162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
262306a36Sopenharmony_ci#include <linux/init.h>
362306a36Sopenharmony_ci
462306a36Sopenharmony_ci#include <linux/mm.h>
562306a36Sopenharmony_ci#include <linux/spinlock.h>
662306a36Sopenharmony_ci#include <linux/smp.h>
762306a36Sopenharmony_ci#include <linux/interrupt.h>
862306a36Sopenharmony_ci#include <linux/export.h>
962306a36Sopenharmony_ci#include <linux/cpu.h>
1062306a36Sopenharmony_ci#include <linux/debugfs.h>
1162306a36Sopenharmony_ci#include <linux/sched/smt.h>
1262306a36Sopenharmony_ci#include <linux/task_work.h>
1362306a36Sopenharmony_ci#include <linux/mmu_notifier.h>
1462306a36Sopenharmony_ci
1562306a36Sopenharmony_ci#include <asm/tlbflush.h>
1662306a36Sopenharmony_ci#include <asm/mmu_context.h>
1762306a36Sopenharmony_ci#include <asm/nospec-branch.h>
1862306a36Sopenharmony_ci#include <asm/cache.h>
1962306a36Sopenharmony_ci#include <asm/cacheflush.h>
2062306a36Sopenharmony_ci#include <asm/apic.h>
2162306a36Sopenharmony_ci#include <asm/perf_event.h>
2262306a36Sopenharmony_ci
2362306a36Sopenharmony_ci#include "mm_internal.h"
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_ci#ifdef CONFIG_PARAVIRT
2662306a36Sopenharmony_ci# define STATIC_NOPV
2762306a36Sopenharmony_ci#else
2862306a36Sopenharmony_ci# define STATIC_NOPV			static
2962306a36Sopenharmony_ci# define __flush_tlb_local		native_flush_tlb_local
3062306a36Sopenharmony_ci# define __flush_tlb_global		native_flush_tlb_global
3162306a36Sopenharmony_ci# define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
3262306a36Sopenharmony_ci# define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
3362306a36Sopenharmony_ci#endif
3462306a36Sopenharmony_ci
3562306a36Sopenharmony_ci/*
3662306a36Sopenharmony_ci *	TLB flushing, formerly SMP-only
3762306a36Sopenharmony_ci *		c/o Linus Torvalds.
3862306a36Sopenharmony_ci *
3962306a36Sopenharmony_ci *	These mean you can really definitely utterly forget about
4062306a36Sopenharmony_ci *	writing to user space from interrupts. (Its not allowed anyway).
4162306a36Sopenharmony_ci *
4262306a36Sopenharmony_ci *	Optimizations Manfred Spraul <manfred@colorfullife.com>
4362306a36Sopenharmony_ci *
4462306a36Sopenharmony_ci *	More scalable flush, from Andi Kleen
4562306a36Sopenharmony_ci *
4662306a36Sopenharmony_ci *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
4762306a36Sopenharmony_ci */
4862306a36Sopenharmony_ci
4962306a36Sopenharmony_ci/*
5062306a36Sopenharmony_ci * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
5162306a36Sopenharmony_ci * stored in cpu_tlb_state.last_user_mm_spec.
5262306a36Sopenharmony_ci */
5362306a36Sopenharmony_ci#define LAST_USER_MM_IBPB	0x1UL
5462306a36Sopenharmony_ci#define LAST_USER_MM_L1D_FLUSH	0x2UL
5562306a36Sopenharmony_ci#define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
5662306a36Sopenharmony_ci
5762306a36Sopenharmony_ci/* Bits to set when tlbstate and flush is (re)initialized */
5862306a36Sopenharmony_ci#define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
5962306a36Sopenharmony_ci
6062306a36Sopenharmony_ci/*
6162306a36Sopenharmony_ci * The x86 feature is called PCID (Process Context IDentifier). It is similar
6262306a36Sopenharmony_ci * to what is traditionally called ASID on the RISC processors.
6362306a36Sopenharmony_ci *
6462306a36Sopenharmony_ci * We don't use the traditional ASID implementation, where each process/mm gets
6562306a36Sopenharmony_ci * its own ASID and flush/restart when we run out of ASID space.
6662306a36Sopenharmony_ci *
6762306a36Sopenharmony_ci * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
6862306a36Sopenharmony_ci * that came by on this CPU, allowing cheaper switch_mm between processes on
6962306a36Sopenharmony_ci * this CPU.
7062306a36Sopenharmony_ci *
7162306a36Sopenharmony_ci * We end up with different spaces for different things. To avoid confusion we
7262306a36Sopenharmony_ci * use different names for each of them:
7362306a36Sopenharmony_ci *
7462306a36Sopenharmony_ci * ASID  - [0, TLB_NR_DYN_ASIDS-1]
7562306a36Sopenharmony_ci *         the canonical identifier for an mm
7662306a36Sopenharmony_ci *
7762306a36Sopenharmony_ci * kPCID - [1, TLB_NR_DYN_ASIDS]
7862306a36Sopenharmony_ci *         the value we write into the PCID part of CR3; corresponds to the
7962306a36Sopenharmony_ci *         ASID+1, because PCID 0 is special.
8062306a36Sopenharmony_ci *
8162306a36Sopenharmony_ci * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
8262306a36Sopenharmony_ci *         for KPTI each mm has two address spaces and thus needs two
8362306a36Sopenharmony_ci *         PCID values, but we can still do with a single ASID denomination
8462306a36Sopenharmony_ci *         for each mm. Corresponds to kPCID + 2048.
8562306a36Sopenharmony_ci *
8662306a36Sopenharmony_ci */
8762306a36Sopenharmony_ci
8862306a36Sopenharmony_ci/* There are 12 bits of space for ASIDS in CR3 */
8962306a36Sopenharmony_ci#define CR3_HW_ASID_BITS		12
9062306a36Sopenharmony_ci
9162306a36Sopenharmony_ci/*
9262306a36Sopenharmony_ci * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
9362306a36Sopenharmony_ci * user/kernel switches
9462306a36Sopenharmony_ci */
9562306a36Sopenharmony_ci#ifdef CONFIG_PAGE_TABLE_ISOLATION
9662306a36Sopenharmony_ci# define PTI_CONSUMED_PCID_BITS	1
9762306a36Sopenharmony_ci#else
9862306a36Sopenharmony_ci# define PTI_CONSUMED_PCID_BITS	0
9962306a36Sopenharmony_ci#endif
10062306a36Sopenharmony_ci
10162306a36Sopenharmony_ci#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
10262306a36Sopenharmony_ci
10362306a36Sopenharmony_ci/*
10462306a36Sopenharmony_ci * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
10562306a36Sopenharmony_ci * for them being zero-based.  Another -1 is because PCID 0 is reserved for
10662306a36Sopenharmony_ci * use by non-PCID-aware users.
10762306a36Sopenharmony_ci */
10862306a36Sopenharmony_ci#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
10962306a36Sopenharmony_ci
11062306a36Sopenharmony_ci/*
11162306a36Sopenharmony_ci * Given @asid, compute kPCID
11262306a36Sopenharmony_ci */
11362306a36Sopenharmony_cistatic inline u16 kern_pcid(u16 asid)
11462306a36Sopenharmony_ci{
11562306a36Sopenharmony_ci	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
11662306a36Sopenharmony_ci
11762306a36Sopenharmony_ci#ifdef CONFIG_PAGE_TABLE_ISOLATION
11862306a36Sopenharmony_ci	/*
11962306a36Sopenharmony_ci	 * Make sure that the dynamic ASID space does not conflict with the
12062306a36Sopenharmony_ci	 * bit we are using to switch between user and kernel ASIDs.
12162306a36Sopenharmony_ci	 */
12262306a36Sopenharmony_ci	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
12362306a36Sopenharmony_ci
12462306a36Sopenharmony_ci	/*
12562306a36Sopenharmony_ci	 * The ASID being passed in here should have respected the
12662306a36Sopenharmony_ci	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
12762306a36Sopenharmony_ci	 */
12862306a36Sopenharmony_ci	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
12962306a36Sopenharmony_ci#endif
13062306a36Sopenharmony_ci	/*
13162306a36Sopenharmony_ci	 * The dynamically-assigned ASIDs that get passed in are small
13262306a36Sopenharmony_ci	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
13362306a36Sopenharmony_ci	 * so do not bother to clear it.
13462306a36Sopenharmony_ci	 *
13562306a36Sopenharmony_ci	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
13662306a36Sopenharmony_ci	 * PCID bits.  This serves two purposes.  It prevents a nasty
13762306a36Sopenharmony_ci	 * situation in which PCID-unaware code saves CR3, loads some other
13862306a36Sopenharmony_ci	 * value (with PCID == 0), and then restores CR3, thus corrupting
13962306a36Sopenharmony_ci	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
14062306a36Sopenharmony_ci	 * that any bugs involving loading a PCID-enabled CR3 with
14162306a36Sopenharmony_ci	 * CR4.PCIDE off will trigger deterministically.
14262306a36Sopenharmony_ci	 */
14362306a36Sopenharmony_ci	return asid + 1;
14462306a36Sopenharmony_ci}
14562306a36Sopenharmony_ci
14662306a36Sopenharmony_ci/*
14762306a36Sopenharmony_ci * Given @asid, compute uPCID
14862306a36Sopenharmony_ci */
14962306a36Sopenharmony_cistatic inline u16 user_pcid(u16 asid)
15062306a36Sopenharmony_ci{
15162306a36Sopenharmony_ci	u16 ret = kern_pcid(asid);
15262306a36Sopenharmony_ci#ifdef CONFIG_PAGE_TABLE_ISOLATION
15362306a36Sopenharmony_ci	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
15462306a36Sopenharmony_ci#endif
15562306a36Sopenharmony_ci	return ret;
15662306a36Sopenharmony_ci}
15762306a36Sopenharmony_ci
15862306a36Sopenharmony_cistatic inline unsigned long build_cr3(pgd_t *pgd, u16 asid, unsigned long lam)
15962306a36Sopenharmony_ci{
16062306a36Sopenharmony_ci	unsigned long cr3 = __sme_pa(pgd) | lam;
16162306a36Sopenharmony_ci
16262306a36Sopenharmony_ci	if (static_cpu_has(X86_FEATURE_PCID)) {
16362306a36Sopenharmony_ci		VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
16462306a36Sopenharmony_ci		cr3 |= kern_pcid(asid);
16562306a36Sopenharmony_ci	} else {
16662306a36Sopenharmony_ci		VM_WARN_ON_ONCE(asid != 0);
16762306a36Sopenharmony_ci	}
16862306a36Sopenharmony_ci
16962306a36Sopenharmony_ci	return cr3;
17062306a36Sopenharmony_ci}
17162306a36Sopenharmony_ci
17262306a36Sopenharmony_cistatic inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid,
17362306a36Sopenharmony_ci					      unsigned long lam)
17462306a36Sopenharmony_ci{
17562306a36Sopenharmony_ci	/*
17662306a36Sopenharmony_ci	 * Use boot_cpu_has() instead of this_cpu_has() as this function
17762306a36Sopenharmony_ci	 * might be called during early boot. This should work even after
17862306a36Sopenharmony_ci	 * boot because all CPU's the have same capabilities:
17962306a36Sopenharmony_ci	 */
18062306a36Sopenharmony_ci	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
18162306a36Sopenharmony_ci	return build_cr3(pgd, asid, lam) | CR3_NOFLUSH;
18262306a36Sopenharmony_ci}
18362306a36Sopenharmony_ci
18462306a36Sopenharmony_ci/*
18562306a36Sopenharmony_ci * We get here when we do something requiring a TLB invalidation
18662306a36Sopenharmony_ci * but could not go invalidate all of the contexts.  We do the
18762306a36Sopenharmony_ci * necessary invalidation by clearing out the 'ctx_id' which
18862306a36Sopenharmony_ci * forces a TLB flush when the context is loaded.
