_ci#ifdef CONFIG_BFQ_CGROUP_DEBUG 524962306a36Sopenharmony_cistatic void bfq_update_dispatch_stats(struct request_queue *q, 525062306a36Sopenharmony_ci struct request *rq, 525162306a36Sopenharmony_ci struct bfq_queue *in_serv_queue, 525262306a36Sopenharmony_ci bool idle_timer_disabled) 525362306a36Sopenharmony_ci{ 525462306a36Sopenharmony_ci struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL; 525562306a36Sopenharmony_ci 525662306a36Sopenharmony_ci if (!idle_timer_disabled && !bfqq) 525762306a36Sopenharmony_ci return; 525862306a36Sopenharmony_ci 525962306a36Sopenharmony_ci /* 526062306a36Sopenharmony_ci * rq and bfqq are guaranteed to exist until this function 526162306a36Sopenharmony_ci * ends, for the following reasons. First, rq can be 526262306a36Sopenharmony_ci * dispatched to the device, and then can be completed and 526362306a36Sopenharmony_ci * freed, only after this function ends. Second, rq cannot be 526462306a36Sopenharmony_ci * merged (and thus freed because of a merge) any longer, 526562306a36Sopenharmony_ci * because it has already started. Thus rq cannot be freed 526662306a36Sopenharmony_ci * before this function ends, and, since rq has a reference to 526762306a36Sopenharmony_ci * bfqq, the same guarantee holds for bfqq too. 526862306a36Sopenharmony_ci * 526962306a36Sopenharmony_ci * In addition, the following queue lock guarantees that 527062306a36Sopenharmony_ci * bfqq_group(bfqq) exists as well. 527162306a36Sopenharmony_ci */ 527262306a36Sopenharmony_ci spin_lock_irq(&q->queue_lock); 527362306a36Sopenharmony_ci if (idle_timer_disabled) 527462306a36Sopenharmony_ci /* 527562306a36Sopenharmony_ci * Since the idle timer has been disabled, 527662306a36Sopenharmony_ci * in_serv_queue contained some request when 527762306a36Sopenharmony_ci * __bfq_dispatch_request was invoked above, which 527862306a36Sopenharmony_ci * implies that rq was picked exactly from 527962306a36Sopenharmony_ci * in_serv_queue. Thus in_serv_queue == bfqq, and is 528062306a36Sopenharmony_ci * therefore guaranteed to exist because of the above 528162306a36Sopenharmony_ci * arguments. 528262306a36Sopenharmony_ci */ 528362306a36Sopenharmony_ci bfqg_stats_update_idle_time(bfqq_group(in_serv_queue)); 528462306a36Sopenharmony_ci if (bfqq) { 528562306a36Sopenharmony_ci struct bfq_group *bfqg = bfqq_group(bfqq); 528662306a36Sopenharmony_ci 528762306a36Sopenharmony_ci bfqg_stats_update_avg_queue_size(bfqg); 528862306a36Sopenharmony_ci bfqg_stats_set_start_empty_time(bfqg); 528962306a36Sopenharmony_ci bfqg_stats_update_io_remove(bfqg, rq->cmd_flags); 529062306a36Sopenharmony_ci } 529162306a36Sopenharmony_ci spin_unlock_irq(&q->queue_lock); 529262306a36Sopenharmony_ci} 529362306a36Sopenharmony_ci#else 529462306a36Sopenharmony_cistatic inline void bfq_update_dispatch_stats(struct request_queue *q, 529562306a36Sopenharmony_ci struct request *rq, 529662306a36Sopenharmony_ci struct bfq_queue *in_serv_queue, 529762306a36Sopenharmony_ci bool idle_timer_disabled) {} 529862306a36Sopenharmony_ci#endif /* CONFIG_BFQ_CGROUP_DEBUG */ 529962306a36Sopenharmony_ci 530062306a36Sopenharmony_cistatic struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx) 530162306a36Sopenharmony_ci{ 530262306a36Sopenharmony_ci struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 530362306a36Sopenharmony_ci struct request *rq; 530462306a36Sopenharmony_ci struct bfq_queue *in_serv_queue; 530562306a36Sopenharmony_ci bool waiting_rq, idle_timer_disabled = false; 530662306a36Sopenharmony_ci 530762306a36Sopenharmony_ci spin_lock_irq(&bfqd->lock); 530862306a36Sopenharmony_ci 530962306a36Sopenharmony_ci in_serv_queue = bfqd->in_service_queue; 531062306a36Sopenharmony_ci waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue); 531162306a36Sopenharmony_ci 531262306a36Sopenharmony_ci rq = __bfq_dispatch_request(hctx); 531362306a36Sopenharmony_ci if (in_serv_queue == bfqd->in_service_queue) { 531462306a36Sopenharmony_ci idle_timer_disabled = 531562306a36Sopenharmony_ci waiting_rq && !bfq_bfqq_wait_request(in_serv_queue); 531662306a36Sopenharmony_ci } 531762306a36Sopenharmony_ci 531862306a36Sopenharmony_ci spin_unlock_irq(&bfqd->lock); 531962306a36Sopenharmony_ci bfq_update_dispatch_stats(hctx->queue, rq, 532062306a36Sopenharmony_ci idle_timer_disabled ? in_serv_queue : NULL, 532162306a36Sopenharmony_ci idle_timer_disabled); 532262306a36Sopenharmony_ci 532362306a36Sopenharmony_ci return rq; 532462306a36Sopenharmony_ci} 532562306a36Sopenharmony_ci 532662306a36Sopenharmony_ci/* 532762306a36Sopenharmony_ci * Task holds one reference to the queue, dropped when task exits. Each rq 532862306a36Sopenharmony_ci * in-flight on this queue also holds a reference, dropped when rq is freed. 532962306a36Sopenharmony_ci * 533062306a36Sopenharmony_ci * Scheduler lock must be held here. Recall not to use bfqq after calling 533162306a36Sopenharmony_ci * this function on it. 533262306a36Sopenharmony_ci */ 533362306a36Sopenharmony_civoid bfq_put_queue(struct bfq_queue *bfqq) 533462306a36Sopenharmony_ci{ 533562306a36Sopenharmony_ci struct bfq_queue *item; 533662306a36Sopenharmony_ci struct hlist_node *n; 533762306a36Sopenharmony_ci struct bfq_group *bfqg = bfqq_group(bfqq); 533862306a36Sopenharmony_ci 533962306a36Sopenharmony_ci bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d", bfqq, bfqq->ref); 534062306a36Sopenharmony_ci 534162306a36Sopenharmony_ci bfqq->ref--; 534262306a36Sopenharmony_ci if (bfqq->ref) 534362306a36Sopenharmony_ci return; 534462306a36Sopenharmony_ci 534562306a36Sopenharmony_ci if (!hlist_unhashed(&bfqq->burst_list_node)) { 534662306a36Sopenharmony_ci hlist_del_init(&bfqq->burst_list_node); 534762306a36Sopenharmony_ci /* 534862306a36Sopenharmony_ci * Decrement also burst size after the removal, if the 534962306a36Sopenharmony_ci * process associated with bfqq is exiting, and thus 535062306a36Sopenharmony_ci * does not contribute to the burst any longer. This 535162306a36Sopenharmony_ci * decrement helps filter out false positives of large 535262306a36Sopenharmony_ci * bursts, when some short-lived process (often due to 535362306a36Sopenharmony_ci * the execution of commands by some service) happens 535462306a36Sopenharmony_ci * to start and exit while a complex application is 535562306a36Sopenharmony_ci * starting, and thus spawning several processes that 535662306a36Sopenharmony_ci * do I/O (and that *must not* be treated as a large 535762306a36Sopenharmony_ci * burst, see comments on bfq_handle_burst). 535862306a36Sopenharmony_ci * 535962306a36Sopenharmony_ci * In particular, the decrement is performed only if: 536062306a36Sopenharmony_ci * 1) bfqq is not a merged queue, because, if it is, 536162306a36Sopenharmony_ci * then this free of bfqq is not triggered by the exit 536262306a36Sopenharmony_ci * of the process bfqq is associated with, but exactly 536362306a36Sopenharmony_ci * by the fact that bfqq has just been merged. 536462306a36Sopenharmony_ci * 2) burst_size is greater than 0, to handle 536562306a36Sopenharmony_ci * unbalanced decrements. Unbalanced decrements may 536662306a36Sopenharmony_ci * happen in te following case: bfqq is inserted into 536762306a36Sopenharmony_ci * the current burst list--without incrementing 536862306a36Sopenharmony_ci * bust_size--because of a split, but the current 536962306a36Sopenharmony_ci * burst list is not the burst list bfqq belonged to 537062306a36Sopenharmony_ci * (see comments on the case of a split in 537162306a36Sopenharmony_ci * bfq_set_request). 537262306a36Sopenharmony_ci */ 537362306a36Sopenharmony_ci if (bfqq->bic && bfqq->bfqd->burst_size > 0) 537462306a36Sopenharmony_ci bfqq->bfqd->burst_size--; 537562306a36Sopenharmony_ci } 537662306a36Sopenharmony_ci 537762306a36Sopenharmony_ci /* 537862306a36Sopenharmony_ci * bfqq does not exist any longer, so it cannot be woken by 537962306a36Sopenharmony_ci * any other queue, and cannot wake any other queue. Then bfqq 538062306a36Sopenharmony_ci * must be removed from the woken list of its possible waker 538162306a36Sopenharmony_ci * queue, and all queues in the woken list of bfqq must stop 538262306a36Sopenharmony_ci * having a waker queue. Strictly speaking, these updates 538362306a36Sopenharmony_ci * should be performed when bfqq remains with no I/O source 538462306a36Sopenharmony_ci * attached to it, which happens before bfqq gets freed. In 538562306a36Sopenharmony_ci * particular, this happens when the last process associated 538662306a36Sopenharmony_ci * with bfqq exits or gets associated with a different 538762306a36Sopenharmony_ci * queue. However, both events lead to bfqq being freed soon, 538862306a36Sopenharmony_ci * and dangling references would come out only after bfqq gets 538962306a36Sopenharmony_ci * freed. So these updates are done here, as a simple and safe 539062306a36Sopenharmony_ci * way to handle all cases. 539162306a36Sopenharmony_ci */ 539262306a36Sopenharmony_ci /* remove bfqq from woken list */ 539362306a36Sopenharmony_ci if (!hlist_unhashed(&bfqq->woken_list_node)) 539462306a36Sopenharmony_ci hlist_del_init(&bfqq->woken_list_node); 539562306a36Sopenharmony_ci 539662306a36Sopenharmony_ci /* reset waker for all queues in woken list */ 539762306a36Sopenharmony_ci hlist_for_each_entry_safe(item, n, &bfqq->woken_list, 539862306a36Sopenharmony_ci woken_list_node) { 539962306a36Sopenharmony_ci item->waker_bfqq = NULL; 540062306a36Sopenharmony_ci hlist_del_init(&item->woken_list_node); 540162306a36Sopenharmony_ci } 540262306a36Sopenharmony_ci 540362306a36Sopenharmony_ci if (bfqq->bfqd->last_completed_rq_bfqq == bfqq) 540462306a36Sopenharmony_ci bfqq->bfqd->last_completed_rq_bfqq = NULL; 540562306a36Sopenharmony_ci 540662306a36Sopenharmony_ci WARN_ON_ONCE(!list_empty(&bfqq->fifo)); 540762306a36Sopenharmony_ci WARN_ON_ONCE(!RB_EMPTY_ROOT(&bfqq->sort_list)); 540862306a36Sopenharmony_ci WARN_ON_ONCE(bfqq->dispatched); 540962306a36Sopenharmony_ci 541062306a36Sopenharmony_ci kmem_cache_free(bfq_pool, bfqq); 541162306a36Sopenharmony_ci bfqg_and_blkg_put(bfqg); 541262306a36Sopenharmony_ci} 541362306a36Sopenharmony_ci 541462306a36Sopenharmony_cistatic void bfq_put_stable_ref(struct bfq_queue *bfqq) 541562306a36Sopenharmony_ci{ 541662306a36Sopenharmony_ci bfqq->stable_ref--; 541762306a36Sopenharmony_ci bfq_put_queue(bfqq); 541862306a36Sopenharmony_ci} 541962306a36Sopenharmony_ci 542062306a36Sopenharmony_civoid bfq_put_cooperator(struct bfq_queue *bfqq) 542162306a36Sopenharmony_ci{ 542262306a36Sopenharmony_ci struct bfq_queue *__bfqq, *next; 542362306a36Sopenharmony_ci 542462306a36Sopenharmony_ci /* 542562306a36Sopenharmony_ci * If this queue was scheduled to merge with another queue, be 542662306a36Sopenharmony_ci * sure to drop the reference taken on that queue (and others in 542762306a36Sopenharmony_ci * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs. 542862306a36Sopenharmony_ci */ 542962306a36Sopenharmony_ci __bfqq = bfqq->new_bfqq; 543062306a36Sopenharmony_ci while (__bfqq) { 543162306a36Sopenharmony_ci next = __bfqq->new_bfqq; 543262306a36Sopenharmony_ci bfq_put_queue(__bfqq); 543362306a36Sopenharmony_ci __bfqq = next; 543462306a36Sopenharmony_ci } 543562306a36Sopenharmony_ci} 543662306a36Sopenharmony_ci 543762306a36Sopenharmony_cistatic void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq) 543862306a36Sopenharmony_ci{ 543962306a36Sopenharmony_ci if (bfqq == bfqd->in_service_queue) { 544062306a36Sopenharmony_ci __bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT); 544162306a36Sopenharmony_ci bfq_schedule_dispatch(bfqd); 544262306a36Sopenharmony_ci } 544362306a36Sopenharmony_ci 544462306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref); 544562306a36Sopenharmony_ci 544662306a36Sopenharmony_ci bfq_put_cooperator(bfqq); 544762306a36Sopenharmony_ci 544862306a36Sopenharmony_ci bfq_release_process_ref(bfqd, bfqq); 544962306a36Sopenharmony_ci} 545062306a36Sopenharmony_ci 545162306a36Sopenharmony_cistatic void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync, 545262306a36Sopenharmony_ci unsigned int actuator_idx) 545362306a36Sopenharmony_ci{ 545462306a36Sopenharmony_ci struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync, actuator_idx); 545562306a36Sopenharmony_ci struct bfq_data *bfqd; 545662306a36Sopenharmony_ci 545762306a36Sopenharmony_ci if (bfqq) 545862306a36Sopenharmony_ci bfqd = bfqq->bfqd; /* NULL if scheduler already exited */ 545962306a36Sopenharmony_ci 546062306a36Sopenharmony_ci if (bfqq && bfqd) { 546162306a36Sopenharmony_ci bic_set_bfqq(bic, NULL, is_sync, actuator_idx); 546262306a36Sopenharmony_ci bfq_exit_bfqq(bfqd, bfqq); 546362306a36Sopenharmony_ci } 546462306a36Sopenharmony_ci} 546562306a36Sopenharmony_ci 546662306a36Sopenharmony_cistatic void bfq_exit_icq(struct io_cq *icq) 546762306a36Sopenharmony_ci{ 546862306a36Sopenharmony_ci struct bfq_io_cq *bic = icq_to_bic(icq); 546962306a36Sopenharmony_ci struct bfq_data *bfqd = bic_to_bfqd(bic); 547062306a36Sopenharmony_ci unsigned long flags; 547162306a36Sopenharmony_ci unsigned int act_idx; 547262306a36Sopenharmony_ci /* 547362306a36Sopenharmony_ci * If bfqd and thus bfqd->num_actuators is not available any 547462306a36Sopenharmony_ci * longer, then cycle over all possible per-actuator bfqqs in 547562306a36Sopenharmony_ci * next loop. We rely on bic being zeroed on creation, and 547662306a36Sopenharmony_ci * therefore on its unused per-actuator fields being NULL. 547762306a36Sopenharmony_ci */ 547862306a36Sopenharmony_ci unsigned int num_actuators = BFQ_MAX_ACTUATORS; 547962306a36Sopenharmony_ci struct bfq_iocq_bfqq_data *bfqq_data = bic->bfqq_data; 548062306a36Sopenharmony_ci 548162306a36Sopenharmony_ci /* 548262306a36Sopenharmony_ci * bfqd is NULL if scheduler already exited, and in that case 548362306a36Sopenharmony_ci * this is the last time these queues are accessed. 548462306a36Sopenharmony_ci */ 548562306a36Sopenharmony_ci if (bfqd) { 548662306a36Sopenharmony_ci spin_lock_irqsave(&bfqd->lock, flags); 548762306a36Sopenharmony_ci num_actuators = bfqd->num_actuators; 548862306a36Sopenharmony_ci } 548962306a36Sopenharmony_ci 549062306a36Sopenharmony_ci for (act_idx = 0; act_idx < num_actuators; act_idx++) { 549162306a36Sopenharmony_ci if (bfqq_data[act_idx].stable_merge_bfqq) 549262306a36Sopenharmony_ci bfq_put_stable_ref(bfqq_data[act_idx].stable_merge_bfqq); 549362306a36Sopenharmony_ci 549462306a36Sopenharmony_ci bfq_exit_icq_bfqq(bic, true, act_idx); 549562306a36Sopenharmony_ci bfq_exit_icq_bfqq(bic, false, act_idx); 549662306a36Sopenharmony_ci } 549762306a36Sopenharmony_ci 549862306a36Sopenharmony_ci if (bfqd) 549962306a36Sopenharmony_ci spin_unlock_irqrestore(&bfqd->lock, flags); 550062306a36Sopenharmony_ci} 550162306a36Sopenharmony_ci 550262306a36Sopenharmony_ci/* 550362306a36Sopenharmony_ci * Update the entity prio values; note that the new values will not 550462306a36Sopenharmony_ci * be used until the next (re)activation. 550562306a36Sopenharmony_ci */ 550662306a36Sopenharmony_cistatic void 550762306a36Sopenharmony_cibfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic) 550862306a36Sopenharmony_ci{ 550962306a36Sopenharmony_ci struct task_struct *tsk = current; 551062306a36Sopenharmony_ci int ioprio_class; 551162306a36Sopenharmony_ci struct bfq_data *bfqd = bfqq->bfqd; 551262306a36Sopenharmony_ci 551362306a36Sopenharmony_ci if (!bfqd) 551462306a36Sopenharmony_ci return; 551562306a36Sopenharmony_ci 551662306a36Sopenharmony_ci ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 551762306a36Sopenharmony_ci switch (ioprio_class) { 551862306a36Sopenharmony_ci default: 551962306a36Sopenharmony_ci pr_err("bdi %s: bfq: bad prio class %d\n", 552062306a36Sopenharmony_ci bdi_dev_name(bfqq->bfqd->queue->disk->bdi), 552162306a36Sopenharmony_ci ioprio_class); 552262306a36Sopenharmony_ci fallthrough; 552362306a36Sopenharmony_ci case IOPRIO_CLASS_NONE: 552462306a36Sopenharmony_ci /* 552562306a36Sopenharmony_ci * No prio set, inherit CPU scheduling settings. 552662306a36Sopenharmony_ci */ 552762306a36Sopenharmony_ci bfqq->new_ioprio = task_nice_ioprio(tsk); 552862306a36Sopenharmony_ci bfqq->new_ioprio_class = task_nice_ioclass(tsk); 552962306a36Sopenharmony_ci break; 553062306a36Sopenharmony_ci case IOPRIO_CLASS_RT: 553162306a36Sopenharmony_ci bfqq->new_ioprio = IOPRIO_PRIO_LEVEL(bic->ioprio); 553262306a36Sopenharmony_ci bfqq->new_ioprio_class = IOPRIO_CLASS_RT; 553362306a36Sopenharmony_ci break; 553462306a36Sopenharmony_ci case IOPRIO_CLASS_BE: 553562306a36Sopenharmony_ci bfqq->new_ioprio = IOPRIO_PRIO_LEVEL(bic->ioprio); 553662306a36Sopenharmony_ci bfqq->new_ioprio_class = IOPRIO_CLASS_BE; 553762306a36Sopenharmony_ci break; 553862306a36Sopenharmony_ci case IOPRIO_CLASS_IDLE: 553962306a36Sopenharmony_ci bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE; 554062306a36Sopenharmony_ci bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1; 554162306a36Sopenharmony_ci break; 554262306a36Sopenharmony_ci } 554362306a36Sopenharmony_ci 554462306a36Sopenharmony_ci if (bfqq->new_ioprio >= IOPRIO_NR_LEVELS) { 554562306a36Sopenharmony_ci pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n", 554662306a36Sopenharmony_ci bfqq->new_ioprio); 554762306a36Sopenharmony_ci bfqq->new_ioprio = IOPRIO_NR_LEVELS - 1; 554862306a36Sopenharmony_ci } 554962306a36Sopenharmony_ci 555062306a36Sopenharmony_ci bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio); 555162306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d", 555262306a36Sopenharmony_ci bfqq->new_ioprio, bfqq->entity.new_weight); 555362306a36Sopenharmony_ci bfqq->entity.prio_changed = 1; 555462306a36Sopenharmony_ci} 555562306a36Sopenharmony_ci 555662306a36Sopenharmony_cistatic struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 555762306a36Sopenharmony_ci struct bio *bio, bool is_sync, 555862306a36Sopenharmony_ci struct bfq_io_cq *bic, 555962306a36Sopenharmony_ci bool respawn); 556062306a36Sopenharmony_ci 556162306a36Sopenharmony_cistatic void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio) 556262306a36Sopenharmony_ci{ 556362306a36Sopenharmony_ci struct bfq_data *bfqd = bic_to_bfqd(bic); 556462306a36Sopenharmony_ci struct bfq_queue *bfqq; 556562306a36Sopenharmony_ci int ioprio = bic->icq.ioc->ioprio; 556662306a36Sopenharmony_ci 556762306a36Sopenharmony_ci /* 556862306a36Sopenharmony_ci * This condition may trigger on a newly created bic, be sure to 556962306a36Sopenharmony_ci * drop the lock before returning. 