xref: /kernel/linux/linux-6.6/arch/x86/mm/fault.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Copyright (C) 1995  Linus Torvalds
4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7#include <linux/sched.h>		/* test_thread_flag(), ...	*/
8#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
9#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
10#include <linux/extable.h>		/* search_exception_tables	*/
11#include <linux/memblock.h>		/* max_low_pfn			*/
12#include <linux/kfence.h>		/* kfence_handle_page_fault	*/
13#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
14#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
15#include <linux/perf_event.h>		/* perf_sw_event		*/
16#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
17#include <linux/prefetch.h>		/* prefetchw			*/
18#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
19#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
20#include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
21#include <linux/mm_types.h>
22#include <linux/mm.h>			/* find_and_lock_vma() */
23
24#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
25#include <asm/traps.h>			/* dotraplinkage, ...		*/
26#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
27#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
28#include <asm/vm86.h>			/* struct vm86			*/
29#include <asm/mmu_context.h>		/* vma_pkey()			*/
30#include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
31#include <asm/desc.h>			/* store_idt(), ...		*/
32#include <asm/cpu_entry_area.h>		/* exception stack		*/
33#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
34#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
35#include <asm/vdso.h>			/* fixup_vdso_exception()	*/
36#include <asm/irq_stack.h>
37
38#define CREATE_TRACE_POINTS
39#include <asm/trace/exceptions.h>
40
41/*
42 * Returns 0 if mmiotrace is disabled, or if the fault is not
43 * handled by mmiotrace:
44 */
45static nokprobe_inline int
46kmmio_fault(struct pt_regs *regs, unsigned long addr)
47{
48	if (unlikely(is_kmmio_active()))
49		if (kmmio_handler(regs, addr) == 1)
50			return -1;
51	return 0;
52}
53
54/*
55 * Prefetch quirks:
56 *
57 * 32-bit mode:
58 *
59 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
60 *   Check that here and ignore it.  This is AMD erratum #91.
61 *
62 * 64-bit mode:
63 *
64 *   Sometimes the CPU reports invalid exceptions on prefetch.
65 *   Check that here and ignore it.
66 *
67 * Opcode checker based on code by Richard Brunner.
68 */
69static inline int
70check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
71		      unsigned char opcode, int *prefetch)
72{
73	unsigned char instr_hi = opcode & 0xf0;
74	unsigned char instr_lo = opcode & 0x0f;
75
76	switch (instr_hi) {
77	case 0x20:
78	case 0x30:
79		/*
80		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
81		 * In X86_64 long mode, the CPU will signal invalid
82		 * opcode if some of these prefixes are present so
83		 * X86_64 will never get here anyway
84		 */
85		return ((instr_lo & 7) == 0x6);
86#ifdef CONFIG_X86_64
87	case 0x40:
88		/*
89		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
90		 */
91		return (!user_mode(regs) || user_64bit_mode(regs));
92#endif
93	case 0x60:
94		/* 0x64 thru 0x67 are valid prefixes in all modes. */
95		return (instr_lo & 0xC) == 0x4;
96	case 0xF0:
97		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
98		return !instr_lo || (instr_lo>>1) == 1;
99	case 0x00:
100		/* Prefetch instruction is 0x0F0D or 0x0F18 */
101		if (get_kernel_nofault(opcode, instr))
102			return 0;
103
104		*prefetch = (instr_lo == 0xF) &&
105			(opcode == 0x0D || opcode == 0x18);
106		return 0;
107	default:
108		return 0;
109	}
110}
111
112static bool is_amd_k8_pre_npt(void)
113{
114	struct cpuinfo_x86 *c = &boot_cpu_data;
115
116	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
117			c->x86_vendor == X86_VENDOR_AMD &&
118			c->x86 == 0xf && c->x86_model < 0x40);
119}
120
121static int
122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
123{
124	unsigned char *max_instr;
125	unsigned char *instr;
126	int prefetch = 0;
127
128	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
129	if (!is_amd_k8_pre_npt())
130		return 0;
131
132	/*
133	 * If it was a exec (instruction fetch) fault on NX page, then
134	 * do not ignore the fault:
135	 */
136	if (error_code & X86_PF_INSTR)
137		return 0;
138
139	instr = (void *)convert_ip_to_linear(current, regs);
140	max_instr = instr + 15;
141
142	/*
143	 * This code has historically always bailed out if IP points to a
144	 * not-present page (e.g. due to a race).  No one has ever
145	 * complained about this.