18962306a36Sopenharmony_ci */
19062306a36Sopenharmony_cistatic void clear_asid_other(void)
19162306a36Sopenharmony_ci{
19262306a36Sopenharmony_ci	u16 asid;
19362306a36Sopenharmony_ci
19462306a36Sopenharmony_ci	/*
19562306a36Sopenharmony_ci	 * This is only expected to be set if we have disabled
19662306a36Sopenharmony_ci	 * kernel _PAGE_GLOBAL pages.
19762306a36Sopenharmony_ci	 */
19862306a36Sopenharmony_ci	if (!static_cpu_has(X86_FEATURE_PTI)) {
19962306a36Sopenharmony_ci		WARN_ON_ONCE(1);
20062306a36Sopenharmony_ci		return;
20162306a36Sopenharmony_ci	}
20262306a36Sopenharmony_ci
20362306a36Sopenharmony_ci	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
20462306a36Sopenharmony_ci		/* Do not need to flush the current asid */
20562306a36Sopenharmony_ci		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
20662306a36Sopenharmony_ci			continue;
20762306a36Sopenharmony_ci		/*
20862306a36Sopenharmony_ci		 * Make sure the next time we go to switch to
20962306a36Sopenharmony_ci		 * this asid, we do a flush:
21062306a36Sopenharmony_ci		 */
21162306a36Sopenharmony_ci		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
21262306a36Sopenharmony_ci	}
21362306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.invalidate_other, false);
21462306a36Sopenharmony_ci}
21562306a36Sopenharmony_ci
21662306a36Sopenharmony_ciatomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
21762306a36Sopenharmony_ci
21862306a36Sopenharmony_ci
21962306a36Sopenharmony_cistatic void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
22062306a36Sopenharmony_ci			    u16 *new_asid, bool *need_flush)
22162306a36Sopenharmony_ci{
22262306a36Sopenharmony_ci	u16 asid;
22362306a36Sopenharmony_ci
22462306a36Sopenharmony_ci	if (!static_cpu_has(X86_FEATURE_PCID)) {
22562306a36Sopenharmony_ci		*new_asid = 0;
22662306a36Sopenharmony_ci		*need_flush = true;
22762306a36Sopenharmony_ci		return;
22862306a36Sopenharmony_ci	}
22962306a36Sopenharmony_ci
23062306a36Sopenharmony_ci	if (this_cpu_read(cpu_tlbstate.invalidate_other))
23162306a36Sopenharmony_ci		clear_asid_other();
23262306a36Sopenharmony_ci
23362306a36Sopenharmony_ci	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
23462306a36Sopenharmony_ci		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
23562306a36Sopenharmony_ci		    next->context.ctx_id)
23662306a36Sopenharmony_ci			continue;
23762306a36Sopenharmony_ci
23862306a36Sopenharmony_ci		*new_asid = asid;
23962306a36Sopenharmony_ci		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
24062306a36Sopenharmony_ci			       next_tlb_gen);
24162306a36Sopenharmony_ci		return;
24262306a36Sopenharmony_ci	}
24362306a36Sopenharmony_ci
24462306a36Sopenharmony_ci	/*
24562306a36Sopenharmony_ci	 * We don't currently own an ASID slot on this CPU.
24662306a36Sopenharmony_ci	 * Allocate a slot.
24762306a36Sopenharmony_ci	 */
24862306a36Sopenharmony_ci	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
24962306a36Sopenharmony_ci	if (*new_asid >= TLB_NR_DYN_ASIDS) {
25062306a36Sopenharmony_ci		*new_asid = 0;
25162306a36Sopenharmony_ci		this_cpu_write(cpu_tlbstate.next_asid, 1);
25262306a36Sopenharmony_ci	}
25362306a36Sopenharmony_ci	*need_flush = true;
25462306a36Sopenharmony_ci}
25562306a36Sopenharmony_ci
25662306a36Sopenharmony_ci/*
25762306a36Sopenharmony_ci * Given an ASID, flush the corresponding user ASID.  We can delay this
25862306a36Sopenharmony_ci * until the next time we switch to it.
25962306a36Sopenharmony_ci *
26062306a36Sopenharmony_ci * See SWITCH_TO_USER_CR3.
26162306a36Sopenharmony_ci */
26262306a36Sopenharmony_cistatic inline void invalidate_user_asid(u16 asid)
26362306a36Sopenharmony_ci{
26462306a36Sopenharmony_ci	/* There is no user ASID if address space separation is off */
26562306a36Sopenharmony_ci	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
26662306a36Sopenharmony_ci		return;
26762306a36Sopenharmony_ci
26862306a36Sopenharmony_ci	/*
26962306a36Sopenharmony_ci	 * We only have a single ASID if PCID is off and the CR3
27062306a36Sopenharmony_ci	 * write will have flushed it.
27162306a36Sopenharmony_ci	 */
27262306a36Sopenharmony_ci	if (!cpu_feature_enabled(X86_FEATURE_PCID))
27362306a36Sopenharmony_ci		return;
27462306a36Sopenharmony_ci
27562306a36Sopenharmony_ci	if (!static_cpu_has(X86_FEATURE_PTI))
27662306a36Sopenharmony_ci		return;
27762306a36Sopenharmony_ci
27862306a36Sopenharmony_ci	__set_bit(kern_pcid(asid),
27962306a36Sopenharmony_ci		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
28062306a36Sopenharmony_ci}
28162306a36Sopenharmony_ci
28262306a36Sopenharmony_cistatic void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, unsigned long lam,
28362306a36Sopenharmony_ci			    bool need_flush)
28462306a36Sopenharmony_ci{
28562306a36Sopenharmony_ci	unsigned long new_mm_cr3;
28662306a36Sopenharmony_ci
28762306a36Sopenharmony_ci	if (need_flush) {
28862306a36Sopenharmony_ci		invalidate_user_asid(new_asid);
28962306a36Sopenharmony_ci		new_mm_cr3 = build_cr3(pgdir, new_asid, lam);
29062306a36Sopenharmony_ci	} else {
29162306a36Sopenharmony_ci		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid, lam);
29262306a36Sopenharmony_ci	}
29362306a36Sopenharmony_ci
29462306a36Sopenharmony_ci	/*
29562306a36Sopenharmony_ci	 * Caution: many callers of this function expect
29662306a36Sopenharmony_ci	 * that load_cr3() is serializing and orders TLB
29762306a36Sopenharmony_ci	 * fills with respect to the mm_cpumask writes.
29862306a36Sopenharmony_ci	 */
29962306a36Sopenharmony_ci	write_cr3(new_mm_cr3);
30062306a36Sopenharmony_ci}
30162306a36Sopenharmony_ci
30262306a36Sopenharmony_civoid leave_mm(int cpu)
30362306a36Sopenharmony_ci{
30462306a36Sopenharmony_ci	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
30562306a36Sopenharmony_ci
30662306a36Sopenharmony_ci	/*
30762306a36Sopenharmony_ci	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
30862306a36Sopenharmony_ci	 * If so, our callers still expect us to flush the TLB, but there
30962306a36Sopenharmony_ci	 * aren't any user TLB entries in init_mm to worry about.
31062306a36Sopenharmony_ci	 *
31162306a36Sopenharmony_ci	 * This needs to happen before any other sanity checks due to
31262306a36Sopenharmony_ci	 * intel_idle's shenanigans.
31362306a36Sopenharmony_ci	 */
31462306a36Sopenharmony_ci	if (loaded_mm == &init_mm)
31562306a36Sopenharmony_ci		return;
31662306a36Sopenharmony_ci
31762306a36Sopenharmony_ci	/* Warn if we're not lazy. */
31862306a36Sopenharmony_ci	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
31962306a36Sopenharmony_ci
32062306a36Sopenharmony_ci	switch_mm(NULL, &init_mm, NULL);
32162306a36Sopenharmony_ci}
32262306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(leave_mm);
32362306a36Sopenharmony_ci
32462306a36Sopenharmony_civoid switch_mm(struct mm_struct *prev, struct mm_struct *next,
32562306a36Sopenharmony_ci	       struct task_struct *tsk)
32662306a36Sopenharmony_ci{
32762306a36Sopenharmony_ci	unsigned long flags;
32862306a36Sopenharmony_ci
32962306a36Sopenharmony_ci	local_irq_save(flags);
33062306a36Sopenharmony_ci	switch_mm_irqs_off(prev, next, tsk);
33162306a36Sopenharmony_ci	local_irq_restore(flags);
33262306a36Sopenharmony_ci}
33362306a36Sopenharmony_ci
33462306a36Sopenharmony_ci/*
33562306a36Sopenharmony_ci * Invoked from return to user/guest by a task that opted-in to L1D
33662306a36Sopenharmony_ci * flushing but ended up running on an SMT enabled core due to wrong
33762306a36Sopenharmony_ci * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
33862306a36Sopenharmony_ci * contract which this task requested.
