xref: /kernel/linux/linux-6.6/arch/x86/mm/tlb.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/init.h>
3
4#include <linux/mm.h>
5#include <linux/spinlock.h>
6#include <linux/smp.h>
7#include <linux/interrupt.h>
8#include <linux/export.h>
9#include <linux/cpu.h>
10#include <linux/debugfs.h>
11#include <linux/sched/smt.h>
12#include <linux/task_work.h>
13#include <linux/mmu_notifier.h>
14
15#include <asm/tlbflush.h>
16#include <asm/mmu_context.h>
17#include <asm/nospec-branch.h>
18#include <asm/cache.h>
19#include <asm/cacheflush.h>
20#include <asm/apic.h>
21#include <asm/perf_event.h>
22
23#include "mm_internal.h"
24
25#ifdef CONFIG_PARAVIRT
26# define STATIC_NOPV
27#else
28# define STATIC_NOPV			static
29# define __flush_tlb_local		native_flush_tlb_local
30# define __flush_tlb_global		native_flush_tlb_global
31# define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
32# define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
33#endif
34
35/*
36 *	TLB flushing, formerly SMP-only
37 *		c/o Linus Torvalds.
38 *
39 *	These mean you can really definitely utterly forget about
40 *	writing to user space from interrupts. (Its not allowed anyway).
41 *
42 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
43 *
44 *	More scalable flush, from Andi Kleen
45 *
46 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
47 */
48
49/*
50 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
51 * stored in cpu_tlb_state.last_user_mm_spec.
52 */
53#define LAST_USER_MM_IBPB	0x1UL
54#define LAST_USER_MM_L1D_FLUSH	0x2UL
55#define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
56
57/* Bits to set when tlbstate and flush is (re)initialized */
58#define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
59
60/*
61 * The x86 feature is called PCID (Process Context IDentifier). It is similar
62 * to what is traditionally called ASID on the RISC processors.
63 *
64 * We don't use the traditional ASID implementation, where each process/mm gets
65 * its own ASID and flush/restart when we run out of ASID space.
66 *
67 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
68 * that came by on this CPU, allowing cheaper switch_mm between processes on
69 * this CPU.
70 *
71 * We end up with different spaces for different things. To avoid confusion we
72 * use different names for each of them:
73 *
74 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
75 *         the canonical identifier for an mm
76 *
77 * kPCID - [1, TLB_NR_DYN_ASIDS]
78 *         the value we write into the PCID part of CR3; corresponds to the
79 *         ASID+1, because PCID 0 is special.
80 *
81 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
82 *         for KPTI each mm has two address spaces and thus needs two
83 *         PCID values, but we can still do with a single ASID denomination
84 *         for each mm. Corresponds to kPCID + 2048.
85 *
86 */
87
88/* There are 12 bits of space for ASIDS in CR3 */
89#define CR3_HW_ASID_BITS		12
90
91/*
92 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
93 * user/kernel switches
94 */
95#ifdef CONFIG_PAGE_TABLE_ISOLATION
96# define PTI_CONSUMED_PCID_BITS	1
97#else
98# define PTI_CONSUMED_PCID_BITS	0
99#endif
100
101#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
102
103/*
104 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
105 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
106 * use by non-PCID-aware users.
107 */
108#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
109
110/*
111 * Given @asid, compute kPCID
112 */
113static inline u16 kern_pcid(u16 asid)
114{
115	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
116
117#ifdef CONFIG_PAGE_TABLE_ISOLATION
118	/*
119	 * Make sure that the dynamic ASID space does not conflict with the
120	 * bit we are using to switch between user and kernel ASIDs.
121	 */
122	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
123
124	/*
125	 * The ASID being passed in here should have respected the
126	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
127	 */
128	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
129#endif
130	/*
131	 * The dynamically-assigned ASIDs that get passed in are small
132	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
133	 * so do not bother to clear it.
134	 *
135	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
136	 * PCID bits.  This serves two purposes.  It prevents a nasty
137	 * situation in which PCID-unaware code saves CR3, loads some other
138	 * value (with PCID == 0), and then restores CR3, thus corrupting
139	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
140	 * that any bugs involving loading a PCID-enabled CR3 with
141	 * CR4.PCIDE off will trigger deterministically.
142	 */
143	return asid + 1;
144}
145
146/*
147 * Given @asid, compute uPCID
148 */
149static inline u16 user_pcid(u16 asid)
150{
151	u16 ret = kern_pcid(asid);
152#ifdef CONFIG_PAGE_TABLE_ISOLATION
153	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
154#endif
155	return ret;
156}
157
158static inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
159{
160	unsigned long cr3 = __sme_pa(pgd) | lam;
161
162	if (static_cpu_has(X86_FEATURE_PCID)) {
163		VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
164		cr3 |= kern_pcid(asid);
165	} else {
166		VM_WARN_ON_ONCE(asid != 0);
167	}
168
169	return cr3;
170}
171
172static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
173					      unsigned long lam)
174{
175	/*
176	 * Use boot_cpu_has() instead of this_cpu_has() as this function
177	 * might be called during early boot. This should work even after
178	 * boot because all CPU's the have same capabilities:
179	 */
180	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
181	return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
182}
183
184/*
185 * We get here when we do something requiring a TLB invalidation
186 * but could not go invalidate all of the contexts.  We do the
187 * necessary invalidation by clearing out the 'ctx_id' which
188 * forces a TLB flush when the context is loaded.
