1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Core of Xen paravirt_ops implementation.
4 *
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
11 *
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13 */
14
15#include <linux/cpu.h>
16#include <linux/kernel.h>
17#include <linux/init.h>
18#include <linux/smp.h>
19#include <linux/preempt.h>
20#include <linux/hardirq.h>
21#include <linux/percpu.h>
22#include <linux/delay.h>
23#include <linux/start_kernel.h>
24#include <linux/sched.h>
25#include <linux/kprobes.h>
26#include <linux/kstrtox.h>
27#include <linux/memblock.h>
28#include <linux/export.h>
29#include <linux/mm.h>
30#include <linux/page-flags.h>
31#include <linux/pci.h>
32#include <linux/gfp.h>
33#include <linux/edd.h>
34#include <linux/reboot.h>
35#include <linux/virtio_anchor.h>
36#include <linux/stackprotector.h>
37
38#include <xen/xen.h>
39#include <xen/events.h>
40#include <xen/interface/xen.h>
41#include <xen/interface/version.h>
42#include <xen/interface/physdev.h>
43#include <xen/interface/vcpu.h>
44#include <xen/interface/memory.h>
45#include <xen/interface/nmi.h>
46#include <xen/interface/xen-mca.h>
47#include <xen/features.h>
48#include <xen/page.h>
49#include <xen/hvc-console.h>
50#include <xen/acpi.h>
51
52#include <asm/paravirt.h>
53#include <asm/apic.h>
54#include <asm/page.h>
55#include <asm/xen/pci.h>
56#include <asm/xen/hypercall.h>
57#include <asm/xen/hypervisor.h>
58#include <asm/xen/cpuid.h>
59#include <asm/fixmap.h>
60#include <asm/processor.h>
61#include <asm/proto.h>
62#include <asm/msr-index.h>
63#include <asm/traps.h>
64#include <asm/setup.h>
65#include <asm/desc.h>
66#include <asm/pgalloc.h>
67#include <asm/tlbflush.h>
68#include <asm/reboot.h>
69#include <asm/hypervisor.h>
70#include <asm/mach_traps.h>
71#include <asm/mtrr.h>
72#include <asm/mwait.h>
73#include <asm/pci_x86.h>
74#include <asm/cpu.h>
75#ifdef CONFIG_X86_IOPL_IOPERM
76#include <asm/io_bitmap.h>
77#endif
78
79#ifdef CONFIG_ACPI
80#include <linux/acpi.h>
81#include <asm/acpi.h>
82#include <acpi/proc_cap_intel.h>
83#include <acpi/processor.h>
84#include <xen/interface/platform.h>
85#endif
86
87#include "xen-ops.h"
88#include "mmu.h"
89#include "smp.h"
90#include "multicalls.h"
91#include "pmu.h"
92
93#include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
94
95void *xen_initial_gdt;
96
97static int xen_cpu_up_prepare_pv(unsigned int cpu);
98static int xen_cpu_dead_pv(unsigned int cpu);
99
100struct tls_descs {
101	struct desc_struct desc[3];
102};
103
104DEFINE_PER_CPU(enum xen_lazy_mode, xen_lazy_mode) = XEN_LAZY_NONE;
105DEFINE_PER_CPU(unsigned int, xen_lazy_nesting);
106
107enum xen_lazy_mode xen_get_lazy_mode(void)
108{
109	if (in_interrupt())
110		return XEN_LAZY_NONE;
111
112	return this_cpu_read(xen_lazy_mode);
113}
114
115/*
116 * Updating the 3 TLS descriptors in the GDT on every task switch is
117 * surprisingly expensive so we avoid updating them if they haven't
118 * changed.  Since Xen writes different descriptors than the one
119 * passed in the update_descriptor hypercall we keep shadow copies to
120 * compare against.
121 */
122static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
123
124static __read_mostly bool xen_msr_safe = IS_ENABLED(CONFIG_XEN_PV_MSR_SAFE);
125
126static int __init parse_xen_msr_safe(char *str)
127{
128	if (str)
129		return kstrtobool(str, &xen_msr_safe);
130	return -EINVAL;
131}
132early_param("xen_msr_safe", parse_xen_msr_safe);
133
134/* Get MTRR settings from Xen and put them into mtrr_state. */
135static void __init xen_set_mtrr_data(void)
136{
137#ifdef CONFIG_MTRR
138	struct xen_platform_op op = {
139		.cmd = XENPF_read_memtype,
140		.interface_version = XENPF_INTERFACE_VERSION,
141	};
142	unsigned int reg;
143	unsigned long mask;
144	uint32_t eax, width;
145	static struct mtrr_var_range var[MTRR_MAX_VAR_RANGES] __initdata;
146
147	/* Get physical address width (only 64-bit cpus supported). */
148	width = 36;
149	eax = cpuid_eax(0x80000000);
150	if ((eax >> 16) == 0x8000 && eax >= 0x80000008) {
151		eax = cpuid_eax(0x80000008);
152		width = eax & 0xff;
153	}
154
155	for (reg = 0; reg < MTRR_MAX_VAR_RANGES; reg++) {
156		op.u.read_memtype.reg = reg;
157		if (HYPERVISOR_platform_op(&op))
158			break;
159
160		/*
161		 * Only called in dom0, which has all RAM PFNs mapped at
162		 * RAM MFNs, and all PCI space etc. is identity mapped.
163		 * This means we can treat MFN == PFN regarding MTRR settings.