33962306a36Sopenharmony_ci */
34062306a36Sopenharmony_cistatic void l1d_flush_force_sigbus(struct callback_head *ch)
34162306a36Sopenharmony_ci{
34262306a36Sopenharmony_ci	force_sig(SIGBUS);
34362306a36Sopenharmony_ci}
34462306a36Sopenharmony_ci
34562306a36Sopenharmony_cistatic void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
34662306a36Sopenharmony_ci				struct task_struct *next)
34762306a36Sopenharmony_ci{
34862306a36Sopenharmony_ci	/* Flush L1D if the outgoing task requests it */
34962306a36Sopenharmony_ci	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
35062306a36Sopenharmony_ci		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
35162306a36Sopenharmony_ci
35262306a36Sopenharmony_ci	/* Check whether the incoming task opted in for L1D flush */
35362306a36Sopenharmony_ci	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
35462306a36Sopenharmony_ci		return;
35562306a36Sopenharmony_ci
35662306a36Sopenharmony_ci	/*
35762306a36Sopenharmony_ci	 * Validate that it is not running on an SMT sibling as this would
35862306a36Sopenharmony_ci	 * make the excercise pointless because the siblings share L1D. If
35962306a36Sopenharmony_ci	 * it runs on a SMT sibling, notify it with SIGBUS on return to
36062306a36Sopenharmony_ci	 * user/guest
36162306a36Sopenharmony_ci	 */
36262306a36Sopenharmony_ci	if (this_cpu_read(cpu_info.smt_active)) {
36362306a36Sopenharmony_ci		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
36462306a36Sopenharmony_ci		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
36562306a36Sopenharmony_ci		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
36662306a36Sopenharmony_ci	}
36762306a36Sopenharmony_ci}
36862306a36Sopenharmony_ci
36962306a36Sopenharmony_cistatic unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
37062306a36Sopenharmony_ci{
37162306a36Sopenharmony_ci	unsigned long next_tif = read_task_thread_flags(next);
37262306a36Sopenharmony_ci	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
37362306a36Sopenharmony_ci
37462306a36Sopenharmony_ci	/*
37562306a36Sopenharmony_ci	 * Ensure that the bit shift above works as expected and the two flags
37662306a36Sopenharmony_ci	 * end up in bit 0 and 1.
37762306a36Sopenharmony_ci	 */
37862306a36Sopenharmony_ci	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
37962306a36Sopenharmony_ci
38062306a36Sopenharmony_ci	return (unsigned long)next->mm | spec_bits;
38162306a36Sopenharmony_ci}
38262306a36Sopenharmony_ci
38362306a36Sopenharmony_cistatic void cond_mitigation(struct task_struct *next)
38462306a36Sopenharmony_ci{
38562306a36Sopenharmony_ci	unsigned long prev_mm, next_mm;
38662306a36Sopenharmony_ci
38762306a36Sopenharmony_ci	if (!next || !next->mm)
38862306a36Sopenharmony_ci		return;
38962306a36Sopenharmony_ci
39062306a36Sopenharmony_ci	next_mm = mm_mangle_tif_spec_bits(next);
39162306a36Sopenharmony_ci	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
39262306a36Sopenharmony_ci
39362306a36Sopenharmony_ci	/*
39462306a36Sopenharmony_ci	 * Avoid user/user BTB poisoning by flushing the branch predictor
39562306a36Sopenharmony_ci	 * when switching between processes. This stops one process from
39662306a36Sopenharmony_ci	 * doing Spectre-v2 attacks on another.
39762306a36Sopenharmony_ci	 *
39862306a36Sopenharmony_ci	 * Both, the conditional and the always IBPB mode use the mm
39962306a36Sopenharmony_ci	 * pointer to avoid the IBPB when switching between tasks of the
40062306a36Sopenharmony_ci	 * same process. Using the mm pointer instead of mm->context.ctx_id
40162306a36Sopenharmony_ci	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
40262306a36Sopenharmony_ci	 * less impossible to control by an attacker. Aside of that it
40362306a36Sopenharmony_ci	 * would only affect the first schedule so the theoretically
40462306a36Sopenharmony_ci	 * exposed data is not really interesting.
40562306a36Sopenharmony_ci	 */
40662306a36Sopenharmony_ci	if (static_branch_likely(&switch_mm_cond_ibpb)) {
40762306a36Sopenharmony_ci		/*
40862306a36Sopenharmony_ci		 * This is a bit more complex than the always mode because
40962306a36Sopenharmony_ci		 * it has to handle two cases:
41062306a36Sopenharmony_ci		 *
41162306a36Sopenharmony_ci		 * 1) Switch from a user space task (potential attacker)
41262306a36Sopenharmony_ci		 *    which has TIF_SPEC_IB set to a user space task
41362306a36Sopenharmony_ci		 *    (potential victim) which has TIF_SPEC_IB not set.
41462306a36Sopenharmony_ci		 *
41562306a36Sopenharmony_ci		 * 2) Switch from a user space task (potential attacker)
41662306a36Sopenharmony_ci		 *    which has TIF_SPEC_IB not set to a user space task
41762306a36Sopenharmony_ci		 *    (potential victim) which has TIF_SPEC_IB set.
41862306a36Sopenharmony_ci		 *
41962306a36Sopenharmony_ci		 * This could be done by unconditionally issuing IBPB when
42062306a36Sopenharmony_ci		 * a task which has TIF_SPEC_IB set is either scheduled in
42162306a36Sopenharmony_ci		 * or out. Though that results in two flushes when:
42262306a36Sopenharmony_ci		 *
42362306a36Sopenharmony_ci		 * - the same user space task is scheduled out and later
42462306a36Sopenharmony_ci		 *   scheduled in again and only a kernel thread ran in
42562306a36Sopenharmony_ci		 *   between.
42662306a36Sopenharmony_ci		 *
42762306a36Sopenharmony_ci		 * - a user space task belonging to the same process is
42862306a36Sopenharmony_ci		 *   scheduled in after a kernel thread ran in between
42962306a36Sopenharmony_ci		 *
43062306a36Sopenharmony_ci		 * - a user space task belonging to the same process is
43162306a36Sopenharmony_ci		 *   scheduled in immediately.
43262306a36Sopenharmony_ci		 *
43362306a36Sopenharmony_ci		 * Optimize this with reasonably small overhead for the
43462306a36Sopenharmony_ci		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
43562306a36Sopenharmony_ci		 * pointer of the incoming task which is stored in
43662306a36Sopenharmony_ci		 * cpu_tlbstate.last_user_mm_spec for comparison.
43762306a36Sopenharmony_ci		 *
43862306a36Sopenharmony_ci		 * Issue IBPB only if the mm's are different and one or
43962306a36Sopenharmony_ci		 * both have the IBPB bit set.
44062306a36Sopenharmony_ci		 */
44162306a36Sopenharmony_ci		if (next_mm != prev_mm &&
44262306a36Sopenharmony_ci		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
44362306a36Sopenharmony_ci			indirect_branch_prediction_barrier();
44462306a36Sopenharmony_ci	}
44562306a36Sopenharmony_ci
44662306a36Sopenharmony_ci	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
44762306a36Sopenharmony_ci		/*
44862306a36Sopenharmony_ci		 * Only flush when switching to a user space task with a
44962306a36Sopenharmony_ci		 * different context than the user space task which ran
45062306a36Sopenharmony_ci		 * last on this CPU.
45162306a36Sopenharmony_ci		 */
45262306a36Sopenharmony_ci		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
45362306a36Sopenharmony_ci					(unsigned long)next->mm)
45462306a36Sopenharmony_ci			indirect_branch_prediction_barrier();
45562306a36Sopenharmony_ci	}
45662306a36Sopenharmony_ci
45762306a36Sopenharmony_ci	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
45862306a36Sopenharmony_ci		/*
45962306a36Sopenharmony_ci		 * Flush L1D when the outgoing task requested it and/or
46062306a36Sopenharmony_ci		 * check whether the incoming task requested L1D flushing
46162306a36Sopenharmony_ci		 * and ended up on an SMT sibling.
46262306a36Sopenharmony_ci		 */
46362306a36Sopenharmony_ci		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
46462306a36Sopenharmony_ci			l1d_flush_evaluate(prev_mm, next_mm, next);
46562306a36Sopenharmony_ci	}
46662306a36Sopenharmony_ci
46762306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
46862306a36Sopenharmony_ci}
46962306a36Sopenharmony_ci
47062306a36Sopenharmony_ci#ifdef CONFIG_PERF_EVENTS
47162306a36Sopenharmony_cistatic inline void cr4_update_pce_mm(struct mm_struct *mm)
47262306a36Sopenharmony_ci{
47362306a36Sopenharmony_ci	if (static_branch_unlikely(&rdpmc_always_available_key) ||
47462306a36Sopenharmony_ci	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
47562306a36Sopenharmony_ci	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
47662306a36Sopenharmony_ci		/*
47762306a36Sopenharmony_ci		 * Clear the existing dirty counters to
47862306a36Sopenharmony_ci		 * prevent the leak for an RDPMC task.
47962306a36Sopenharmony_ci		 */
48062306a36Sopenharmony_ci		perf_clear_dirty_counters();
48162306a36Sopenharmony_ci		cr4_set_bits_irqsoff(X86_CR4_PCE);
48262306a36Sopenharmony_ci	} else
48362306a36Sopenharmony_ci		cr4_clear_bits_irqsoff(X86_CR4_PCE);
48462306a36Sopenharmony_ci}
48562306a36Sopenharmony_ci
48662306a36Sopenharmony_civoid cr4_update_pce(void *ignored)
48762306a36Sopenharmony_ci{
48862306a36Sopenharmony_ci	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
48962306a36Sopenharmony_ci}
49062306a36Sopenharmony_ci
49162306a36Sopenharmony_ci#else
49262306a36Sopenharmony_cistatic inline void cr4_update_pce_mm(struct mm_struct *mm) { }
49362306a36Sopenharmony_ci#endif
49462306a36Sopenharmony_ci
49562306a36Sopenharmony_civoid switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
49662306a36Sopenharmony_ci			struct task_struct *tsk)
49762306a36Sopenharmony_ci{
49862306a36Sopenharmony_ci	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
49962306a36Sopenharmony_ci	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
50062306a36Sopenharmony_ci	unsigned long new_lam = mm_lam_cr3_mask(next);
50162306a36Sopenharmony_ci	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
50262306a36Sopenharmony_ci	unsigned cpu = smp_processor_id();
50362306a36Sopenharmony_ci	u64 next_tlb_gen;
50462306a36Sopenharmony_ci	bool need_flush;
50562306a36Sopenharmony_ci	u16 new_asid;
50662306a36Sopenharmony_ci
50762306a36Sopenharmony_ci	/*
50862306a36Sopenharmony_ci	 * NB: The scheduler will call us with prev == next when switching
50962306a36Sopenharmony_ci	 * from lazy TLB mode to normal mode if active_mm isn't changing.