557062306a36Sopenharmony_ci */ 557162306a36Sopenharmony_ci if (unlikely(!bfqd) || likely(bic->ioprio == ioprio)) 557262306a36Sopenharmony_ci return; 557362306a36Sopenharmony_ci 557462306a36Sopenharmony_ci bic->ioprio = ioprio; 557562306a36Sopenharmony_ci 557662306a36Sopenharmony_ci bfqq = bic_to_bfqq(bic, false, bfq_actuator_index(bfqd, bio)); 557762306a36Sopenharmony_ci if (bfqq) { 557862306a36Sopenharmony_ci struct bfq_queue *old_bfqq = bfqq; 557962306a36Sopenharmony_ci 558062306a36Sopenharmony_ci bfqq = bfq_get_queue(bfqd, bio, false, bic, true); 558162306a36Sopenharmony_ci bic_set_bfqq(bic, bfqq, false, bfq_actuator_index(bfqd, bio)); 558262306a36Sopenharmony_ci bfq_release_process_ref(bfqd, old_bfqq); 558362306a36Sopenharmony_ci } 558462306a36Sopenharmony_ci 558562306a36Sopenharmony_ci bfqq = bic_to_bfqq(bic, true, bfq_actuator_index(bfqd, bio)); 558662306a36Sopenharmony_ci if (bfqq) 558762306a36Sopenharmony_ci bfq_set_next_ioprio_data(bfqq, bic); 558862306a36Sopenharmony_ci} 558962306a36Sopenharmony_ci 559062306a36Sopenharmony_cistatic void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq, 559162306a36Sopenharmony_ci struct bfq_io_cq *bic, pid_t pid, int is_sync, 559262306a36Sopenharmony_ci unsigned int act_idx) 559362306a36Sopenharmony_ci{ 559462306a36Sopenharmony_ci u64 now_ns = ktime_get_ns(); 559562306a36Sopenharmony_ci 559662306a36Sopenharmony_ci bfqq->actuator_idx = act_idx; 559762306a36Sopenharmony_ci RB_CLEAR_NODE(&bfqq->entity.rb_node); 559862306a36Sopenharmony_ci INIT_LIST_HEAD(&bfqq->fifo); 559962306a36Sopenharmony_ci INIT_HLIST_NODE(&bfqq->burst_list_node); 560062306a36Sopenharmony_ci INIT_HLIST_NODE(&bfqq->woken_list_node); 560162306a36Sopenharmony_ci INIT_HLIST_HEAD(&bfqq->woken_list); 560262306a36Sopenharmony_ci 560362306a36Sopenharmony_ci bfqq->ref = 0; 560462306a36Sopenharmony_ci bfqq->bfqd = bfqd; 560562306a36Sopenharmony_ci 560662306a36Sopenharmony_ci if (bic) 560762306a36Sopenharmony_ci bfq_set_next_ioprio_data(bfqq, bic); 560862306a36Sopenharmony_ci 560962306a36Sopenharmony_ci if (is_sync) { 561062306a36Sopenharmony_ci /* 561162306a36Sopenharmony_ci * No need to mark as has_short_ttime if in 561262306a36Sopenharmony_ci * idle_class, because no device idling is performed 561362306a36Sopenharmony_ci * for queues in idle class 561462306a36Sopenharmony_ci */ 561562306a36Sopenharmony_ci if (!bfq_class_idle(bfqq)) 561662306a36Sopenharmony_ci /* tentatively mark as has_short_ttime */ 561762306a36Sopenharmony_ci bfq_mark_bfqq_has_short_ttime(bfqq); 561862306a36Sopenharmony_ci bfq_mark_bfqq_sync(bfqq); 561962306a36Sopenharmony_ci bfq_mark_bfqq_just_created(bfqq); 562062306a36Sopenharmony_ci } else 562162306a36Sopenharmony_ci bfq_clear_bfqq_sync(bfqq); 562262306a36Sopenharmony_ci 562362306a36Sopenharmony_ci /* set end request to minus infinity from now */ 562462306a36Sopenharmony_ci bfqq->ttime.last_end_request = now_ns + 1; 562562306a36Sopenharmony_ci 562662306a36Sopenharmony_ci bfqq->creation_time = jiffies; 562762306a36Sopenharmony_ci 562862306a36Sopenharmony_ci bfqq->io_start_time = now_ns; 562962306a36Sopenharmony_ci 563062306a36Sopenharmony_ci bfq_mark_bfqq_IO_bound(bfqq); 563162306a36Sopenharmony_ci 563262306a36Sopenharmony_ci bfqq->pid = pid; 563362306a36Sopenharmony_ci 563462306a36Sopenharmony_ci /* Tentative initial value to trade off between thr and lat */ 563562306a36Sopenharmony_ci bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3; 563662306a36Sopenharmony_ci bfqq->budget_timeout = bfq_smallest_from_now(); 563762306a36Sopenharmony_ci 563862306a36Sopenharmony_ci bfqq->wr_coeff = 1; 563962306a36Sopenharmony_ci bfqq->last_wr_start_finish = jiffies; 564062306a36Sopenharmony_ci bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now(); 564162306a36Sopenharmony_ci bfqq->split_time = bfq_smallest_from_now(); 564262306a36Sopenharmony_ci 564362306a36Sopenharmony_ci /* 564462306a36Sopenharmony_ci * To not forget the possibly high bandwidth consumed by a 564562306a36Sopenharmony_ci * process/queue in the recent past, 564662306a36Sopenharmony_ci * bfq_bfqq_softrt_next_start() returns a value at least equal 564762306a36Sopenharmony_ci * to the current value of bfqq->soft_rt_next_start (see 564862306a36Sopenharmony_ci * comments on bfq_bfqq_softrt_next_start). Set 564962306a36Sopenharmony_ci * soft_rt_next_start to now, to mean that bfqq has consumed 565062306a36Sopenharmony_ci * no bandwidth so far. 565162306a36Sopenharmony_ci */ 565262306a36Sopenharmony_ci bfqq->soft_rt_next_start = jiffies; 565362306a36Sopenharmony_ci 565462306a36Sopenharmony_ci /* first request is almost certainly seeky */ 565562306a36Sopenharmony_ci bfqq->seek_history = 1; 565662306a36Sopenharmony_ci 565762306a36Sopenharmony_ci bfqq->decrease_time_jif = jiffies; 565862306a36Sopenharmony_ci} 565962306a36Sopenharmony_ci 566062306a36Sopenharmony_cistatic struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd, 566162306a36Sopenharmony_ci struct bfq_group *bfqg, 566262306a36Sopenharmony_ci int ioprio_class, int ioprio, int act_idx) 566362306a36Sopenharmony_ci{ 566462306a36Sopenharmony_ci switch (ioprio_class) { 566562306a36Sopenharmony_ci case IOPRIO_CLASS_RT: 566662306a36Sopenharmony_ci return &bfqg->async_bfqq[0][ioprio][act_idx]; 566762306a36Sopenharmony_ci case IOPRIO_CLASS_NONE: 566862306a36Sopenharmony_ci ioprio = IOPRIO_BE_NORM; 566962306a36Sopenharmony_ci fallthrough; 567062306a36Sopenharmony_ci case IOPRIO_CLASS_BE: 567162306a36Sopenharmony_ci return &bfqg->async_bfqq[1][ioprio][act_idx]; 567262306a36Sopenharmony_ci case IOPRIO_CLASS_IDLE: 567362306a36Sopenharmony_ci return &bfqg->async_idle_bfqq[act_idx]; 567462306a36Sopenharmony_ci default: 567562306a36Sopenharmony_ci return NULL; 567662306a36Sopenharmony_ci } 567762306a36Sopenharmony_ci} 567862306a36Sopenharmony_ci 567962306a36Sopenharmony_cistatic struct bfq_queue * 568062306a36Sopenharmony_cibfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq, 568162306a36Sopenharmony_ci struct bfq_io_cq *bic, 568262306a36Sopenharmony_ci struct bfq_queue *last_bfqq_created) 568362306a36Sopenharmony_ci{ 568462306a36Sopenharmony_ci unsigned int a_idx = last_bfqq_created->actuator_idx; 568562306a36Sopenharmony_ci struct bfq_queue *new_bfqq = 568662306a36Sopenharmony_ci bfq_setup_merge(bfqq, last_bfqq_created); 568762306a36Sopenharmony_ci 568862306a36Sopenharmony_ci if (!new_bfqq) 568962306a36Sopenharmony_ci return bfqq; 569062306a36Sopenharmony_ci 569162306a36Sopenharmony_ci if (new_bfqq->bic) 569262306a36Sopenharmony_ci new_bfqq->bic->bfqq_data[a_idx].stably_merged = true; 569362306a36Sopenharmony_ci bic->bfqq_data[a_idx].stably_merged = true; 569462306a36Sopenharmony_ci 569562306a36Sopenharmony_ci /* 569662306a36Sopenharmony_ci * Reusing merge functions. This implies that 569762306a36Sopenharmony_ci * bfqq->bic must be set too, for 569862306a36Sopenharmony_ci * bfq_merge_bfqqs to correctly save bfqq's 569962306a36Sopenharmony_ci * state before killing it. 570062306a36Sopenharmony_ci */ 570162306a36Sopenharmony_ci bfqq->bic = bic; 570262306a36Sopenharmony_ci bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq); 570362306a36Sopenharmony_ci 570462306a36Sopenharmony_ci return new_bfqq; 570562306a36Sopenharmony_ci} 570662306a36Sopenharmony_ci 570762306a36Sopenharmony_ci/* 570862306a36Sopenharmony_ci * Many throughput-sensitive workloads are made of several parallel 570962306a36Sopenharmony_ci * I/O flows, with all flows generated by the same application, or 571062306a36Sopenharmony_ci * more generically by the same task (e.g., system boot). The most 571162306a36Sopenharmony_ci * counterproductive action with these workloads is plugging I/O 571262306a36Sopenharmony_ci * dispatch when one of the bfq_queues associated with these flows 571362306a36Sopenharmony_ci * remains temporarily empty. 571462306a36Sopenharmony_ci * 571562306a36Sopenharmony_ci * To avoid this plugging, BFQ has been using a burst-handling 571662306a36Sopenharmony_ci * mechanism for years now. This mechanism has proven effective for 571762306a36Sopenharmony_ci * throughput, and not detrimental for service guarantees. The 571862306a36Sopenharmony_ci * following function pushes this mechanism a little bit further, 571962306a36Sopenharmony_ci * basing on the following two facts. 572062306a36Sopenharmony_ci * 572162306a36Sopenharmony_ci * First, all the I/O flows of a the same application or task 572262306a36Sopenharmony_ci * contribute to the execution/completion of that common application 572362306a36Sopenharmony_ci * or task. So the performance figures that matter are total 572462306a36Sopenharmony_ci * throughput of the flows and task-wide I/O latency. In particular, 572562306a36Sopenharmony_ci * these flows do not need to be protected from each other, in terms 572662306a36Sopenharmony_ci * of individual bandwidth or latency. 572762306a36Sopenharmony_ci * 572862306a36Sopenharmony_ci * Second, the above fact holds regardless of the number of flows. 572962306a36Sopenharmony_ci * 573062306a36Sopenharmony_ci * Putting these two facts together, this commits merges stably the 573162306a36Sopenharmony_ci * bfq_queues associated with these I/O flows, i.e., with the 573262306a36Sopenharmony_ci * processes that generate these IO/ flows, regardless of how many the 573362306a36Sopenharmony_ci * involved processes are. 573462306a36Sopenharmony_ci * 573562306a36Sopenharmony_ci * To decide whether a set of bfq_queues is actually associated with 573662306a36Sopenharmony_ci * the I/O flows of a common application or task, and to merge these 573762306a36Sopenharmony_ci * queues stably, this function operates as follows: given a bfq_queue, 573862306a36Sopenharmony_ci * say Q2, currently being created, and the last bfq_queue, say Q1, 573962306a36Sopenharmony_ci * created before Q2, Q2 is merged stably with Q1 if 574062306a36Sopenharmony_ci * - very little time has elapsed since when Q1 was created 574162306a36Sopenharmony_ci * - Q2 has the same ioprio as Q1 574262306a36Sopenharmony_ci * - Q2 belongs to the same group as Q1 574362306a36Sopenharmony_ci * 574462306a36Sopenharmony_ci * Merging bfq_queues also reduces scheduling overhead. A fio test 574562306a36Sopenharmony_ci * with ten random readers on /dev/nullb shows a throughput boost of 574662306a36Sopenharmony_ci * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of 574762306a36Sopenharmony_ci * the total per-request processing time, the above throughput boost 574862306a36Sopenharmony_ci * implies that BFQ's overhead is reduced by more than 50%. 574962306a36Sopenharmony_ci * 575062306a36Sopenharmony_ci * This new mechanism most certainly obsoletes the current 575162306a36Sopenharmony_ci * burst-handling heuristics. We keep those heuristics for the moment. 575262306a36Sopenharmony_ci */ 575362306a36Sopenharmony_cistatic struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd, 575462306a36Sopenharmony_ci struct bfq_queue *bfqq, 575562306a36Sopenharmony_ci struct bfq_io_cq *bic) 575662306a36Sopenharmony_ci{ 575762306a36Sopenharmony_ci struct bfq_queue **source_bfqq = bfqq->entity.parent ? 575862306a36Sopenharmony_ci &bfqq->entity.parent->last_bfqq_created : 575962306a36Sopenharmony_ci &bfqd->last_bfqq_created; 576062306a36Sopenharmony_ci 576162306a36Sopenharmony_ci struct bfq_queue *last_bfqq_created = *source_bfqq; 576262306a36Sopenharmony_ci 576362306a36Sopenharmony_ci /* 576462306a36Sopenharmony_ci * If last_bfqq_created has not been set yet, then init it. If 576562306a36Sopenharmony_ci * it has been set already, but too long ago, then move it 576662306a36Sopenharmony_ci * forward to bfqq. Finally, move also if bfqq belongs to a 576762306a36Sopenharmony_ci * different group than last_bfqq_created, or if bfqq has a 576862306a36Sopenharmony_ci * different ioprio, ioprio_class or actuator_idx. If none of 576962306a36Sopenharmony_ci * these conditions holds true, then try an early stable merge 577062306a36Sopenharmony_ci * or schedule a delayed stable merge. As for the condition on 577162306a36Sopenharmony_ci * actuator_idx, the reason is that, if queues associated with 577262306a36Sopenharmony_ci * different actuators are merged, then control is lost on 577362306a36Sopenharmony_ci * each actuator. Therefore some actuator may be 577462306a36Sopenharmony_ci * underutilized, and throughput may decrease. 577562306a36Sopenharmony_ci * 577662306a36Sopenharmony_ci * A delayed merge is scheduled (instead of performing an 577762306a36Sopenharmony_ci * early merge), in case bfqq might soon prove to be more 577862306a36Sopenharmony_ci * throughput-beneficial if not merged. Currently this is 577962306a36Sopenharmony_ci * possible only if bfqd is rotational with no queueing. For 578062306a36Sopenharmony_ci * such a drive, not merging bfqq is better for throughput if 578162306a36Sopenharmony_ci * bfqq happens to contain sequential I/O. So, we wait a 578262306a36Sopenharmony_ci * little bit for enough I/O to flow through bfqq. After that, 578362306a36Sopenharmony_ci * if such an I/O is sequential, then the merge is 578462306a36Sopenharmony_ci * canceled. Otherwise the merge is finally performed. 578562306a36Sopenharmony_ci */ 578662306a36Sopenharmony_ci if (!last_bfqq_created || 578762306a36Sopenharmony_ci time_before(last_bfqq_created->creation_time + 578862306a36Sopenharmony_ci msecs_to_jiffies(bfq_activation_stable_merging), 578962306a36Sopenharmony_ci bfqq->creation_time) || 579062306a36Sopenharmony_ci bfqq->entity.parent != last_bfqq_created->entity.parent || 579162306a36Sopenharmony_ci bfqq->ioprio != last_bfqq_created->ioprio || 579262306a36Sopenharmony_ci bfqq->ioprio_class != last_bfqq_created->ioprio_class || 579362306a36Sopenharmony_ci bfqq->actuator_idx != last_bfqq_created->actuator_idx) 579462306a36Sopenharmony_ci *source_bfqq = bfqq; 579562306a36Sopenharmony_ci else if (time_after_eq(last_bfqq_created->creation_time + 579662306a36Sopenharmony_ci bfqd->bfq_burst_interval, 579762306a36Sopenharmony_ci bfqq->creation_time)) { 579862306a36Sopenharmony_ci if (likely(bfqd->nonrot_with_queueing)) 579962306a36Sopenharmony_ci /* 580062306a36Sopenharmony_ci * With this type of drive, leaving 580162306a36Sopenharmony_ci * bfqq alone may provide no 580262306a36Sopenharmony_ci * throughput benefits compared with 580362306a36Sopenharmony_ci * merging bfqq. So merge bfqq now. 580462306a36Sopenharmony_ci */ 580562306a36Sopenharmony_ci bfqq = bfq_do_early_stable_merge(bfqd, bfqq, 580662306a36Sopenharmony_ci bic, 580762306a36Sopenharmony_ci last_bfqq_created); 580862306a36Sopenharmony_ci else { /* schedule tentative stable merge */ 580962306a36Sopenharmony_ci /* 581062306a36Sopenharmony_ci * get reference on last_bfqq_created, 581162306a36Sopenharmony_ci * to prevent it from being freed, 581262306a36Sopenharmony_ci * until we decide whether to merge 581362306a36Sopenharmony_ci */ 581462306a36Sopenharmony_ci last_bfqq_created->ref++; 581562306a36Sopenharmony_ci /* 581662306a36Sopenharmony_ci * need to keep track of stable refs, to 581762306a36Sopenharmony_ci * compute process refs correctly 581862306a36Sopenharmony_ci */ 581962306a36Sopenharmony_ci last_bfqq_created->stable_ref++; 582062306a36Sopenharmony_ci /* 582162306a36Sopenharmony_ci * Record the bfqq to merge to. 582262306a36Sopenharmony_ci */ 582362306a36Sopenharmony_ci bic->bfqq_data[last_bfqq_created->actuator_idx].stable_merge_bfqq = 582462306a36Sopenharmony_ci last_bfqq_created; 582562306a36Sopenharmony_ci } 582662306a36Sopenharmony_ci } 582762306a36Sopenharmony_ci 582862306a36Sopenharmony_ci return bfqq; 582962306a36Sopenharmony_ci} 583062306a36Sopenharmony_ci 583162306a36Sopenharmony_ci 583262306a36Sopenharmony_cistatic struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd, 583362306a36Sopenharmony_ci struct bio *bio, bool is_sync, 583462306a36Sopenharmony_ci struct bfq_io_cq *bic, 583562306a36Sopenharmony_ci bool respawn) 583662306a36Sopenharmony_ci{ 583762306a36Sopenharmony_ci const int ioprio = IOPRIO_PRIO_LEVEL(bic->ioprio); 583862306a36Sopenharmony_ci const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio); 583962306a36Sopenharmony_ci struct bfq_queue **async_bfqq = NULL; 584062306a36Sopenharmony_ci struct bfq_queue *bfqq; 584162306a36Sopenharmony_ci struct bfq_group *bfqg; 584262306a36Sopenharmony_ci 584362306a36Sopenharmony_ci bfqg = bfq_bio_bfqg(bfqd, bio); 584462306a36Sopenharmony_ci if (!is_sync) { 584562306a36Sopenharmony_ci async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class, 584662306a36Sopenharmony_ci ioprio, 584762306a36Sopenharmony_ci bfq_actuator_index(bfqd, bio)); 584862306a36Sopenharmony_ci bfqq = *async_bfqq; 584962306a36Sopenharmony_ci if (bfqq) 585062306a36Sopenharmony_ci goto out; 585162306a36Sopenharmony_ci } 585262306a36Sopenharmony_ci 585362306a36Sopenharmony_ci bfqq = kmem_cache_alloc_node(bfq_pool, 585462306a36Sopenharmony_ci GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN, 585562306a36Sopenharmony_ci bfqd->queue->node); 585662306a36Sopenharmony_ci 585762306a36Sopenharmony_ci if (bfqq) { 585862306a36Sopenharmony_ci bfq_init_bfqq(bfqd, bfqq, bic, current->pid, 585962306a36Sopenharmony_ci is_sync, bfq_actuator_index(bfqd, bio)); 586062306a36Sopenharmony_ci bfq_init_entity(&bfqq->entity, bfqg); 586162306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "allocated"); 586262306a36Sopenharmony_ci } else { 586362306a36Sopenharmony_ci bfqq = &bfqd->oom_bfqq; 586462306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "using oom bfqq"); 586562306a36Sopenharmony_ci goto out; 586662306a36Sopenharmony_ci } 586762306a36Sopenharmony_ci 586862306a36Sopenharmony_ci /* 586962306a36Sopenharmony_ci * Pin the queue now that it's allocated, scheduler exit will 587062306a36Sopenharmony_ci * prune it. 587162306a36Sopenharmony_ci */ 587262306a36Sopenharmony_ci if (async_bfqq) { 587362306a36Sopenharmony_ci bfqq->ref++; /* 587462306a36Sopenharmony_ci * Extra group reference, w.r.t. sync 587562306a36Sopenharmony_ci * queue. This extra reference is removed 587662306a36Sopenharmony_ci * only if bfqq->bfqg disappears, to 587762306a36Sopenharmony_ci * guarantee that this queue is not freed 587862306a36Sopenharmony_ci * until its group goes away. 587962306a36Sopenharmony_ci */ 588062306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d", 588162306a36Sopenharmony_ci bfqq, bfqq->ref); 588262306a36Sopenharmony_ci *async_bfqq = bfqq; 588362306a36Sopenharmony_ci } 588462306a36Sopenharmony_ci 588562306a36Sopenharmony_ciout: 588662306a36Sopenharmony_ci bfqq->ref++; /* get a process reference to this queue */ 588762306a36Sopenharmony_ci 588862306a36Sopenharmony_ci if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn) 588962306a36Sopenharmony_ci bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic); 589062306a36Sopenharmony_ci return bfqq; 589162306a36Sopenharmony_ci} 589262306a36Sopenharmony_ci 589362306a36Sopenharmony_cistatic void bfq_update_io_thinktime(struct bfq_data *bfqd, 589462306a36Sopenharmony_ci struct bfq_queue *bfqq) 589562306a36Sopenharmony_ci{ 589662306a36Sopenharmony_ci struct bfq_ttime *ttime = &bfqq->ttime; 589762306a36Sopenharmony_ci u64 elapsed; 589862306a36Sopenharmony_ci 589962306a36Sopenharmony_ci /* 590062306a36Sopenharmony_ci * We are really interested in how long it takes for the queue to 590162306a36Sopenharmony_ci * become busy when there is no outstanding IO for this queue. So 590262306a36Sopenharmony_ci * ignore cases when the bfq queue has already IO queued. 