164		 */
165		var[reg].base_lo = op.u.read_memtype.type;
166		var[reg].base_lo |= op.u.read_memtype.mfn << PAGE_SHIFT;
167		var[reg].base_hi = op.u.read_memtype.mfn >> (32 - PAGE_SHIFT);
168		mask = ~((op.u.read_memtype.nr_mfns << PAGE_SHIFT) - 1);
169		mask &= (1UL << width) - 1;
170		if (mask)
171			mask |= MTRR_PHYSMASK_V;
172		var[reg].mask_lo = mask;
173		var[reg].mask_hi = mask >> 32;
174	}
175
176	/* Only overwrite MTRR state if any MTRR could be got from Xen. */
177	if (reg)
178		mtrr_overwrite_state(var, reg, MTRR_TYPE_UNCACHABLE);
179#endif
180}
181
182static void __init xen_pv_init_platform(void)
183{
184	/* PV guests can't operate virtio devices without grants. */
185	if (IS_ENABLED(CONFIG_XEN_VIRTIO))
186		virtio_set_mem_acc_cb(xen_virtio_restricted_mem_acc);
187
188	populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
189
190	set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
191	HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
192
193	/* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
194	xen_vcpu_info_reset(0);
195
196	/* pvclock is in shared info area */
197	xen_init_time_ops();
198
199	if (xen_initial_domain())
200		xen_set_mtrr_data();
201	else
202		mtrr_overwrite_state(NULL, 0, MTRR_TYPE_WRBACK);
203}
204
205static void __init xen_pv_guest_late_init(void)
206{
207#ifndef CONFIG_SMP
208	/* Setup shared vcpu info for non-smp configurations */
209	xen_setup_vcpu_info_placement();
210#endif
211}
212
213static __read_mostly unsigned int cpuid_leaf5_ecx_val;
214static __read_mostly unsigned int cpuid_leaf5_edx_val;
215
216static void xen_cpuid(unsigned int *ax, unsigned int *bx,
217		      unsigned int *cx, unsigned int *dx)
218{
219	unsigned maskebx = ~0;
220
221	/*
222	 * Mask out inconvenient features, to try and disable as many
223	 * unsupported kernel subsystems as possible.
224	 */
225	switch (*ax) {
226	case CPUID_MWAIT_LEAF:
227		/* Synthesize the values.. */
228		*ax = 0;
229		*bx = 0;
230		*cx = cpuid_leaf5_ecx_val;
231		*dx = cpuid_leaf5_edx_val;
232		return;
233
234	case 0xb:
235		/* Suppress extended topology stuff */
236		maskebx = 0;
237		break;
238	}
239
240	asm(XEN_EMULATE_PREFIX "cpuid"
241		: "=a" (*ax),
242		  "=b" (*bx),
243		  "=c" (*cx),
244		  "=d" (*dx)
245		: "0" (*ax), "2" (*cx));
246
247	*bx &= maskebx;
248}
249
250static bool __init xen_check_mwait(void)
251{
252#ifdef CONFIG_ACPI
253	struct xen_platform_op op = {
254		.cmd			= XENPF_set_processor_pminfo,
255		.u.set_pminfo.id	= -1,
256		.u.set_pminfo.type	= XEN_PM_PDC,
257	};
258	uint32_t buf[3];
259	unsigned int ax, bx, cx, dx;
260	unsigned int mwait_mask;
261
262	/* We need to determine whether it is OK to expose the MWAIT
263	 * capability to the kernel to harvest deeper than C3 states from ACPI
264	 * _CST using the processor_harvest_xen.c module. For this to work, we
265	 * need to gather the MWAIT_LEAF values (which the cstate.c code
266	 * checks against). The hypervisor won't expose the MWAIT flag because
267	 * it would break backwards compatibility; so we will find out directly
268	 * from the hardware and hypercall.
269	 */
270	if (!xen_initial_domain())
271		return false;
272
273	/*
274	 * When running under platform earlier than Xen4.2, do not expose
275	 * mwait, to avoid the risk of loading native acpi pad driver
276	 */
277	if (!xen_running_on_version_or_later(4, 2))
278		return false;
279
280	ax = 1;
281	cx = 0;
282
283	native_cpuid(&ax, &bx, &cx, &dx);
284
285	mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
286		     (1 << (X86_FEATURE_MWAIT % 32));
287
288	if ((cx & mwait_mask) != mwait_mask)
289		return false;
290
291	/* We need to emulate the MWAIT_LEAF and for that we need both
292	 * ecx and edx. The hypercall provides only partial information.
293	 */
294
295	ax = CPUID_MWAIT_LEAF;
296	bx = 0;
297	cx = 0;
298	dx = 0;
299
300	native_cpuid(&ax, &bx, &cx, &dx);
301
302	/* Ask the Hypervisor whether to clear ACPI_PROC_CAP_C_C2C3_FFH. If so,
303	 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
304	 */
305	buf[0] = ACPI_PDC_REVISION_ID;
306	buf[1] = 1;
307	buf[2] = (ACPI_PROC_CAP_C_CAPABILITY_SMP | ACPI_PROC_CAP_EST_CAPABILITY_SWSMP);
308
309	set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
310
311	if ((HYPERVISOR_platform_op(&op) == 0) &&
312	    (buf[2] & (ACPI_PROC_CAP_C_C1_FFH | ACPI_PROC_CAP_C_C2C3_FFH))) {
313		cpuid_leaf5_ecx_val = cx;
314		cpuid_leaf5_edx_val = dx;
315	}
316	return true;
317#else
318	return false;
319#endif
320}
321
322static bool __init xen_check_xsave(void)
323{
324	unsigned int cx, xsave_mask;
325
326	cx = cpuid_ecx(1);
327
328	xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
329		     (1 << (X86_FEATURE_OSXSAVE % 32));
330
331	/* Xen will set CR4.OSXSAVE if supported and not disabled by force */
332	return (cx & xsave_mask) == xsave_mask;
333}
334
335static void __init xen_init_capabilities(void)
336{
337	setup_force_cpu_cap(X86_FEATURE_XENPV);
338	setup_clear_cpu_cap(X86_FEATURE_DCA);
339	setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
340	setup_clear_cpu_cap(X86_FEATURE_MTRR);
341	setup_clear_cpu_cap(X86_FEATURE_ACC);
342	setup_clear_cpu_cap(X86_FEATURE_X2APIC);
343	setup_clear_cpu_cap(X86_FEATURE_SME);
344	setup_clear_cpu_cap(X86_FEATURE_LKGS);
345
346	/*
347	 * Xen PV would need some work to support PCID: CR3 handling as well
348	 * as xen_flush_tlb_others() would need updating.
