1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * AMD Memory Encryption Support
4 *
5 * Copyright (C) 2016 Advanced Micro Devices, Inc.
6 *
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 */
9
10#define DISABLE_BRANCH_PROFILING
11
12/*
13 * Since we're dealing with identity mappings, physical and virtual
14 * addresses are the same, so override these defines which are ultimately
15 * used by the headers in misc.h.
16 */
17#define __pa(x)  ((unsigned long)(x))
18#define __va(x)  ((void *)((unsigned long)(x)))
19
20/*
21 * Special hack: we have to be careful, because no indirections are
22 * allowed here, and paravirt_ops is a kind of one. As it will only run in
23 * baremetal anyway, we just keep it from happening. (This list needs to
24 * be extended when new paravirt and debugging variants are added.)
25 */
26#undef CONFIG_PARAVIRT
27#undef CONFIG_PARAVIRT_XXL
28#undef CONFIG_PARAVIRT_SPINLOCKS
29
30/*
31 * This code runs before CPU feature bits are set. By default, the
32 * pgtable_l5_enabled() function uses bit X86_FEATURE_LA57 to determine if
33 * 5-level paging is active, so that won't work here. USE_EARLY_PGTABLE_L5
34 * is provided to handle this situation and, instead, use a variable that
35 * has been set by the early boot code.
36 */
37#define USE_EARLY_PGTABLE_L5
38
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/mem_encrypt.h>
42#include <linux/cc_platform.h>
43
44#include <asm/setup.h>
45#include <asm/sections.h>
46#include <asm/cmdline.h>
47#include <asm/coco.h>
48#include <asm/sev.h>
49
50#include "mm_internal.h"
51
52#define PGD_FLAGS		_KERNPG_TABLE_NOENC
53#define P4D_FLAGS		_KERNPG_TABLE_NOENC
54#define PUD_FLAGS		_KERNPG_TABLE_NOENC
55#define PMD_FLAGS		_KERNPG_TABLE_NOENC
56
57#define PMD_FLAGS_LARGE		(__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
58
59#define PMD_FLAGS_DEC		PMD_FLAGS_LARGE
60#define PMD_FLAGS_DEC_WP	((PMD_FLAGS_DEC & ~_PAGE_LARGE_CACHE_MASK) | \
61				 (_PAGE_PAT_LARGE | _PAGE_PWT))
62
63#define PMD_FLAGS_ENC		(PMD_FLAGS_LARGE | _PAGE_ENC)
64
65#define PTE_FLAGS		(__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
66
67#define PTE_FLAGS_DEC		PTE_FLAGS
68#define PTE_FLAGS_DEC_WP	((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
69				 (_PAGE_PAT | _PAGE_PWT))
70
71#define PTE_FLAGS_ENC		(PTE_FLAGS | _PAGE_ENC)
72
73struct sme_populate_pgd_data {
74	void    *pgtable_area;
75	pgd_t   *pgd;
76
77	pmdval_t pmd_flags;
78	pteval_t pte_flags;
79	unsigned long paddr;
80
81	unsigned long vaddr;
82	unsigned long vaddr_end;
83};
84
85/*
86 * This work area lives in the .init.scratch section, which lives outside of
87 * the kernel proper. It is sized to hold the intermediate copy buffer and
88 * more than enough pagetable pages.
89 *
90 * By using this section, the kernel can be encrypted in place and it
91 * avoids any possibility of boot parameters or initramfs images being
92 * placed such that the in-place encryption logic overwrites them.  This
93 * section is 2MB aligned to allow for simple pagetable setup using only
94 * PMD entries (see vmlinux.lds.S).