51062306a36Sopenharmony_ci	 * When this happens, we don't assume that CR3 (and hence
51162306a36Sopenharmony_ci	 * cpu_tlbstate.loaded_mm) matches next.
51262306a36Sopenharmony_ci	 *
51362306a36Sopenharmony_ci	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
51462306a36Sopenharmony_ci	 */
51562306a36Sopenharmony_ci
51662306a36Sopenharmony_ci	/* We don't want flush_tlb_func() to run concurrently with us. */
51762306a36Sopenharmony_ci	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
51862306a36Sopenharmony_ci		WARN_ON_ONCE(!irqs_disabled());
51962306a36Sopenharmony_ci
52062306a36Sopenharmony_ci	/*
52162306a36Sopenharmony_ci	 * Verify that CR3 is what we think it is.  This will catch
52262306a36Sopenharmony_ci	 * hypothetical buggy code that directly switches to swapper_pg_dir
52362306a36Sopenharmony_ci	 * without going through leave_mm() / switch_mm_irqs_off() or that
52462306a36Sopenharmony_ci	 * does something like write_cr3(read_cr3_pa()).
52562306a36Sopenharmony_ci	 *
52662306a36Sopenharmony_ci	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
52762306a36Sopenharmony_ci	 * isn't free.
52862306a36Sopenharmony_ci	 */
52962306a36Sopenharmony_ci#ifdef CONFIG_DEBUG_VM
53062306a36Sopenharmony_ci	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid,
53162306a36Sopenharmony_ci						   tlbstate_lam_cr3_mask()))) {
53262306a36Sopenharmony_ci		/*
53362306a36Sopenharmony_ci		 * If we were to BUG here, we'd be very likely to kill
53462306a36Sopenharmony_ci		 * the system so hard that we don't see the call trace.
53562306a36Sopenharmony_ci		 * Try to recover instead by ignoring the error and doing
53662306a36Sopenharmony_ci		 * a global flush to minimize the chance of corruption.
53762306a36Sopenharmony_ci		 *
53862306a36Sopenharmony_ci		 * (This is far from being a fully correct recovery.
53962306a36Sopenharmony_ci		 *  Architecturally, the CPU could prefetch something
54062306a36Sopenharmony_ci		 *  back into an incorrect ASID slot and leave it there
54162306a36Sopenharmony_ci		 *  to cause trouble down the road.  It's better than
54262306a36Sopenharmony_ci		 *  nothing, though.)
54362306a36Sopenharmony_ci		 */
54462306a36Sopenharmony_ci		__flush_tlb_all();
54562306a36Sopenharmony_ci	}
54662306a36Sopenharmony_ci#endif
54762306a36Sopenharmony_ci	if (was_lazy)
54862306a36Sopenharmony_ci		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
54962306a36Sopenharmony_ci
55062306a36Sopenharmony_ci	/*
55162306a36Sopenharmony_ci	 * The membarrier system call requires a full memory barrier and
55262306a36Sopenharmony_ci	 * core serialization before returning to user-space, after
55362306a36Sopenharmony_ci	 * storing to rq->curr, when changing mm.  This is because
55462306a36Sopenharmony_ci	 * membarrier() sends IPIs to all CPUs that are in the target mm
55562306a36Sopenharmony_ci	 * to make them issue memory barriers.  However, if another CPU
55662306a36Sopenharmony_ci	 * switches to/from the target mm concurrently with
55762306a36Sopenharmony_ci	 * membarrier(), it can cause that CPU not to receive an IPI
55862306a36Sopenharmony_ci	 * when it really should issue a memory barrier.  Writing to CR3
55962306a36Sopenharmony_ci	 * provides that full memory barrier and core serializing
56062306a36Sopenharmony_ci	 * instruction.
56162306a36Sopenharmony_ci	 */
56262306a36Sopenharmony_ci	if (real_prev == next) {
56362306a36Sopenharmony_ci		/* Not actually switching mm's */
56462306a36Sopenharmony_ci		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
56562306a36Sopenharmony_ci			   next->context.ctx_id);
56662306a36Sopenharmony_ci
56762306a36Sopenharmony_ci		/*
56862306a36Sopenharmony_ci		 * If this races with another thread that enables lam, 'new_lam'
56962306a36Sopenharmony_ci		 * might not match tlbstate_lam_cr3_mask().
57062306a36Sopenharmony_ci		 */
57162306a36Sopenharmony_ci
57262306a36Sopenharmony_ci		/*
57362306a36Sopenharmony_ci		 * Even in lazy TLB mode, the CPU should stay set in the
57462306a36Sopenharmony_ci		 * mm_cpumask. The TLB shootdown code can figure out from
57562306a36Sopenharmony_ci		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
57662306a36Sopenharmony_ci		 */
57762306a36Sopenharmony_ci		if (WARN_ON_ONCE(real_prev != &init_mm &&
57862306a36Sopenharmony_ci				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
57962306a36Sopenharmony_ci			cpumask_set_cpu(cpu, mm_cpumask(next));
58062306a36Sopenharmony_ci
58162306a36Sopenharmony_ci		/*
58262306a36Sopenharmony_ci		 * If the CPU is not in lazy TLB mode, we are just switching
58362306a36Sopenharmony_ci		 * from one thread in a process to another thread in the same
58462306a36Sopenharmony_ci		 * process. No TLB flush required.
58562306a36Sopenharmony_ci		 */
58662306a36Sopenharmony_ci		if (!was_lazy)
58762306a36Sopenharmony_ci			return;
58862306a36Sopenharmony_ci
58962306a36Sopenharmony_ci		/*
59062306a36Sopenharmony_ci		 * Read the tlb_gen to check whether a flush is needed.
59162306a36Sopenharmony_ci		 * If the TLB is up to date, just use it.
59262306a36Sopenharmony_ci		 * The barrier synchronizes with the tlb_gen increment in
59362306a36Sopenharmony_ci		 * the TLB shootdown code.
59462306a36Sopenharmony_ci		 */
59562306a36Sopenharmony_ci		smp_mb();
59662306a36Sopenharmony_ci		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
59762306a36Sopenharmony_ci		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
59862306a36Sopenharmony_ci				next_tlb_gen)
59962306a36Sopenharmony_ci			return;
60062306a36Sopenharmony_ci
60162306a36Sopenharmony_ci		/*
60262306a36Sopenharmony_ci		 * TLB contents went out of date while we were in lazy
60362306a36Sopenharmony_ci		 * mode. Fall through to the TLB switching code below.
60462306a36Sopenharmony_ci		 */
60562306a36Sopenharmony_ci		new_asid = prev_asid;
60662306a36Sopenharmony_ci		need_flush = true;
60762306a36Sopenharmony_ci	} else {
60862306a36Sopenharmony_ci		/*
60962306a36Sopenharmony_ci		 * Apply process to process speculation vulnerability
61062306a36Sopenharmony_ci		 * mitigations if applicable.
61162306a36Sopenharmony_ci		 */
61262306a36Sopenharmony_ci		cond_mitigation(tsk);
61362306a36Sopenharmony_ci
61462306a36Sopenharmony_ci		/*
61562306a36Sopenharmony_ci		 * Stop remote flushes for the previous mm.
61662306a36Sopenharmony_ci		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
61762306a36Sopenharmony_ci		 * but the bitmap manipulation can cause cache line contention.
61862306a36Sopenharmony_ci		 */
61962306a36Sopenharmony_ci		if (real_prev != &init_mm) {
62062306a36Sopenharmony_ci			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
62162306a36Sopenharmony_ci						mm_cpumask(real_prev)));
62262306a36Sopenharmony_ci			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
62362306a36Sopenharmony_ci		}
62462306a36Sopenharmony_ci
62562306a36Sopenharmony_ci		/*
62662306a36Sopenharmony_ci		 * Start remote flushes and then read tlb_gen.
62762306a36Sopenharmony_ci		 */
62862306a36Sopenharmony_ci		if (next != &init_mm)
62962306a36Sopenharmony_ci			cpumask_set_cpu(cpu, mm_cpumask(next));
63062306a36Sopenharmony_ci		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
63162306a36Sopenharmony_ci
63262306a36Sopenharmony_ci		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
63362306a36Sopenharmony_ci
63462306a36Sopenharmony_ci		/* Let nmi_uaccess_okay() know that we're changing CR3. */
63562306a36Sopenharmony_ci		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
63662306a36Sopenharmony_ci		barrier();
63762306a36Sopenharmony_ci	}
63862306a36Sopenharmony_ci
63962306a36Sopenharmony_ci	set_tlbstate_lam_mode(next);
64062306a36Sopenharmony_ci	if (need_flush) {
64162306a36Sopenharmony_ci		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
64262306a36Sopenharmony_ci		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
64362306a36Sopenharmony_ci		load_new_mm_cr3(next->pgd, new_asid, new_lam, true);
64462306a36Sopenharmony_ci
64562306a36Sopenharmony_ci		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
64662306a36Sopenharmony_ci	} else {
64762306a36Sopenharmony_ci		/* The new ASID is already up to date. */
64862306a36Sopenharmony_ci		load_new_mm_cr3(next->pgd, new_asid, new_lam, false);
64962306a36Sopenharmony_ci
65062306a36Sopenharmony_ci		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
65162306a36Sopenharmony_ci	}
65262306a36Sopenharmony_ci
65362306a36Sopenharmony_ci	/* Make sure we write CR3 before loaded_mm. */
65462306a36Sopenharmony_ci	barrier();
65562306a36Sopenharmony_ci
65662306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.loaded_mm, next);
65762306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
65862306a36Sopenharmony_ci
65962306a36Sopenharmony_ci	if (next != real_prev) {
66062306a36Sopenharmony_ci		cr4_update_pce_mm(next);
66162306a36Sopenharmony_ci		switch_ldt(real_prev, next);
66262306a36Sopenharmony_ci	}
66362306a36Sopenharmony_ci}
66462306a36Sopenharmony_ci
66562306a36Sopenharmony_ci/*
66662306a36Sopenharmony_ci * Please ignore the name of this function.  It should be called
66762306a36Sopenharmony_ci * switch_to_kernel_thread().
66862306a36Sopenharmony_ci *
66962306a36Sopenharmony_ci * enter_lazy_tlb() is a hint from the scheduler that we are entering a
67062306a36Sopenharmony_ci * kernel thread or other context without an mm.  Acceptable implementations
67162306a36Sopenharmony_ci * include doing nothing whatsoever, switching to init_mm, or various clever
67262306a36Sopenharmony_ci * lazy tricks to try to minimize TLB flushes.