590362306a36Sopenharmony_ci */ 590462306a36Sopenharmony_ci if (bfqq->dispatched || bfq_bfqq_busy(bfqq)) 590562306a36Sopenharmony_ci return; 590662306a36Sopenharmony_ci elapsed = ktime_get_ns() - bfqq->ttime.last_end_request; 590762306a36Sopenharmony_ci elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle); 590862306a36Sopenharmony_ci 590962306a36Sopenharmony_ci ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8; 591062306a36Sopenharmony_ci ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8); 591162306a36Sopenharmony_ci ttime->ttime_mean = div64_ul(ttime->ttime_total + 128, 591262306a36Sopenharmony_ci ttime->ttime_samples); 591362306a36Sopenharmony_ci} 591462306a36Sopenharmony_ci 591562306a36Sopenharmony_cistatic void 591662306a36Sopenharmony_cibfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq, 591762306a36Sopenharmony_ci struct request *rq) 591862306a36Sopenharmony_ci{ 591962306a36Sopenharmony_ci bfqq->seek_history <<= 1; 592062306a36Sopenharmony_ci bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq); 592162306a36Sopenharmony_ci 592262306a36Sopenharmony_ci if (bfqq->wr_coeff > 1 && 592362306a36Sopenharmony_ci bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time && 592462306a36Sopenharmony_ci BFQQ_TOTALLY_SEEKY(bfqq)) { 592562306a36Sopenharmony_ci if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt + 592662306a36Sopenharmony_ci bfq_wr_duration(bfqd))) { 592762306a36Sopenharmony_ci /* 592862306a36Sopenharmony_ci * In soft_rt weight raising with the 592962306a36Sopenharmony_ci * interactive-weight-raising period 593062306a36Sopenharmony_ci * elapsed (so no switch back to 593162306a36Sopenharmony_ci * interactive weight raising). 593262306a36Sopenharmony_ci */ 593362306a36Sopenharmony_ci bfq_bfqq_end_wr(bfqq); 593462306a36Sopenharmony_ci } else { /* 593562306a36Sopenharmony_ci * stopping soft_rt weight raising 593662306a36Sopenharmony_ci * while still in interactive period, 593762306a36Sopenharmony_ci * switch back to interactive weight 593862306a36Sopenharmony_ci * raising 593962306a36Sopenharmony_ci */ 594062306a36Sopenharmony_ci switch_back_to_interactive_wr(bfqq, bfqd); 594162306a36Sopenharmony_ci bfqq->entity.prio_changed = 1; 594262306a36Sopenharmony_ci } 594362306a36Sopenharmony_ci } 594462306a36Sopenharmony_ci} 594562306a36Sopenharmony_ci 594662306a36Sopenharmony_cistatic void bfq_update_has_short_ttime(struct bfq_data *bfqd, 594762306a36Sopenharmony_ci struct bfq_queue *bfqq, 594862306a36Sopenharmony_ci struct bfq_io_cq *bic) 594962306a36Sopenharmony_ci{ 595062306a36Sopenharmony_ci bool has_short_ttime = true, state_changed; 595162306a36Sopenharmony_ci 595262306a36Sopenharmony_ci /* 595362306a36Sopenharmony_ci * No need to update has_short_ttime if bfqq is async or in 595462306a36Sopenharmony_ci * idle io prio class, or if bfq_slice_idle is zero, because 595562306a36Sopenharmony_ci * no device idling is performed for bfqq in this case. 595662306a36Sopenharmony_ci */ 595762306a36Sopenharmony_ci if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) || 595862306a36Sopenharmony_ci bfqd->bfq_slice_idle == 0) 595962306a36Sopenharmony_ci return; 596062306a36Sopenharmony_ci 596162306a36Sopenharmony_ci /* Idle window just restored, statistics are meaningless. */ 596262306a36Sopenharmony_ci if (time_is_after_eq_jiffies(bfqq->split_time + 596362306a36Sopenharmony_ci bfqd->bfq_wr_min_idle_time)) 596462306a36Sopenharmony_ci return; 596562306a36Sopenharmony_ci 596662306a36Sopenharmony_ci /* Think time is infinite if no process is linked to 596762306a36Sopenharmony_ci * bfqq. Otherwise check average think time to decide whether 596862306a36Sopenharmony_ci * to mark as has_short_ttime. To this goal, compare average 596962306a36Sopenharmony_ci * think time with half the I/O-plugging timeout. 597062306a36Sopenharmony_ci */ 597162306a36Sopenharmony_ci if (atomic_read(&bic->icq.ioc->active_ref) == 0 || 597262306a36Sopenharmony_ci (bfq_sample_valid(bfqq->ttime.ttime_samples) && 597362306a36Sopenharmony_ci bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1)) 597462306a36Sopenharmony_ci has_short_ttime = false; 597562306a36Sopenharmony_ci 597662306a36Sopenharmony_ci state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq); 597762306a36Sopenharmony_ci 597862306a36Sopenharmony_ci if (has_short_ttime) 597962306a36Sopenharmony_ci bfq_mark_bfqq_has_short_ttime(bfqq); 598062306a36Sopenharmony_ci else 598162306a36Sopenharmony_ci bfq_clear_bfqq_has_short_ttime(bfqq); 598262306a36Sopenharmony_ci 598362306a36Sopenharmony_ci /* 598462306a36Sopenharmony_ci * Until the base value for the total service time gets 598562306a36Sopenharmony_ci * finally computed for bfqq, the inject limit does depend on 598662306a36Sopenharmony_ci * the think-time state (short|long). In particular, the limit 598762306a36Sopenharmony_ci * is 0 or 1 if the think time is deemed, respectively, as 598862306a36Sopenharmony_ci * short or long (details in the comments in 598962306a36Sopenharmony_ci * bfq_update_inject_limit()). Accordingly, the next 599062306a36Sopenharmony_ci * instructions reset the inject limit if the think-time state 599162306a36Sopenharmony_ci * has changed and the above base value is still to be 599262306a36Sopenharmony_ci * computed. 599362306a36Sopenharmony_ci * 599462306a36Sopenharmony_ci * However, the reset is performed only if more than 100 ms 599562306a36Sopenharmony_ci * have elapsed since the last update of the inject limit, or 599662306a36Sopenharmony_ci * (inclusive) if the change is from short to long think 599762306a36Sopenharmony_ci * time. The reason for this waiting is as follows. 599862306a36Sopenharmony_ci * 599962306a36Sopenharmony_ci * bfqq may have a long think time because of a 600062306a36Sopenharmony_ci * synchronization with some other queue, i.e., because the 600162306a36Sopenharmony_ci * I/O of some other queue may need to be completed for bfqq 600262306a36Sopenharmony_ci * to receive new I/O. Details in the comments on the choice 600362306a36Sopenharmony_ci * of the queue for injection in bfq_select_queue(). 600462306a36Sopenharmony_ci * 600562306a36Sopenharmony_ci * As stressed in those comments, if such a synchronization is 600662306a36Sopenharmony_ci * actually in place, then, without injection on bfqq, the 600762306a36Sopenharmony_ci * blocking I/O cannot happen to served while bfqq is in 600862306a36Sopenharmony_ci * service. As a consequence, if bfqq is granted 600962306a36Sopenharmony_ci * I/O-dispatch-plugging, then bfqq remains empty, and no I/O 601062306a36Sopenharmony_ci * is dispatched, until the idle timeout fires. This is likely 601162306a36Sopenharmony_ci * to result in lower bandwidth and higher latencies for bfqq, 601262306a36Sopenharmony_ci * and in a severe loss of total throughput. 601362306a36Sopenharmony_ci * 601462306a36Sopenharmony_ci * On the opposite end, a non-zero inject limit may allow the 601562306a36Sopenharmony_ci * I/O that blocks bfqq to be executed soon, and therefore 601662306a36Sopenharmony_ci * bfqq to receive new I/O soon. 601762306a36Sopenharmony_ci * 601862306a36Sopenharmony_ci * But, if the blocking gets actually eliminated, then the 601962306a36Sopenharmony_ci * next think-time sample for bfqq may be very low. This in 602062306a36Sopenharmony_ci * turn may cause bfqq's think time to be deemed 602162306a36Sopenharmony_ci * short. Without the 100 ms barrier, this new state change 602262306a36Sopenharmony_ci * would cause the body of the next if to be executed 602362306a36Sopenharmony_ci * immediately. But this would set to 0 the inject 602462306a36Sopenharmony_ci * limit. Without injection, the blocking I/O would cause the 602562306a36Sopenharmony_ci * think time of bfqq to become long again, and therefore the 602662306a36Sopenharmony_ci * inject limit to be raised again, and so on. The only effect 602762306a36Sopenharmony_ci * of such a steady oscillation between the two think-time 602862306a36Sopenharmony_ci * states would be to prevent effective injection on bfqq. 602962306a36Sopenharmony_ci * 603062306a36Sopenharmony_ci * In contrast, if the inject limit is not reset during such a 603162306a36Sopenharmony_ci * long time interval as 100 ms, then the number of short 603262306a36Sopenharmony_ci * think time samples can grow significantly before the reset 603362306a36Sopenharmony_ci * is performed. As a consequence, the think time state can 603462306a36Sopenharmony_ci * become stable before the reset. Therefore there will be no 603562306a36Sopenharmony_ci * state change when the 100 ms elapse, and no reset of the 603662306a36Sopenharmony_ci * inject limit. The inject limit remains steadily equal to 1 603762306a36Sopenharmony_ci * both during and after the 100 ms. So injection can be 603862306a36Sopenharmony_ci * performed at all times, and throughput gets boosted. 603962306a36Sopenharmony_ci * 604062306a36Sopenharmony_ci * An inject limit equal to 1 is however in conflict, in 604162306a36Sopenharmony_ci * general, with the fact that the think time of bfqq is 604262306a36Sopenharmony_ci * short, because injection may be likely to delay bfqq's I/O 604362306a36Sopenharmony_ci * (as explained in the comments in 604462306a36Sopenharmony_ci * bfq_update_inject_limit()). But this does not happen in 604562306a36Sopenharmony_ci * this special case, because bfqq's low think time is due to 604662306a36Sopenharmony_ci * an effective handling of a synchronization, through 604762306a36Sopenharmony_ci * injection. In this special case, bfqq's I/O does not get 604862306a36Sopenharmony_ci * delayed by injection; on the contrary, bfqq's I/O is 604962306a36Sopenharmony_ci * brought forward, because it is not blocked for 605062306a36Sopenharmony_ci * milliseconds. 605162306a36Sopenharmony_ci * 605262306a36Sopenharmony_ci * In addition, serving the blocking I/O much sooner, and much 605362306a36Sopenharmony_ci * more frequently than once per I/O-plugging timeout, makes 605462306a36Sopenharmony_ci * it much quicker to detect a waker queue (the concept of 605562306a36Sopenharmony_ci * waker queue is defined in the comments in 605662306a36Sopenharmony_ci * bfq_add_request()). This makes it possible to start sooner 605762306a36Sopenharmony_ci * to boost throughput more effectively, by injecting the I/O 605862306a36Sopenharmony_ci * of the waker queue unconditionally on every 605962306a36Sopenharmony_ci * bfq_dispatch_request(). 606062306a36Sopenharmony_ci * 606162306a36Sopenharmony_ci * One last, important benefit of not resetting the inject 606262306a36Sopenharmony_ci * limit before 100 ms is that, during this time interval, the 606362306a36Sopenharmony_ci * base value for the total service time is likely to get 606462306a36Sopenharmony_ci * finally computed for bfqq, freeing the inject limit from 606562306a36Sopenharmony_ci * its relation with the think time. 606662306a36Sopenharmony_ci */ 606762306a36Sopenharmony_ci if (state_changed && bfqq->last_serv_time_ns == 0 && 606862306a36Sopenharmony_ci (time_is_before_eq_jiffies(bfqq->decrease_time_jif + 606962306a36Sopenharmony_ci msecs_to_jiffies(100)) || 607062306a36Sopenharmony_ci !has_short_ttime)) 607162306a36Sopenharmony_ci bfq_reset_inject_limit(bfqd, bfqq); 607262306a36Sopenharmony_ci} 607362306a36Sopenharmony_ci 607462306a36Sopenharmony_ci/* 607562306a36Sopenharmony_ci * Called when a new fs request (rq) is added to bfqq. Check if there's 607662306a36Sopenharmony_ci * something we should do about it. 607762306a36Sopenharmony_ci */ 607862306a36Sopenharmony_cistatic void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq, 607962306a36Sopenharmony_ci struct request *rq) 608062306a36Sopenharmony_ci{ 608162306a36Sopenharmony_ci if (rq->cmd_flags & REQ_META) 608262306a36Sopenharmony_ci bfqq->meta_pending++; 608362306a36Sopenharmony_ci 608462306a36Sopenharmony_ci bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq); 608562306a36Sopenharmony_ci 608662306a36Sopenharmony_ci if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) { 608762306a36Sopenharmony_ci bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 && 608862306a36Sopenharmony_ci blk_rq_sectors(rq) < 32; 608962306a36Sopenharmony_ci bool budget_timeout = bfq_bfqq_budget_timeout(bfqq); 609062306a36Sopenharmony_ci 609162306a36Sopenharmony_ci /* 609262306a36Sopenharmony_ci * There is just this request queued: if 609362306a36Sopenharmony_ci * - the request is small, and 609462306a36Sopenharmony_ci * - we are idling to boost throughput, and 609562306a36Sopenharmony_ci * - the queue is not to be expired, 609662306a36Sopenharmony_ci * then just exit. 609762306a36Sopenharmony_ci * 609862306a36Sopenharmony_ci * In this way, if the device is being idled to wait 609962306a36Sopenharmony_ci * for a new request from the in-service queue, we 610062306a36Sopenharmony_ci * avoid unplugging the device and committing the 610162306a36Sopenharmony_ci * device to serve just a small request. In contrast 610262306a36Sopenharmony_ci * we wait for the block layer to decide when to 610362306a36Sopenharmony_ci * unplug the device: hopefully, new requests will be 610462306a36Sopenharmony_ci * merged to this one quickly, then the device will be 610562306a36Sopenharmony_ci * unplugged and larger requests will be dispatched. 610662306a36Sopenharmony_ci */ 610762306a36Sopenharmony_ci if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) && 610862306a36Sopenharmony_ci !budget_timeout) 610962306a36Sopenharmony_ci return; 611062306a36Sopenharmony_ci 611162306a36Sopenharmony_ci /* 611262306a36Sopenharmony_ci * A large enough request arrived, or idling is being 611362306a36Sopenharmony_ci * performed to preserve service guarantees, or 611462306a36Sopenharmony_ci * finally the queue is to be expired: in all these 611562306a36Sopenharmony_ci * cases disk idling is to be stopped, so clear 611662306a36Sopenharmony_ci * wait_request flag and reset timer. 611762306a36Sopenharmony_ci */ 611862306a36Sopenharmony_ci bfq_clear_bfqq_wait_request(bfqq); 611962306a36Sopenharmony_ci hrtimer_try_to_cancel(&bfqd->idle_slice_timer); 612062306a36Sopenharmony_ci 612162306a36Sopenharmony_ci /* 612262306a36Sopenharmony_ci * The queue is not empty, because a new request just 612362306a36Sopenharmony_ci * arrived. Hence we can safely expire the queue, in 612462306a36Sopenharmony_ci * case of budget timeout, without risking that the 612562306a36Sopenharmony_ci * timestamps of the queue are not updated correctly. 612662306a36Sopenharmony_ci * See [1] for more details. 612762306a36Sopenharmony_ci */ 612862306a36Sopenharmony_ci if (budget_timeout) 612962306a36Sopenharmony_ci bfq_bfqq_expire(bfqd, bfqq, false, 613062306a36Sopenharmony_ci BFQQE_BUDGET_TIMEOUT); 613162306a36Sopenharmony_ci } 613262306a36Sopenharmony_ci} 613362306a36Sopenharmony_ci 613462306a36Sopenharmony_cistatic void bfqq_request_allocated(struct bfq_queue *bfqq) 613562306a36Sopenharmony_ci{ 613662306a36Sopenharmony_ci struct bfq_entity *entity = &bfqq->entity; 613762306a36Sopenharmony_ci 613862306a36Sopenharmony_ci for_each_entity(entity) 613962306a36Sopenharmony_ci entity->allocated++; 614062306a36Sopenharmony_ci} 614162306a36Sopenharmony_ci 614262306a36Sopenharmony_cistatic void bfqq_request_freed(struct bfq_queue *bfqq) 614362306a36Sopenharmony_ci{ 614462306a36Sopenharmony_ci struct bfq_entity *entity = &bfqq->entity; 614562306a36Sopenharmony_ci 614662306a36Sopenharmony_ci for_each_entity(entity) 614762306a36Sopenharmony_ci entity->allocated--; 614862306a36Sopenharmony_ci} 614962306a36Sopenharmony_ci 615062306a36Sopenharmony_ci/* returns true if it causes the idle timer to be disabled */ 615162306a36Sopenharmony_cistatic bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq) 615262306a36Sopenharmony_ci{ 615362306a36Sopenharmony_ci struct bfq_queue *bfqq = RQ_BFQQ(rq), 615462306a36Sopenharmony_ci *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true, 615562306a36Sopenharmony_ci RQ_BIC(rq)); 615662306a36Sopenharmony_ci bool waiting, idle_timer_disabled = false; 615762306a36Sopenharmony_ci 615862306a36Sopenharmony_ci if (new_bfqq) { 615962306a36Sopenharmony_ci /* 616062306a36Sopenharmony_ci * Release the request's reference to the old bfqq 616162306a36Sopenharmony_ci * and make sure one is taken to the shared queue. 