95 */
96static char sme_workarea[2 * PMD_SIZE] __section(".init.scratch");
97
98static char sme_cmdline_arg[] __initdata = "mem_encrypt";
99static char sme_cmdline_on[]  __initdata = "on";
100static char sme_cmdline_off[] __initdata = "off";
101
102static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
103{
104	unsigned long pgd_start, pgd_end, pgd_size;
105	pgd_t *pgd_p;
106
107	pgd_start = ppd->vaddr & PGDIR_MASK;
108	pgd_end = ppd->vaddr_end & PGDIR_MASK;
109
110	pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
111
112	pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
113
114	memset(pgd_p, 0, pgd_size);
115}
116
117static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
118{
119	pgd_t *pgd;
120	p4d_t *p4d;
121	pud_t *pud;
122	pmd_t *pmd;
123
124	pgd = ppd->pgd + pgd_index(ppd->vaddr);
125	if (pgd_none(*pgd)) {
126		p4d = ppd->pgtable_area;
127		memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
128		ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
129		set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
130	}
131
132	p4d = p4d_offset(pgd, ppd->vaddr);
133	if (p4d_none(*p4d)) {
134		pud = ppd->pgtable_area;
135		memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
136		ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
137		set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
138	}
139
140	pud = pud_offset(p4d, ppd->vaddr);
141	if (pud_none(*pud)) {
142		pmd = ppd->pgtable_area;
143		memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
144		ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
145		set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
146	}
147
148	if (pud_large(*pud))
149		return NULL;
150
151	return pud;
152}
153
154static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
155{
156	pud_t *pud;
157	pmd_t *pmd;
158
159	pud = sme_prepare_pgd(ppd);
160	if (!pud)
161		return;
162
163	pmd = pmd_offset(pud, ppd->vaddr);
164	if (pmd_large(*pmd))
165		return;
166
167	set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
168}
169
170static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
171{
172	pud_t *pud;
173	pmd_t *pmd;
174	pte_t *pte;
175
176	pud = sme_prepare_pgd(ppd);
177	if (!pud)
178		return;
179
180	pmd = pmd_offset(pud, ppd->vaddr);
181	if (pmd_none(*pmd)) {
182		pte = ppd->pgtable_area;
183		memset(pte, 0, sizeof(*pte) * PTRS_PER_PTE);
184		ppd->pgtable_area += sizeof(*pte) * PTRS_PER_PTE;
185		set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
186	}
187
188	if (pmd_large(*pmd))
189		return;
190
191	pte = pte_offset_kernel(pmd, ppd->vaddr);
192	if (pte_none(*pte))
193		set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
194}
195
196static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
197{
198	while (ppd->vaddr < ppd->vaddr_end) {
199		sme_populate_pgd_large(ppd);
200
201		ppd->vaddr += PMD_SIZE;
202		ppd->paddr += PMD_SIZE;
203	}
204}
205
206static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
207{
208	while (ppd->vaddr < ppd->vaddr_end) {
209		sme_populate_pgd(ppd);
210
211		ppd->vaddr += PAGE_SIZE;
212		ppd->paddr += PAGE_SIZE;
213	}
214}
215
216static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
217				   pmdval_t pmd_flags, pteval_t pte_flags)
218{
219	unsigned long vaddr_end;
220
221	ppd->pmd_flags = pmd_flags;
222	ppd->pte_flags = pte_flags;
223
224	/* Save original end value since we modify the struct value */
225	vaddr_end = ppd->vaddr_end;
226
227	/* If start is not 2MB aligned, create PTE entries */
228	ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_SIZE);
229	__sme_map_range_pte(ppd);
230
231	/* Create PMD entries */
232	ppd->vaddr_end = vaddr_end & PMD_MASK;
233	__sme_map_range_pmd(ppd);
234
235	/* If end is not 2MB aligned, create PTE entries */
236	ppd->vaddr_end = vaddr_end;
237	__sme_map_range_pte(ppd);
238}
239
240static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
241{
242	__sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
243}
244
245static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
246{
247	__sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
248}
249
250static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
251{
252	__sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
253}
254
255static unsigned long __init sme_pgtable_calc(unsigned long len)
256{
257	unsigned long entries = 0, tables = 0;
258
259	/*
260	 * Perform a relatively simplistic calculation of the pagetable
261	 * entries that are needed. Those mappings will be covered mostly
262	 * by 2MB PMD entries so we can conservatively calculate the required
263	 * number of P4D, PUD and PMD structures needed to perform the
264	 * mappings.  For mappings that are not 2MB aligned, PTE mappings
265	 * would be needed for the start and end portion of the address range
266	 * that fall outside of the 2MB alignment.  This results in, at most,
267	 * two extra pages to hold PTE entries for each range that is mapped.
268	 * Incrementing the count for each covers the case where the addresses
269	 * cross entries.