189 */
190static void clear_asid_other(void)
191{
192	u16 asid;
193
194	/*
195	 * This is only expected to be set if we have disabled
196	 * kernel _PAGE_GLOBAL pages.
197	 */
198	if (!static_cpu_has(X86_FEATURE_PTI)) {
199		WARN_ON_ONCE(1);
200		return;
201	}
202
203	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
204		/* Do not need to flush the current asid */
205		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
206			continue;
207		/*
208		 * Make sure the next time we go to switch to
209		 * this asid, we do a flush:
210		 */
211		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
212	}
213	this_cpu_write(cpu_tlbstate.invalidate_other, false);
214}
215
216atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
217
218
219static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
220			    u16 *new_asid, bool *need_flush)
221{
222	u16 asid;
223
224	if (!static_cpu_has(X86_FEATURE_PCID)) {
225		*new_asid = 0;
226		*need_flush = true;
227		return;
228	}
229
230	if (this_cpu_read(cpu_tlbstate.invalidate_other))
231		clear_asid_other();
232
233	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
234		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
235		    next->context.ctx_id)
236			continue;
237
238		*new_asid = asid;
239		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
240			       next_tlb_gen);
241		return;
242	}
243
244	/*
245	 * We don't currently own an ASID slot on this CPU.
246	 * Allocate a slot.
247	 */
248	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
249	if (*new_asid >= TLB_NR_DYN_ASIDS) {
250		*new_asid = 0;
251		this_cpu_write(cpu_tlbstate.next_asid, 1);
252	}
253	*need_flush = true;
254}
255
256/*
257 * Given an ASID, flush the corresponding user ASID.  We can delay this
258 * until the next time we switch to it.
259 *
260 * See SWITCH_TO_USER_CR3.
261 */
262static inline void invalidate_user_asid(u16 asid)
263{
264	/* There is no user ASID if address space separation is off */
265	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
266		return;
267
268	/*
269	 * We only have a single ASID if PCID is off and the CR3
270	 * write will have flushed it.
271	 */
272	if (!cpu_feature_enabled(X86_FEATURE_PCID))
273		return;
274
275	if (!static_cpu_has(X86_FEATURE_PTI))
276		return;
277
278	__set_bit(kern_pcid(asid),
279		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
280}
281
282static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
283			    bool need_flush)
284{
285	unsigned long new_mm_cr3;
286
287	if (need_flush) {
288		invalidate_user_asid(new_asid);
289		new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
290	} else {
291		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
292	}
293
294	/*
295	 * Caution: many callers of this function expect
296	 * that load_cr3() is serializing and orders TLB
297	 * fills with respect to the mm_cpumask writes.
298	 */
299	write_cr3(new_mm_cr3);
300}
301
302void leave_mm(int cpu)
303{
304	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
305
306	/*
307	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
308	 * If so, our callers still expect us to flush the TLB, but there
309	 * aren't any user TLB entries in init_mm to worry about.
310	 *
311	 * This needs to happen before any other sanity checks due to
312	 * intel_idle's shenanigans.
313	 */
314	if (loaded_mm == &init_mm)
315		return;
316
317	/* Warn if we're not lazy. */
318	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
319
320	switch_mm(NULL, &init_mm, NULL);
321}
322EXPORT_SYMBOL_GPL(leave_mm);
323
324void switch_mm(struct mm_struct *prev, struct mm_struct *next,
325	       struct task_struct *tsk)
326{
327	unsigned long flags;
328
329	local_irq_save(flags);
330	switch_mm_irqs_off(prev, next, tsk);
331	local_irq_restore(flags);
332}
333
334/*
335 * Invoked from return to user/guest by a task that opted-in to L1D
336 * flushing but ended up running on an SMT enabled core due to wrong
337 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
338 * contract which this task requested.
339 */
340static void l1d_flush_force_sigbus(struct callback_head *ch)
341{
342	force_sig(SIGBUS);
343}
344
345static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
346				struct task_struct *next)
347{
348	/* Flush L1D if the outgoing task requests it */
349	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
350		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
351
352	/* Check whether the incoming task opted in for L1D flush */
353	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
354		return;
355
356	/*
357	 * Validate that it is not running on an SMT sibling as this would
358	 * make the excercise pointless because the siblings share L1D. If
359	 * it runs on a SMT sibling, notify it with SIGBUS on return to
360	 * user/guest
361	 */
362	if (this_cpu_read(cpu_info.smt_active)) {
363		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
364		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
365		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
366	}
367}
368
369static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
370{
371	unsigned long next_tif = read_task_thread_flags(next);
372	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
373
374	/*
375	 * Ensure that the bit shift above works as expected and the two flags
376	 * end up in bit 0 and 1.