67362306a36Sopenharmony_ci *
67462306a36Sopenharmony_ci * The scheduler reserves the right to call enter_lazy_tlb() several times
67562306a36Sopenharmony_ci * in a row.  It will notify us that we're going back to a real mm by
67662306a36Sopenharmony_ci * calling switch_mm_irqs_off().
67762306a36Sopenharmony_ci */
67862306a36Sopenharmony_civoid enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
67962306a36Sopenharmony_ci{
68062306a36Sopenharmony_ci	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
68162306a36Sopenharmony_ci		return;
68262306a36Sopenharmony_ci
68362306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
68462306a36Sopenharmony_ci}
68562306a36Sopenharmony_ci
68662306a36Sopenharmony_ci/*
68762306a36Sopenharmony_ci * Call this when reinitializing a CPU.  It fixes the following potential
68862306a36Sopenharmony_ci * problems:
68962306a36Sopenharmony_ci *
69062306a36Sopenharmony_ci * - The ASID changed from what cpu_tlbstate thinks it is (most likely
69162306a36Sopenharmony_ci *   because the CPU was taken down and came back up with CR3's PCID
69262306a36Sopenharmony_ci *   bits clear.  CPU hotplug can do this.
69362306a36Sopenharmony_ci *
69462306a36Sopenharmony_ci * - The TLB contains junk in slots corresponding to inactive ASIDs.
69562306a36Sopenharmony_ci *
69662306a36Sopenharmony_ci * - The CPU went so far out to lunch that it may have missed a TLB
69762306a36Sopenharmony_ci *   flush.
69862306a36Sopenharmony_ci */
69962306a36Sopenharmony_civoid initialize_tlbstate_and_flush(void)
70062306a36Sopenharmony_ci{
70162306a36Sopenharmony_ci	int i;
70262306a36Sopenharmony_ci	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
70362306a36Sopenharmony_ci	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
70462306a36Sopenharmony_ci	unsigned long cr3 = __read_cr3();
70562306a36Sopenharmony_ci
70662306a36Sopenharmony_ci	/* Assert that CR3 already references the right mm. */
70762306a36Sopenharmony_ci	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
70862306a36Sopenharmony_ci
70962306a36Sopenharmony_ci	/* LAM expected to be disabled */
71062306a36Sopenharmony_ci	WARN_ON(cr3 & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57));
71162306a36Sopenharmony_ci	WARN_ON(mm_lam_cr3_mask(mm));
71262306a36Sopenharmony_ci
71362306a36Sopenharmony_ci	/*
71462306a36Sopenharmony_ci	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
71562306a36Sopenharmony_ci	 * doesn't work like other CR4 bits because it can only be set from
71662306a36Sopenharmony_ci	 * long mode.)
71762306a36Sopenharmony_ci	 */
71862306a36Sopenharmony_ci	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
71962306a36Sopenharmony_ci		!(cr4_read_shadow() & X86_CR4_PCIDE));
72062306a36Sopenharmony_ci
72162306a36Sopenharmony_ci	/* Disable LAM, force ASID 0 and force a TLB flush. */
72262306a36Sopenharmony_ci	write_cr3(build_cr3(mm->pgd, 0, 0));
72362306a36Sopenharmony_ci
72462306a36Sopenharmony_ci	/* Reinitialize tlbstate. */
72562306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
72662306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
72762306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.next_asid, 1);
72862306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
72962306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
73062306a36Sopenharmony_ci	set_tlbstate_lam_mode(mm);
73162306a36Sopenharmony_ci
73262306a36Sopenharmony_ci	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
73362306a36Sopenharmony_ci		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
73462306a36Sopenharmony_ci}
73562306a36Sopenharmony_ci
73662306a36Sopenharmony_ci/*
73762306a36Sopenharmony_ci * flush_tlb_func()'s memory ordering requirement is that any
73862306a36Sopenharmony_ci * TLB fills that happen after we flush the TLB are ordered after we
73962306a36Sopenharmony_ci * read active_mm's tlb_gen.  We don't need any explicit barriers
74062306a36Sopenharmony_ci * because all x86 flush operations are serializing and the
74162306a36Sopenharmony_ci * atomic64_read operation won't be reordered by the compiler.
74262306a36Sopenharmony_ci */
74362306a36Sopenharmony_cistatic void flush_tlb_func(void *info)
74462306a36Sopenharmony_ci{
74562306a36Sopenharmony_ci	/*
74662306a36Sopenharmony_ci	 * We have three different tlb_gen values in here.  They are:
74762306a36Sopenharmony_ci	 *
74862306a36Sopenharmony_ci	 * - mm_tlb_gen:     the latest generation.
74962306a36Sopenharmony_ci	 * - local_tlb_gen:  the generation that this CPU has already caught
75062306a36Sopenharmony_ci	 *                   up to.
75162306a36Sopenharmony_ci	 * - f->new_tlb_gen: the generation that the requester of the flush
75262306a36Sopenharmony_ci	 *                   wants us to catch up to.
75362306a36Sopenharmony_ci	 */
75462306a36Sopenharmony_ci	const struct flush_tlb_info *f = info;
75562306a36Sopenharmony_ci	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
75662306a36Sopenharmony_ci	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
75762306a36Sopenharmony_ci	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
75862306a36Sopenharmony_ci	bool local = smp_processor_id() == f->initiating_cpu;
75962306a36Sopenharmony_ci	unsigned long nr_invalidate = 0;
76062306a36Sopenharmony_ci	u64 mm_tlb_gen;
76162306a36Sopenharmony_ci
76262306a36Sopenharmony_ci	/* This code cannot presently handle being reentered. */
76362306a36Sopenharmony_ci	VM_WARN_ON(!irqs_disabled());
76462306a36Sopenharmony_ci
76562306a36Sopenharmony_ci	if (!local) {
76662306a36Sopenharmony_ci		inc_irq_stat(irq_tlb_count);
76762306a36Sopenharmony_ci		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
76862306a36Sopenharmony_ci
76962306a36Sopenharmony_ci		/* Can only happen on remote CPUs */
77062306a36Sopenharmony_ci		if (f->mm && f->mm != loaded_mm)
77162306a36Sopenharmony_ci			return;
77262306a36Sopenharmony_ci	}
77362306a36Sopenharmony_ci
77462306a36Sopenharmony_ci	if (unlikely(loaded_mm == &init_mm))
77562306a36Sopenharmony_ci		return;
77662306a36Sopenharmony_ci
77762306a36Sopenharmony_ci	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
77862306a36Sopenharmony_ci		   loaded_mm->context.ctx_id);
77962306a36Sopenharmony_ci
78062306a36Sopenharmony_ci	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
78162306a36Sopenharmony_ci		/*
78262306a36Sopenharmony_ci		 * We're in lazy mode.  We need to at least flush our
78362306a36Sopenharmony_ci		 * paging-structure cache to avoid speculatively reading
78462306a36Sopenharmony_ci		 * garbage into our TLB.  Since switching to init_mm is barely
78562306a36Sopenharmony_ci		 * slower than a minimal flush, just switch to init_mm.
78662306a36Sopenharmony_ci		 *
78762306a36Sopenharmony_ci		 * This should be rare, with native_flush_tlb_multi() skipping
78862306a36Sopenharmony_ci		 * IPIs to lazy TLB mode CPUs.
78962306a36Sopenharmony_ci		 */
79062306a36Sopenharmony_ci		switch_mm_irqs_off(NULL, &init_mm, NULL);
79162306a36Sopenharmony_ci		return;
79262306a36Sopenharmony_ci	}
79362306a36Sopenharmony_ci
79462306a36Sopenharmony_ci	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
79562306a36Sopenharmony_ci		     f->new_tlb_gen <= local_tlb_gen)) {
79662306a36Sopenharmony_ci		/*
79762306a36Sopenharmony_ci		 * The TLB is already up to date in respect to f->new_tlb_gen.
79862306a36Sopenharmony_ci		 * While the core might be still behind mm_tlb_gen, checking
79962306a36Sopenharmony_ci		 * mm_tlb_gen unnecessarily would have negative caching effects
80062306a36Sopenharmony_ci		 * so avoid it.
80162306a36Sopenharmony_ci		 */
80262306a36Sopenharmony_ci		return;
80362306a36Sopenharmony_ci	}
80462306a36Sopenharmony_ci
80562306a36Sopenharmony_ci	/*
80662306a36Sopenharmony_ci	 * Defer mm_tlb_gen reading as long as possible to avoid cache
80762306a36Sopenharmony_ci	 * contention.
80862306a36Sopenharmony_ci	 */
80962306a36Sopenharmony_ci	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
81062306a36Sopenharmony_ci
81162306a36Sopenharmony_ci	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
81262306a36Sopenharmony_ci		/*
81362306a36Sopenharmony_ci		 * There's nothing to do: we're already up to date.  This can
81462306a36Sopenharmony_ci		 * happen if two concurrent flushes happen -- the first flush to
81562306a36Sopenharmony_ci		 * be handled can catch us all the way up, leaving no work for
81662306a36Sopenharmony_ci		 * the second flush.
81762306a36Sopenharmony_ci		 */
81862306a36Sopenharmony_ci		goto done;
81962306a36Sopenharmony_ci	}
82062306a36Sopenharmony_ci
82162306a36Sopenharmony_ci	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
82262306a36Sopenharmony_ci	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
82362306a36Sopenharmony_ci
82462306a36Sopenharmony_ci	/*
82562306a36Sopenharmony_ci	 * If we get to this point, we know that our TLB is out of date.
82662306a36Sopenharmony_ci	 * This does not strictly imply that we need to flush (it's
82762306a36Sopenharmony_ci	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
82862306a36Sopenharmony_ci	 * going to need to flush in the very near future, so we might
82962306a36Sopenharmony_ci	 * as well get it over with.
83062306a36Sopenharmony_ci	 *
83162306a36Sopenharmony_ci	 * The only question is whether to do a full or partial flush.
83262306a36Sopenharmony_ci	 *
83362306a36Sopenharmony_ci	 * We do a partial flush if requested and two extra conditions
83462306a36Sopenharmony_ci	 * are met:
83562306a36Sopenharmony_ci	 *
83662306a36Sopenharmony_ci	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
83762306a36Sopenharmony_ci	 *    we've always done all needed flushes to catch up to
83862306a36Sopenharmony_ci	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
83962306a36Sopenharmony_ci	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
84062306a36Sopenharmony_ci	 *    us up to date for tlb_gen 3 is the partial flush we're
84162306a36Sopenharmony_ci	 *    processing.