616262306a36Sopenharmony_ci */ 616362306a36Sopenharmony_ci bfqq_request_allocated(new_bfqq); 616462306a36Sopenharmony_ci bfqq_request_freed(bfqq); 616562306a36Sopenharmony_ci new_bfqq->ref++; 616662306a36Sopenharmony_ci /* 616762306a36Sopenharmony_ci * If the bic associated with the process 616862306a36Sopenharmony_ci * issuing this request still points to bfqq 616962306a36Sopenharmony_ci * (and thus has not been already redirected 617062306a36Sopenharmony_ci * to new_bfqq or even some other bfq_queue), 617162306a36Sopenharmony_ci * then complete the merge and redirect it to 617262306a36Sopenharmony_ci * new_bfqq. 617362306a36Sopenharmony_ci */ 617462306a36Sopenharmony_ci if (bic_to_bfqq(RQ_BIC(rq), true, 617562306a36Sopenharmony_ci bfq_actuator_index(bfqd, rq->bio)) == bfqq) 617662306a36Sopenharmony_ci bfq_merge_bfqqs(bfqd, RQ_BIC(rq), 617762306a36Sopenharmony_ci bfqq, new_bfqq); 617862306a36Sopenharmony_ci 617962306a36Sopenharmony_ci bfq_clear_bfqq_just_created(bfqq); 618062306a36Sopenharmony_ci /* 618162306a36Sopenharmony_ci * rq is about to be enqueued into new_bfqq, 618262306a36Sopenharmony_ci * release rq reference on bfqq 618362306a36Sopenharmony_ci */ 618462306a36Sopenharmony_ci bfq_put_queue(bfqq); 618562306a36Sopenharmony_ci rq->elv.priv[1] = new_bfqq; 618662306a36Sopenharmony_ci bfqq = new_bfqq; 618762306a36Sopenharmony_ci } 618862306a36Sopenharmony_ci 618962306a36Sopenharmony_ci bfq_update_io_thinktime(bfqd, bfqq); 619062306a36Sopenharmony_ci bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq)); 619162306a36Sopenharmony_ci bfq_update_io_seektime(bfqd, bfqq, rq); 619262306a36Sopenharmony_ci 619362306a36Sopenharmony_ci waiting = bfqq && bfq_bfqq_wait_request(bfqq); 619462306a36Sopenharmony_ci bfq_add_request(rq); 619562306a36Sopenharmony_ci idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq); 619662306a36Sopenharmony_ci 619762306a36Sopenharmony_ci rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)]; 619862306a36Sopenharmony_ci list_add_tail(&rq->queuelist, &bfqq->fifo); 619962306a36Sopenharmony_ci 620062306a36Sopenharmony_ci bfq_rq_enqueued(bfqd, bfqq, rq); 620162306a36Sopenharmony_ci 620262306a36Sopenharmony_ci return idle_timer_disabled; 620362306a36Sopenharmony_ci} 620462306a36Sopenharmony_ci 620562306a36Sopenharmony_ci#ifdef CONFIG_BFQ_CGROUP_DEBUG 620662306a36Sopenharmony_cistatic void bfq_update_insert_stats(struct request_queue *q, 620762306a36Sopenharmony_ci struct bfq_queue *bfqq, 620862306a36Sopenharmony_ci bool idle_timer_disabled, 620962306a36Sopenharmony_ci blk_opf_t cmd_flags) 621062306a36Sopenharmony_ci{ 621162306a36Sopenharmony_ci if (!bfqq) 621262306a36Sopenharmony_ci return; 621362306a36Sopenharmony_ci 621462306a36Sopenharmony_ci /* 621562306a36Sopenharmony_ci * bfqq still exists, because it can disappear only after 621662306a36Sopenharmony_ci * either it is merged with another queue, or the process it 621762306a36Sopenharmony_ci * is associated with exits. But both actions must be taken by 621862306a36Sopenharmony_ci * the same process currently executing this flow of 621962306a36Sopenharmony_ci * instructions. 622062306a36Sopenharmony_ci * 622162306a36Sopenharmony_ci * In addition, the following queue lock guarantees that 622262306a36Sopenharmony_ci * bfqq_group(bfqq) exists as well. 622362306a36Sopenharmony_ci */ 622462306a36Sopenharmony_ci spin_lock_irq(&q->queue_lock); 622562306a36Sopenharmony_ci bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags); 622662306a36Sopenharmony_ci if (idle_timer_disabled) 622762306a36Sopenharmony_ci bfqg_stats_update_idle_time(bfqq_group(bfqq)); 622862306a36Sopenharmony_ci spin_unlock_irq(&q->queue_lock); 622962306a36Sopenharmony_ci} 623062306a36Sopenharmony_ci#else 623162306a36Sopenharmony_cistatic inline void bfq_update_insert_stats(struct request_queue *q, 623262306a36Sopenharmony_ci struct bfq_queue *bfqq, 623362306a36Sopenharmony_ci bool idle_timer_disabled, 623462306a36Sopenharmony_ci blk_opf_t cmd_flags) {} 623562306a36Sopenharmony_ci#endif /* CONFIG_BFQ_CGROUP_DEBUG */ 623662306a36Sopenharmony_ci 623762306a36Sopenharmony_cistatic struct bfq_queue *bfq_init_rq(struct request *rq); 623862306a36Sopenharmony_ci 623962306a36Sopenharmony_cistatic void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 624062306a36Sopenharmony_ci blk_insert_t flags) 624162306a36Sopenharmony_ci{ 624262306a36Sopenharmony_ci struct request_queue *q = hctx->queue; 624362306a36Sopenharmony_ci struct bfq_data *bfqd = q->elevator->elevator_data; 624462306a36Sopenharmony_ci struct bfq_queue *bfqq; 624562306a36Sopenharmony_ci bool idle_timer_disabled = false; 624662306a36Sopenharmony_ci blk_opf_t cmd_flags; 624762306a36Sopenharmony_ci LIST_HEAD(free); 624862306a36Sopenharmony_ci 624962306a36Sopenharmony_ci#ifdef CONFIG_BFQ_GROUP_IOSCHED 625062306a36Sopenharmony_ci if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio) 625162306a36Sopenharmony_ci bfqg_stats_update_legacy_io(q, rq); 625262306a36Sopenharmony_ci#endif 625362306a36Sopenharmony_ci spin_lock_irq(&bfqd->lock); 625462306a36Sopenharmony_ci bfqq = bfq_init_rq(rq); 625562306a36Sopenharmony_ci if (blk_mq_sched_try_insert_merge(q, rq, &free)) { 625662306a36Sopenharmony_ci spin_unlock_irq(&bfqd->lock); 625762306a36Sopenharmony_ci blk_mq_free_requests(&free); 625862306a36Sopenharmony_ci return; 625962306a36Sopenharmony_ci } 626062306a36Sopenharmony_ci 626162306a36Sopenharmony_ci trace_block_rq_insert(rq); 626262306a36Sopenharmony_ci 626362306a36Sopenharmony_ci if (flags & BLK_MQ_INSERT_AT_HEAD) { 626462306a36Sopenharmony_ci list_add(&rq->queuelist, &bfqd->dispatch); 626562306a36Sopenharmony_ci } else if (!bfqq) { 626662306a36Sopenharmony_ci list_add_tail(&rq->queuelist, &bfqd->dispatch); 626762306a36Sopenharmony_ci } else { 626862306a36Sopenharmony_ci idle_timer_disabled = __bfq_insert_request(bfqd, rq); 626962306a36Sopenharmony_ci /* 627062306a36Sopenharmony_ci * Update bfqq, because, if a queue merge has occurred 627162306a36Sopenharmony_ci * in __bfq_insert_request, then rq has been 627262306a36Sopenharmony_ci * redirected into a new queue. 627362306a36Sopenharmony_ci */ 627462306a36Sopenharmony_ci bfqq = RQ_BFQQ(rq); 627562306a36Sopenharmony_ci 627662306a36Sopenharmony_ci if (rq_mergeable(rq)) { 627762306a36Sopenharmony_ci elv_rqhash_add(q, rq); 627862306a36Sopenharmony_ci if (!q->last_merge) 627962306a36Sopenharmony_ci q->last_merge = rq; 628062306a36Sopenharmony_ci } 628162306a36Sopenharmony_ci } 628262306a36Sopenharmony_ci 628362306a36Sopenharmony_ci /* 628462306a36Sopenharmony_ci * Cache cmd_flags before releasing scheduler lock, because rq 628562306a36Sopenharmony_ci * may disappear afterwards (for example, because of a request 628662306a36Sopenharmony_ci * merge). 628762306a36Sopenharmony_ci */ 628862306a36Sopenharmony_ci cmd_flags = rq->cmd_flags; 628962306a36Sopenharmony_ci spin_unlock_irq(&bfqd->lock); 629062306a36Sopenharmony_ci 629162306a36Sopenharmony_ci bfq_update_insert_stats(q, bfqq, idle_timer_disabled, 629262306a36Sopenharmony_ci cmd_flags); 629362306a36Sopenharmony_ci} 629462306a36Sopenharmony_ci 629562306a36Sopenharmony_cistatic void bfq_insert_requests(struct blk_mq_hw_ctx *hctx, 629662306a36Sopenharmony_ci struct list_head *list, 629762306a36Sopenharmony_ci blk_insert_t flags) 629862306a36Sopenharmony_ci{ 629962306a36Sopenharmony_ci while (!list_empty(list)) { 630062306a36Sopenharmony_ci struct request *rq; 630162306a36Sopenharmony_ci 630262306a36Sopenharmony_ci rq = list_first_entry(list, struct request, queuelist); 630362306a36Sopenharmony_ci list_del_init(&rq->queuelist); 630462306a36Sopenharmony_ci bfq_insert_request(hctx, rq, flags); 630562306a36Sopenharmony_ci } 630662306a36Sopenharmony_ci} 630762306a36Sopenharmony_ci 630862306a36Sopenharmony_cistatic void bfq_update_hw_tag(struct bfq_data *bfqd) 630962306a36Sopenharmony_ci{ 631062306a36Sopenharmony_ci struct bfq_queue *bfqq = bfqd->in_service_queue; 631162306a36Sopenharmony_ci 631262306a36Sopenharmony_ci bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver, 631362306a36Sopenharmony_ci bfqd->tot_rq_in_driver); 631462306a36Sopenharmony_ci 631562306a36Sopenharmony_ci if (bfqd->hw_tag == 1) 631662306a36Sopenharmony_ci return; 631762306a36Sopenharmony_ci 631862306a36Sopenharmony_ci /* 631962306a36Sopenharmony_ci * This sample is valid if the number of outstanding requests 632062306a36Sopenharmony_ci * is large enough to allow a queueing behavior. Note that the 632162306a36Sopenharmony_ci * sum is not exact, as it's not taking into account deactivated 632262306a36Sopenharmony_ci * requests. 632362306a36Sopenharmony_ci */ 632462306a36Sopenharmony_ci if (bfqd->tot_rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD) 632562306a36Sopenharmony_ci return; 632662306a36Sopenharmony_ci 632762306a36Sopenharmony_ci /* 632862306a36Sopenharmony_ci * If active queue hasn't enough requests and can idle, bfq might not 632962306a36Sopenharmony_ci * dispatch sufficient requests to hardware. Don't zero hw_tag in this 633062306a36Sopenharmony_ci * case 633162306a36Sopenharmony_ci */ 633262306a36Sopenharmony_ci if (bfqq && bfq_bfqq_has_short_ttime(bfqq) && 633362306a36Sopenharmony_ci bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] < 633462306a36Sopenharmony_ci BFQ_HW_QUEUE_THRESHOLD && 633562306a36Sopenharmony_ci bfqd->tot_rq_in_driver < BFQ_HW_QUEUE_THRESHOLD) 633662306a36Sopenharmony_ci return; 633762306a36Sopenharmony_ci 633862306a36Sopenharmony_ci if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES) 633962306a36Sopenharmony_ci return; 634062306a36Sopenharmony_ci 634162306a36Sopenharmony_ci bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD; 634262306a36Sopenharmony_ci bfqd->max_rq_in_driver = 0; 634362306a36Sopenharmony_ci bfqd->hw_tag_samples = 0; 634462306a36Sopenharmony_ci 634562306a36Sopenharmony_ci bfqd->nonrot_with_queueing = 634662306a36Sopenharmony_ci blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag; 634762306a36Sopenharmony_ci} 634862306a36Sopenharmony_ci 634962306a36Sopenharmony_cistatic void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd) 635062306a36Sopenharmony_ci{ 635162306a36Sopenharmony_ci u64 now_ns; 635262306a36Sopenharmony_ci u32 delta_us; 635362306a36Sopenharmony_ci 635462306a36Sopenharmony_ci bfq_update_hw_tag(bfqd); 635562306a36Sopenharmony_ci 635662306a36Sopenharmony_ci bfqd->rq_in_driver[bfqq->actuator_idx]--; 635762306a36Sopenharmony_ci bfqd->tot_rq_in_driver--; 635862306a36Sopenharmony_ci bfqq->dispatched--; 635962306a36Sopenharmony_ci 636062306a36Sopenharmony_ci if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) { 636162306a36Sopenharmony_ci /* 636262306a36Sopenharmony_ci * Set budget_timeout (which we overload to store the 636362306a36Sopenharmony_ci * time at which the queue remains with no backlog and 636462306a36Sopenharmony_ci * no outstanding request; used by the weight-raising 636562306a36Sopenharmony_ci * mechanism). 636662306a36Sopenharmony_ci */ 636762306a36Sopenharmony_ci bfqq->budget_timeout = jiffies; 636862306a36Sopenharmony_ci 636962306a36Sopenharmony_ci bfq_del_bfqq_in_groups_with_pending_reqs(bfqq); 637062306a36Sopenharmony_ci bfq_weights_tree_remove(bfqq); 637162306a36Sopenharmony_ci } 637262306a36Sopenharmony_ci 637362306a36Sopenharmony_ci now_ns = ktime_get_ns(); 637462306a36Sopenharmony_ci 637562306a36Sopenharmony_ci bfqq->ttime.last_end_request = now_ns; 637662306a36Sopenharmony_ci 637762306a36Sopenharmony_ci /* 637862306a36Sopenharmony_ci * Using us instead of ns, to get a reasonable precision in 637962306a36Sopenharmony_ci * computing rate in next check. 638062306a36Sopenharmony_ci */ 638162306a36Sopenharmony_ci delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC); 638262306a36Sopenharmony_ci 638362306a36Sopenharmony_ci /* 638462306a36Sopenharmony_ci * If the request took rather long to complete, and, according 638562306a36Sopenharmony_ci * to the maximum request size recorded, this completion latency 638662306a36Sopenharmony_ci * implies that the request was certainly served at a very low 638762306a36Sopenharmony_ci * rate (less than 1M sectors/sec), then the whole observation 638862306a36Sopenharmony_ci * interval that lasts up to this time instant cannot be a 638962306a36Sopenharmony_ci * valid time interval for computing a new peak rate. Invoke 639062306a36Sopenharmony_ci * bfq_update_rate_reset to have the following three steps 639162306a36Sopenharmony_ci * taken: 639262306a36Sopenharmony_ci * - close the observation interval at the last (previous) 639362306a36Sopenharmony_ci * request dispatch or completion 639462306a36Sopenharmony_ci * - compute rate, if possible, for that observation interval 639562306a36Sopenharmony_ci * - reset to zero samples, which will trigger a proper 639662306a36Sopenharmony_ci * re-initialization of the observation interval on next 639762306a36Sopenharmony_ci * dispatch 639862306a36Sopenharmony_ci */ 639962306a36Sopenharmony_ci if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC && 640062306a36Sopenharmony_ci (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us < 640162306a36Sopenharmony_ci 1UL<<(BFQ_RATE_SHIFT - 10)) 640262306a36Sopenharmony_ci bfq_update_rate_reset(bfqd, NULL); 640362306a36Sopenharmony_ci bfqd->last_completion = now_ns; 640462306a36Sopenharmony_ci /* 640562306a36Sopenharmony_ci * Shared queues are likely to receive I/O at a high 640662306a36Sopenharmony_ci * rate. This may deceptively let them be considered as wakers 640762306a36Sopenharmony_ci * of other queues. But a false waker will unjustly steal 640862306a36Sopenharmony_ci * bandwidth to its supposedly woken queue. So considering 640962306a36Sopenharmony_ci * also shared queues in the waking mechanism may cause more 641062306a36Sopenharmony_ci * control troubles than throughput benefits. Then reset 641162306a36Sopenharmony_ci * last_completed_rq_bfqq if bfqq is a shared queue. 641262306a36Sopenharmony_ci */ 641362306a36Sopenharmony_ci if (!bfq_bfqq_coop(bfqq)) 641462306a36Sopenharmony_ci bfqd->last_completed_rq_bfqq = bfqq; 641562306a36Sopenharmony_ci else 641662306a36Sopenharmony_ci bfqd->last_completed_rq_bfqq = NULL; 641762306a36Sopenharmony_ci 641862306a36Sopenharmony_ci /* 641962306a36Sopenharmony_ci * If we are waiting to discover whether the request pattern 642062306a36Sopenharmony_ci * of the task associated with the queue is actually 642162306a36Sopenharmony_ci * isochronous, and both requisites for this condition to hold 642262306a36Sopenharmony_ci * are now satisfied, then compute soft_rt_next_start (see the 642362306a36Sopenharmony_ci * comments on the function bfq_bfqq_softrt_next_start()). We 642462306a36Sopenharmony_ci * do not compute soft_rt_next_start if bfqq is in interactive 642562306a36Sopenharmony_ci * weight raising (see the comments in bfq_bfqq_expire() for 642662306a36Sopenharmony_ci * an explanation). We schedule this delayed update when bfqq 642762306a36Sopenharmony_ci * expires, if it still has in-flight requests. 642862306a36Sopenharmony_ci */ 642962306a36Sopenharmony_ci if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 && 643062306a36Sopenharmony_ci RB_EMPTY_ROOT(&bfqq->sort_list) && 643162306a36Sopenharmony_ci bfqq->wr_coeff != bfqd->bfq_wr_coeff) 643262306a36Sopenharmony_ci bfqq->soft_rt_next_start = 643362306a36Sopenharmony_ci bfq_bfqq_softrt_next_start(bfqd, bfqq); 643462306a36Sopenharmony_ci 643562306a36Sopenharmony_ci /* 643662306a36Sopenharmony_ci * If this is the in-service queue, check if it needs to be expired, 643762306a36Sopenharmony_ci * or if we want to idle in case it has no pending requests. 643862306a36Sopenharmony_ci */ 643962306a36Sopenharmony_ci if (bfqd->in_service_queue == bfqq) { 644062306a36Sopenharmony_ci if (bfq_bfqq_must_idle(bfqq)) { 644162306a36Sopenharmony_ci if (bfqq->dispatched == 0) 644262306a36Sopenharmony_ci bfq_arm_slice_timer(bfqd); 644362306a36Sopenharmony_ci /* 644462306a36Sopenharmony_ci * If we get here, we do not expire bfqq, even 644562306a36Sopenharmony_ci * if bfqq was in budget timeout or had no 644662306a36Sopenharmony_ci * more requests (as controlled in the next 644762306a36Sopenharmony_ci * conditional instructions). The reason for 644862306a36Sopenharmony_ci * not expiring bfqq is as follows. 644962306a36Sopenharmony_ci * 645062306a36Sopenharmony_ci * Here bfqq->dispatched > 0 holds, but 645162306a36Sopenharmony_ci * bfq_bfqq_must_idle() returned true. This 645262306a36Sopenharmony_ci * implies that, even if no request arrives 645362306a36Sopenharmony_ci * for bfqq before bfqq->dispatched reaches 0, 645462306a36Sopenharmony_ci * bfqq will, however, not be expired on the 645562306a36Sopenharmony_ci * completion event that causes bfqq->dispatch 645662306a36Sopenharmony_ci * to reach zero. In contrast, on this event, 645762306a36Sopenharmony_ci * bfqq will start enjoying device idling 645862306a36Sopenharmony_ci * (I/O-dispatch plugging). 645962306a36Sopenharmony_ci * 646062306a36Sopenharmony_ci * But, if we expired bfqq here, bfqq would 646162306a36Sopenharmony_ci * not have the chance to enjoy device idling 646262306a36Sopenharmony_ci * when bfqq->dispatched finally reaches 646362306a36Sopenharmony_ci * zero. This would expose bfqq to violation 646462306a36Sopenharmony_ci * of its reserved service guarantees. 