270	 */
271
272	/* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
273	if (PTRS_PER_P4D > 1)
274		entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
275	entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
276	entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
277	entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
278
279	/*
280	 * Now calculate the added pagetable structures needed to populate
281	 * the new pagetables.
282	 */
283
284	if (PTRS_PER_P4D > 1)
285		tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
286	tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
287	tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
288
289	return entries + tables;
290}
291
292void __init sme_encrypt_kernel(struct boot_params *bp)
293{
294	unsigned long workarea_start, workarea_end, workarea_len;
295	unsigned long execute_start, execute_end, execute_len;
296	unsigned long kernel_start, kernel_end, kernel_len;
297	unsigned long initrd_start, initrd_end, initrd_len;
298	struct sme_populate_pgd_data ppd;
299	unsigned long pgtable_area_len;
300	unsigned long decrypted_base;
301
302	/*
303	 * This is early code, use an open coded check for SME instead of
304	 * using cc_platform_has(). This eliminates worries about removing
305	 * instrumentation or checking boot_cpu_data in the cc_platform_has()
306	 * function.
307	 */
308	if (!sme_get_me_mask() || sev_status & MSR_AMD64_SEV_ENABLED)
309		return;
310
311	/*
312	 * Prepare for encrypting the kernel and initrd by building new
313	 * pagetables with the necessary attributes needed to encrypt the
314	 * kernel in place.
315	 *
316	 *   One range of virtual addresses will map the memory occupied
317	 *   by the kernel and initrd as encrypted.
318	 *
319	 *   Another range of virtual addresses will map the memory occupied
320	 *   by the kernel and initrd as decrypted and write-protected.
321	 *
322	 *     The use of write-protect attribute will prevent any of the
323	 *     memory from being cached.
324	 */
325
326	/* Physical addresses gives us the identity mapped virtual addresses */
327	kernel_start = __pa_symbol(_text);
328	kernel_end = ALIGN(__pa_symbol(_end), PMD_SIZE);
329	kernel_len = kernel_end - kernel_start;
330
331	initrd_start = 0;
332	initrd_end = 0;
333	initrd_len = 0;
334#ifdef CONFIG_BLK_DEV_INITRD
335	initrd_len = (unsigned long)bp->hdr.ramdisk_size |
336		     ((unsigned long)bp->ext_ramdisk_size << 32);
337	if (initrd_len) {
338		initrd_start = (unsigned long)bp->hdr.ramdisk_image |
339			       ((unsigned long)bp->ext_ramdisk_image << 32);
340		initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
341		initrd_len = initrd_end - initrd_start;
342	}
343#endif
344
345	/*
346	 * We're running identity mapped, so we must obtain the address to the
347	 * SME encryption workarea using rip-relative addressing.
348	 */
349	asm ("lea sme_workarea(%%rip), %0"
350	     : "=r" (workarea_start)
351	     : "p" (sme_workarea));
352
353	/*
354	 * Calculate required number of workarea bytes needed:
355	 *   executable encryption area size:
356	 *     stack page (PAGE_SIZE)
357	 *     encryption routine page (PAGE_SIZE)
358	 *     intermediate copy buffer (PMD_SIZE)
359	 *   pagetable structures for the encryption of the kernel
360	 *   pagetable structures for workarea (in case not currently mapped)
361	 */
362	execute_start = workarea_start;
363	execute_end = execute_start + (PAGE_SIZE * 2) + PMD_SIZE;
364	execute_len = execute_end - execute_start;
365
366	/*
367	 * One PGD for both encrypted and decrypted mappings and a set of
368	 * PUDs and PMDs for each of the encrypted and decrypted mappings.
369	 */
370	pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
371	pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
372	if (initrd_len)
373		pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
374
375	/* PUDs and PMDs needed in the current pagetables for the workarea */
376	pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
377
378	/*
379	 * The total workarea includes the executable encryption area and
380	 * the pagetable area. The start of the workarea is already 2MB
381	 * aligned, align the end of the workarea on a 2MB boundary so that
382	 * we don't try to create/allocate PTE entries from the workarea
383	 * before it is mapped.