349	 */
350	setup_clear_cpu_cap(X86_FEATURE_PCID);
351
352	if (!xen_initial_domain())
353		setup_clear_cpu_cap(X86_FEATURE_ACPI);
354
355	if (xen_check_mwait())
356		setup_force_cpu_cap(X86_FEATURE_MWAIT);
357	else
358		setup_clear_cpu_cap(X86_FEATURE_MWAIT);
359
360	if (!xen_check_xsave()) {
361		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
362		setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
363	}
364}
365
366static noinstr void xen_set_debugreg(int reg, unsigned long val)
367{
368	HYPERVISOR_set_debugreg(reg, val);
369}
370
371static noinstr unsigned long xen_get_debugreg(int reg)
372{
373	return HYPERVISOR_get_debugreg(reg);
374}
375
376static void xen_start_context_switch(struct task_struct *prev)
377{
378	BUG_ON(preemptible());
379
380	if (this_cpu_read(xen_lazy_mode) == XEN_LAZY_MMU) {
381		arch_leave_lazy_mmu_mode();
382		set_ti_thread_flag(task_thread_info(prev), TIF_LAZY_MMU_UPDATES);
383	}
384	enter_lazy(XEN_LAZY_CPU);
385}
386
387static void xen_end_context_switch(struct task_struct *next)
388{
389	BUG_ON(preemptible());
390
391	xen_mc_flush();
392	leave_lazy(XEN_LAZY_CPU);
393	if (test_and_clear_ti_thread_flag(task_thread_info(next), TIF_LAZY_MMU_UPDATES))
394		arch_enter_lazy_mmu_mode();
395}
396
397static unsigned long xen_store_tr(void)
398{
399	return 0;
400}
401
402/*
403 * Set the page permissions for a particular virtual address.  If the
404 * address is a vmalloc mapping (or other non-linear mapping), then
405 * find the linear mapping of the page and also set its protections to
406 * match.
407 */
408static void set_aliased_prot(void *v, pgprot_t prot)
409{
410	int level;
411	pte_t *ptep;
412	pte_t pte;
413	unsigned long pfn;
414	unsigned char dummy;
415	void *va;
416
417	ptep = lookup_address((unsigned long)v, &level);
418	BUG_ON(ptep == NULL);
419
420	pfn = pte_pfn(*ptep);
421	pte = pfn_pte(pfn, prot);
422
423	/*
424	 * Careful: update_va_mapping() will fail if the virtual address
425	 * we're poking isn't populated in the page tables.  We don't
426	 * need to worry about the direct map (that's always in the page
427	 * tables), but we need to be careful about vmap space.  In
428	 * particular, the top level page table can lazily propagate
429	 * entries between processes, so if we've switched mms since we
430	 * vmapped the target in the first place, we might not have the
431	 * top-level page table entry populated.
432	 *
433	 * We disable preemption because we want the same mm active when
434	 * we probe the target and when we issue the hypercall.  We'll
435	 * have the same nominal mm, but if we're a kernel thread, lazy
436	 * mm dropping could change our pgd.
437	 *
438	 * Out of an abundance of caution, this uses __get_user() to fault
439	 * in the target address just in case there's some obscure case
440	 * in which the target address isn't readable.
441	 */
442
443	preempt_disable();
444
445	copy_from_kernel_nofault(&dummy, v, 1);
446
447	if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
448		BUG();
449
450	va = __va(PFN_PHYS(pfn));
451
452	if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
453		BUG();
454
455	preempt_enable();
456}
457
458static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
459{
460	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
461	int i;
462
463	/*
464	 * We need to mark the all aliases of the LDT pages RO.  We
465	 * don't need to call vm_flush_aliases(), though, since that's
466	 * only responsible for flushing aliases out the TLBs, not the
467	 * page tables, and Xen will flush the TLB for us if needed.
468	 *
469	 * To avoid confusing future readers: none of this is necessary
470	 * to load the LDT.  The hypervisor only checks this when the
471	 * LDT is faulted in due to subsequent descriptor access.
472	 */
473
474	for (i = 0; i < entries; i += entries_per_page)
475		set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
476}
477
478static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
479{
480	const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
481	int i;
482
483	for (i = 0; i < entries; i += entries_per_page)
484		set_aliased_prot(ldt + i, PAGE_KERNEL);
485}
486
487static void xen_set_ldt(const void *addr, unsigned entries)
488{
489	struct mmuext_op *op;
490	struct multicall_space mcs = xen_mc_entry(sizeof(*op));
491
492	trace_xen_cpu_set_ldt(addr, entries);
493
494	op = mcs.args;
495	op->cmd = MMUEXT_SET_LDT;
496	op->arg1.linear_addr = (unsigned long)addr;
497	op->arg2.nr_ents = entries;
498
499	MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
500
501	xen_mc_issue(XEN_LAZY_CPU);
502}
503
504static void xen_load_gdt(const struct desc_ptr *dtr)
505{
506	unsigned long va = dtr->address;
507	unsigned int size = dtr->size + 1;
508	unsigned long pfn, mfn;
509	int level;
510	pte_t *ptep;
511	void *virt;
512
513	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
514	BUG_ON(size > PAGE_SIZE);
515	BUG_ON(va & ~PAGE_MASK);
516
517	/*
518	 * The GDT is per-cpu and is in the percpu data area.
519	 * That can be virtually mapped, so we need to do a
520	 * page-walk to get the underlying MFN for the
521	 * hypercall.  The page can also be in the kernel's
522	 * linear range, so we need to RO that mapping too.