646562306a36Sopenharmony_ci */ 646662306a36Sopenharmony_ci return; 646762306a36Sopenharmony_ci } else if (bfq_may_expire_for_budg_timeout(bfqq)) 646862306a36Sopenharmony_ci bfq_bfqq_expire(bfqd, bfqq, false, 646962306a36Sopenharmony_ci BFQQE_BUDGET_TIMEOUT); 647062306a36Sopenharmony_ci else if (RB_EMPTY_ROOT(&bfqq->sort_list) && 647162306a36Sopenharmony_ci (bfqq->dispatched == 0 || 647262306a36Sopenharmony_ci !bfq_better_to_idle(bfqq))) 647362306a36Sopenharmony_ci bfq_bfqq_expire(bfqd, bfqq, false, 647462306a36Sopenharmony_ci BFQQE_NO_MORE_REQUESTS); 647562306a36Sopenharmony_ci } 647662306a36Sopenharmony_ci 647762306a36Sopenharmony_ci if (!bfqd->tot_rq_in_driver) 647862306a36Sopenharmony_ci bfq_schedule_dispatch(bfqd); 647962306a36Sopenharmony_ci} 648062306a36Sopenharmony_ci 648162306a36Sopenharmony_ci/* 648262306a36Sopenharmony_ci * The processes associated with bfqq may happen to generate their 648362306a36Sopenharmony_ci * cumulative I/O at a lower rate than the rate at which the device 648462306a36Sopenharmony_ci * could serve the same I/O. This is rather probable, e.g., if only 648562306a36Sopenharmony_ci * one process is associated with bfqq and the device is an SSD. It 648662306a36Sopenharmony_ci * results in bfqq becoming often empty while in service. In this 648762306a36Sopenharmony_ci * respect, if BFQ is allowed to switch to another queue when bfqq 648862306a36Sopenharmony_ci * remains empty, then the device goes on being fed with I/O requests, 648962306a36Sopenharmony_ci * and the throughput is not affected. In contrast, if BFQ is not 649062306a36Sopenharmony_ci * allowed to switch to another queue---because bfqq is sync and 649162306a36Sopenharmony_ci * I/O-dispatch needs to be plugged while bfqq is temporarily 649262306a36Sopenharmony_ci * empty---then, during the service of bfqq, there will be frequent 649362306a36Sopenharmony_ci * "service holes", i.e., time intervals during which bfqq gets empty 649462306a36Sopenharmony_ci * and the device can only consume the I/O already queued in its 649562306a36Sopenharmony_ci * hardware queues. During service holes, the device may even get to 649662306a36Sopenharmony_ci * remaining idle. In the end, during the service of bfqq, the device 649762306a36Sopenharmony_ci * is driven at a lower speed than the one it can reach with the kind 649862306a36Sopenharmony_ci * of I/O flowing through bfqq. 649962306a36Sopenharmony_ci * 650062306a36Sopenharmony_ci * To counter this loss of throughput, BFQ implements a "request 650162306a36Sopenharmony_ci * injection mechanism", which tries to fill the above service holes 650262306a36Sopenharmony_ci * with I/O requests taken from other queues. The hard part in this 650362306a36Sopenharmony_ci * mechanism is finding the right amount of I/O to inject, so as to 650462306a36Sopenharmony_ci * both boost throughput and not break bfqq's bandwidth and latency 650562306a36Sopenharmony_ci * guarantees. In this respect, the mechanism maintains a per-queue 650662306a36Sopenharmony_ci * inject limit, computed as below. While bfqq is empty, the injection 650762306a36Sopenharmony_ci * mechanism dispatches extra I/O requests only until the total number 650862306a36Sopenharmony_ci * of I/O requests in flight---i.e., already dispatched but not yet 650962306a36Sopenharmony_ci * completed---remains lower than this limit. 651062306a36Sopenharmony_ci * 651162306a36Sopenharmony_ci * A first definition comes in handy to introduce the algorithm by 651262306a36Sopenharmony_ci * which the inject limit is computed. We define as first request for 651362306a36Sopenharmony_ci * bfqq, an I/O request for bfqq that arrives while bfqq is in 651462306a36Sopenharmony_ci * service, and causes bfqq to switch from empty to non-empty. The 651562306a36Sopenharmony_ci * algorithm updates the limit as a function of the effect of 651662306a36Sopenharmony_ci * injection on the service times of only the first requests of 651762306a36Sopenharmony_ci * bfqq. The reason for this restriction is that these are the 651862306a36Sopenharmony_ci * requests whose service time is affected most, because they are the 651962306a36Sopenharmony_ci * first to arrive after injection possibly occurred. 652062306a36Sopenharmony_ci * 652162306a36Sopenharmony_ci * To evaluate the effect of injection, the algorithm measures the 652262306a36Sopenharmony_ci * "total service time" of first requests. We define as total service 652362306a36Sopenharmony_ci * time of an I/O request, the time that elapses since when the 652462306a36Sopenharmony_ci * request is enqueued into bfqq, to when it is completed. This 652562306a36Sopenharmony_ci * quantity allows the whole effect of injection to be measured. It is 652662306a36Sopenharmony_ci * easy to see why. Suppose that some requests of other queues are 652762306a36Sopenharmony_ci * actually injected while bfqq is empty, and that a new request R 652862306a36Sopenharmony_ci * then arrives for bfqq. If the device does start to serve all or 652962306a36Sopenharmony_ci * part of the injected requests during the service hole, then, 653062306a36Sopenharmony_ci * because of this extra service, it may delay the next invocation of 653162306a36Sopenharmony_ci * the dispatch hook of BFQ. Then, even after R gets eventually 653262306a36Sopenharmony_ci * dispatched, the device may delay the actual service of R if it is 653362306a36Sopenharmony_ci * still busy serving the extra requests, or if it decides to serve, 653462306a36Sopenharmony_ci * before R, some extra request still present in its queues. As a 653562306a36Sopenharmony_ci * conclusion, the cumulative extra delay caused by injection can be 653662306a36Sopenharmony_ci * easily evaluated by just comparing the total service time of first 653762306a36Sopenharmony_ci * requests with and without injection. 653862306a36Sopenharmony_ci * 653962306a36Sopenharmony_ci * The limit-update algorithm works as follows. On the arrival of a 654062306a36Sopenharmony_ci * first request of bfqq, the algorithm measures the total time of the 654162306a36Sopenharmony_ci * request only if one of the three cases below holds, and, for each 654262306a36Sopenharmony_ci * case, it updates the limit as described below: 654362306a36Sopenharmony_ci * 654462306a36Sopenharmony_ci * (1) If there is no in-flight request. This gives a baseline for the 654562306a36Sopenharmony_ci * total service time of the requests of bfqq. If the baseline has 654662306a36Sopenharmony_ci * not been computed yet, then, after computing it, the limit is 654762306a36Sopenharmony_ci * set to 1, to start boosting throughput, and to prepare the 654862306a36Sopenharmony_ci * ground for the next case. If the baseline has already been 654962306a36Sopenharmony_ci * computed, then it is updated, in case it results to be lower 655062306a36Sopenharmony_ci * than the previous value. 655162306a36Sopenharmony_ci * 655262306a36Sopenharmony_ci * (2) If the limit is higher than 0 and there are in-flight 655362306a36Sopenharmony_ci * requests. By comparing the total service time in this case with 655462306a36Sopenharmony_ci * the above baseline, it is possible to know at which extent the 655562306a36Sopenharmony_ci * current value of the limit is inflating the total service 655662306a36Sopenharmony_ci * time. If the inflation is below a certain threshold, then bfqq 655762306a36Sopenharmony_ci * is assumed to be suffering from no perceivable loss of its 655862306a36Sopenharmony_ci * service guarantees, and the limit is even tentatively 655962306a36Sopenharmony_ci * increased. If the inflation is above the threshold, then the 656062306a36Sopenharmony_ci * limit is decreased. Due to the lack of any hysteresis, this 656162306a36Sopenharmony_ci * logic makes the limit oscillate even in steady workload 656262306a36Sopenharmony_ci * conditions. Yet we opted for it, because it is fast in reaching 656362306a36Sopenharmony_ci * the best value for the limit, as a function of the current I/O 656462306a36Sopenharmony_ci * workload. To reduce oscillations, this step is disabled for a 656562306a36Sopenharmony_ci * short time interval after the limit happens to be decreased. 656662306a36Sopenharmony_ci * 656762306a36Sopenharmony_ci * (3) Periodically, after resetting the limit, to make sure that the 656862306a36Sopenharmony_ci * limit eventually drops in case the workload changes. This is 656962306a36Sopenharmony_ci * needed because, after the limit has gone safely up for a 657062306a36Sopenharmony_ci * certain workload, it is impossible to guess whether the 657162306a36Sopenharmony_ci * baseline total service time may have changed, without measuring 657262306a36Sopenharmony_ci * it again without injection. A more effective version of this 657362306a36Sopenharmony_ci * step might be to just sample the baseline, by interrupting 657462306a36Sopenharmony_ci * injection only once, and then to reset/lower the limit only if 657562306a36Sopenharmony_ci * the total service time with the current limit does happen to be 657662306a36Sopenharmony_ci * too large. 657762306a36Sopenharmony_ci * 657862306a36Sopenharmony_ci * More details on each step are provided in the comments on the 657962306a36Sopenharmony_ci * pieces of code that implement these steps: the branch handling the 658062306a36Sopenharmony_ci * transition from empty to non empty in bfq_add_request(), the branch 658162306a36Sopenharmony_ci * handling injection in bfq_select_queue(), and the function 658262306a36Sopenharmony_ci * bfq_choose_bfqq_for_injection(). These comments also explain some 658362306a36Sopenharmony_ci * exceptions, made by the injection mechanism in some special cases. 658462306a36Sopenharmony_ci */ 658562306a36Sopenharmony_cistatic void bfq_update_inject_limit(struct bfq_data *bfqd, 658662306a36Sopenharmony_ci struct bfq_queue *bfqq) 658762306a36Sopenharmony_ci{ 658862306a36Sopenharmony_ci u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns; 658962306a36Sopenharmony_ci unsigned int old_limit = bfqq->inject_limit; 659062306a36Sopenharmony_ci 659162306a36Sopenharmony_ci if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) { 659262306a36Sopenharmony_ci u64 threshold = (bfqq->last_serv_time_ns * 3)>>1; 659362306a36Sopenharmony_ci 659462306a36Sopenharmony_ci if (tot_time_ns >= threshold && old_limit > 0) { 659562306a36Sopenharmony_ci bfqq->inject_limit--; 659662306a36Sopenharmony_ci bfqq->decrease_time_jif = jiffies; 659762306a36Sopenharmony_ci } else if (tot_time_ns < threshold && 659862306a36Sopenharmony_ci old_limit <= bfqd->max_rq_in_driver) 659962306a36Sopenharmony_ci bfqq->inject_limit++; 660062306a36Sopenharmony_ci } 660162306a36Sopenharmony_ci 660262306a36Sopenharmony_ci /* 660362306a36Sopenharmony_ci * Either we still have to compute the base value for the 660462306a36Sopenharmony_ci * total service time, and there seem to be the right 660562306a36Sopenharmony_ci * conditions to do it, or we can lower the last base value 660662306a36Sopenharmony_ci * computed. 660762306a36Sopenharmony_ci * 660862306a36Sopenharmony_ci * NOTE: (bfqd->tot_rq_in_driver == 1) means that there is no I/O 660962306a36Sopenharmony_ci * request in flight, because this function is in the code 661062306a36Sopenharmony_ci * path that handles the completion of a request of bfqq, and, 661162306a36Sopenharmony_ci * in particular, this function is executed before 661262306a36Sopenharmony_ci * bfqd->tot_rq_in_driver is decremented in such a code path. 661362306a36Sopenharmony_ci */ 661462306a36Sopenharmony_ci if ((bfqq->last_serv_time_ns == 0 && bfqd->tot_rq_in_driver == 1) || 661562306a36Sopenharmony_ci tot_time_ns < bfqq->last_serv_time_ns) { 661662306a36Sopenharmony_ci if (bfqq->last_serv_time_ns == 0) { 661762306a36Sopenharmony_ci /* 661862306a36Sopenharmony_ci * Now we certainly have a base value: make sure we 661962306a36Sopenharmony_ci * start trying injection. 662062306a36Sopenharmony_ci */ 662162306a36Sopenharmony_ci bfqq->inject_limit = max_t(unsigned int, 1, old_limit); 662262306a36Sopenharmony_ci } 662362306a36Sopenharmony_ci bfqq->last_serv_time_ns = tot_time_ns; 662462306a36Sopenharmony_ci } else if (!bfqd->rqs_injected && bfqd->tot_rq_in_driver == 1) 662562306a36Sopenharmony_ci /* 662662306a36Sopenharmony_ci * No I/O injected and no request still in service in 662762306a36Sopenharmony_ci * the drive: these are the exact conditions for 662862306a36Sopenharmony_ci * computing the base value of the total service time 662962306a36Sopenharmony_ci * for bfqq. So let's update this value, because it is 663062306a36Sopenharmony_ci * rather variable. For example, it varies if the size 663162306a36Sopenharmony_ci * or the spatial locality of the I/O requests in bfqq 663262306a36Sopenharmony_ci * change. 663362306a36Sopenharmony_ci */ 663462306a36Sopenharmony_ci bfqq->last_serv_time_ns = tot_time_ns; 663562306a36Sopenharmony_ci 663662306a36Sopenharmony_ci 663762306a36Sopenharmony_ci /* update complete, not waiting for any request completion any longer */ 663862306a36Sopenharmony_ci bfqd->waited_rq = NULL; 663962306a36Sopenharmony_ci bfqd->rqs_injected = false; 664062306a36Sopenharmony_ci} 664162306a36Sopenharmony_ci 664262306a36Sopenharmony_ci/* 664362306a36Sopenharmony_ci * Handle either a requeue or a finish for rq. The things to do are 664462306a36Sopenharmony_ci * the same in both cases: all references to rq are to be dropped. In 664562306a36Sopenharmony_ci * particular, rq is considered completed from the point of view of 664662306a36Sopenharmony_ci * the scheduler. 664762306a36Sopenharmony_ci */ 664862306a36Sopenharmony_cistatic void bfq_finish_requeue_request(struct request *rq) 664962306a36Sopenharmony_ci{ 665062306a36Sopenharmony_ci struct bfq_queue *bfqq = RQ_BFQQ(rq); 665162306a36Sopenharmony_ci struct bfq_data *bfqd; 665262306a36Sopenharmony_ci unsigned long flags; 665362306a36Sopenharmony_ci 665462306a36Sopenharmony_ci /* 665562306a36Sopenharmony_ci * rq either is not associated with any icq, or is an already 665662306a36Sopenharmony_ci * requeued request that has not (yet) been re-inserted into 665762306a36Sopenharmony_ci * a bfq_queue. 665862306a36Sopenharmony_ci */ 665962306a36Sopenharmony_ci if (!rq->elv.icq || !bfqq) 666062306a36Sopenharmony_ci return; 666162306a36Sopenharmony_ci 666262306a36Sopenharmony_ci bfqd = bfqq->bfqd; 666362306a36Sopenharmony_ci 666462306a36Sopenharmony_ci if (rq->rq_flags & RQF_STARTED) 666562306a36Sopenharmony_ci bfqg_stats_update_completion(bfqq_group(bfqq), 666662306a36Sopenharmony_ci rq->start_time_ns, 666762306a36Sopenharmony_ci rq->io_start_time_ns, 666862306a36Sopenharmony_ci rq->cmd_flags); 666962306a36Sopenharmony_ci 667062306a36Sopenharmony_ci spin_lock_irqsave(&bfqd->lock, flags); 667162306a36Sopenharmony_ci if (likely(rq->rq_flags & RQF_STARTED)) { 667262306a36Sopenharmony_ci if (rq == bfqd->waited_rq) 667362306a36Sopenharmony_ci bfq_update_inject_limit(bfqd, bfqq); 667462306a36Sopenharmony_ci 667562306a36Sopenharmony_ci bfq_completed_request(bfqq, bfqd); 667662306a36Sopenharmony_ci } 667762306a36Sopenharmony_ci bfqq_request_freed(bfqq); 667862306a36Sopenharmony_ci bfq_put_queue(bfqq); 667962306a36Sopenharmony_ci RQ_BIC(rq)->requests--; 668062306a36Sopenharmony_ci spin_unlock_irqrestore(&bfqd->lock, flags); 668162306a36Sopenharmony_ci 668262306a36Sopenharmony_ci /* 668362306a36Sopenharmony_ci * Reset private fields. In case of a requeue, this allows 668462306a36Sopenharmony_ci * this function to correctly do nothing if it is spuriously 668562306a36Sopenharmony_ci * invoked again on this same request (see the check at the 668662306a36Sopenharmony_ci * beginning of the function). Probably, a better general 668762306a36Sopenharmony_ci * design would be to prevent blk-mq from invoking the requeue 668862306a36Sopenharmony_ci * or finish hooks of an elevator, for a request that is not 668962306a36Sopenharmony_ci * referred by that elevator. 669062306a36Sopenharmony_ci * 669162306a36Sopenharmony_ci * Resetting the following fields would break the 669262306a36Sopenharmony_ci * request-insertion logic if rq is re-inserted into a bfq 669362306a36Sopenharmony_ci * internal queue, without a re-preparation. Here we assume 669462306a36Sopenharmony_ci * that re-insertions of requeued requests, without 669562306a36Sopenharmony_ci * re-preparation, can happen only for pass_through or at_head 669662306a36Sopenharmony_ci * requests (which are not re-inserted into bfq internal 669762306a36Sopenharmony_ci * queues). 