377	 */
378	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
379
380	return (unsigned long)next->mm | spec_bits;
381}
382
383static void cond_mitigation(struct task_struct *next)
384{
385	unsigned long prev_mm, next_mm;
386
387	if (!next || !next->mm)
388		return;
389
390	next_mm = mm_mangle_tif_spec_bits(next);
391	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
392
393	/*
394	 * Avoid user/user BTB poisoning by flushing the branch predictor
395	 * when switching between processes. This stops one process from
396	 * doing Spectre-v2 attacks on another.
397	 *
398	 * Both, the conditional and the always IBPB mode use the mm
399	 * pointer to avoid the IBPB when switching between tasks of the
400	 * same process. Using the mm pointer instead of mm->context.ctx_id
401	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
402	 * less impossible to control by an attacker. Aside of that it
403	 * would only affect the first schedule so the theoretically
404	 * exposed data is not really interesting.
405	 */
406	if (static_branch_likely(&switch_mm_cond_ibpb)) {
407		/*
408		 * This is a bit more complex than the always mode because
409		 * it has to handle two cases:
410		 *
411		 * 1) Switch from a user space task (potential attacker)
412		 *    which has TIF_SPEC_IB set to a user space task
413		 *    (potential victim) which has TIF_SPEC_IB not set.
414		 *
415		 * 2) Switch from a user space task (potential attacker)
416		 *    which has TIF_SPEC_IB not set to a user space task
417		 *    (potential victim) which has TIF_SPEC_IB set.
418		 *
419		 * This could be done by unconditionally issuing IBPB when
420		 * a task which has TIF_SPEC_IB set is either scheduled in
421		 * or out. Though that results in two flushes when:
422		 *
423		 * - the same user space task is scheduled out and later
424		 *   scheduled in again and only a kernel thread ran in
425		 *   between.
426		 *
427		 * - a user space task belonging to the same process is
428		 *   scheduled in after a kernel thread ran in between
429		 *
430		 * - a user space task belonging to the same process is
431		 *   scheduled in immediately.
432		 *
433		 * Optimize this with reasonably small overhead for the
434		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
435		 * pointer of the incoming task which is stored in
436		 * cpu_tlbstate.last_user_mm_spec for comparison.
437		 *
438		 * Issue IBPB only if the mm's are different and one or
439		 * both have the IBPB bit set.
440		 */
441		if (next_mm != prev_mm &&
442		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
443			indirect_branch_prediction_barrier();
444	}
445
446	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
447		/*
448		 * Only flush when switching to a user space task with a
449		 * different context than the user space task which ran
450		 * last on this CPU.
451		 */
452		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
453					(unsigned long)next->mm)
454			indirect_branch_prediction_barrier();
455	}
456
457	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
458		/*
459		 * Flush L1D when the outgoing task requested it and/or
460		 * check whether the incoming task requested L1D flushing
461		 * and ended up on an SMT sibling.
462		 */
463		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
464			l1d_flush_evaluate(prev_mm, next_mm, next);
465	}
466
467	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
468}
469
470#ifdef CONFIG_PERF_EVENTS
471static inline void cr4_update_pce_mm(struct mm_struct *mm)
472{
473	if (static_branch_unlikely(&rdpmc_always_available_key) ||
474	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
475	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
476		/*
477		 * Clear the existing dirty counters to
478		 * prevent the leak for an RDPMC task.
479		 */
480		perf_clear_dirty_counters();
481		cr4_set_bits_irqsoff(X86_CR4_PCE);
482	} else
483		cr4_clear_bits_irqsoff(X86_CR4_PCE);
484}
485
486void cr4_update_pce(void *ignored)
487{
488	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
489}
490
491#else
492static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
493#endif
494
495void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
496			struct task_struct *tsk)
497{
498	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
499	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
500	unsigned long new_lam = mm_lam_cr3_mask(next);
501	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
502	unsigned cpu = smp_processor_id();
503	u64 next_tlb_gen;
504	bool need_flush;
505	u16 new_asid;
506
507	/*
508	 * NB: The scheduler will call us with prev == next when switching
509	 * from lazy TLB mode to normal mode if active_mm isn't changing.
510	 * When this happens, we don't assume that CR3 (and hence
511	 * cpu_tlbstate.loaded_mm) matches next.