84262306a36Sopenharmony_ci	 *
84362306a36Sopenharmony_ci	 *    As an example of why this check is needed, suppose that there
84462306a36Sopenharmony_ci	 *    are two concurrent flushes.  The first is a full flush that
84562306a36Sopenharmony_ci	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
84662306a36Sopenharmony_ci	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
84762306a36Sopenharmony_ci	 *    processed on this CPU in reverse order, we'll see
84862306a36Sopenharmony_ci	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
84962306a36Sopenharmony_ci	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
85062306a36Sopenharmony_ci	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
85162306a36Sopenharmony_ci	 *    1 without the full flush that's needed for tlb_gen 2.
85262306a36Sopenharmony_ci	 *
85362306a36Sopenharmony_ci	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
85462306a36Sopenharmony_ci	 *    Partial TLB flushes are not all that much cheaper than full TLB
85562306a36Sopenharmony_ci	 *    flushes, so it seems unlikely that it would be a performance win
85662306a36Sopenharmony_ci	 *    to do a partial flush if that won't bring our TLB fully up to
85762306a36Sopenharmony_ci	 *    date.  By doing a full flush instead, we can increase
85862306a36Sopenharmony_ci	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
85962306a36Sopenharmony_ci	 *    avoid another flush in the very near future.
86062306a36Sopenharmony_ci	 */
86162306a36Sopenharmony_ci	if (f->end != TLB_FLUSH_ALL &&
86262306a36Sopenharmony_ci	    f->new_tlb_gen == local_tlb_gen + 1 &&
86362306a36Sopenharmony_ci	    f->new_tlb_gen == mm_tlb_gen) {
86462306a36Sopenharmony_ci		/* Partial flush */
86562306a36Sopenharmony_ci		unsigned long addr = f->start;
86662306a36Sopenharmony_ci
86762306a36Sopenharmony_ci		/* Partial flush cannot have invalid generations */
86862306a36Sopenharmony_ci		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
86962306a36Sopenharmony_ci
87062306a36Sopenharmony_ci		/* Partial flush must have valid mm */
87162306a36Sopenharmony_ci		VM_WARN_ON(f->mm == NULL);
87262306a36Sopenharmony_ci
87362306a36Sopenharmony_ci		nr_invalidate = (f->end - f->start) >> f->stride_shift;
87462306a36Sopenharmony_ci
87562306a36Sopenharmony_ci		while (addr < f->end) {
87662306a36Sopenharmony_ci			flush_tlb_one_user(addr);
87762306a36Sopenharmony_ci			addr += 1UL << f->stride_shift;
87862306a36Sopenharmony_ci		}
87962306a36Sopenharmony_ci		if (local)
88062306a36Sopenharmony_ci			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
88162306a36Sopenharmony_ci	} else {
88262306a36Sopenharmony_ci		/* Full flush. */
88362306a36Sopenharmony_ci		nr_invalidate = TLB_FLUSH_ALL;
88462306a36Sopenharmony_ci
88562306a36Sopenharmony_ci		flush_tlb_local();
88662306a36Sopenharmony_ci		if (local)
88762306a36Sopenharmony_ci			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
88862306a36Sopenharmony_ci	}
88962306a36Sopenharmony_ci
89062306a36Sopenharmony_ci	/* Both paths above update our state to mm_tlb_gen. */
89162306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
89262306a36Sopenharmony_ci
89362306a36Sopenharmony_ci	/* Tracing is done in a unified manner to reduce the code size */
89462306a36Sopenharmony_cidone:
89562306a36Sopenharmony_ci	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
89662306a36Sopenharmony_ci				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
89762306a36Sopenharmony_ci						  TLB_LOCAL_MM_SHOOTDOWN,
89862306a36Sopenharmony_ci			nr_invalidate);
89962306a36Sopenharmony_ci}
90062306a36Sopenharmony_ci
90162306a36Sopenharmony_cistatic bool tlb_is_not_lazy(int cpu, void *data)
90262306a36Sopenharmony_ci{
90362306a36Sopenharmony_ci	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
90462306a36Sopenharmony_ci}
90562306a36Sopenharmony_ci
90662306a36Sopenharmony_ciDEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
90762306a36Sopenharmony_ciEXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
90862306a36Sopenharmony_ci
90962306a36Sopenharmony_ciSTATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
91062306a36Sopenharmony_ci					 const struct flush_tlb_info *info)
91162306a36Sopenharmony_ci{
91262306a36Sopenharmony_ci	/*
91362306a36Sopenharmony_ci	 * Do accounting and tracing. Note that there are (and have always been)
91462306a36Sopenharmony_ci	 * cases in which a remote TLB flush will be traced, but eventually
91562306a36Sopenharmony_ci	 * would not happen.
91662306a36Sopenharmony_ci	 */
91762306a36Sopenharmony_ci	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
91862306a36Sopenharmony_ci	if (info->end == TLB_FLUSH_ALL)
91962306a36Sopenharmony_ci		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
92062306a36Sopenharmony_ci	else
92162306a36Sopenharmony_ci		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
92262306a36Sopenharmony_ci				(info->end - info->start) >> PAGE_SHIFT);
92362306a36Sopenharmony_ci
92462306a36Sopenharmony_ci	/*
92562306a36Sopenharmony_ci	 * If no page tables were freed, we can skip sending IPIs to
92662306a36Sopenharmony_ci	 * CPUs in lazy TLB mode. They will flush the CPU themselves
92762306a36Sopenharmony_ci	 * at the next context switch.
92862306a36Sopenharmony_ci	 *
92962306a36Sopenharmony_ci	 * However, if page tables are getting freed, we need to send the
93062306a36Sopenharmony_ci	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
93162306a36Sopenharmony_ci	 * up on the new contents of what used to be page tables, while
93262306a36Sopenharmony_ci	 * doing a speculative memory access.
93362306a36Sopenharmony_ci	 */
93462306a36Sopenharmony_ci	if (info->freed_tables)
93562306a36Sopenharmony_ci		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
93662306a36Sopenharmony_ci	else
93762306a36Sopenharmony_ci		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
93862306a36Sopenharmony_ci				(void *)info, 1, cpumask);
93962306a36Sopenharmony_ci}
94062306a36Sopenharmony_ci
94162306a36Sopenharmony_civoid flush_tlb_multi(const struct cpumask *cpumask,
94262306a36Sopenharmony_ci		      const struct flush_tlb_info *info)
94362306a36Sopenharmony_ci{
94462306a36Sopenharmony_ci	__flush_tlb_multi(cpumask, info);
94562306a36Sopenharmony_ci}
94662306a36Sopenharmony_ci
94762306a36Sopenharmony_ci/*
94862306a36Sopenharmony_ci * See Documentation/arch/x86/tlb.rst for details.  We choose 33
94962306a36Sopenharmony_ci * because it is large enough to cover the vast majority (at
95062306a36Sopenharmony_ci * least 95%) of allocations, and is small enough that we are
95162306a36Sopenharmony_ci * confident it will not cause too much overhead.  Each single
95262306a36Sopenharmony_ci * flush is about 100 ns, so this caps the maximum overhead at
95362306a36Sopenharmony_ci * _about_ 3,000 ns.
95462306a36Sopenharmony_ci *
95562306a36Sopenharmony_ci * This is in units of pages.
95662306a36Sopenharmony_ci */
95762306a36Sopenharmony_ciunsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
95862306a36Sopenharmony_ci
95962306a36Sopenharmony_cistatic DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
96062306a36Sopenharmony_ci
96162306a36Sopenharmony_ci#ifdef CONFIG_DEBUG_VM
96262306a36Sopenharmony_cistatic DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
96362306a36Sopenharmony_ci#endif
96462306a36Sopenharmony_ci
96562306a36Sopenharmony_cistatic struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
96662306a36Sopenharmony_ci			unsigned long start, unsigned long end,
96762306a36Sopenharmony_ci			unsigned int stride_shift, bool freed_tables,
96862306a36Sopenharmony_ci			u64 new_tlb_gen)
96962306a36Sopenharmony_ci{
97062306a36Sopenharmony_ci	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
97162306a36Sopenharmony_ci
97262306a36Sopenharmony_ci#ifdef CONFIG_DEBUG_VM
97362306a36Sopenharmony_ci	/*
97462306a36Sopenharmony_ci	 * Ensure that the following code is non-reentrant and flush_tlb_info
97562306a36Sopenharmony_ci	 * is not overwritten. This means no TLB flushing is initiated by
97662306a36Sopenharmony_ci	 * interrupt handlers and machine-check exception handlers.
97762306a36Sopenharmony_ci	 */
97862306a36Sopenharmony_ci	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
97962306a36Sopenharmony_ci#endif
98062306a36Sopenharmony_ci
98162306a36Sopenharmony_ci	info->start		= start;
98262306a36Sopenharmony_ci	info->end		= end;
98362306a36Sopenharmony_ci	info->mm		= mm;
98462306a36Sopenharmony_ci	info->stride_shift	= stride_shift;
98562306a36Sopenharmony_ci	info->freed_tables	= freed_tables;
98662306a36Sopenharmony_ci	info->new_tlb_gen	= new_tlb_gen;
98762306a36Sopenharmony_ci	info->initiating_cpu	= smp_processor_id();
98862306a36Sopenharmony_ci
98962306a36Sopenharmony_ci	return info;
99062306a36Sopenharmony_ci}
99162306a36Sopenharmony_ci
99262306a36Sopenharmony_cistatic void put_flush_tlb_info(void)
99362306a36Sopenharmony_ci{
99462306a36Sopenharmony_ci#ifdef CONFIG_DEBUG_VM
99562306a36Sopenharmony_ci	/* Complete reentrancy prevention checks */
99662306a36Sopenharmony_ci	barrier();
99762306a36Sopenharmony_ci	this_cpu_dec(flush_tlb_info_idx);
99862306a36Sopenharmony_ci#endif
99962306a36Sopenharmony_ci}
100062306a36Sopenharmony_ci
100162306a36Sopenharmony_civoid flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
100262306a36Sopenharmony_ci				unsigned long end, unsigned int stride_shift,
100362306a36Sopenharmony_ci				bool freed_tables)
100462306a36Sopenharmony_ci{
100562306a36Sopenharmony_ci	struct flush_tlb_info *info;
100662306a36Sopenharmony_ci	u64 new_tlb_gen;
100762306a36Sopenharmony_ci	int cpu;
100862306a36Sopenharmony_ci
100962306a36Sopenharmony_ci	cpu = get_cpu();
101062306a36Sopenharmony_ci
101162306a36Sopenharmony_ci	/* Should we flush just the requested range? */
101262306a36Sopenharmony_ci	if ((end == TLB_FLUSH_ALL) ||
101362306a36Sopenharmony_ci	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
101462306a36Sopenharmony_ci		start = 0;
101562306a36Sopenharmony_ci		end = TLB_FLUSH_ALL;
101662306a36Sopenharmony_ci	}
101762306a36Sopenharmony_ci
101862306a36Sopenharmony_ci	/* This is also a barrier that synchronizes with switch_mm(). */
101962306a36Sopenharmony_ci	new_tlb_gen = inc_mm_tlb_gen(mm);
102062306a36Sopenharmony_ci
102162306a36Sopenharmony_ci	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
102262306a36Sopenharmony_ci				  new_tlb_gen);
102362306a36Sopenharmony_ci
102462306a36Sopenharmony_ci	/*
102562306a36Sopenharmony_ci	 * flush_tlb_multi() is not optimized for the common case in which only
102662306a36Sopenharmony_ci	 * a local TLB flush is needed. Optimize this use-case by calling
102762306a36Sopenharmony_ci	 * flush_tlb_func_local() directly in this case.