669862306a36Sopenharmony_ci */ 669962306a36Sopenharmony_ci rq->elv.priv[0] = NULL; 670062306a36Sopenharmony_ci rq->elv.priv[1] = NULL; 670162306a36Sopenharmony_ci} 670262306a36Sopenharmony_ci 670362306a36Sopenharmony_cistatic void bfq_finish_request(struct request *rq) 670462306a36Sopenharmony_ci{ 670562306a36Sopenharmony_ci bfq_finish_requeue_request(rq); 670662306a36Sopenharmony_ci 670762306a36Sopenharmony_ci if (rq->elv.icq) { 670862306a36Sopenharmony_ci put_io_context(rq->elv.icq->ioc); 670962306a36Sopenharmony_ci rq->elv.icq = NULL; 671062306a36Sopenharmony_ci } 671162306a36Sopenharmony_ci} 671262306a36Sopenharmony_ci 671362306a36Sopenharmony_ci/* 671462306a36Sopenharmony_ci * Removes the association between the current task and bfqq, assuming 671562306a36Sopenharmony_ci * that bic points to the bfq iocontext of the task. 671662306a36Sopenharmony_ci * Returns NULL if a new bfqq should be allocated, or the old bfqq if this 671762306a36Sopenharmony_ci * was the last process referring to that bfqq. 671862306a36Sopenharmony_ci */ 671962306a36Sopenharmony_cistatic struct bfq_queue * 672062306a36Sopenharmony_cibfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq) 672162306a36Sopenharmony_ci{ 672262306a36Sopenharmony_ci bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue"); 672362306a36Sopenharmony_ci 672462306a36Sopenharmony_ci if (bfqq_process_refs(bfqq) == 1) { 672562306a36Sopenharmony_ci bfqq->pid = current->pid; 672662306a36Sopenharmony_ci bfq_clear_bfqq_coop(bfqq); 672762306a36Sopenharmony_ci bfq_clear_bfqq_split_coop(bfqq); 672862306a36Sopenharmony_ci return bfqq; 672962306a36Sopenharmony_ci } 673062306a36Sopenharmony_ci 673162306a36Sopenharmony_ci bic_set_bfqq(bic, NULL, true, bfqq->actuator_idx); 673262306a36Sopenharmony_ci 673362306a36Sopenharmony_ci bfq_put_cooperator(bfqq); 673462306a36Sopenharmony_ci 673562306a36Sopenharmony_ci bfq_release_process_ref(bfqq->bfqd, bfqq); 673662306a36Sopenharmony_ci return NULL; 673762306a36Sopenharmony_ci} 673862306a36Sopenharmony_ci 673962306a36Sopenharmony_cistatic struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd, 674062306a36Sopenharmony_ci struct bfq_io_cq *bic, 674162306a36Sopenharmony_ci struct bio *bio, 674262306a36Sopenharmony_ci bool split, bool is_sync, 674362306a36Sopenharmony_ci bool *new_queue) 674462306a36Sopenharmony_ci{ 674562306a36Sopenharmony_ci unsigned int act_idx = bfq_actuator_index(bfqd, bio); 674662306a36Sopenharmony_ci struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync, act_idx); 674762306a36Sopenharmony_ci struct bfq_iocq_bfqq_data *bfqq_data = &bic->bfqq_data[act_idx]; 674862306a36Sopenharmony_ci 674962306a36Sopenharmony_ci if (likely(bfqq && bfqq != &bfqd->oom_bfqq)) 675062306a36Sopenharmony_ci return bfqq; 675162306a36Sopenharmony_ci 675262306a36Sopenharmony_ci if (new_queue) 675362306a36Sopenharmony_ci *new_queue = true; 675462306a36Sopenharmony_ci 675562306a36Sopenharmony_ci if (bfqq) 675662306a36Sopenharmony_ci bfq_put_queue(bfqq); 675762306a36Sopenharmony_ci bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split); 675862306a36Sopenharmony_ci 675962306a36Sopenharmony_ci bic_set_bfqq(bic, bfqq, is_sync, act_idx); 676062306a36Sopenharmony_ci if (split && is_sync) { 676162306a36Sopenharmony_ci if ((bfqq_data->was_in_burst_list && bfqd->large_burst) || 676262306a36Sopenharmony_ci bfqq_data->saved_in_large_burst) 676362306a36Sopenharmony_ci bfq_mark_bfqq_in_large_burst(bfqq); 676462306a36Sopenharmony_ci else { 676562306a36Sopenharmony_ci bfq_clear_bfqq_in_large_burst(bfqq); 676662306a36Sopenharmony_ci if (bfqq_data->was_in_burst_list) 676762306a36Sopenharmony_ci /* 676862306a36Sopenharmony_ci * If bfqq was in the current 676962306a36Sopenharmony_ci * burst list before being 677062306a36Sopenharmony_ci * merged, then we have to add 677162306a36Sopenharmony_ci * it back. And we do not need 677262306a36Sopenharmony_ci * to increase burst_size, as 677362306a36Sopenharmony_ci * we did not decrement 677462306a36Sopenharmony_ci * burst_size when we removed 677562306a36Sopenharmony_ci * bfqq from the burst list as 677662306a36Sopenharmony_ci * a consequence of a merge 677762306a36Sopenharmony_ci * (see comments in 677862306a36Sopenharmony_ci * bfq_put_queue). In this 677962306a36Sopenharmony_ci * respect, it would be rather 678062306a36Sopenharmony_ci * costly to know whether the 678162306a36Sopenharmony_ci * current burst list is still 678262306a36Sopenharmony_ci * the same burst list from 678362306a36Sopenharmony_ci * which bfqq was removed on 678462306a36Sopenharmony_ci * the merge. To avoid this 678562306a36Sopenharmony_ci * cost, if bfqq was in a 678662306a36Sopenharmony_ci * burst list, then we add 678762306a36Sopenharmony_ci * bfqq to the current burst 678862306a36Sopenharmony_ci * list without any further 678962306a36Sopenharmony_ci * check. This can cause 679062306a36Sopenharmony_ci * inappropriate insertions, 679162306a36Sopenharmony_ci * but rarely enough to not 679262306a36Sopenharmony_ci * harm the detection of large 679362306a36Sopenharmony_ci * bursts significantly. 679462306a36Sopenharmony_ci */ 679562306a36Sopenharmony_ci hlist_add_head(&bfqq->burst_list_node, 679662306a36Sopenharmony_ci &bfqd->burst_list); 679762306a36Sopenharmony_ci } 679862306a36Sopenharmony_ci bfqq->split_time = jiffies; 679962306a36Sopenharmony_ci } 680062306a36Sopenharmony_ci 680162306a36Sopenharmony_ci return bfqq; 680262306a36Sopenharmony_ci} 680362306a36Sopenharmony_ci 680462306a36Sopenharmony_ci/* 680562306a36Sopenharmony_ci * Only reset private fields. The actual request preparation will be 680662306a36Sopenharmony_ci * performed by bfq_init_rq, when rq is either inserted or merged. See 680762306a36Sopenharmony_ci * comments on bfq_init_rq for the reason behind this delayed 680862306a36Sopenharmony_ci * preparation. 680962306a36Sopenharmony_ci */ 681062306a36Sopenharmony_cistatic void bfq_prepare_request(struct request *rq) 681162306a36Sopenharmony_ci{ 681262306a36Sopenharmony_ci rq->elv.icq = ioc_find_get_icq(rq->q); 681362306a36Sopenharmony_ci 681462306a36Sopenharmony_ci /* 681562306a36Sopenharmony_ci * Regardless of whether we have an icq attached, we have to 681662306a36Sopenharmony_ci * clear the scheduler pointers, as they might point to 681762306a36Sopenharmony_ci * previously allocated bic/bfqq structs. 681862306a36Sopenharmony_ci */ 681962306a36Sopenharmony_ci rq->elv.priv[0] = rq->elv.priv[1] = NULL; 682062306a36Sopenharmony_ci} 682162306a36Sopenharmony_ci 682262306a36Sopenharmony_ci/* 682362306a36Sopenharmony_ci * If needed, init rq, allocate bfq data structures associated with 682462306a36Sopenharmony_ci * rq, and increment reference counters in the destination bfq_queue 682562306a36Sopenharmony_ci * for rq. Return the destination bfq_queue for rq, or NULL is rq is 682662306a36Sopenharmony_ci * not associated with any bfq_queue. 682762306a36Sopenharmony_ci * 682862306a36Sopenharmony_ci * This function is invoked by the functions that perform rq insertion 682962306a36Sopenharmony_ci * or merging. One may have expected the above preparation operations 683062306a36Sopenharmony_ci * to be performed in bfq_prepare_request, and not delayed to when rq 683162306a36Sopenharmony_ci * is inserted or merged. The rationale behind this delayed 683262306a36Sopenharmony_ci * preparation is that, after the prepare_request hook is invoked for 683362306a36Sopenharmony_ci * rq, rq may still be transformed into a request with no icq, i.e., a 683462306a36Sopenharmony_ci * request not associated with any queue. No bfq hook is invoked to 683562306a36Sopenharmony_ci * signal this transformation. As a consequence, should these 683662306a36Sopenharmony_ci * preparation operations be performed when the prepare_request hook 683762306a36Sopenharmony_ci * is invoked, and should rq be transformed one moment later, bfq 683862306a36Sopenharmony_ci * would end up in an inconsistent state, because it would have 683962306a36Sopenharmony_ci * incremented some queue counters for an rq destined to 684062306a36Sopenharmony_ci * transformation, without any chance to correctly lower these 684162306a36Sopenharmony_ci * counters back. In contrast, no transformation can still happen for 684262306a36Sopenharmony_ci * rq after rq has been inserted or merged. So, it is safe to execute 684362306a36Sopenharmony_ci * these preparation operations when rq is finally inserted or merged. 684462306a36Sopenharmony_ci */ 684562306a36Sopenharmony_cistatic struct bfq_queue *bfq_init_rq(struct request *rq) 684662306a36Sopenharmony_ci{ 684762306a36Sopenharmony_ci struct request_queue *q = rq->q; 684862306a36Sopenharmony_ci struct bio *bio = rq->bio; 684962306a36Sopenharmony_ci struct bfq_data *bfqd = q->elevator->elevator_data; 685062306a36Sopenharmony_ci struct bfq_io_cq *bic; 685162306a36Sopenharmony_ci const int is_sync = rq_is_sync(rq); 685262306a36Sopenharmony_ci struct bfq_queue *bfqq; 685362306a36Sopenharmony_ci bool new_queue = false; 685462306a36Sopenharmony_ci bool bfqq_already_existing = false, split = false; 685562306a36Sopenharmony_ci unsigned int a_idx = bfq_actuator_index(bfqd, bio); 685662306a36Sopenharmony_ci 685762306a36Sopenharmony_ci if (unlikely(!rq->elv.icq)) 685862306a36Sopenharmony_ci return NULL; 685962306a36Sopenharmony_ci 686062306a36Sopenharmony_ci /* 686162306a36Sopenharmony_ci * Assuming that RQ_BFQQ(rq) is set only if everything is set 686262306a36Sopenharmony_ci * for this rq. This holds true, because this function is 686362306a36Sopenharmony_ci * invoked only for insertion or merging, and, after such 686462306a36Sopenharmony_ci * events, a request cannot be manipulated any longer before 686562306a36Sopenharmony_ci * being removed from bfq. 686662306a36Sopenharmony_ci */ 686762306a36Sopenharmony_ci if (RQ_BFQQ(rq)) 686862306a36Sopenharmony_ci return RQ_BFQQ(rq); 686962306a36Sopenharmony_ci 687062306a36Sopenharmony_ci bic = icq_to_bic(rq->elv.icq); 687162306a36Sopenharmony_ci 687262306a36Sopenharmony_ci bfq_check_ioprio_change(bic, bio); 687362306a36Sopenharmony_ci 687462306a36Sopenharmony_ci bfq_bic_update_cgroup(bic, bio); 687562306a36Sopenharmony_ci 687662306a36Sopenharmony_ci bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync, 687762306a36Sopenharmony_ci &new_queue); 687862306a36Sopenharmony_ci 687962306a36Sopenharmony_ci if (likely(!new_queue)) { 688062306a36Sopenharmony_ci /* If the queue was seeky for too long, break it apart. */ 688162306a36Sopenharmony_ci if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) && 688262306a36Sopenharmony_ci !bic->bfqq_data[a_idx].stably_merged) { 688362306a36Sopenharmony_ci struct bfq_queue *old_bfqq = bfqq; 688462306a36Sopenharmony_ci 688562306a36Sopenharmony_ci /* Update bic before losing reference to bfqq */ 688662306a36Sopenharmony_ci if (bfq_bfqq_in_large_burst(bfqq)) 688762306a36Sopenharmony_ci bic->bfqq_data[a_idx].saved_in_large_burst = 688862306a36Sopenharmony_ci true; 688962306a36Sopenharmony_ci 689062306a36Sopenharmony_ci bfqq = bfq_split_bfqq(bic, bfqq); 689162306a36Sopenharmony_ci split = true; 689262306a36Sopenharmony_ci 689362306a36Sopenharmony_ci if (!bfqq) { 689462306a36Sopenharmony_ci bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, 689562306a36Sopenharmony_ci true, is_sync, 689662306a36Sopenharmony_ci NULL); 689762306a36Sopenharmony_ci if (unlikely(bfqq == &bfqd->oom_bfqq)) 689862306a36Sopenharmony_ci bfqq_already_existing = true; 689962306a36Sopenharmony_ci } else 690062306a36Sopenharmony_ci bfqq_already_existing = true; 690162306a36Sopenharmony_ci 690262306a36Sopenharmony_ci if (!bfqq_already_existing) { 690362306a36Sopenharmony_ci bfqq->waker_bfqq = old_bfqq->waker_bfqq; 690462306a36Sopenharmony_ci bfqq->tentative_waker_bfqq = NULL; 690562306a36Sopenharmony_ci 690662306a36Sopenharmony_ci /* 690762306a36Sopenharmony_ci * If the waker queue disappears, then 690862306a36Sopenharmony_ci * new_bfqq->waker_bfqq must be 690962306a36Sopenharmony_ci * reset. So insert new_bfqq into the 691062306a36Sopenharmony_ci * woken_list of the waker. See 691162306a36Sopenharmony_ci * bfq_check_waker for details. 691262306a36Sopenharmony_ci */ 691362306a36Sopenharmony_ci if (bfqq->waker_bfqq) 691462306a36Sopenharmony_ci hlist_add_head(&bfqq->woken_list_node, 691562306a36Sopenharmony_ci &bfqq->waker_bfqq->woken_list); 691662306a36Sopenharmony_ci } 691762306a36Sopenharmony_ci } 691862306a36Sopenharmony_ci } 691962306a36Sopenharmony_ci 692062306a36Sopenharmony_ci bfqq_request_allocated(bfqq); 692162306a36Sopenharmony_ci bfqq->ref++; 692262306a36Sopenharmony_ci bic->requests++; 692362306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d", 692462306a36Sopenharmony_ci rq, bfqq, bfqq->ref); 692562306a36Sopenharmony_ci 692662306a36Sopenharmony_ci rq->elv.priv[0] = bic; 692762306a36Sopenharmony_ci rq->elv.priv[1] = bfqq; 692862306a36Sopenharmony_ci 692962306a36Sopenharmony_ci /* 693062306a36Sopenharmony_ci * If a bfq_queue has only one process reference, it is owned 693162306a36Sopenharmony_ci * by only this bic: we can then set bfqq->bic = bic. in 693262306a36Sopenharmony_ci * addition, if the queue has also just been split, we have to 693362306a36Sopenharmony_ci * resume its state. 693462306a36Sopenharmony_ci */ 693562306a36Sopenharmony_ci if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) { 693662306a36Sopenharmony_ci bfqq->bic = bic; 693762306a36Sopenharmony_ci if (split) { 693862306a36Sopenharmony_ci /* 693962306a36Sopenharmony_ci * The queue has just been split from a shared 694062306a36Sopenharmony_ci * queue: restore the idle window and the 694162306a36Sopenharmony_ci * possible weight raising period. 694262306a36Sopenharmony_ci */ 694362306a36Sopenharmony_ci bfq_bfqq_resume_state(bfqq, bfqd, bic, 694462306a36Sopenharmony_ci bfqq_already_existing); 694562306a36Sopenharmony_ci } 694662306a36Sopenharmony_ci } 694762306a36Sopenharmony_ci 694862306a36Sopenharmony_ci /* 694962306a36Sopenharmony_ci * Consider bfqq as possibly belonging to a burst of newly 695062306a36Sopenharmony_ci * created queues only if: 695162306a36Sopenharmony_ci * 1) A burst is actually happening (bfqd->burst_size > 0) 695262306a36Sopenharmony_ci * or 695362306a36Sopenharmony_ci * 2) There is no other active queue. In fact, if, in 695462306a36Sopenharmony_ci * contrast, there are active queues not belonging to the 695562306a36Sopenharmony_ci * possible burst bfqq may belong to, then there is no gain 695662306a36Sopenharmony_ci * in considering bfqq as belonging to a burst, and 695762306a36Sopenharmony_ci * therefore in not weight-raising bfqq. See comments on 695862306a36Sopenharmony_ci * bfq_handle_burst(). 695962306a36Sopenharmony_ci * 696062306a36Sopenharmony_ci * This filtering also helps eliminating false positives, 696162306a36Sopenharmony_ci * occurring when bfqq does not belong to an actual large 696262306a36Sopenharmony_ci * burst, but some background task (e.g., a service) happens 696362306a36Sopenharmony_ci * to trigger the creation of new queues very close to when 696462306a36Sopenharmony_ci * bfqq and its possible companion queues are created. See 696562306a36Sopenharmony_ci * comments on bfq_handle_burst() for further details also on 696662306a36Sopenharmony_ci * this issue. 696762306a36Sopenharmony_ci */ 696862306a36Sopenharmony_ci if (unlikely(bfq_bfqq_just_created(bfqq) && 696962306a36Sopenharmony_ci (bfqd->burst_size > 0 || 697062306a36Sopenharmony_ci bfq_tot_busy_queues(bfqd) == 0))) 697162306a36Sopenharmony_ci bfq_handle_burst(bfqd, bfqq); 697262306a36Sopenharmony_ci 697362306a36Sopenharmony_ci return bfqq; 697462306a36Sopenharmony_ci} 697562306a36Sopenharmony_ci 697662306a36Sopenharmony_cistatic void 697762306a36Sopenharmony_cibfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq) 697862306a36Sopenharmony_ci{ 697962306a36Sopenharmony_ci enum bfqq_expiration reason; 698062306a36Sopenharmony_ci unsigned long flags; 698162306a36Sopenharmony_ci 698262306a36Sopenharmony_ci spin_lock_irqsave(&bfqd->lock, flags); 698362306a36Sopenharmony_ci 698462306a36Sopenharmony_ci /* 698562306a36Sopenharmony_ci * Considering that bfqq may be in race, we should firstly check 698662306a36Sopenharmony_ci * whether bfqq is in service before doing something on it. If 698762306a36Sopenharmony_ci * the bfqq in race is not in service, it has already been expired 698862306a36Sopenharmony_ci * through __bfq_bfqq_expire func and its wait_request flags has 698962306a36Sopenharmony_ci * been cleared in __bfq_bfqd_reset_in_service func. 699062306a36Sopenharmony_ci */ 699162306a36Sopenharmony_ci if (bfqq != bfqd->in_service_queue) { 699262306a36Sopenharmony_ci spin_unlock_irqrestore(&bfqd->lock, flags); 699362306a36Sopenharmony_ci return; 699462306a36Sopenharmony_ci } 699562306a36Sopenharmony_ci 699662306a36Sopenharmony_ci bfq_clear_bfqq_wait_request(bfqq); 699762306a36Sopenharmony_ci 699862306a36Sopenharmony_ci if (bfq_bfqq_budget_timeout(bfqq)) 699962306a36Sopenharmony_ci /* 700062306a36Sopenharmony_ci * Also here the queue can be safely expired 700162306a36Sopenharmony_ci * for budget timeout without wasting 700262306a36Sopenharmony_ci * guarantees 700362306a36Sopenharmony_ci */ 700462306a36Sopenharmony_ci reason = BFQQE_BUDGET_TIMEOUT; 700562306a36Sopenharmony_ci else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0) 700662306a36Sopenharmony_ci /* 700762306a36Sopenharmony_ci * The queue may not be empty upon timer expiration, 700862306a36Sopenharmony_ci * because we may not disable the timer when the 700962306a36Sopenharmony_ci * first request of the in-service queue arrives 701062306a36Sopenharmony_ci * during disk idling. 701162306a36Sopenharmony_ci */ 701262306a36Sopenharmony_ci reason = BFQQE_TOO_IDLE; 701362306a36Sopenharmony_ci else 701462306a36Sopenharmony_ci goto schedule_dispatch; 701562306a36Sopenharmony_ci 701662306a36Sopenharmony_ci bfq_bfqq_expire(bfqd, bfqq, true, reason); 701762306a36Sopenharmony_ci 701862306a36Sopenharmony_cischedule_dispatch: 701962306a36Sopenharmony_ci bfq_schedule_dispatch(bfqd); 702062306a36Sopenharmony_ci spin_unlock_irqrestore(&bfqd->lock, flags); 702162306a36Sopenharmony_ci} 702262306a36Sopenharmony_ci 702362306a36Sopenharmony_ci/* 702462306a36Sopenharmony_ci * Handler of the expiration of the timer running if the in-service queue 702562306a36Sopenharmony_ci * is idling inside its time slice. 702662306a36Sopenharmony_ci */ 702762306a36Sopenharmony_cistatic enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer) 702862306a36Sopenharmony_ci{ 702962306a36Sopenharmony_ci struct bfq_data *bfqd = container_of(timer, struct bfq_data, 703062306a36Sopenharmony_ci idle_slice_timer); 703162306a36Sopenharmony_ci struct bfq_queue *bfqq = bfqd->in_service_queue; 703262306a36Sopenharmony_ci 703362306a36Sopenharmony_ci /* 703462306a36Sopenharmony_ci * Theoretical race here: the in-service queue can be NULL or 703562306a36Sopenharmony_ci * different from the queue that was idling if a new request 703662306a36Sopenharmony_ci * arrives for the current queue and there is a full dispatch 703762306a36Sopenharmony_ci * cycle that changes the in-service queue. This can hardly 703862306a36Sopenharmony_ci * happen, but in the worst case we just expire a queue too 703962306a36Sopenharmony_ci * early. 