512	 *
513	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
514	 */
515
516	/* We don't want flush_tlb_func() to run concurrently with us. */
517	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
518		WARN_ON_ONCE(!irqs_disabled());
519
520	/*
521	 * Verify that CR3 is what we think it is.  This will catch
522	 * hypothetical buggy code that directly switches to swapper_pg_dir
523	 * without going through leave_mm() / switch_mm_irqs_off() or that
524	 * does something like write_cr3(read_cr3_pa()).
525	 *
526	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
527	 * isn't free.
528	 */
529#ifdef CONFIG_DEBUG_VM
530	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid,
531						   tlbstate_lam_cr3_mask()))) {
532		/*
533		 * If we were to BUG here, we'd be very likely to kill
534		 * the system so hard that we don't see the call trace.
535		 * Try to recover instead by ignoring the error and doing
536		 * a global flush to minimize the chance of corruption.
537		 *
538		 * (This is far from being a fully correct recovery.
539		 *  Architecturally, the CPU could prefetch something
540		 *  back into an incorrect ASID slot and leave it there
541		 *  to cause trouble down the road.  It's better than
542		 *  nothing, though.)
543		 */
544		__flush_tlb_all();
545	}
546#endif
547	if (was_lazy)
548		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
549
550	/*
551	 * The membarrier system call requires a full memory barrier and
552	 * core serialization before returning to user-space, after
553	 * storing to rq->curr, when changing mm.  This is because
554	 * membarrier() sends IPIs to all CPUs that are in the target mm
555	 * to make them issue memory barriers.  However, if another CPU
556	 * switches to/from the target mm concurrently with
557	 * membarrier(), it can cause that CPU not to receive an IPI
558	 * when it really should issue a memory barrier.  Writing to CR3
559	 * provides that full memory barrier and core serializing
560	 * instruction.
561	 */
562	if (real_prev == next) {
563		/* Not actually switching mm's */
564		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
565			   next->context.ctx_id);
566
567		/*
568		 * If this races with another thread that enables lam, 'new_lam'
569		 * might not match tlbstate_lam_cr3_mask().
570		 */
571
572		/*
573		 * Even in lazy TLB mode, the CPU should stay set in the
574		 * mm_cpumask. The TLB shootdown code can figure out from
575		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
576		 */
577		if (WARN_ON_ONCE(real_prev != &init_mm &&
578				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
579			cpumask_set_cpu(cpu, mm_cpumask(next));
580
581		/*
582		 * If the CPU is not in lazy TLB mode, we are just switching
583		 * from one thread in a process to another thread in the same
584		 * process. No TLB flush required.
585		 */
586		if (!was_lazy)
587			return;
588
589		/*
590		 * Read the tlb_gen to check whether a flush is needed.
591		 * If the TLB is up to date, just use it.
592		 * The barrier synchronizes with the tlb_gen increment in
593		 * the TLB shootdown code.
594		 */
595		smp_mb();
596		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
597		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
598				next_tlb_gen)
599			return;
600
601		/*
602		 * TLB contents went out of date while we were in lazy
603		 * mode. Fall through to the TLB switching code below.
604		 */
605		new_asid = prev_asid;
606		need_flush = true;
607	} else {
608		/*
609		 * Apply process to process speculation vulnerability
610		 * mitigations if applicable.
611		 */
612		cond_mitigation(tsk);
613
614		/*
615		 * Stop remote flushes for the previous mm.
616		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
617		 * but the bitmap manipulation can cause cache line contention.
618		 */
619		if (real_prev != &init_mm) {
620			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
621						mm_cpumask(real_prev)));
622			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
623		}
624
625		/*
626		 * Start remote flushes and then read tlb_gen.
627		 */
628		if (next != &init_mm)
629			cpumask_set_cpu(cpu, mm_cpumask(next));
630		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
631
632		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
633
634		/* Let nmi_uaccess_okay() know that we're changing CR3. */
635		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
636		barrier();
637	}
638
639	set_tlbstate_lam_mode(next);
640	if (need_flush) {
641		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
642		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
643		load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
644
645		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
646	} else {
647		/* The new ASID is already up to date. */
648		load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
649
650		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
651	}
652
653	/* Make sure we write CR3 before loaded_mm. */
654	barrier();
655
656	this_cpu_write(cpu_tlbstate.loaded_mm, next);
657	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
658
659	if (next != real_prev) {
660		cr4_update_pce_mm(next);
661		switch_ldt(real_prev, next);
662	}
663}
664
665/*
666 * Please ignore the name of this function.  It should be called
667 * switch_to_kernel_thread().
668 *
669 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
670 * kernel thread or other context without an mm.  Acceptable implementations
671 * include doing nothing whatsoever, switching to init_mm, or various clever
672 * lazy tricks to try to minimize TLB flushes.
673 *
674 * The scheduler reserves the right to call enter_lazy_tlb() several times
675 * in a row.  It will notify us that we're going back to a real mm by
676 * calling switch_mm_irqs_off().