523	 */
524	ptep = lookup_address(va, &level);
525	BUG_ON(ptep == NULL);
526
527	pfn = pte_pfn(*ptep);
528	mfn = pfn_to_mfn(pfn);
529	virt = __va(PFN_PHYS(pfn));
530
531	make_lowmem_page_readonly((void *)va);
532	make_lowmem_page_readonly(virt);
533
534	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
535		BUG();
536}
537
538/*
539 * load_gdt for early boot, when the gdt is only mapped once
540 */
541static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
542{
543	unsigned long va = dtr->address;
544	unsigned int size = dtr->size + 1;
545	unsigned long pfn, mfn;
546	pte_t pte;
547
548	/* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
549	BUG_ON(size > PAGE_SIZE);
550	BUG_ON(va & ~PAGE_MASK);
551
552	pfn = virt_to_pfn((void *)va);
553	mfn = pfn_to_mfn(pfn);
554
555	pte = pfn_pte(pfn, PAGE_KERNEL_RO);
556
557	if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
558		BUG();
559
560	if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
561		BUG();
562}
563
564static inline bool desc_equal(const struct desc_struct *d1,
565			      const struct desc_struct *d2)
566{
567	return !memcmp(d1, d2, sizeof(*d1));
568}
569
570static void load_TLS_descriptor(struct thread_struct *t,
571				unsigned int cpu, unsigned int i)
572{
573	struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
574	struct desc_struct *gdt;
575	xmaddr_t maddr;
576	struct multicall_space mc;
577
578	if (desc_equal(shadow, &t->tls_array[i]))
579		return;
580
581	*shadow = t->tls_array[i];
582
583	gdt = get_cpu_gdt_rw(cpu);
584	maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
585	mc = __xen_mc_entry(0);
586
587	MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
588}
589
590static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
591{
592	/*
593	 * In lazy mode we need to zero %fs, otherwise we may get an
594	 * exception between the new %fs descriptor being loaded and
595	 * %fs being effectively cleared at __switch_to().
596	 */
597	if (xen_get_lazy_mode() == XEN_LAZY_CPU)
598		loadsegment(fs, 0);
599
600	xen_mc_batch();
601
602	load_TLS_descriptor(t, cpu, 0);
603	load_TLS_descriptor(t, cpu, 1);
604	load_TLS_descriptor(t, cpu, 2);
605
606	xen_mc_issue(XEN_LAZY_CPU);
607}
608
609static void xen_load_gs_index(unsigned int idx)
610{
611	if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
612		BUG();
613}
614
615static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
616				const void *ptr)
617{
618	xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
619	u64 entry = *(u64 *)ptr;
620
621	trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
622
623	preempt_disable();
624
625	xen_mc_flush();
626	if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
627		BUG();
628
629	preempt_enable();
630}
631
632void noist_exc_debug(struct pt_regs *regs);
633
634DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
635{
636	/* On Xen PV, NMI doesn't use IST.  The C part is the same as native. */
637	exc_nmi(regs);
638}
639
640DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
641{
642	/* On Xen PV, DF doesn't use IST.  The C part is the same as native. */
643	exc_double_fault(regs, error_code);
644}
645
646DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
647{
648	/*
649	 * There's no IST on Xen PV, but we still need to dispatch
650	 * to the correct handler.
651	 */
652	if (user_mode(regs))
653		noist_exc_debug(regs);
654	else
655		exc_debug(regs);
656}
657
658DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
659{
660	/* This should never happen and there is no way to handle it. */
661	instrumentation_begin();
662	pr_err("Unknown trap in Xen PV mode.");
663	BUG();
664	instrumentation_end();
665}
666
667#ifdef CONFIG_X86_MCE
668DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
669{
670	/*
671	 * There's no IST on Xen PV, but we still need to dispatch
672	 * to the correct handler.
673	 */
674	if (user_mode(regs))
675		noist_exc_machine_check(regs);
676	else
677		exc_machine_check(regs);
678}
679#endif
680
681struct trap_array_entry {
682	void (*orig)(void);
683	void (*xen)(void);
684	bool ist_okay;
685};
686
687#define TRAP_ENTRY(func, ist_ok) {			\
688	.orig		= asm_##func,			\
689	.xen		= xen_asm_##func,		\
690	.ist_okay	= ist_ok }
691
692#define TRAP_ENTRY_REDIR(func, ist_ok) {		\
693	.orig		= asm_##func,			\
694	.xen		= xen_asm_xenpv_##func,		\
695	.ist_okay	= ist_ok }
696
697static struct trap_array_entry trap_array[] = {
698	TRAP_ENTRY_REDIR(exc_debug,			true  ),
699	TRAP_ENTRY_REDIR(exc_double_fault,		true  ),
700#ifdef CONFIG_X86_MCE
701	TRAP_ENTRY_REDIR(exc_machine_check,		true  ),
702#endif
703	TRAP_ENTRY_REDIR(exc_nmi,			true  ),
704	TRAP_ENTRY(exc_int3,				false ),
705	TRAP_ENTRY(exc_overflow,			false ),
706#ifdef CONFIG_IA32_EMULATION
707	TRAP_ENTRY(int80_emulation,			false ),
708#endif
709	TRAP_ENTRY(exc_page_fault,			false ),
710	TRAP_ENTRY(exc_divide_error,			false ),
711	TRAP_ENTRY(exc_bounds,				false ),
712	TRAP_ENTRY(exc_invalid_op,			false ),
713	TRAP_ENTRY(exc_device_not_available,		false ),
714	TRAP_ENTRY(exc_coproc_segment_overrun,		false ),
715	TRAP_ENTRY(exc_invalid_tss,			false ),
716	TRAP_ENTRY(exc_segment_not_present,		false ),
717	TRAP_ENTRY(exc_stack_segment,			false ),
718	TRAP_ENTRY(exc_general_protection,		false ),
719	TRAP_ENTRY(exc_spurious_interrupt_bug,		false ),
720	TRAP_ENTRY(exc_coprocessor_error,		false ),
721	TRAP_ENTRY(exc_alignment_check,			false ),
722	TRAP_ENTRY(exc_simd_coprocessor_error,		false ),
723#ifdef CONFIG_X86_CET
724	TRAP_ENTRY(exc_control_protection,		false ),
725#endif
726};
727
728static bool __ref get_trap_addr(void **addr, unsigned int ist)
729{
730	unsigned int nr;
731	bool ist_okay = false;
732	bool found = false;
733
734	/*
735	 * Replace trap handler addresses by Xen specific ones.
736	 * Check for known traps using IST and whitelist them.
737	 * The debugger ones are the only ones we care about.
738	 * Xen will handle faults like double_fault, so we should never see
739	 * them.  Warn if there's an unexpected IST-using fault handler.