704062306a36Sopenharmony_ci */ 704162306a36Sopenharmony_ci if (bfqq) 704262306a36Sopenharmony_ci bfq_idle_slice_timer_body(bfqd, bfqq); 704362306a36Sopenharmony_ci 704462306a36Sopenharmony_ci return HRTIMER_NORESTART; 704562306a36Sopenharmony_ci} 704662306a36Sopenharmony_ci 704762306a36Sopenharmony_cistatic void __bfq_put_async_bfqq(struct bfq_data *bfqd, 704862306a36Sopenharmony_ci struct bfq_queue **bfqq_ptr) 704962306a36Sopenharmony_ci{ 705062306a36Sopenharmony_ci struct bfq_queue *bfqq = *bfqq_ptr; 705162306a36Sopenharmony_ci 705262306a36Sopenharmony_ci bfq_log(bfqd, "put_async_bfqq: %p", bfqq); 705362306a36Sopenharmony_ci if (bfqq) { 705462306a36Sopenharmony_ci bfq_bfqq_move(bfqd, bfqq, bfqd->root_group); 705562306a36Sopenharmony_ci 705662306a36Sopenharmony_ci bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d", 705762306a36Sopenharmony_ci bfqq, bfqq->ref); 705862306a36Sopenharmony_ci bfq_put_queue(bfqq); 705962306a36Sopenharmony_ci *bfqq_ptr = NULL; 706062306a36Sopenharmony_ci } 706162306a36Sopenharmony_ci} 706262306a36Sopenharmony_ci 706362306a36Sopenharmony_ci/* 706462306a36Sopenharmony_ci * Release all the bfqg references to its async queues. If we are 706562306a36Sopenharmony_ci * deallocating the group these queues may still contain requests, so 706662306a36Sopenharmony_ci * we reparent them to the root cgroup (i.e., the only one that will 706762306a36Sopenharmony_ci * exist for sure until all the requests on a device are gone). 706862306a36Sopenharmony_ci */ 706962306a36Sopenharmony_civoid bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg) 707062306a36Sopenharmony_ci{ 707162306a36Sopenharmony_ci int i, j, k; 707262306a36Sopenharmony_ci 707362306a36Sopenharmony_ci for (k = 0; k < bfqd->num_actuators; k++) { 707462306a36Sopenharmony_ci for (i = 0; i < 2; i++) 707562306a36Sopenharmony_ci for (j = 0; j < IOPRIO_NR_LEVELS; j++) 707662306a36Sopenharmony_ci __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j][k]); 707762306a36Sopenharmony_ci 707862306a36Sopenharmony_ci __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq[k]); 707962306a36Sopenharmony_ci } 708062306a36Sopenharmony_ci} 708162306a36Sopenharmony_ci 708262306a36Sopenharmony_ci/* 708362306a36Sopenharmony_ci * See the comments on bfq_limit_depth for the purpose of 708462306a36Sopenharmony_ci * the depths set in the function. Return minimum shallow depth we'll use. 708562306a36Sopenharmony_ci */ 708662306a36Sopenharmony_cistatic void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt) 708762306a36Sopenharmony_ci{ 708862306a36Sopenharmony_ci unsigned int depth = 1U << bt->sb.shift; 708962306a36Sopenharmony_ci 709062306a36Sopenharmony_ci bfqd->full_depth_shift = bt->sb.shift; 709162306a36Sopenharmony_ci /* 709262306a36Sopenharmony_ci * In-word depths if no bfq_queue is being weight-raised: 709362306a36Sopenharmony_ci * leaving 25% of tags only for sync reads. 709462306a36Sopenharmony_ci * 709562306a36Sopenharmony_ci * In next formulas, right-shift the value 709662306a36Sopenharmony_ci * (1U<<bt->sb.shift), instead of computing directly 709762306a36Sopenharmony_ci * (1U<<(bt->sb.shift - something)), to be robust against 709862306a36Sopenharmony_ci * any possible value of bt->sb.shift, without having to 709962306a36Sopenharmony_ci * limit 'something'. 710062306a36Sopenharmony_ci */ 710162306a36Sopenharmony_ci /* no more than 50% of tags for async I/O */ 710262306a36Sopenharmony_ci bfqd->word_depths[0][0] = max(depth >> 1, 1U); 710362306a36Sopenharmony_ci /* 710462306a36Sopenharmony_ci * no more than 75% of tags for sync writes (25% extra tags 710562306a36Sopenharmony_ci * w.r.t. async I/O, to prevent async I/O from starving sync 710662306a36Sopenharmony_ci * writes) 710762306a36Sopenharmony_ci */ 710862306a36Sopenharmony_ci bfqd->word_depths[0][1] = max((depth * 3) >> 2, 1U); 710962306a36Sopenharmony_ci 711062306a36Sopenharmony_ci /* 711162306a36Sopenharmony_ci * In-word depths in case some bfq_queue is being weight- 711262306a36Sopenharmony_ci * raised: leaving ~63% of tags for sync reads. This is the 711362306a36Sopenharmony_ci * highest percentage for which, in our tests, application 711462306a36Sopenharmony_ci * start-up times didn't suffer from any regression due to tag 711562306a36Sopenharmony_ci * shortage. 711662306a36Sopenharmony_ci */ 711762306a36Sopenharmony_ci /* no more than ~18% of tags for async I/O */ 711862306a36Sopenharmony_ci bfqd->word_depths[1][0] = max((depth * 3) >> 4, 1U); 711962306a36Sopenharmony_ci /* no more than ~37% of tags for sync writes (~20% extra tags) */ 712062306a36Sopenharmony_ci bfqd->word_depths[1][1] = max((depth * 6) >> 4, 1U); 712162306a36Sopenharmony_ci} 712262306a36Sopenharmony_ci 712362306a36Sopenharmony_cistatic void bfq_depth_updated(struct blk_mq_hw_ctx *hctx) 712462306a36Sopenharmony_ci{ 712562306a36Sopenharmony_ci struct bfq_data *bfqd = hctx->queue->elevator->elevator_data; 712662306a36Sopenharmony_ci struct blk_mq_tags *tags = hctx->sched_tags; 712762306a36Sopenharmony_ci 712862306a36Sopenharmony_ci bfq_update_depths(bfqd, &tags->bitmap_tags); 712962306a36Sopenharmony_ci sbitmap_queue_min_shallow_depth(&tags->bitmap_tags, 1); 713062306a36Sopenharmony_ci} 713162306a36Sopenharmony_ci 713262306a36Sopenharmony_cistatic int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index) 713362306a36Sopenharmony_ci{ 713462306a36Sopenharmony_ci bfq_depth_updated(hctx); 713562306a36Sopenharmony_ci return 0; 713662306a36Sopenharmony_ci} 713762306a36Sopenharmony_ci 713862306a36Sopenharmony_cistatic void bfq_exit_queue(struct elevator_queue *e) 713962306a36Sopenharmony_ci{ 714062306a36Sopenharmony_ci struct bfq_data *bfqd = e->elevator_data; 714162306a36Sopenharmony_ci struct bfq_queue *bfqq, *n; 714262306a36Sopenharmony_ci unsigned int actuator; 714362306a36Sopenharmony_ci 714462306a36Sopenharmony_ci hrtimer_cancel(&bfqd->idle_slice_timer); 714562306a36Sopenharmony_ci 714662306a36Sopenharmony_ci spin_lock_irq(&bfqd->lock); 714762306a36Sopenharmony_ci list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list) 714862306a36Sopenharmony_ci bfq_deactivate_bfqq(bfqd, bfqq, false, false); 714962306a36Sopenharmony_ci spin_unlock_irq(&bfqd->lock); 715062306a36Sopenharmony_ci 715162306a36Sopenharmony_ci for (actuator = 0; actuator < bfqd->num_actuators; actuator++) 715262306a36Sopenharmony_ci WARN_ON_ONCE(bfqd->rq_in_driver[actuator]); 715362306a36Sopenharmony_ci WARN_ON_ONCE(bfqd->tot_rq_in_driver); 715462306a36Sopenharmony_ci 715562306a36Sopenharmony_ci hrtimer_cancel(&bfqd->idle_slice_timer); 715662306a36Sopenharmony_ci 715762306a36Sopenharmony_ci /* release oom-queue reference to root group */ 715862306a36Sopenharmony_ci bfqg_and_blkg_put(bfqd->root_group); 715962306a36Sopenharmony_ci 716062306a36Sopenharmony_ci#ifdef CONFIG_BFQ_GROUP_IOSCHED 716162306a36Sopenharmony_ci blkcg_deactivate_policy(bfqd->queue->disk, &blkcg_policy_bfq); 716262306a36Sopenharmony_ci#else 716362306a36Sopenharmony_ci spin_lock_irq(&bfqd->lock); 716462306a36Sopenharmony_ci bfq_put_async_queues(bfqd, bfqd->root_group); 716562306a36Sopenharmony_ci kfree(bfqd->root_group); 716662306a36Sopenharmony_ci spin_unlock_irq(&bfqd->lock); 716762306a36Sopenharmony_ci#endif 716862306a36Sopenharmony_ci 716962306a36Sopenharmony_ci blk_stat_disable_accounting(bfqd->queue); 717062306a36Sopenharmony_ci clear_bit(ELEVATOR_FLAG_DISABLE_WBT, &e->flags); 717162306a36Sopenharmony_ci wbt_enable_default(bfqd->queue->disk); 717262306a36Sopenharmony_ci 717362306a36Sopenharmony_ci kfree(bfqd); 717462306a36Sopenharmony_ci} 717562306a36Sopenharmony_ci 717662306a36Sopenharmony_cistatic void bfq_init_root_group(struct bfq_group *root_group, 717762306a36Sopenharmony_ci struct bfq_data *bfqd) 717862306a36Sopenharmony_ci{ 717962306a36Sopenharmony_ci int i; 718062306a36Sopenharmony_ci 718162306a36Sopenharmony_ci#ifdef CONFIG_BFQ_GROUP_IOSCHED 718262306a36Sopenharmony_ci root_group->entity.parent = NULL; 718362306a36Sopenharmony_ci root_group->my_entity = NULL; 718462306a36Sopenharmony_ci root_group->bfqd = bfqd; 718562306a36Sopenharmony_ci#endif 718662306a36Sopenharmony_ci root_group->rq_pos_tree = RB_ROOT; 718762306a36Sopenharmony_ci for (i = 0; i < BFQ_IOPRIO_CLASSES; i++) 718862306a36Sopenharmony_ci root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT; 718962306a36Sopenharmony_ci root_group->sched_data.bfq_class_idle_last_service = jiffies; 719062306a36Sopenharmony_ci} 719162306a36Sopenharmony_ci 719262306a36Sopenharmony_cistatic int bfq_init_queue(struct request_queue *q, struct elevator_type *e) 719362306a36Sopenharmony_ci{ 719462306a36Sopenharmony_ci struct bfq_data *bfqd; 719562306a36Sopenharmony_ci struct elevator_queue *eq; 719662306a36Sopenharmony_ci unsigned int i; 719762306a36Sopenharmony_ci struct blk_independent_access_ranges *ia_ranges = q->disk->ia_ranges; 719862306a36Sopenharmony_ci 719962306a36Sopenharmony_ci eq = elevator_alloc(q, e); 720062306a36Sopenharmony_ci if (!eq) 720162306a36Sopenharmony_ci return -ENOMEM; 720262306a36Sopenharmony_ci 720362306a36Sopenharmony_ci bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node); 720462306a36Sopenharmony_ci if (!bfqd) { 720562306a36Sopenharmony_ci kobject_put(&eq->kobj); 720662306a36Sopenharmony_ci return -ENOMEM; 720762306a36Sopenharmony_ci } 720862306a36Sopenharmony_ci eq->elevator_data = bfqd; 720962306a36Sopenharmony_ci 721062306a36Sopenharmony_ci spin_lock_irq(&q->queue_lock); 721162306a36Sopenharmony_ci q->elevator = eq; 721262306a36Sopenharmony_ci spin_unlock_irq(&q->queue_lock); 721362306a36Sopenharmony_ci 721462306a36Sopenharmony_ci /* 721562306a36Sopenharmony_ci * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues. 721662306a36Sopenharmony_ci * Grab a permanent reference to it, so that the normal code flow 721762306a36Sopenharmony_ci * will not attempt to free it. 721862306a36Sopenharmony_ci * Set zero as actuator index: we will pretend that 721962306a36Sopenharmony_ci * all I/O requests are for the same actuator. 722062306a36Sopenharmony_ci */ 722162306a36Sopenharmony_ci bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0, 0); 722262306a36Sopenharmony_ci bfqd->oom_bfqq.ref++; 722362306a36Sopenharmony_ci bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO; 722462306a36Sopenharmony_ci bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE; 722562306a36Sopenharmony_ci bfqd->oom_bfqq.entity.new_weight = 722662306a36Sopenharmony_ci bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio); 722762306a36Sopenharmony_ci 722862306a36Sopenharmony_ci /* oom_bfqq does not participate to bursts */ 722962306a36Sopenharmony_ci bfq_clear_bfqq_just_created(&bfqd->oom_bfqq); 723062306a36Sopenharmony_ci 723162306a36Sopenharmony_ci /* 723262306a36Sopenharmony_ci * Trigger weight initialization, according to ioprio, at the 723362306a36Sopenharmony_ci * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio 723462306a36Sopenharmony_ci * class won't be changed any more. 723562306a36Sopenharmony_ci */ 723662306a36Sopenharmony_ci bfqd->oom_bfqq.entity.prio_changed = 1; 723762306a36Sopenharmony_ci 723862306a36Sopenharmony_ci bfqd->queue = q; 723962306a36Sopenharmony_ci 724062306a36Sopenharmony_ci bfqd->num_actuators = 1; 724162306a36Sopenharmony_ci /* 724262306a36Sopenharmony_ci * If the disk supports multiple actuators, copy independent 724362306a36Sopenharmony_ci * access ranges from the request queue structure. 724462306a36Sopenharmony_ci */ 724562306a36Sopenharmony_ci spin_lock_irq(&q->queue_lock); 724662306a36Sopenharmony_ci if (ia_ranges) { 724762306a36Sopenharmony_ci /* 724862306a36Sopenharmony_ci * Check if the disk ia_ranges size exceeds the current bfq 724962306a36Sopenharmony_ci * actuator limit. 725062306a36Sopenharmony_ci */ 725162306a36Sopenharmony_ci if (ia_ranges->nr_ia_ranges > BFQ_MAX_ACTUATORS) { 725262306a36Sopenharmony_ci pr_crit("nr_ia_ranges higher than act limit: iars=%d, max=%d.\n", 725362306a36Sopenharmony_ci ia_ranges->nr_ia_ranges, BFQ_MAX_ACTUATORS); 725462306a36Sopenharmony_ci pr_crit("Falling back to single actuator mode.\n"); 725562306a36Sopenharmony_ci } else { 725662306a36Sopenharmony_ci bfqd->num_actuators = ia_ranges->nr_ia_ranges; 725762306a36Sopenharmony_ci 725862306a36Sopenharmony_ci for (i = 0; i < bfqd->num_actuators; i++) { 725962306a36Sopenharmony_ci bfqd->sector[i] = ia_ranges->ia_range[i].sector; 726062306a36Sopenharmony_ci bfqd->nr_sectors[i] = 726162306a36Sopenharmony_ci ia_ranges->ia_range[i].nr_sectors; 726262306a36Sopenharmony_ci } 726362306a36Sopenharmony_ci } 726462306a36Sopenharmony_ci } 726562306a36Sopenharmony_ci 726662306a36Sopenharmony_ci /* Otherwise use single-actuator dev info */ 726762306a36Sopenharmony_ci if (bfqd->num_actuators == 1) { 726862306a36Sopenharmony_ci bfqd->sector[0] = 0; 726962306a36Sopenharmony_ci bfqd->nr_sectors[0] = get_capacity(q->disk); 727062306a36Sopenharmony_ci } 727162306a36Sopenharmony_ci spin_unlock_irq(&q->queue_lock); 727262306a36Sopenharmony_ci 727362306a36Sopenharmony_ci INIT_LIST_HEAD(&bfqd->dispatch); 727462306a36Sopenharmony_ci 727562306a36Sopenharmony_ci hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC, 727662306a36Sopenharmony_ci HRTIMER_MODE_REL); 727762306a36Sopenharmony_ci bfqd->idle_slice_timer.function = bfq_idle_slice_timer; 727862306a36Sopenharmony_ci 727962306a36Sopenharmony_ci bfqd->queue_weights_tree = RB_ROOT_CACHED; 728062306a36Sopenharmony_ci#ifdef CONFIG_BFQ_GROUP_IOSCHED 728162306a36Sopenharmony_ci bfqd->num_groups_with_pending_reqs = 0; 728262306a36Sopenharmony_ci#endif 728362306a36Sopenharmony_ci 728462306a36Sopenharmony_ci INIT_LIST_HEAD(&bfqd->active_list[0]); 728562306a36Sopenharmony_ci INIT_LIST_HEAD(&bfqd->active_list[1]); 728662306a36Sopenharmony_ci INIT_LIST_HEAD(&bfqd->idle_list); 728762306a36Sopenharmony_ci INIT_HLIST_HEAD(&bfqd->burst_list); 728862306a36Sopenharmony_ci 728962306a36Sopenharmony_ci bfqd->hw_tag = -1; 729062306a36Sopenharmony_ci bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue); 729162306a36Sopenharmony_ci 729262306a36Sopenharmony_ci bfqd->bfq_max_budget = bfq_default_max_budget; 729362306a36Sopenharmony_ci 729462306a36Sopenharmony_ci bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0]; 729562306a36Sopenharmony_ci bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1]; 729662306a36Sopenharmony_ci bfqd->bfq_back_max = bfq_back_max; 729762306a36Sopenharmony_ci bfqd->bfq_back_penalty = bfq_back_penalty; 729862306a36Sopenharmony_ci bfqd->bfq_slice_idle = bfq_slice_idle; 729962306a36Sopenharmony_ci bfqd->bfq_timeout = bfq_timeout; 730062306a36Sopenharmony_ci 730162306a36Sopenharmony_ci bfqd->bfq_large_burst_thresh = 8; 730262306a36Sopenharmony_ci bfqd->bfq_burst_interval = msecs_to_jiffies(180); 730362306a36Sopenharmony_ci 730462306a36Sopenharmony_ci bfqd->low_latency = true; 730562306a36Sopenharmony_ci 730662306a36Sopenharmony_ci /* 730762306a36Sopenharmony_ci * Trade-off between responsiveness and fairness. 730862306a36Sopenharmony_ci */ 730962306a36Sopenharmony_ci bfqd->bfq_wr_coeff = 30; 731062306a36Sopenharmony_ci bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300); 731162306a36Sopenharmony_ci bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000); 731262306a36Sopenharmony_ci bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500); 731362306a36Sopenharmony_ci bfqd->bfq_wr_max_softrt_rate = 7000; /* 731462306a36Sopenharmony_ci * Approximate rate required 731562306a36Sopenharmony_ci * to playback or record a 731662306a36Sopenharmony_ci * high-definition compressed 731762306a36Sopenharmony_ci * video. 731862306a36Sopenharmony_ci */ 731962306a36Sopenharmony_ci bfqd->wr_busy_queues = 0; 732062306a36Sopenharmony_ci 732162306a36Sopenharmony_ci /* 732262306a36Sopenharmony_ci * Begin by assuming, optimistically, that the device peak 732362306a36Sopenharmony_ci * rate is equal to 2/3 of the highest reference rate. 732462306a36Sopenharmony_ci */ 732562306a36Sopenharmony_ci bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] * 732662306a36Sopenharmony_ci ref_wr_duration[blk_queue_nonrot(bfqd->queue)]; 732762306a36Sopenharmony_ci bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3; 732862306a36Sopenharmony_ci 732962306a36Sopenharmony_ci /* see comments on the definition of next field inside bfq_data */ 733062306a36Sopenharmony_ci bfqd->actuator_load_threshold = 4; 733162306a36Sopenharmony_ci 733262306a36Sopenharmony_ci spin_lock_init(&bfqd->lock); 733362306a36Sopenharmony_ci 733462306a36Sopenharmony_ci /* 733562306a36Sopenharmony_ci * The invocation of the next bfq_create_group_hierarchy 733662306a36Sopenharmony_ci * function is the head of a chain of function calls 733762306a36Sopenharmony_ci * (bfq_create_group_hierarchy->blkcg_activate_policy-> 733862306a36Sopenharmony_ci * blk_mq_freeze_queue) that may lead to the invocation of the 733962306a36Sopenharmony_ci * has_work hook function. For this reason, 734062306a36Sopenharmony_ci * bfq_create_group_hierarchy is invoked only after all 734162306a36Sopenharmony_ci * scheduler data has been initialized, apart from the fields 734262306a36Sopenharmony_ci * that can be initialized only after invoking 734362306a36Sopenharmony_ci * bfq_create_group_hierarchy. This, in particular, enables 734462306a36Sopenharmony_ci * has_work to correctly return false. Of course, to avoid 734562306a36Sopenharmony_ci * other inconsistencies, the blk-mq stack must then refrain 734662306a36Sopenharmony_ci * from invoking further scheduler hooks before this init 734762306a36Sopenharmony_ci * function is finished. 