677 */
678void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
679{
680	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
681		return;
682
683	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
684}
685
686/*
687 * Call this when reinitializing a CPU.  It fixes the following potential
688 * problems:
689 *
690 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
691 *   because the CPU was taken down and came back up with CR3's PCID
692 *   bits clear.  CPU hotplug can do this.
693 *
694 * - The TLB contains junk in slots corresponding to inactive ASIDs.
695 *
696 * - The CPU went so far out to lunch that it may have missed a TLB
697 *   flush.
698 */
699void initialize_tlbstate_and_flush(void)
700{
701	int i;
702	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
703	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
704	unsigned long cr3 = __read_cr3();
705
706	/* Assert that CR3 already references the right mm. */
707	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
708
709	/* LAM expected to be disabled */
710	WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
711	WARN_ON(mm_lam_cr3_mask(mm));
712
713	/*
714	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
715	 * doesn't work like other CR4 bits because it can only be set from
716	 * long mode.)
717	 */
718	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
719		!(cr4_read_shadow() & X86_CR4_PCIDE));
720
721	/* Disable LAM, force ASID 0 and force a TLB flush. */
722	write_cr3(build_cr3(mm->pgd, 0, 0));
723
724	/* Reinitialize tlbstate. */
725	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
726	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
727	this_cpu_write(cpu_tlbstate.next_asid, 1);
728	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
729	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
730	set_tlbstate_lam_mode(mm);
731
732	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
733		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
734}
735
736/*
737 * flush_tlb_func()'s memory ordering requirement is that any
738 * TLB fills that happen after we flush the TLB are ordered after we
739 * read active_mm's tlb_gen.  We don't need any explicit barriers
740 * because all x86 flush operations are serializing and the
741 * atomic64_read operation won't be reordered by the compiler.
742 */
743static void flush_tlb_func(void *info)
744{
745	/*
746	 * We have three different tlb_gen values in here.  They are:
747	 *
748	 * - mm_tlb_gen:     the latest generation.
749	 * - local_tlb_gen:  the generation that this CPU has already caught
750	 *                   up to.
751	 * - f->new_tlb_gen: the generation that the requester of the flush
752	 *                   wants us to catch up to.
753	 */
754	const struct flush_tlb_info *f = info;
755	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
756	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
757	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
758	bool local = smp_processor_id() == f->initiating_cpu;
759	unsigned long nr_invalidate = 0;
760	u64 mm_tlb_gen;
761
762	/* This code cannot presently handle being reentered. */
763	VM_WARN_ON(!irqs_disabled());
764
765	if (!local) {
766		inc_irq_stat(irq_tlb_count);
767		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
768
769		/* Can only happen on remote CPUs */
770		if (f->mm && f->mm != loaded_mm)
771			return;
772	}
773
774	if (unlikely(loaded_mm == &init_mm))
775		return;
776
777	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
778		   loaded_mm->context.ctx_id);
779
780	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
781		/*
782		 * We're in lazy mode.  We need to at least flush our
783		 * paging-structure cache to avoid speculatively reading
784		 * garbage into our TLB.  Since switching to init_mm is barely
785		 * slower than a minimal flush, just switch to init_mm.
786		 *
787		 * This should be rare, with native_flush_tlb_multi() skipping
788		 * IPIs to lazy TLB mode CPUs.
789		 */
790		switch_mm_irqs_off(NULL, &init_mm, NULL);
791		return;
792	}
793
794	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
795		     f->new_tlb_gen <= local_tlb_gen)) {
796		/*
797		 * The TLB is already up to date in respect to f->new_tlb_gen.
798		 * While the core might be still behind mm_tlb_gen, checking
799		 * mm_tlb_gen unnecessarily would have negative caching effects
800		 * so avoid it.
801		 */
802		return;
803	}
804
805	/*
806	 * Defer mm_tlb_gen reading as long as possible to avoid cache
807	 * contention.
808	 */
809	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
810
811	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
812		/*
813		 * There's nothing to do: we're already up to date.  This can
814		 * happen if two concurrent flushes happen -- the first flush to
815		 * be handled can catch us all the way up, leaving no work for
816		 * the second flush.
817		 */
818		goto done;
819	}
820
821	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
822	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
823
824	/*
825	 * If we get to this point, we know that our TLB is out of date.
826	 * This does not strictly imply that we need to flush (it's
827	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
828	 * going to need to flush in the very near future, so we might
829	 * as well get it over with.
830	 *
831	 * The only question is whether to do a full or partial flush.
832	 *
833	 * We do a partial flush if requested and two extra conditions
834	 * are met:
835	 *
836	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
837	 *    we've always done all needed flushes to catch up to
838	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
839	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
840	 *    us up to date for tlb_gen 3 is the partial flush we're
841	 *    processing.