740	 */
741	for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
742		struct trap_array_entry *entry = trap_array + nr;
743
744		if (*addr == entry->orig) {
745			*addr = entry->xen;
746			ist_okay = entry->ist_okay;
747			found = true;
748			break;
749		}
750	}
751
752	if (nr == ARRAY_SIZE(trap_array) &&
753	    *addr >= (void *)early_idt_handler_array[0] &&
754	    *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
755		nr = (*addr - (void *)early_idt_handler_array[0]) /
756		     EARLY_IDT_HANDLER_SIZE;
757		*addr = (void *)xen_early_idt_handler_array[nr];
758		found = true;
759	}
760
761	if (!found)
762		*addr = (void *)xen_asm_exc_xen_unknown_trap;
763
764	if (WARN_ON(found && ist != 0 && !ist_okay))
765		return false;
766
767	return true;
768}
769
770static int cvt_gate_to_trap(int vector, const gate_desc *val,
771			    struct trap_info *info)
772{
773	unsigned long addr;
774
775	if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
776		return 0;
777
778	info->vector = vector;
779
780	addr = gate_offset(val);
781	if (!get_trap_addr((void **)&addr, val->bits.ist))
782		return 0;
783	info->address = addr;
784
785	info->cs = gate_segment(val);
786	info->flags = val->bits.dpl;
787	/* interrupt gates clear IF */
788	if (val->bits.type == GATE_INTERRUPT)
789		info->flags |= 1 << 2;
790
791	return 1;
792}
793
794/* Locations of each CPU's IDT */
795static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
796
797/* Set an IDT entry.  If the entry is part of the current IDT, then
798   also update Xen. */
799static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
800{
801	unsigned long p = (unsigned long)&dt[entrynum];
802	unsigned long start, end;
803
804	trace_xen_cpu_write_idt_entry(dt, entrynum, g);
805
806	preempt_disable();
807
808	start = __this_cpu_read(idt_desc.address);
809	end = start + __this_cpu_read(idt_desc.size) + 1;
810
811	xen_mc_flush();
812
813	native_write_idt_entry(dt, entrynum, g);
814
815	if (p >= start && (p + 8) <= end) {
816		struct trap_info info[2];
817
818		info[1].address = 0;
819
820		if (cvt_gate_to_trap(entrynum, g, &info[0]))
821			if (HYPERVISOR_set_trap_table(info))
822				BUG();
823	}
824
825	preempt_enable();
826}
827
828static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
829				      struct trap_info *traps, bool full)
830{
831	unsigned in, out, count;
832
833	count = (desc->size+1) / sizeof(gate_desc);
834	BUG_ON(count > 256);
835
836	for (in = out = 0; in < count; in++) {
837		gate_desc *entry = (gate_desc *)(desc->address) + in;
838
839		if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
840			out++;
841	}
842
843	return out;
844}
845
846void xen_copy_trap_info(struct trap_info *traps)
847{
848	const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
849
850	xen_convert_trap_info(desc, traps, true);
851}
852
853/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
854   hold a spinlock to protect the static traps[] array (static because
855   it avoids allocation, and saves stack space). */
856static void xen_load_idt(const struct desc_ptr *desc)
857{
858	static DEFINE_SPINLOCK(lock);
859	static struct trap_info traps[257];
860	static const struct trap_info zero = { };
861	unsigned out;
862
863	trace_xen_cpu_load_idt(desc);
864
865	spin_lock(&lock);
866
867	memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
868
869	out = xen_convert_trap_info(desc, traps, false);
870	traps[out] = zero;
871
872	xen_mc_flush();
873	if (HYPERVISOR_set_trap_table(traps))
874		BUG();
875
876	spin_unlock(&lock);
877}
878
879/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
880   they're handled differently. */
881static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
882				const void *desc, int type)
883{
884	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
885
886	preempt_disable();
887
888	switch (type) {
889	case DESC_LDT:
890	case DESC_TSS:
891		/* ignore */
892		break;
893
894	default: {
895		xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
896
897		xen_mc_flush();
898		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
899			BUG();
900	}
901
902	}
903
904	preempt_enable();
905}
906
907/*
908 * Version of write_gdt_entry for use at early boot-time needed to
909 * update an entry as simply as possible.
910 */
911static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
912					    const void *desc, int type)
913{
914	trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
915
916	switch (type) {
917	case DESC_LDT:
918	case DESC_TSS:
919		/* ignore */
920		break;
921
922	default: {
923		xmaddr_t maddr = virt_to_machine(&dt[entry]);
924
925		if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
926			dt[entry] = *(struct desc_struct *)desc;
927	}
928
929	}
930}
931
932static void xen_load_sp0(unsigned long sp0)
933{
934	struct multicall_space mcs;
935
936	mcs = xen_mc_entry(0);
937	MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
938	xen_mc_issue(XEN_LAZY_CPU);
939	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
940}
941
942#ifdef CONFIG_X86_IOPL_IOPERM
943static void xen_invalidate_io_bitmap(void)
944{
945	struct physdev_set_iobitmap iobitmap = {
946		.bitmap = NULL,
947		.nr_ports = 0,
948	};
949
950	native_tss_invalidate_io_bitmap();
951	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
952}
953
954static void xen_update_io_bitmap(void)
955{
956	struct physdev_set_iobitmap iobitmap;
957	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
958
959	native_tss_update_io_bitmap();
960
961	iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
962			  tss->x86_tss.io_bitmap_base;
963	if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
964		iobitmap.nr_ports = 0;
965	else
966		iobitmap.nr_ports = IO_BITMAP_BITS;
967
968	HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
969}
970#endif
971
972static void xen_io_delay(void)
973{
974}
975
976static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
977
978static unsigned long xen_read_cr0(void)
979{
980	unsigned long cr0 = this_cpu_read(xen_cr0_value);
981
982	if (unlikely(cr0 == 0)) {
983		cr0 = native_read_cr0();
984		this_cpu_write(xen_cr0_value, cr0);
985	}
986
987	return cr0;
988}
989
990static void xen_write_cr0(unsigned long cr0)
991{
992	struct multicall_space mcs;
993
994	this_cpu_write(xen_cr0_value, cr0);
995
996	/* Only pay attention to cr0.TS; everything else is
997	   ignored. */
998	mcs = xen_mc_entry(0);
999
1000	MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1001
1002	xen_mc_issue(XEN_LAZY_CPU);
1003}
1004
1005static void xen_write_cr4(unsigned long cr4)
1006{
1007	cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1008
1009	native_write_cr4(cr4);
1010}
1011
1012static u64 xen_do_read_msr(unsigned int msr, int *err)
1013{
1014	u64 val = 0;	/* Avoid uninitialized value for safe variant. */
1015
1016	if (pmu_msr_read(msr, &val, err))
1017		return val;
1018
1019	if (err)
1020		val = native_read_msr_safe(msr, err);
1021	else
1022		val = native_read_msr(msr);
1023
1024	switch (msr) {
1025	case MSR_IA32_APICBASE:
1026		val &= ~X2APIC_ENABLE;
1027		break;
1028	}
1029	return val;
1030}
1031
1032static void set_seg(unsigned int which, unsigned int low, unsigned int high,
1033		    int *err)
1034{
1035	u64 base = ((u64)high << 32) | low;
1036
1037	if (HYPERVISOR_set_segment_base(which, base) == 0)
1038		return;
1039
1040	if (err)
1041		*err = -EIO;
1042	else
1043		WARN(1, "Xen set_segment_base(%u, %llx) failed\n", which, base);
1044}
1045
1046/*
1047 * Support write_msr_safe() and write_msr() semantics.