734862306a36Sopenharmony_ci */ 734962306a36Sopenharmony_ci bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node); 735062306a36Sopenharmony_ci if (!bfqd->root_group) 735162306a36Sopenharmony_ci goto out_free; 735262306a36Sopenharmony_ci bfq_init_root_group(bfqd->root_group, bfqd); 735362306a36Sopenharmony_ci bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group); 735462306a36Sopenharmony_ci 735562306a36Sopenharmony_ci /* We dispatch from request queue wide instead of hw queue */ 735662306a36Sopenharmony_ci blk_queue_flag_set(QUEUE_FLAG_SQ_SCHED, q); 735762306a36Sopenharmony_ci 735862306a36Sopenharmony_ci set_bit(ELEVATOR_FLAG_DISABLE_WBT, &eq->flags); 735962306a36Sopenharmony_ci wbt_disable_default(q->disk); 736062306a36Sopenharmony_ci blk_stat_enable_accounting(q); 736162306a36Sopenharmony_ci 736262306a36Sopenharmony_ci return 0; 736362306a36Sopenharmony_ci 736462306a36Sopenharmony_ciout_free: 736562306a36Sopenharmony_ci kfree(bfqd); 736662306a36Sopenharmony_ci kobject_put(&eq->kobj); 736762306a36Sopenharmony_ci return -ENOMEM; 736862306a36Sopenharmony_ci} 736962306a36Sopenharmony_ci 737062306a36Sopenharmony_cistatic void bfq_slab_kill(void) 737162306a36Sopenharmony_ci{ 737262306a36Sopenharmony_ci kmem_cache_destroy(bfq_pool); 737362306a36Sopenharmony_ci} 737462306a36Sopenharmony_ci 737562306a36Sopenharmony_cistatic int __init bfq_slab_setup(void) 737662306a36Sopenharmony_ci{ 737762306a36Sopenharmony_ci bfq_pool = KMEM_CACHE(bfq_queue, 0); 737862306a36Sopenharmony_ci if (!bfq_pool) 737962306a36Sopenharmony_ci return -ENOMEM; 738062306a36Sopenharmony_ci return 0; 738162306a36Sopenharmony_ci} 738262306a36Sopenharmony_ci 738362306a36Sopenharmony_cistatic ssize_t bfq_var_show(unsigned int var, char *page) 738462306a36Sopenharmony_ci{ 738562306a36Sopenharmony_ci return sprintf(page, "%u\n", var); 738662306a36Sopenharmony_ci} 738762306a36Sopenharmony_ci 738862306a36Sopenharmony_cistatic int bfq_var_store(unsigned long *var, const char *page) 738962306a36Sopenharmony_ci{ 739062306a36Sopenharmony_ci unsigned long new_val; 739162306a36Sopenharmony_ci int ret = kstrtoul(page, 10, &new_val); 739262306a36Sopenharmony_ci 739362306a36Sopenharmony_ci if (ret) 739462306a36Sopenharmony_ci return ret; 739562306a36Sopenharmony_ci *var = new_val; 739662306a36Sopenharmony_ci return 0; 739762306a36Sopenharmony_ci} 739862306a36Sopenharmony_ci 739962306a36Sopenharmony_ci#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \ 740062306a36Sopenharmony_cistatic ssize_t __FUNC(struct elevator_queue *e, char *page) \ 740162306a36Sopenharmony_ci{ \ 740262306a36Sopenharmony_ci struct bfq_data *bfqd = e->elevator_data; \ 740362306a36Sopenharmony_ci u64 __data = __VAR; \ 740462306a36Sopenharmony_ci if (__CONV == 1) \ 740562306a36Sopenharmony_ci __data = jiffies_to_msecs(__data); \ 740662306a36Sopenharmony_ci else if (__CONV == 2) \ 740762306a36Sopenharmony_ci __data = div_u64(__data, NSEC_PER_MSEC); \ 740862306a36Sopenharmony_ci return bfq_var_show(__data, (page)); \ 740962306a36Sopenharmony_ci} 741062306a36Sopenharmony_ciSHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2); 741162306a36Sopenharmony_ciSHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2); 741262306a36Sopenharmony_ciSHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0); 741362306a36Sopenharmony_ciSHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0); 741462306a36Sopenharmony_ciSHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2); 741562306a36Sopenharmony_ciSHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0); 741662306a36Sopenharmony_ciSHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1); 741762306a36Sopenharmony_ciSHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0); 741862306a36Sopenharmony_ciSHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0); 741962306a36Sopenharmony_ci#undef SHOW_FUNCTION 742062306a36Sopenharmony_ci 742162306a36Sopenharmony_ci#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \ 742262306a36Sopenharmony_cistatic ssize_t __FUNC(struct elevator_queue *e, char *page) \ 742362306a36Sopenharmony_ci{ \ 742462306a36Sopenharmony_ci struct bfq_data *bfqd = e->elevator_data; \ 742562306a36Sopenharmony_ci u64 __data = __VAR; \ 742662306a36Sopenharmony_ci __data = div_u64(__data, NSEC_PER_USEC); \ 742762306a36Sopenharmony_ci return bfq_var_show(__data, (page)); \ 742862306a36Sopenharmony_ci} 742962306a36Sopenharmony_ciUSEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle); 743062306a36Sopenharmony_ci#undef USEC_SHOW_FUNCTION 743162306a36Sopenharmony_ci 743262306a36Sopenharmony_ci#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \ 743362306a36Sopenharmony_cistatic ssize_t \ 743462306a36Sopenharmony_ci__FUNC(struct elevator_queue *e, const char *page, size_t count) \ 743562306a36Sopenharmony_ci{ \ 743662306a36Sopenharmony_ci struct bfq_data *bfqd = e->elevator_data; \ 743762306a36Sopenharmony_ci unsigned long __data, __min = (MIN), __max = (MAX); \ 743862306a36Sopenharmony_ci int ret; \ 743962306a36Sopenharmony_ci \ 744062306a36Sopenharmony_ci ret = bfq_var_store(&__data, (page)); \ 744162306a36Sopenharmony_ci if (ret) \ 744262306a36Sopenharmony_ci return ret; \ 744362306a36Sopenharmony_ci if (__data < __min) \ 744462306a36Sopenharmony_ci __data = __min; \ 744562306a36Sopenharmony_ci else if (__data > __max) \ 744662306a36Sopenharmony_ci __data = __max; \ 744762306a36Sopenharmony_ci if (__CONV == 1) \ 744862306a36Sopenharmony_ci *(__PTR) = msecs_to_jiffies(__data); \ 744962306a36Sopenharmony_ci else if (__CONV == 2) \ 745062306a36Sopenharmony_ci *(__PTR) = (u64)__data * NSEC_PER_MSEC; \ 745162306a36Sopenharmony_ci else \ 745262306a36Sopenharmony_ci *(__PTR) = __data; \ 745362306a36Sopenharmony_ci return count; \ 745462306a36Sopenharmony_ci} 745562306a36Sopenharmony_ciSTORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1, 745662306a36Sopenharmony_ci INT_MAX, 2); 745762306a36Sopenharmony_ciSTORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1, 745862306a36Sopenharmony_ci INT_MAX, 2); 745962306a36Sopenharmony_ciSTORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0); 746062306a36Sopenharmony_ciSTORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1, 746162306a36Sopenharmony_ci INT_MAX, 0); 746262306a36Sopenharmony_ciSTORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2); 746362306a36Sopenharmony_ci#undef STORE_FUNCTION 746462306a36Sopenharmony_ci 746562306a36Sopenharmony_ci#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \ 746662306a36Sopenharmony_cistatic ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\ 746762306a36Sopenharmony_ci{ \ 746862306a36Sopenharmony_ci struct bfq_data *bfqd = e->elevator_data; \ 746962306a36Sopenharmony_ci unsigned long __data, __min = (MIN), __max = (MAX); \ 747062306a36Sopenharmony_ci int ret; \ 747162306a36Sopenharmony_ci \ 747262306a36Sopenharmony_ci ret = bfq_var_store(&__data, (page)); \ 747362306a36Sopenharmony_ci if (ret) \ 747462306a36Sopenharmony_ci return ret; \ 747562306a36Sopenharmony_ci if (__data < __min) \ 747662306a36Sopenharmony_ci __data = __min; \ 747762306a36Sopenharmony_ci else if (__data > __max) \ 747862306a36Sopenharmony_ci __data = __max; \ 747962306a36Sopenharmony_ci *(__PTR) = (u64)__data * NSEC_PER_USEC; \ 748062306a36Sopenharmony_ci return count; \ 748162306a36Sopenharmony_ci} 748262306a36Sopenharmony_ciUSEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0, 748362306a36Sopenharmony_ci UINT_MAX); 748462306a36Sopenharmony_ci#undef USEC_STORE_FUNCTION 748562306a36Sopenharmony_ci 748662306a36Sopenharmony_cistatic ssize_t bfq_max_budget_store(struct elevator_queue *e, 748762306a36Sopenharmony_ci const char *page, size_t count) 748862306a36Sopenharmony_ci{ 748962306a36Sopenharmony_ci struct bfq_data *bfqd = e->elevator_data; 749062306a36Sopenharmony_ci unsigned long __data; 749162306a36Sopenharmony_ci int ret; 749262306a36Sopenharmony_ci 749362306a36Sopenharmony_ci ret = bfq_var_store(&__data, (page)); 749462306a36Sopenharmony_ci if (ret) 749562306a36Sopenharmony_ci return ret; 749662306a36Sopenharmony_ci 749762306a36Sopenharmony_ci if (__data == 0) 749862306a36Sopenharmony_ci bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 749962306a36Sopenharmony_ci else { 750062306a36Sopenharmony_ci if (__data > INT_MAX) 750162306a36Sopenharmony_ci __data = INT_MAX; 750262306a36Sopenharmony_ci bfqd->bfq_max_budget = __data; 750362306a36Sopenharmony_ci } 750462306a36Sopenharmony_ci 750562306a36Sopenharmony_ci bfqd->bfq_user_max_budget = __data; 750662306a36Sopenharmony_ci 750762306a36Sopenharmony_ci return count; 750862306a36Sopenharmony_ci} 750962306a36Sopenharmony_ci 751062306a36Sopenharmony_ci/* 751162306a36Sopenharmony_ci * Leaving this name to preserve name compatibility with cfq 751262306a36Sopenharmony_ci * parameters, but this timeout is used for both sync and async. 751362306a36Sopenharmony_ci */ 751462306a36Sopenharmony_cistatic ssize_t bfq_timeout_sync_store(struct elevator_queue *e, 751562306a36Sopenharmony_ci const char *page, size_t count) 751662306a36Sopenharmony_ci{ 751762306a36Sopenharmony_ci struct bfq_data *bfqd = e->elevator_data; 751862306a36Sopenharmony_ci unsigned long __data; 751962306a36Sopenharmony_ci int ret; 752062306a36Sopenharmony_ci 752162306a36Sopenharmony_ci ret = bfq_var_store(&__data, (page)); 752262306a36Sopenharmony_ci if (ret) 752362306a36Sopenharmony_ci return ret; 752462306a36Sopenharmony_ci 752562306a36Sopenharmony_ci if (__data < 1) 752662306a36Sopenharmony_ci __data = 1; 752762306a36Sopenharmony_ci else if (__data > INT_MAX) 752862306a36Sopenharmony_ci __data = INT_MAX; 752962306a36Sopenharmony_ci 753062306a36Sopenharmony_ci bfqd->bfq_timeout = msecs_to_jiffies(__data); 753162306a36Sopenharmony_ci if (bfqd->bfq_user_max_budget == 0) 753262306a36Sopenharmony_ci bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd); 753362306a36Sopenharmony_ci 753462306a36Sopenharmony_ci return count; 753562306a36Sopenharmony_ci} 753662306a36Sopenharmony_ci 753762306a36Sopenharmony_cistatic ssize_t bfq_strict_guarantees_store(struct elevator_queue *e, 753862306a36Sopenharmony_ci const char *page, size_t count) 753962306a36Sopenharmony_ci{ 754062306a36Sopenharmony_ci struct bfq_data *bfqd = e->elevator_data; 754162306a36Sopenharmony_ci unsigned long __data; 754262306a36Sopenharmony_ci int ret; 754362306a36Sopenharmony_ci 754462306a36Sopenharmony_ci ret = bfq_var_store(&__data, (page)); 754562306a36Sopenharmony_ci if (ret) 754662306a36Sopenharmony_ci return ret; 754762306a36Sopenharmony_ci 754862306a36Sopenharmony_ci if (__data > 1) 754962306a36Sopenharmony_ci __data = 1; 755062306a36Sopenharmony_ci if (!bfqd->strict_guarantees && __data == 1 755162306a36Sopenharmony_ci && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC) 755262306a36Sopenharmony_ci bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC; 755362306a36Sopenharmony_ci 755462306a36Sopenharmony_ci bfqd->strict_guarantees = __data; 755562306a36Sopenharmony_ci 755662306a36Sopenharmony_ci return count; 755762306a36Sopenharmony_ci} 755862306a36Sopenharmony_ci 755962306a36Sopenharmony_cistatic ssize_t bfq_low_latency_store(struct elevator_queue *e, 756062306a36Sopenharmony_ci const char *page, size_t count) 756162306a36Sopenharmony_ci{ 756262306a36Sopenharmony_ci struct bfq_data *bfqd = e->elevator_data; 756362306a36Sopenharmony_ci unsigned long __data; 756462306a36Sopenharmony_ci int ret; 756562306a36Sopenharmony_ci 756662306a36Sopenharmony_ci ret = bfq_var_store(&__data, (page)); 756762306a36Sopenharmony_ci if (ret) 756862306a36Sopenharmony_ci return ret; 756962306a36Sopenharmony_ci 757062306a36Sopenharmony_ci if (__data > 1) 757162306a36Sopenharmony_ci __data = 1; 757262306a36Sopenharmony_ci if (__data == 0 && bfqd->low_latency != 0) 757362306a36Sopenharmony_ci bfq_end_wr(bfqd); 757462306a36Sopenharmony_ci bfqd->low_latency = __data; 757562306a36Sopenharmony_ci 757662306a36Sopenharmony_ci return count; 757762306a36Sopenharmony_ci} 757862306a36Sopenharmony_ci 757962306a36Sopenharmony_ci#define BFQ_ATTR(name) \ 758062306a36Sopenharmony_ci __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store) 758162306a36Sopenharmony_ci 758262306a36Sopenharmony_cistatic struct elv_fs_entry bfq_attrs[] = { 758362306a36Sopenharmony_ci BFQ_ATTR(fifo_expire_sync), 758462306a36Sopenharmony_ci BFQ_ATTR(fifo_expire_async), 758562306a36Sopenharmony_ci BFQ_ATTR(back_seek_max), 758662306a36Sopenharmony_ci BFQ_ATTR(back_seek_penalty), 758762306a36Sopenharmony_ci BFQ_ATTR(slice_idle), 758862306a36Sopenharmony_ci BFQ_ATTR(slice_idle_us), 758962306a36Sopenharmony_ci BFQ_ATTR(max_budget), 759062306a36Sopenharmony_ci BFQ_ATTR(timeout_sync), 759162306a36Sopenharmony_ci BFQ_ATTR(strict_guarantees), 759262306a36Sopenharmony_ci BFQ_ATTR(low_latency), 759362306a36Sopenharmony_ci __ATTR_NULL 759462306a36Sopenharmony_ci}; 759562306a36Sopenharmony_ci 759662306a36Sopenharmony_cistatic struct elevator_type iosched_bfq_mq = { 759762306a36Sopenharmony_ci .ops = { 759862306a36Sopenharmony_ci .limit_depth = bfq_limit_depth, 759962306a36Sopenharmony_ci .prepare_request = bfq_prepare_request, 760062306a36Sopenharmony_ci .requeue_request = bfq_finish_requeue_request, 760162306a36Sopenharmony_ci .finish_request = bfq_finish_request, 760262306a36Sopenharmony_ci .exit_icq = bfq_exit_icq, 760362306a36Sopenharmony_ci .insert_requests = bfq_insert_requests, 760462306a36Sopenharmony_ci .dispatch_request = bfq_dispatch_request, 760562306a36Sopenharmony_ci .next_request = elv_rb_latter_request, 760662306a36Sopenharmony_ci .former_request = elv_rb_former_request, 760762306a36Sopenharmony_ci .allow_merge = bfq_allow_bio_merge, 760862306a36Sopenharmony_ci .bio_merge = bfq_bio_merge, 760962306a36Sopenharmony_ci .request_merge = bfq_request_merge, 761062306a36Sopenharmony_ci .requests_merged = bfq_requests_merged, 761162306a36Sopenharmony_ci .request_merged = bfq_request_merged, 761262306a36Sopenharmony_ci .has_work = bfq_has_work, 761362306a36Sopenharmony_ci .depth_updated = bfq_depth_updated, 761462306a36Sopenharmony_ci .init_hctx = bfq_init_hctx, 761562306a36Sopenharmony_ci .init_sched = bfq_init_queue, 761662306a36Sopenharmony_ci .exit_sched = bfq_exit_queue, 761762306a36Sopenharmony_ci }, 761862306a36Sopenharmony_ci 761962306a36Sopenharmony_ci .icq_size = sizeof(struct bfq_io_cq), 762062306a36Sopenharmony_ci .icq_align = __alignof__(struct bfq_io_cq), 762162306a36Sopenharmony_ci .elevator_attrs = bfq_attrs, 762262306a36Sopenharmony_ci .elevator_name = "bfq", 762362306a36Sopenharmony_ci .elevator_owner = THIS_MODULE, 762462306a36Sopenharmony_ci}; 762562306a36Sopenharmony_ciMODULE_ALIAS("bfq-iosched"); 762662306a36Sopenharmony_ci 762762306a36Sopenharmony_cistatic int __init bfq_init(void) 762862306a36Sopenharmony_ci{ 762962306a36Sopenharmony_ci int ret; 763062306a36Sopenharmony_ci 763162306a36Sopenharmony_ci#ifdef CONFIG_BFQ_GROUP_IOSCHED 763262306a36Sopenharmony_ci ret = blkcg_policy_register(&blkcg_policy_bfq); 763362306a36Sopenharmony_ci if (ret) 763462306a36Sopenharmony_ci return ret; 763562306a36Sopenharmony_ci#endif 763662306a36Sopenharmony_ci 763762306a36Sopenharmony_ci ret = -ENOMEM; 763862306a36Sopenharmony_ci if (bfq_slab_setup()) 763962306a36Sopenharmony_ci goto err_pol_unreg; 764062306a36Sopenharmony_ci 764162306a36Sopenharmony_ci /* 764262306a36Sopenharmony_ci * Times to load large popular applications for the typical 764362306a36Sopenharmony_ci * systems installed on the reference devices (see the 764462306a36Sopenharmony_ci * comments before the definition of the next 764562306a36Sopenharmony_ci * array). Actually, we use slightly lower values, as the 764662306a36Sopenharmony_ci * estimated peak rate tends to be smaller than the actual 764762306a36Sopenharmony_ci * peak rate. The reason for this last fact is that estimates 764862306a36Sopenharmony_ci * are computed over much shorter time intervals than the long 764962306a36Sopenharmony_ci * intervals typically used for benchmarking. Why? First, to 765062306a36Sopenharmony_ci * adapt more quickly to variations. Second, because an I/O 765162306a36Sopenharmony_ci * scheduler cannot rely on a peak-rate-evaluation workload to 765262306a36Sopenharmony_ci * be run for a long time. 765362306a36Sopenharmony_ci */ 765462306a36Sopenharmony_ci ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */ 765562306a36Sopenharmony_ci ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */ 765662306a36Sopenharmony_ci 765762306a36Sopenharmony_ci ret = elv_register(&iosched_bfq_mq); 765862306a36Sopenharmony_ci if (ret) 765962306a36Sopenharmony_ci goto slab_kill; 766062306a36Sopenharmony_ci 766162306a36Sopenharmony_ci return 0; 766262306a36Sopenharmony_ci 766362306a36Sopenharmony_cislab_kill: 766462306a36Sopenharmony_ci bfq_slab_kill(); 766562306a36Sopenharmony_cierr_pol_unreg: 766662306a36Sopenharmony_ci#ifdef CONFIG_BFQ_GROUP_IOSCHED 766762306a36Sopenharmony_ci blkcg_policy_unregister(&blkcg_policy_bfq); 766862306a36Sopenharmony_ci#endif 766962306a36Sopenharmony_ci return ret; 767062306a36Sopenharmony_ci} 767162306a36Sopenharmony_ci 767262306a36Sopenharmony_cistatic void __exit bfq_exit(void) 767362306a36Sopenharmony_ci{ 767462306a36Sopenharmony_ci elv_unregister(&iosched_bfq_mq); 767562306a36Sopenharmony_ci#ifdef CONFIG_BFQ_GROUP_IOSCHED 767662306a36Sopenharmony_ci blkcg_policy_unregister(&blkcg_policy_bfq); 767762306a36Sopenharmony_ci#endif 767862306a36Sopenharmony_ci bfq_slab_kill(); 767962306a36Sopenharmony_ci} 768062306a36Sopenharmony_ci 768162306a36Sopenharmony_cimodule_init(bfq_init); 768262306a36Sopenharmony_cimodule_exit(bfq_exit); 768362306a36Sopenharmony_ci 768462306a36Sopenharmony_ciMODULE_AUTHOR("Paolo Valente"); 768562306a36Sopenharmony_ciMODULE_LICENSE("GPL"); 768662306a36Sopenharmony_ciMODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler"); 7687