842	 *
843	 *    As an example of why this check is needed, suppose that there
844	 *    are two concurrent flushes.  The first is a full flush that
845	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
846	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
847	 *    processed on this CPU in reverse order, we'll see
848	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
849	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
850	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
851	 *    1 without the full flush that's needed for tlb_gen 2.
852	 *
853	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
854	 *    Partial TLB flushes are not all that much cheaper than full TLB
855	 *    flushes, so it seems unlikely that it would be a performance win
856	 *    to do a partial flush if that won't bring our TLB fully up to
857	 *    date.  By doing a full flush instead, we can increase
858	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
859	 *    avoid another flush in the very near future.
860	 */
861	if (f->end != TLB_FLUSH_ALL &&
862	    f->new_tlb_gen == local_tlb_gen + 1 &&
863	    f->new_tlb_gen == mm_tlb_gen) {
864		/* Partial flush */
865		unsigned long addr = f->start;
866
867		/* Partial flush cannot have invalid generations */
868		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
869
870		/* Partial flush must have valid mm */
871		VM_WARN_ON(f->mm == NULL);
872
873		nr_invalidate = (f->end - f->start) >> f->stride_shift;
874
875		while (addr < f->end) {
876			flush_tlb_one_user(addr);
877			addr += 1UL << f->stride_shift;
878		}
879		if (local)
880			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
881	} else {
882		/* Full flush. */
883		nr_invalidate = TLB_FLUSH_ALL;
884
885		flush_tlb_local();
886		if (local)
887			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
888	}
889
890	/* Both paths above update our state to mm_tlb_gen. */
891	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
892
893	/* Tracing is done in a unified manner to reduce the code size */
894done:
895	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
896				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
897						  TLB_LOCAL_MM_SHOOTDOWN,
898			nr_invalidate);
899}
900
901static bool tlb_is_not_lazy(int cpu, void *data)
902{
903	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
904}
905
906DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
907EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
908
909STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
910					 const struct flush_tlb_info *info)
911{
912	/*
913	 * Do accounting and tracing. Note that there are (and have always been)
914	 * cases in which a remote TLB flush will be traced, but eventually
915	 * would not happen.
916	 */
917	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
918	if (info->end == TLB_FLUSH_ALL)
919		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
920	else
921		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
922				(info->end - info->start) >> PAGE_SHIFT);
923
924	/*
925	 * If no page tables were freed, we can skip sending IPIs to
926	 * CPUs in lazy TLB mode. They will flush the CPU themselves
927	 * at the next context switch.
928	 *
929	 * However, if page tables are getting freed, we need to send the
930	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
931	 * up on the new contents of what used to be page tables, while
932	 * doing a speculative memory access.
933	 */
934	if (info->freed_tables)
935		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
936	else
937		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
938				(void *)info, 1, cpumask);
939}
940
941void flush_tlb_multi(const struct cpumask *cpumask,
942		      const struct flush_tlb_info *info)
943{
944	__flush_tlb_multi(cpumask, info);
945}
946
947/*
948 * See Documentation/arch/x86/tlb.rst for details.  We choose 33
949 * because it is large enough to cover the vast majority (at
950 * least 95%) of allocations, and is small enough that we are
951 * confident it will not cause too much overhead.  Each single
952 * flush is about 100 ns, so this caps the maximum overhead at
953 * _about_ 3,000 ns.
954 *
955 * This is in units of pages.
956 */
957unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
958
959static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
960
961#ifdef CONFIG_DEBUG_VM
962static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
963#endif
964
965static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
966			unsigned long start, unsigned long end,
967			unsigned int stride_shift, bool freed_tables,
968			u64 new_tlb_gen)
969{
970	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
971
972#ifdef CONFIG_DEBUG_VM
973	/*
974	 * Ensure that the following code is non-reentrant and flush_tlb_info
975	 * is not overwritten. This means no TLB flushing is initiated by
976	 * interrupt handlers and machine-check exception handlers.
977	 */
978	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
979#endif
980
981	info->start		= start;
982	info->end		= end;
983	info->mm		= mm;
984	info->stride_shift	= stride_shift;
985	info->freed_tables	= freed_tables;
986	info->new_tlb_gen	= new_tlb_gen;
987	info->initiating_cpu	= smp_processor_id();
988
989	return info;
990}
991
992static void put_flush_tlb_info(void)
993{
994#ifdef CONFIG_DEBUG_VM
995	/* Complete reentrancy prevention checks */
996	barrier();
997	this_cpu_dec(flush_tlb_info_idx);
998#endif
999}
1000
1001void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
1002				unsigned long end, unsigned int stride_shift,
1003				bool freed_tables)
1004{
1005	struct flush_tlb_info *info;
1006	u64 new_tlb_gen;
1007	int cpu;
1008
1009	cpu = get_cpu();
1010
1011	/* Should we flush just the requested range? */
1012	if ((end == TLB_FLUSH_ALL) ||
1013	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
1014		start = 0;
1015		end = TLB_FLUSH_ALL;
1016	}
1017
1018	/* This is also a barrier that synchronizes with switch_mm(). */
1019	new_tlb_gen = inc_mm_tlb_gen(mm);
1020
1021	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1022				  new_tlb_gen);
1023
1024	/*
1025	 * flush_tlb_multi() is not optimized for the common case in which only
1026	 * a local TLB flush is needed. Optimize this use-case by calling
1027	 * flush_tlb_func_local() directly in this case.