384	 */
385	workarea_len = execute_len + pgtable_area_len;
386	workarea_end = ALIGN(workarea_start + workarea_len, PMD_SIZE);
387
388	/*
389	 * Set the address to the start of where newly created pagetable
390	 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
391	 * structures are created when the workarea is added to the current
392	 * pagetables and when the new encrypted and decrypted kernel
393	 * mappings are populated.
394	 */
395	ppd.pgtable_area = (void *)execute_end;
396
397	/*
398	 * Make sure the current pagetable structure has entries for
399	 * addressing the workarea.
400	 */
401	ppd.pgd = (pgd_t *)native_read_cr3_pa();
402	ppd.paddr = workarea_start;
403	ppd.vaddr = workarea_start;
404	ppd.vaddr_end = workarea_end;
405	sme_map_range_decrypted(&ppd);
406
407	/* Flush the TLB - no globals so cr3 is enough */
408	native_write_cr3(__native_read_cr3());
409
410	/*
411	 * A new pagetable structure is being built to allow for the kernel
412	 * and initrd to be encrypted. It starts with an empty PGD that will
413	 * then be populated with new PUDs and PMDs as the encrypted and
414	 * decrypted kernel mappings are created.
415	 */
416	ppd.pgd = ppd.pgtable_area;
417	memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
418	ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
419
420	/*
421	 * A different PGD index/entry must be used to get different
422	 * pagetable entries for the decrypted mapping. Choose the next
423	 * PGD index and convert it to a virtual address to be used as
424	 * the base of the mapping.
425	 */
426	decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
427	if (initrd_len) {
428		unsigned long check_base;
429
430		check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
431		decrypted_base = max(decrypted_base, check_base);
432	}
433	decrypted_base <<= PGDIR_SHIFT;
434
435	/* Add encrypted kernel (identity) mappings */
436	ppd.paddr = kernel_start;
437	ppd.vaddr = kernel_start;
438	ppd.vaddr_end = kernel_end;
439	sme_map_range_encrypted(&ppd);
440
441	/* Add decrypted, write-protected kernel (non-identity) mappings */
442	ppd.paddr = kernel_start;
443	ppd.vaddr = kernel_start + decrypted_base;
444	ppd.vaddr_end = kernel_end + decrypted_base;
445	sme_map_range_decrypted_wp(&ppd);
446
447	if (initrd_len) {
448		/* Add encrypted initrd (identity) mappings */
449		ppd.paddr = initrd_start;
450		ppd.vaddr = initrd_start;
451		ppd.vaddr_end = initrd_end;
452		sme_map_range_encrypted(&ppd);
453		/*
454		 * Add decrypted, write-protected initrd (non-identity) mappings
455		 */
456		ppd.paddr = initrd_start;
457		ppd.vaddr = initrd_start + decrypted_base;
458		ppd.vaddr_end = initrd_end + decrypted_base;
459		sme_map_range_decrypted_wp(&ppd);
460	}
461
462	/* Add decrypted workarea mappings to both kernel mappings */
463	ppd.paddr = workarea_start;
464	ppd.vaddr = workarea_start;
465	ppd.vaddr_end = workarea_end;
466	sme_map_range_decrypted(&ppd);
467
468	ppd.paddr = workarea_start;
469	ppd.vaddr = workarea_start + decrypted_base;
470	ppd.vaddr_end = workarea_end + decrypted_base;
471	sme_map_range_decrypted(&ppd);
472
473	/* Perform the encryption */
474	sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
475			    kernel_len, workarea_start, (unsigned long)ppd.pgd);
476
477	if (initrd_len)
478		sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
479				    initrd_len, workarea_start,
480				    (unsigned long)ppd.pgd);
481
482	/*
483	 * At this point we are running encrypted.  Remove the mappings for
484	 * the decrypted areas - all that is needed for this is to remove
485	 * the PGD entry/entries.