102862306a36Sopenharmony_ci	 */
102962306a36Sopenharmony_ci	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
103062306a36Sopenharmony_ci		flush_tlb_multi(mm_cpumask(mm), info);
103162306a36Sopenharmony_ci	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
103262306a36Sopenharmony_ci		lockdep_assert_irqs_enabled();
103362306a36Sopenharmony_ci		local_irq_disable();
103462306a36Sopenharmony_ci		flush_tlb_func(info);
103562306a36Sopenharmony_ci		local_irq_enable();
103662306a36Sopenharmony_ci	}
103762306a36Sopenharmony_ci
103862306a36Sopenharmony_ci	put_flush_tlb_info();
103962306a36Sopenharmony_ci	put_cpu();
104062306a36Sopenharmony_ci	mmu_notifier_arch_invalidate_secondary_tlbs(mm, start, end);
104162306a36Sopenharmony_ci}
104262306a36Sopenharmony_ci
104362306a36Sopenharmony_ci
104462306a36Sopenharmony_cistatic void do_flush_tlb_all(void *info)
104562306a36Sopenharmony_ci{
104662306a36Sopenharmony_ci	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
104762306a36Sopenharmony_ci	__flush_tlb_all();
104862306a36Sopenharmony_ci}
104962306a36Sopenharmony_ci
105062306a36Sopenharmony_civoid flush_tlb_all(void)
105162306a36Sopenharmony_ci{
105262306a36Sopenharmony_ci	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
105362306a36Sopenharmony_ci	on_each_cpu(do_flush_tlb_all, NULL, 1);
105462306a36Sopenharmony_ci}
105562306a36Sopenharmony_ci
105662306a36Sopenharmony_cistatic void do_kernel_range_flush(void *info)
105762306a36Sopenharmony_ci{
105862306a36Sopenharmony_ci	struct flush_tlb_info *f = info;
105962306a36Sopenharmony_ci	unsigned long addr;
106062306a36Sopenharmony_ci
106162306a36Sopenharmony_ci	/* flush range by one by one 'invlpg' */
106262306a36Sopenharmony_ci	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
106362306a36Sopenharmony_ci		flush_tlb_one_kernel(addr);
106462306a36Sopenharmony_ci}
106562306a36Sopenharmony_ci
106662306a36Sopenharmony_civoid flush_tlb_kernel_range(unsigned long start, unsigned long end)
106762306a36Sopenharmony_ci{
106862306a36Sopenharmony_ci	/* Balance as user space task's flush, a bit conservative */
106962306a36Sopenharmony_ci	if (end == TLB_FLUSH_ALL ||
107062306a36Sopenharmony_ci	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
107162306a36Sopenharmony_ci		on_each_cpu(do_flush_tlb_all, NULL, 1);
107262306a36Sopenharmony_ci	} else {
107362306a36Sopenharmony_ci		struct flush_tlb_info *info;
107462306a36Sopenharmony_ci
107562306a36Sopenharmony_ci		preempt_disable();
107662306a36Sopenharmony_ci		info = get_flush_tlb_info(NULL, start, end, 0, false,
107762306a36Sopenharmony_ci					  TLB_GENERATION_INVALID);
107862306a36Sopenharmony_ci
107962306a36Sopenharmony_ci		on_each_cpu(do_kernel_range_flush, info, 1);
108062306a36Sopenharmony_ci
108162306a36Sopenharmony_ci		put_flush_tlb_info();
108262306a36Sopenharmony_ci		preempt_enable();
108362306a36Sopenharmony_ci	}
108462306a36Sopenharmony_ci}
108562306a36Sopenharmony_ci
108662306a36Sopenharmony_ci/*
108762306a36Sopenharmony_ci * This can be used from process context to figure out what the value of
108862306a36Sopenharmony_ci * CR3 is without needing to do a (slow) __read_cr3().
108962306a36Sopenharmony_ci *
109062306a36Sopenharmony_ci * It's intended to be used for code like KVM that sneakily changes CR3
109162306a36Sopenharmony_ci * and needs to restore it.  It needs to be used very carefully.
109262306a36Sopenharmony_ci */
109362306a36Sopenharmony_ciunsigned long __get_current_cr3_fast(void)
109462306a36Sopenharmony_ci{
109562306a36Sopenharmony_ci	unsigned long cr3 =
109662306a36Sopenharmony_ci		build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
109762306a36Sopenharmony_ci			  this_cpu_read(cpu_tlbstate.loaded_mm_asid),
109862306a36Sopenharmony_ci			  tlbstate_lam_cr3_mask());
109962306a36Sopenharmony_ci
110062306a36Sopenharmony_ci	/* For now, be very restrictive about when this can be called. */
110162306a36Sopenharmony_ci	VM_WARN_ON(in_nmi() || preemptible());
110262306a36Sopenharmony_ci
110362306a36Sopenharmony_ci	VM_BUG_ON(cr3 != __read_cr3());
110462306a36Sopenharmony_ci	return cr3;
110562306a36Sopenharmony_ci}
110662306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(__get_current_cr3_fast);
110762306a36Sopenharmony_ci
110862306a36Sopenharmony_ci/*
110962306a36Sopenharmony_ci * Flush one page in the kernel mapping
111062306a36Sopenharmony_ci */
111162306a36Sopenharmony_civoid flush_tlb_one_kernel(unsigned long addr)
111262306a36Sopenharmony_ci{
111362306a36Sopenharmony_ci	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
111462306a36Sopenharmony_ci
111562306a36Sopenharmony_ci	/*
111662306a36Sopenharmony_ci	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
111762306a36Sopenharmony_ci	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
111862306a36Sopenharmony_ci	 * use PCID if we also use global PTEs for the kernel mapping, and
111962306a36Sopenharmony_ci	 * INVLPG flushes global translations across all address spaces.
112062306a36Sopenharmony_ci	 *
112162306a36Sopenharmony_ci	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
112262306a36Sopenharmony_ci	 * __flush_tlb_one_user() will flush the given address for the current
112362306a36Sopenharmony_ci	 * kernel address space and for its usermode counterpart, but it does
112462306a36Sopenharmony_ci	 * not flush it for other address spaces.
112562306a36Sopenharmony_ci	 */
112662306a36Sopenharmony_ci	flush_tlb_one_user(addr);
112762306a36Sopenharmony_ci
112862306a36Sopenharmony_ci	if (!static_cpu_has(X86_FEATURE_PTI))
112962306a36Sopenharmony_ci		return;
113062306a36Sopenharmony_ci
113162306a36Sopenharmony_ci	/*
113262306a36Sopenharmony_ci	 * See above.  We need to propagate the flush to all other address
113362306a36Sopenharmony_ci	 * spaces.  In principle, we only need to propagate it to kernelmode
113462306a36Sopenharmony_ci	 * address spaces, but the extra bookkeeping we would need is not
113562306a36Sopenharmony_ci	 * worth it.
113662306a36Sopenharmony_ci	 */
113762306a36Sopenharmony_ci	this_cpu_write(cpu_tlbstate.invalidate_other, true);
113862306a36Sopenharmony_ci}
113962306a36Sopenharmony_ci
114062306a36Sopenharmony_ci/*
114162306a36Sopenharmony_ci * Flush one page in the user mapping
114262306a36Sopenharmony_ci */
114362306a36Sopenharmony_ciSTATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
114462306a36Sopenharmony_ci{
114562306a36Sopenharmony_ci	u32 loaded_mm_asid;
114662306a36Sopenharmony_ci	bool cpu_pcide;
114762306a36Sopenharmony_ci
114862306a36Sopenharmony_ci	/* Flush 'addr' from the kernel PCID: */
114962306a36Sopenharmony_ci	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
115062306a36Sopenharmony_ci
115162306a36Sopenharmony_ci	/* If PTI is off there is no user PCID and nothing to flush. */
115262306a36Sopenharmony_ci	if (!static_cpu_has(X86_FEATURE_PTI))
115362306a36Sopenharmony_ci		return;
115462306a36Sopenharmony_ci
115562306a36Sopenharmony_ci	loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
115662306a36Sopenharmony_ci	cpu_pcide      = this_cpu_read(cpu_tlbstate.cr4) & X86_CR4_PCIDE;
115762306a36Sopenharmony_ci
115862306a36Sopenharmony_ci	/*
115962306a36Sopenharmony_ci	 * invpcid_flush_one(pcid>0) will #GP if CR4.PCIDE==0.  Check
116062306a36Sopenharmony_ci	 * 'cpu_pcide' to ensure that *this* CPU will not trigger those
116162306a36Sopenharmony_ci	 * #GP's even if called before CR4.PCIDE has been initialized.
116262306a36Sopenharmony_ci	 */
116362306a36Sopenharmony_ci	if (boot_cpu_has(X86_FEATURE_INVPCID) && cpu_pcide)
116462306a36Sopenharmony_ci		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
116562306a36Sopenharmony_ci	else
116662306a36Sopenharmony_ci		invalidate_user_asid(loaded_mm_asid);
116762306a36Sopenharmony_ci}
116862306a36Sopenharmony_ci
116962306a36Sopenharmony_civoid flush_tlb_one_user(unsigned long addr)
117062306a36Sopenharmony_ci{
117162306a36Sopenharmony_ci	__flush_tlb_one_user(addr);
117262306a36Sopenharmony_ci}
117362306a36Sopenharmony_ci
117462306a36Sopenharmony_ci/*
117562306a36Sopenharmony_ci * Flush everything
117662306a36Sopenharmony_ci */
117762306a36Sopenharmony_ciSTATIC_NOPV void native_flush_tlb_global(void)
117862306a36Sopenharmony_ci{
117962306a36Sopenharmony_ci	unsigned long flags;
118062306a36Sopenharmony_ci
118162306a36Sopenharmony_ci	if (static_cpu_has(X86_FEATURE_INVPCID)) {
118262306a36Sopenharmony_ci		/*
118362306a36Sopenharmony_ci		 * Using INVPCID is considerably faster than a pair of writes
118462306a36Sopenharmony_ci		 * to CR4 sandwiched inside an IRQ flag save/restore.