1028	 */
1029	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1030		flush_tlb_multi(mm_cpumask(mm), info);
1031	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1032		lockdep_assert_irqs_enabled();
1033		local_irq_disable();
1034		flush_tlb_func(info);
1035		local_irq_enable();
1036	}
1037
1038	put_flush_tlb_info();
1039	put_cpu();
1040	mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
1041}
1042
1043
1044static void do_flush_tlb_all(void *info)
1045{
1046	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1047	__flush_tlb_all();
1048}
1049
1050void flush_tlb_all(void)
1051{
1052	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1053	on_each_cpu(do_flush_tlb_all, NULL, 1);
1054}
1055
1056static void do_kernel_range_flush(void *info)
1057{
1058	struct flush_tlb_info *f = info;
1059	unsigned long addr;
1060
1061	/* flush range by one by one 'invlpg' */
1062	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1063		flush_tlb_one_kernel(addr);
1064}
1065
1066void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1067{
1068	/* Balance as user space task's flush, a bit conservative */
1069	if (end == TLB_FLUSH_ALL ||
1070	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1071		on_each_cpu(do_flush_tlb_all, NULL, 1);
1072	} else {
1073		struct flush_tlb_info *info;
1074
1075		preempt_disable();
1076		info = get_flush_tlb_info(NULL, start, end, 0, false,
1077					  TLB_GENERATION_INVALID);
1078
1079		on_each_cpu(do_kernel_range_flush, info, 1);
1080
1081		put_flush_tlb_info();
1082		preempt_enable();
1083	}
1084}
1085
1086/*
1087 * This can be used from process context to figure out what the value of
1088 * CR3 is without needing to do a (slow) __read_cr3().
1089 *
1090 * It's intended to be used for code like KVM that sneakily changes CR3
1091 * and needs to restore it.  It needs to be used very carefully.
1092 */
1093unsigned long __get_current_cr3_fast(void)
1094{
1095	unsigned long cr3 =
1096		build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1097			  this_cpu_read(cpu_tlbstate.loaded_mm_asid),
1098			  tlbstate_lam_cr3_mask());
1099
1100	/* For now, be very restrictive about when this can be called. */
1101	VM_WARN_ON(in_nmi() || preemptible());
1102
1103	VM_BUG_ON(cr3 != __read_cr3());
1104	return cr3;
1105}
1106EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1107
1108/*
1109 * Flush one page in the kernel mapping
1110 */
1111void flush_tlb_one_kernel(unsigned long addr)
1112{
1113	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1114
1115	/*
1116	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1117	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1118	 * use PCID if we also use global PTEs for the kernel mapping, and
1119	 * INVLPG flushes global translations across all address spaces.
1120	 *
1121	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1122	 * __flush_tlb_one_user() will flush the given address for the current
1123	 * kernel address space and for its usermode counterpart, but it does
1124	 * not flush it for other address spaces.
1125	 */
1126	flush_tlb_one_user(addr);
1127
1128	if (!static_cpu_has(X86_FEATURE_PTI))
1129		return;
1130
1131	/*
1132	 * See above.  We need to propagate the flush to all other address
1133	 * spaces.  In principle, we only need to propagate it to kernelmode
1134	 * address spaces, but the extra bookkeeping we would need is not
1135	 * worth it.
1136	 */
1137	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1138}
1139
1140/*
1141 * Flush one page in the user mapping
1142 */
1143STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1144{
1145	u32 loaded_mm_asid;
1146	bool cpu_pcide;
1147
1148	/* Flush 'addr' from the kernel PCID: */
1149	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1150
1151	/* If PTI is off there is no user PCID and nothing to flush. */
1152	if (!static_cpu_has(X86_FEATURE_PTI))
1153		return;
1154
1155	loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1156	cpu_pcide      = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
1157
1158	/*
1159	 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0.  Check
1160	 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
1161	 * #GP's even if called before CR4.PCIDE has been initialized.
1162	 */
1163	if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
1164		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1165	else
1166		invalidate_user_asid(loaded_mm_asid);
1167}
1168
1169void flush_tlb_one_user(unsigned long addr)
1170{
1171	__flush_tlb_one_user(addr);
1172}
1173
1174/*
1175 * Flush everything
1176 */
1177STATIC_NOPV void native_flush_tlb_global(void)
1178{
1179	unsigned long flags;
1180
1181	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1182		/*
1183		 * Using INVPCID is considerably faster than a pair of writes
1184		 * to CR4 sandwiched inside an IRQ flag save/restore.