486	 */
487	ppd.vaddr = kernel_start + decrypted_base;
488	ppd.vaddr_end = kernel_end + decrypted_base;
489	sme_clear_pgd(&ppd);
490
491	if (initrd_len) {
492		ppd.vaddr = initrd_start + decrypted_base;
493		ppd.vaddr_end = initrd_end + decrypted_base;
494		sme_clear_pgd(&ppd);
495	}
496
497	ppd.vaddr = workarea_start + decrypted_base;
498	ppd.vaddr_end = workarea_end + decrypted_base;
499	sme_clear_pgd(&ppd);
500
501	/* Flush the TLB - no globals so cr3 is enough */
502	native_write_cr3(__native_read_cr3());
503}
504
505void __init sme_enable(struct boot_params *bp)
506{
507	const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
508	unsigned int eax, ebx, ecx, edx;
509	unsigned long feature_mask;
510	unsigned long me_mask;
511	char buffer[16];
512	bool snp;
513	u64 msr;
514
515	snp = snp_init(bp);
516
517	/* Check for the SME/SEV support leaf */
518	eax = 0x80000000;
519	ecx = 0;
520	native_cpuid(&eax, &ebx, &ecx, &edx);
521	if (eax < 0x8000001f)
522		return;
523
524#define AMD_SME_BIT	BIT(0)
525#define AMD_SEV_BIT	BIT(1)
526
527	/*
528	 * Check for the SME/SEV feature:
529	 *   CPUID Fn8000_001F[EAX]
530	 *   - Bit 0 - Secure Memory Encryption support
531	 *   - Bit 1 - Secure Encrypted Virtualization support
532	 *   CPUID Fn8000_001F[EBX]
533	 *   - Bits 5:0 - Pagetable bit position used to indicate encryption
534	 */
535	eax = 0x8000001f;
536	ecx = 0;
537	native_cpuid(&eax, &ebx, &ecx, &edx);
538	/* Check whether SEV or SME is supported */
539	if (!(eax & (AMD_SEV_BIT | AMD_SME_BIT)))
540		return;
541
542	me_mask = 1UL << (ebx & 0x3f);
543
544	/* Check the SEV MSR whether SEV or SME is enabled */
545	sev_status   = __rdmsr(MSR_AMD64_SEV);
546	feature_mask = (sev_status & MSR_AMD64_SEV_ENABLED) ? AMD_SEV_BIT : AMD_SME_BIT;
547
548	/* The SEV-SNP CC blob should never be present unless SEV-SNP is enabled. */
549	if (snp && !(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
550		snp_abort();
551
552	/* Check if memory encryption is enabled */
553	if (feature_mask == AMD_SME_BIT) {
554		/*
555		 * No SME if Hypervisor bit is set. This check is here to
556		 * prevent a guest from trying to enable SME. For running as a
557		 * KVM guest the MSR_AMD64_SYSCFG will be sufficient, but there
558		 * might be other hypervisors which emulate that MSR as non-zero
559		 * or even pass it through to the guest.
560		 * A malicious hypervisor can still trick a guest into this
561		 * path, but there is no way to protect against that.
562		 */
563		eax = 1;
564		ecx = 0;
565		native_cpuid(&eax, &ebx, &ecx, &edx);
566		if (ecx & BIT(31))
567			return;
568
569		/* For SME, check the SYSCFG MSR */
570		msr = __rdmsr(MSR_AMD64_SYSCFG);
571		if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
572			return;
573	} else {
574		/* SEV state cannot be controlled by a command line option */
575		sme_me_mask = me_mask;
576		goto out;
577	}
578
579	/*
580	 * Fixups have not been applied to phys_base yet and we're running
581	 * identity mapped, so we must obtain the address to the SME command
582	 * line argument data using rip-relative addressing.
583	 */
584	asm ("lea sme_cmdline_arg(%%rip), %0"
585	     : "=r" (cmdline_arg)
586	     : "p" (sme_cmdline_arg));
587	asm ("lea sme_cmdline_on(%%rip), %0"
588	     : "=r" (cmdline_on)
589	     : "p" (sme_cmdline_on));
590	asm ("lea sme_cmdline_off(%%rip), %0"
591	     : "=r" (cmdline_off)
592	     : "p" (sme_cmdline_off));
593
594	if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
595		sme_me_mask = me_mask;
596
597	cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
598				     ((u64)bp->ext_cmd_line_ptr << 32));
599
600	if (cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer)) < 0)
601		goto out;
602
603	if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
604		sme_me_mask = me_mask;
605	else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
606		sme_me_mask = 0;
607
608out:
609	if (sme_me_mask) {
610		physical_mask &= ~sme_me_mask;
611		cc_vendor = CC_VENDOR_AMD;
612		cc_set_mask(sme_me_mask);
613	}
614}
615