118562306a36Sopenharmony_ci		 *
118662306a36Sopenharmony_ci		 * Note, this works with CR4.PCIDE=0 or 1.
118762306a36Sopenharmony_ci		 */
118862306a36Sopenharmony_ci		invpcid_flush_all();
118962306a36Sopenharmony_ci		return;
119062306a36Sopenharmony_ci	}
119162306a36Sopenharmony_ci
119262306a36Sopenharmony_ci	/*
119362306a36Sopenharmony_ci	 * Read-modify-write to CR4 - protect it from preemption and
119462306a36Sopenharmony_ci	 * from interrupts. (Use the raw variant because this code can
119562306a36Sopenharmony_ci	 * be called from deep inside debugging code.)
119662306a36Sopenharmony_ci	 */
119762306a36Sopenharmony_ci	raw_local_irq_save(flags);
119862306a36Sopenharmony_ci
119962306a36Sopenharmony_ci	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
120062306a36Sopenharmony_ci
120162306a36Sopenharmony_ci	raw_local_irq_restore(flags);
120262306a36Sopenharmony_ci}
120362306a36Sopenharmony_ci
120462306a36Sopenharmony_ci/*
120562306a36Sopenharmony_ci * Flush the entire current user mapping
120662306a36Sopenharmony_ci */
120762306a36Sopenharmony_ciSTATIC_NOPV void native_flush_tlb_local(void)
120862306a36Sopenharmony_ci{
120962306a36Sopenharmony_ci	/*
121062306a36Sopenharmony_ci	 * Preemption or interrupts must be disabled to protect the access
121162306a36Sopenharmony_ci	 * to the per CPU variable and to prevent being preempted between
121262306a36Sopenharmony_ci	 * read_cr3() and write_cr3().
121362306a36Sopenharmony_ci	 */
121462306a36Sopenharmony_ci	WARN_ON_ONCE(preemptible());
121562306a36Sopenharmony_ci
121662306a36Sopenharmony_ci	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
121762306a36Sopenharmony_ci
121862306a36Sopenharmony_ci	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
121962306a36Sopenharmony_ci	native_write_cr3(__native_read_cr3());
122062306a36Sopenharmony_ci}
122162306a36Sopenharmony_ci
122262306a36Sopenharmony_civoid flush_tlb_local(void)
122362306a36Sopenharmony_ci{
122462306a36Sopenharmony_ci	__flush_tlb_local();
122562306a36Sopenharmony_ci}
122662306a36Sopenharmony_ci
122762306a36Sopenharmony_ci/*
122862306a36Sopenharmony_ci * Flush everything
122962306a36Sopenharmony_ci */
123062306a36Sopenharmony_civoid __flush_tlb_all(void)
123162306a36Sopenharmony_ci{
123262306a36Sopenharmony_ci	/*
123362306a36Sopenharmony_ci	 * This is to catch users with enabled preemption and the PGE feature
123462306a36Sopenharmony_ci	 * and don't trigger the warning in __native_flush_tlb().
123562306a36Sopenharmony_ci	 */
123662306a36Sopenharmony_ci	VM_WARN_ON_ONCE(preemptible());
123762306a36Sopenharmony_ci
123862306a36Sopenharmony_ci	if (cpu_feature_enabled(X86_FEATURE_PGE)) {
123962306a36Sopenharmony_ci		__flush_tlb_global();
124062306a36Sopenharmony_ci	} else {
124162306a36Sopenharmony_ci		/*
124262306a36Sopenharmony_ci		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
124362306a36Sopenharmony_ci		 */
124462306a36Sopenharmony_ci		flush_tlb_local();
124562306a36Sopenharmony_ci	}
124662306a36Sopenharmony_ci}
124762306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(__flush_tlb_all);
124862306a36Sopenharmony_ci
124962306a36Sopenharmony_civoid arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
125062306a36Sopenharmony_ci{
125162306a36Sopenharmony_ci	struct flush_tlb_info *info;
125262306a36Sopenharmony_ci
125362306a36Sopenharmony_ci	int cpu = get_cpu();
125462306a36Sopenharmony_ci
125562306a36Sopenharmony_ci	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
125662306a36Sopenharmony_ci				  TLB_GENERATION_INVALID);
125762306a36Sopenharmony_ci	/*
125862306a36Sopenharmony_ci	 * flush_tlb_multi() is not optimized for the common case in which only
125962306a36Sopenharmony_ci	 * a local TLB flush is needed. Optimize this use-case by calling
126062306a36Sopenharmony_ci	 * flush_tlb_func_local() directly in this case.
126162306a36Sopenharmony_ci	 */
126262306a36Sopenharmony_ci	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
126362306a36Sopenharmony_ci		flush_tlb_multi(&batch->cpumask, info);
126462306a36Sopenharmony_ci	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
126562306a36Sopenharmony_ci		lockdep_assert_irqs_enabled();
126662306a36Sopenharmony_ci		local_irq_disable();
126762306a36Sopenharmony_ci		flush_tlb_func(info);
126862306a36Sopenharmony_ci		local_irq_enable();
126962306a36Sopenharmony_ci	}
127062306a36Sopenharmony_ci
127162306a36Sopenharmony_ci	cpumask_clear(&batch->cpumask);
127262306a36Sopenharmony_ci
127362306a36Sopenharmony_ci	put_flush_tlb_info();
127462306a36Sopenharmony_ci	put_cpu();
127562306a36Sopenharmony_ci}
127662306a36Sopenharmony_ci
127762306a36Sopenharmony_ci/*
127862306a36Sopenharmony_ci * Blindly accessing user memory from NMI context can be dangerous
127962306a36Sopenharmony_ci * if we're in the middle of switching the current user task or
128062306a36Sopenharmony_ci * switching the loaded mm.  It can also be dangerous if we
128162306a36Sopenharmony_ci * interrupted some kernel code that was temporarily using a
128262306a36Sopenharmony_ci * different mm.
128362306a36Sopenharmony_ci */
128462306a36Sopenharmony_cibool nmi_uaccess_okay(void)
128562306a36Sopenharmony_ci{
128662306a36Sopenharmony_ci	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
128762306a36Sopenharmony_ci	struct mm_struct *current_mm = current->mm;
128862306a36Sopenharmony_ci
128962306a36Sopenharmony_ci	VM_WARN_ON_ONCE(!loaded_mm);
129062306a36Sopenharmony_ci
129162306a36Sopenharmony_ci	/*
129262306a36Sopenharmony_ci	 * The condition we want to check is
129362306a36Sopenharmony_ci	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
129462306a36Sopenharmony_ci	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
129562306a36Sopenharmony_ci	 * is supposed to be reasonably fast.
129662306a36Sopenharmony_ci	 *
129762306a36Sopenharmony_ci	 * Instead, we check the almost equivalent but somewhat conservative
129862306a36Sopenharmony_ci	 * condition below, and we rely on the fact that switch_mm_irqs_off()
129962306a36Sopenharmony_ci	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
130062306a36Sopenharmony_ci	 */
130162306a36Sopenharmony_ci	if (loaded_mm != current_mm)
130262306a36Sopenharmony_ci		return false;
130362306a36Sopenharmony_ci
130462306a36Sopenharmony_ci	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
130562306a36Sopenharmony_ci
130662306a36Sopenharmony_ci	return true;
130762306a36Sopenharmony_ci}
130862306a36Sopenharmony_ci
130962306a36Sopenharmony_cistatic ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
131062306a36Sopenharmony_ci			     size_t count, loff_t *ppos)
131162306a36Sopenharmony_ci{
131262306a36Sopenharmony_ci	char buf[32];
131362306a36Sopenharmony_ci	unsigned int len;
131462306a36Sopenharmony_ci
131562306a36Sopenharmony_ci	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
131662306a36Sopenharmony_ci	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
131762306a36Sopenharmony_ci}
131862306a36Sopenharmony_ci
131962306a36Sopenharmony_cistatic ssize_t tlbflush_write_file(struct file *file,
132062306a36Sopenharmony_ci		 const char __user *user_buf, size_t count, loff_t *ppos)
132162306a36Sopenharmony_ci{
132262306a36Sopenharmony_ci	char buf[32];
132362306a36Sopenharmony_ci	ssize_t len;
132462306a36Sopenharmony_ci	int ceiling;
132562306a36Sopenharmony_ci
132662306a36Sopenharmony_ci	len = min(count, sizeof(buf) - 1);
132762306a36Sopenharmony_ci	if (copy_from_user(buf, user_buf, len))
132862306a36Sopenharmony_ci		return -EFAULT;
132962306a36Sopenharmony_ci
133062306a36Sopenharmony_ci	buf[len] = '\0';
133162306a36Sopenharmony_ci	if (kstrtoint(buf, 0, &ceiling))
133262306a36Sopenharmony_ci		return -EINVAL;
133362306a36Sopenharmony_ci
133462306a36Sopenharmony_ci	if (ceiling < 0)
133562306a36Sopenharmony_ci		return -EINVAL;
133662306a36Sopenharmony_ci
133762306a36Sopenharmony_ci	tlb_single_page_flush_ceiling = ceiling;
133862306a36Sopenharmony_ci	return count;
133962306a36Sopenharmony_ci}
134062306a36Sopenharmony_ci
134162306a36Sopenharmony_cistatic const struct file_operations fops_tlbflush = {
134262306a36Sopenharmony_ci	.read = tlbflush_read_file,
134362306a36Sopenharmony_ci	.write = tlbflush_write_file,
134462306a36Sopenharmony_ci	.llseek = default_llseek,
134562306a36Sopenharmony_ci};
134662306a36Sopenharmony_ci
134762306a36Sopenharmony_cistatic int __init create_tlb_single_page_flush_ceiling(void)
134862306a36Sopenharmony_ci{
134962306a36Sopenharmony_ci	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
135062306a36Sopenharmony_ci			    arch_debugfs_dir, NULL, &fops_tlbflush);
135162306a36Sopenharmony_ci	return 0;
135262306a36Sopenharmony_ci}
135362306a36Sopenharmony_cilate_initcall(create_tlb_single_page_flush_ceiling);
1354