1185		 *
1186		 * Note, this works with CR4.PCIDE=0 or 1.
1187		 */
1188		invpcid_flush_all();
1189		return;
1190	}
1191
1192	/*
1193	 * Read-modify-write to CR4 - protect it from preemption and
1194	 * from interrupts. (Use the raw variant because this code can
1195	 * be called from deep inside debugging code.)
1196	 */
1197	raw_local_irq_save(flags);
1198
1199	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1200
1201	raw_local_irq_restore(flags);
1202}
1203
1204/*
1205 * Flush the entire current user mapping
1206 */
1207STATIC_NOPV void native_flush_tlb_local(void)
1208{
1209	/*
1210	 * Preemption or interrupts must be disabled to protect the access
1211	 * to the per CPU variable and to prevent being preempted between
1212	 * read_cr3() and write_cr3().
1213	 */
1214	WARN_ON_ONCE(preemptible());
1215
1216	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1217
1218	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1219	native_write_cr3(__native_read_cr3());
1220}
1221
1222void flush_tlb_local(void)
1223{
1224	__flush_tlb_local();
1225}
1226
1227/*
1228 * Flush everything
1229 */
1230void __flush_tlb_all(void)
1231{
1232	/*
1233	 * This is to catch users with enabled preemption and the PGE feature
1234	 * and don't trigger the warning in __native_flush_tlb().
1235	 */
1236	VM_WARN_ON_ONCE(preemptible());
1237
1238	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
1239		__flush_tlb_global();
1240	} else {
1241		/*
1242		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1243		 */
1244		flush_tlb_local();
1245	}
1246}
1247EXPORT_SYMBOL_GPL(__flush_tlb_all);
1248
1249void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1250{
1251	struct flush_tlb_info *info;
1252
1253	int cpu = get_cpu();
1254
1255	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1256				  TLB_GENERATION_INVALID);
1257	/*
1258	 * flush_tlb_multi() is not optimized for the common case in which only
1259	 * a local TLB flush is needed. Optimize this use-case by calling
1260	 * flush_tlb_func_local() directly in this case.
1261	 */
1262	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1263		flush_tlb_multi(&batch->cpumask, info);
1264	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1265		lockdep_assert_irqs_enabled();
1266		local_irq_disable();
1267		flush_tlb_func(info);
1268		local_irq_enable();
1269	}
1270
1271	cpumask_clear(&batch->cpumask);
1272
1273	put_flush_tlb_info();
1274	put_cpu();
1275}
1276
1277/*
1278 * Blindly accessing user memory from NMI context can be dangerous
1279 * if we're in the middle of switching the current user task or
1280 * switching the loaded mm.  It can also be dangerous if we
1281 * interrupted some kernel code that was temporarily using a
1282 * different mm.
1283 */
1284bool nmi_uaccess_okay(void)
1285{
1286	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1287	struct mm_struct *current_mm = current->mm;
1288
1289	VM_WARN_ON_ONCE(!loaded_mm);
1290
1291	/*
1292	 * The condition we want to check is
1293	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1294	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1295	 * is supposed to be reasonably fast.
1296	 *
1297	 * Instead, we check the almost equivalent but somewhat conservative
1298	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1299	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1300	 */
1301	if (loaded_mm != current_mm)
1302		return false;
1303
1304	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1305
1306	return true;
1307}
1308
1309static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1310			     size_t count, loff_t *ppos)
1311{
1312	char buf[32];
1313	unsigned int len;
1314
1315	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1316	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1317}
1318
1319static ssize_t tlbflush_write_file(struct file *file,
1320		 const char __user *user_buf, size_t count, loff_t *ppos)
1321{
1322	char buf[32];
1323	ssize_t len;
1324	int ceiling;
1325
1326	len = min(count, sizeof(buf) - 1);
1327	if (copy_from_user(buf, user_buf, len))
1328		return -EFAULT;
1329
1330	buf[len] = '\0';
1331	if (kstrtoint(buf, 0, &ceiling))
1332		return -EINVAL;
1333
1334	if (ceiling < 0)
1335		return -EINVAL;
1336
1337	tlb_single_page_flush_ceiling = ceiling;
1338	return count;
1339}
1340
1341static const struct file_operations fops_tlbflush = {
1342	.read = tlbflush_read_file,
1343	.write = tlbflush_write_file,
1344	.llseek = default_llseek,
1345};
1346
1347static int __init create_tlb_single_page_flush_ceiling(void)
1348{
1349	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1350			    arch_debugfs_dir, NULL, &fops_tlbflush);
1351	return 0;
1352}
1353late_initcall(create_tlb_single_page_flush_ceiling);
1354