1048 * With err == NULL write_msr() semantics are selected.
1049 * Supplying an err pointer requires err to be pre-initialized with 0.
1050 */
1051static void xen_do_write_msr(unsigned int msr, unsigned int low,
1052			     unsigned int high, int *err)
1053{
1054	switch (msr) {
1055	case MSR_FS_BASE:
1056		set_seg(SEGBASE_FS, low, high, err);
1057		break;
1058
1059	case MSR_KERNEL_GS_BASE:
1060		set_seg(SEGBASE_GS_USER, low, high, err);
1061		break;
1062
1063	case MSR_GS_BASE:
1064		set_seg(SEGBASE_GS_KERNEL, low, high, err);
1065		break;
1066
1067	case MSR_STAR:
1068	case MSR_CSTAR:
1069	case MSR_LSTAR:
1070	case MSR_SYSCALL_MASK:
1071	case MSR_IA32_SYSENTER_CS:
1072	case MSR_IA32_SYSENTER_ESP:
1073	case MSR_IA32_SYSENTER_EIP:
1074		/* Fast syscall setup is all done in hypercalls, so
1075		   these are all ignored.  Stub them out here to stop
1076		   Xen console noise. */
1077		break;
1078
1079	default:
1080		if (!pmu_msr_write(msr, low, high, err)) {
1081			if (err)
1082				*err = native_write_msr_safe(msr, low, high);
1083			else
1084				native_write_msr(msr, low, high);
1085		}
1086	}
1087}
1088
1089static u64 xen_read_msr_safe(unsigned int msr, int *err)
1090{
1091	return xen_do_read_msr(msr, err);
1092}
1093
1094static int xen_write_msr_safe(unsigned int msr, unsigned int low,
1095			      unsigned int high)
1096{
1097	int err = 0;
1098
1099	xen_do_write_msr(msr, low, high, &err);
1100
1101	return err;
1102}
1103
1104static u64 xen_read_msr(unsigned int msr)
1105{
1106	int err;
1107
1108	return xen_do_read_msr(msr, xen_msr_safe ? &err : NULL);
1109}
1110
1111static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1112{
1113	int err;
1114
1115	xen_do_write_msr(msr, low, high, xen_msr_safe ? &err : NULL);
1116}
1117
1118/* This is called once we have the cpu_possible_mask */
1119void __init xen_setup_vcpu_info_placement(void)
1120{
1121	int cpu;
1122
1123	for_each_possible_cpu(cpu) {
1124		/* Set up direct vCPU id mapping for PV guests. */
1125		per_cpu(xen_vcpu_id, cpu) = cpu;
1126		xen_vcpu_setup(cpu);
1127	}
1128
1129	pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1130	pv_ops.irq.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1131	pv_ops.irq.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1132	pv_ops.mmu.read_cr2 = __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1133}
1134
1135static const struct pv_info xen_info __initconst = {
1136	.extra_user_64bit_cs = FLAT_USER_CS64,
1137	.name = "Xen",
1138};
1139
1140static const typeof(pv_ops) xen_cpu_ops __initconst = {
1141	.cpu = {
1142		.cpuid = xen_cpuid,
1143
1144		.set_debugreg = xen_set_debugreg,
1145		.get_debugreg = xen_get_debugreg,
1146
1147		.read_cr0 = xen_read_cr0,
1148		.write_cr0 = xen_write_cr0,
1149
1150		.write_cr4 = xen_write_cr4,
1151
1152		.wbinvd = pv_native_wbinvd,
1153
1154		.read_msr = xen_read_msr,
1155		.write_msr = xen_write_msr,
1156
1157		.read_msr_safe = xen_read_msr_safe,
1158		.write_msr_safe = xen_write_msr_safe,
1159
1160		.read_pmc = xen_read_pmc,
1161
1162		.load_tr_desc = paravirt_nop,
1163		.set_ldt = xen_set_ldt,
1164		.load_gdt = xen_load_gdt,
1165		.load_idt = xen_load_idt,
1166		.load_tls = xen_load_tls,
1167		.load_gs_index = xen_load_gs_index,
1168
1169		.alloc_ldt = xen_alloc_ldt,
1170		.free_ldt = xen_free_ldt,
1171
1172		.store_tr = xen_store_tr,
1173
1174		.write_ldt_entry = xen_write_ldt_entry,
1175		.write_gdt_entry = xen_write_gdt_entry,
1176		.write_idt_entry = xen_write_idt_entry,
1177		.load_sp0 = xen_load_sp0,
1178
1179#ifdef CONFIG_X86_IOPL_IOPERM
1180		.invalidate_io_bitmap = xen_invalidate_io_bitmap,
1181		.update_io_bitmap = xen_update_io_bitmap,
1182#endif
1183		.io_delay = xen_io_delay,
1184
1185		.start_context_switch = xen_start_context_switch,
1186		.end_context_switch = xen_end_context_switch,
1187	},
1188};
1189
1190static void xen_restart(char *msg)
1191{
1192	xen_reboot(SHUTDOWN_reboot);
1193}
1194
1195static void xen_machine_halt(void)
1196{
1197	xen_reboot(SHUTDOWN_poweroff);
1198}
1199
1200static void xen_machine_power_off(void)
1201{
1202	do_kernel_power_off();
1203	xen_reboot(SHUTDOWN_poweroff);
1204}
1205
1206static void xen_crash_shutdown(struct pt_regs *regs)
1207{
1208	xen_reboot(SHUTDOWN_crash);
1209}
1210
1211static const struct machine_ops xen_machine_ops __initconst = {
1212	.restart = xen_restart,
1213	.halt = xen_machine_halt,
1214	.power_off = xen_machine_power_off,
1215	.shutdown = xen_machine_halt,
1216	.crash_shutdown = xen_crash_shutdown,
1217	.emergency_restart = xen_emergency_restart,
1218};
1219
1220static unsigned char xen_get_nmi_reason(void)
1221{
1222	unsigned char reason = 0;
1223
1224	/* Construct a value which looks like it came from port 0x61. */
1225	if (test_bit(_XEN_NMIREASON_io_error,
1226		     &HYPERVISOR_shared_info->arch.nmi_reason))
1227		reason |= NMI_REASON_IOCHK;
1228	if (test_bit(_XEN_NMIREASON_pci_serr,
1229		     &HYPERVISOR_shared_info->arch.nmi_reason))
1230		reason |= NMI_REASON_SERR;
1231
1232	return reason;
1233}
1234
1235static void __init xen_boot_params_init_edd(void)
1236{
1237#if IS_ENABLED(CONFIG_EDD)
1238	struct xen_platform_op op;
1239	struct edd_info *edd_info;
1240	u32 *mbr_signature;
1241	unsigned nr;
1242	int ret;
1243
1244	edd_info = boot_params.eddbuf;
1245	mbr_signature = boot_params.edd_mbr_sig_buffer;
1246
1247	op.cmd = XENPF_firmware_info;
1248
1249	op.u.firmware_info.type = XEN_FW_DISK_INFO;
1250	for (nr = 0; nr < EDDMAXNR; nr++) {
1251		struct edd_info *info = edd_info + nr;
1252
1253		op.u.firmware_info.index = nr;
1254		info->params.length = sizeof(info->params);
1255		set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1256				     &info->params);
1257		ret = HYPERVISOR_platform_op(&op);
1258		if (ret)
1259			break;
1260
1261#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1262		C(device);
1263		C(version);
1264		C(interface_support);
1265		C(legacy_max_cylinder);
1266		C(legacy_max_head);
1267		C(legacy_sectors_per_track);
1268#undef C
1269	}
1270	boot_params.eddbuf_entries = nr;
1271
1272	op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1273	for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1274		op.u.firmware_info.index = nr;
1275		ret = HYPERVISOR_platform_op(&op);
1276		if (ret)
1277			break;
1278		mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1279	}
1280	boot_params.edd_mbr_sig_buf_entries = nr;
1281#endif
1282}
1283
1284/*
1285 * Set up the GDT and segment registers for -fstack-protector.  Until
1286 * we do this, we have to be careful not to call any stack-protected
1287 * function, which is most of the kernel.
1288 */
1289static void __init xen_setup_gdt(int cpu)
1290{
1291	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1292	pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1293
1294	switch_gdt_and_percpu_base(cpu);
1295
1296	pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1297	pv_ops.cpu.load_gdt = xen_load_gdt;
1298}
1299
1300static void __init xen_dom0_set_legacy_features(void)
1301{
1302	x86_platform.legacy.rtc = 1;
1303}
1304
1305static void __init xen_domu_set_legacy_features(void)
1306{
1307	x86_platform.legacy.rtc = 0;
1308}
1309
1310extern void early_xen_iret_patch(void);
1311
1312/* First C function to be called on Xen boot */
1313asmlinkage __visible void __init xen_start_kernel(struct start_info *si)
1314{
1315	struct physdev_set_iopl set_iopl;
1316	unsigned long initrd_start = 0;
1317	int rc;
1318
1319	if (!si)
1320		return;
1321
1322	clear_bss();
1323
1324	xen_start_info = si;
1325
1326	__text_gen_insn(&early_xen_iret_patch,
1327			JMP32_INSN_OPCODE, &early_xen_iret_patch, &xen_iret,
1328			JMP32_INSN_SIZE);
1329
1330	xen_domain_type = XEN_PV_DOMAIN;
1331	xen_start_flags = xen_start_info->flags;
1332
1333	xen_setup_features();
1334
1335	/* Install Xen paravirt ops */
1336	pv_info = xen_info;
1337	pv_ops.cpu = xen_cpu_ops.cpu;
1338	xen_init_irq_ops();
1339
1340	/*
1341	 * Setup xen_vcpu early because it is needed for
1342	 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1343	 *
1344	 * Don't do the full vcpu_info placement stuff until we have
1345	 * the cpu_possible_mask and a non-dummy shared_info.
1346	 */
1347	xen_vcpu_info_reset(0);
1348
1349	x86_platform.get_nmi_reason = xen_get_nmi_reason;
1350	x86_platform.realmode_reserve = x86_init_noop;
1351	x86_platform.realmode_init = x86_init_noop;
1352
1353	x86_init.resources.memory_setup = xen_memory_setup;
1354	x86_init.irqs.intr_mode_select	= x86_init_noop;
1355	x86_init.irqs.intr_mode_init	= x86_64_probe_apic;
1356	x86_init.oem.arch_setup = xen_arch_setup;
1357	x86_init.oem.banner = xen_banner;
1358	x86_init.hyper.init_platform = xen_pv_init_platform;
1359	x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1360
1361	/*
1362	 * Set up some pagetable state before starting to set any ptes.
1363	 */
1364
1365	xen_setup_machphys_mapping();
1366	xen_init_mmu_ops();
1367
1368	/* Prevent unwanted bits from being set in PTEs. */
1369	__supported_pte_mask &= ~_PAGE_GLOBAL;
1370	__default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1371
1372	/* Get mfn list */
1373	xen_build_dynamic_phys_to_machine();
1374
1375	/* Work out if we support NX */
1376	get_cpu_cap(&boot_cpu_data);
1377	x86_configure_nx();
1378
1379	/*
1380	 * Set up kernel GDT and segment registers, mainly so that
1381	 * -fstack-protector code can be executed.
1382	 */
1383	xen_setup_gdt(0);
1384
1385	/* Determine virtual and physical address sizes */
1386	get_cpu_address_sizes(&boot_cpu_data);
1387
1388	/* Let's presume PV guests always boot on vCPU with id 0. */
1389	per_cpu(xen_vcpu_id, 0) = 0;
1390
1391	idt_setup_early_handler();
1392
1393	xen_init_capabilities();
1394
1395	/*
1396	 * set up the basic apic ops.
1397	 */
1398	xen_init_apic();
1399
1400	machine_ops = xen_machine_ops;
1401
1402	/*
1403	 * The only reliable way to retain the initial address of the
1404	 * percpu gdt_page is to remember it here, so we can go and
1405	 * mark it RW later, when the initial percpu area is freed.
1406	 */
1407	xen_initial_gdt = &per_cpu(gdt_page, 0);
1408
1409	xen_smp_init();
1410
1411#ifdef CONFIG_ACPI_NUMA
1412	/*
1413	 * The pages we from Xen are not related to machine pages, so
1414	 * any NUMA information the kernel tries to get from ACPI will
1415	 * be meaningless.  Prevent it from trying.
1416	 */
1417	disable_srat();
1418#endif
1419	WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1420
1421	local_irq_disable();
1422	early_boot_irqs_disabled = true;
1423
1424	xen_raw_console_write("mapping kernel into physical memory\n");
1425	xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1426				   xen_start_info->nr_pages);
1427	xen_reserve_special_pages();
1428
1429	/*
1430	 * We used to do this in xen_arch_setup, but that is too late
1431	 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1432	 * early_amd_init which pokes 0xcf8 port.
1433	 */
1434	set_iopl.iopl = 1;
1435	rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1436	if (rc != 0)
1437		xen_raw_printk("physdev_op failed %d\n", rc);
1438
1439
1440	if (xen_start_info->mod_start) {
1441	    if (xen_start_info->flags & SIF_MOD_START_PFN)
1442		initrd_start = PFN_PHYS(xen_start_info->mod_start);
1443	    else
1444		initrd_start = __pa(xen_start_info->mod_start);
1445	}
1446
1447	/* Poke various useful things into boot_params */
1448	boot_params.hdr.type_of_loader = (9 << 4) | 0;
1449	boot_params.hdr.ramdisk_image = initrd_start;
1450	boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1451	boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1452	boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1453
1454	if (!xen_initial_domain()) {
1455		if (pci_xen)
1456			x86_init.pci.arch_init = pci_xen_init;
1457		x86_platform.set_legacy_features =
1458				xen_domu_set_legacy_features;
1459	} else {
1460		const struct dom0_vga_console_info *info =
1461			(void *)((char *)xen_start_info +
1462				 xen_start_info->console.dom0.info_off);
1463		struct xen_platform_op op = {
1464			.cmd = XENPF_firmware_info,
1465			.interface_version = XENPF_INTERFACE_VERSION,
1466			.u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1467		};
1468
1469		x86_platform.set_legacy_features =
1470				xen_dom0_set_legacy_features;
1471		xen_init_vga(info, xen_start_info->console.dom0.info_size,
1472			     &boot_params.screen_info);
1473		xen_start_info->console.domU.mfn = 0;
1474		xen_start_info->console.domU.evtchn = 0;
1475
1476		if (HYPERVISOR_platform_op(&op) == 0)
1477			boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1478
1479		/* Make sure ACS will be enabled */
1480		pci_request_acs();
1481
1482		xen_acpi_sleep_register();
1483
1484		xen_boot_params_init_edd();
1485
1486#ifdef CONFIG_ACPI
1487		/*
1488		 * Disable selecting "Firmware First mode" for correctable
1489		 * memory errors, as this is the duty of the hypervisor to
1490		 * decide.
1491		 */
1492		acpi_disable_cmcff = 1;
1493#endif
1494	}
1495
1496	xen_add_preferred_consoles();
1497
1498#ifdef CONFIG_PCI
1499	/* PCI BIOS service won't work from a PV guest. */
1500	pci_probe &= ~PCI_PROBE_BIOS;
1501#endif
1502	xen_raw_console_write("about to get started...\n");
1503
1504	/* We need this for printk timestamps */
1505	xen_setup_runstate_info(0);
1506
1507	xen_efi_init(&boot_params);
1508
1509	/* Start the world */
1510	cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1511	x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1512}
1513
1514static int xen_cpu_up_prepare_pv(unsigned int cpu)
1515{
1516	int rc;
1517
1518	if (per_cpu(xen_vcpu, cpu) == NULL)
1519		return -ENODEV;
1520
1521	xen_setup_timer(cpu);
1522
1523	rc = xen_smp_intr_init(cpu);
1524	if (rc) {
1525		WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1526		     cpu, rc);
1527		return rc;
1528	}
1529
1530	rc = xen_smp_intr_init_pv(cpu);
1531	if (rc) {
1532		WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1533		     cpu, rc);
1534		return rc;
1535	}
1536
1537	return 0;
1538}
1539
1540static int xen_cpu_dead_pv(unsigned int cpu)
1541{
1542	xen_smp_intr_free(cpu);
1543	xen_smp_intr_free_pv(cpu);
1544
1545	xen_teardown_timer(cpu);
1546
1547	return 0;
1548}
1549
1550static uint32_t __init xen_platform_pv(void)
1551{
1552	if (xen_pv_domain())
1553		return xen_cpuid_base();
1554
1555	return 0;
1556}
1557
1558const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1559	.name                   = "Xen PV",
1560	.detect                 = xen_platform_pv,
1561	.type			= X86_HYPER_XEN_PV,
1562	.runtime.pin_vcpu       = xen_pin_vcpu,
1563	.ignore_nopv		= true,
1564};
1565