146	 */
147	pagefault_disable();
148
149	while (instr < max_instr) {
150		unsigned char opcode;
151
152		if (user_mode(regs)) {
153			if (get_user(opcode, (unsigned char __user *) instr))
154				break;
155		} else {
156			if (get_kernel_nofault(opcode, instr))
157				break;
158		}
159
160		instr++;
161
162		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
163			break;
164	}
165
166	pagefault_enable();
167	return prefetch;
168}
169
170DEFINE_SPINLOCK(pgd_lock);
171LIST_HEAD(pgd_list);
172
173#ifdef CONFIG_X86_32
174static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
175{
176	unsigned index = pgd_index(address);
177	pgd_t *pgd_k;
178	p4d_t *p4d, *p4d_k;
179	pud_t *pud, *pud_k;
180	pmd_t *pmd, *pmd_k;
181
182	pgd += index;
183	pgd_k = init_mm.pgd + index;
184
185	if (!pgd_present(*pgd_k))
186		return NULL;
187
188	/*
189	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
190	 * and redundant with the set_pmd() on non-PAE. As would
191	 * set_p4d/set_pud.
192	 */
193	p4d = p4d_offset(pgd, address);
194	p4d_k = p4d_offset(pgd_k, address);
195	if (!p4d_present(*p4d_k))
196		return NULL;
197
198	pud = pud_offset(p4d, address);
199	pud_k = pud_offset(p4d_k, address);
200	if (!pud_present(*pud_k))
201		return NULL;
202
203	pmd = pmd_offset(pud, address);
204	pmd_k = pmd_offset(pud_k, address);
205
206	if (pmd_present(*pmd) != pmd_present(*pmd_k))
207		set_pmd(pmd, *pmd_k);
208
209	if (!pmd_present(*pmd_k))
210		return NULL;
211	else
212		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
213
214	return pmd_k;
215}
216
217/*
218 *   Handle a fault on the vmalloc or module mapping area
219 *
220 *   This is needed because there is a race condition between the time
221 *   when the vmalloc mapping code updates the PMD to the point in time
222 *   where it synchronizes this update with the other page-tables in the
223 *   system.
224 *
225 *   In this race window another thread/CPU can map an area on the same
226 *   PMD, finds it already present and does not synchronize it with the
227 *   rest of the system yet. As a result v[mz]alloc might return areas
228 *   which are not mapped in every page-table in the system, causing an
229 *   unhandled page-fault when they are accessed.
230 */
231static noinline int vmalloc_fault(unsigned long address)
232{
233	unsigned long pgd_paddr;
234	pmd_t *pmd_k;
235	pte_t *pte_k;
236
237	/* Make sure we are in vmalloc area: */
238	if (!(address >= VMALLOC_START && address < VMALLOC_END))
239		return -1;
240
241	/*
242	 * Synchronize this task's top level page-table
243	 * with the 'reference' page table.
244	 *
245	 * Do _not_ use "current" here. We might be inside
246	 * an interrupt in the middle of a task switch..
247	 */
248	pgd_paddr = read_cr3_pa();
249	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
250	if (!pmd_k)
251		return -1;
252
253	if (pmd_large(*pmd_k))
254		return 0;
255
256	pte_k = pte_offset_kernel(pmd_k, address);
257	if (!pte_present(*pte_k))
258		return -1;
259
260	return 0;
261}
262NOKPROBE_SYMBOL(vmalloc_fault);
263
264void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
265{
266	unsigned long addr;
267
268	for (addr = start & PMD_MASK;
269	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
270	     addr += PMD_SIZE) {
271		struct page *page;
272
273		spin_lock(&pgd_lock);
274		list_for_each_entry(page, &pgd_list, lru) {
275			spinlock_t *pgt_lock;
276
277			/* the pgt_lock only for Xen */
278			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
279
280			spin_lock(pgt_lock);
281			vmalloc_sync_one(page_address(page), addr);
282			spin_unlock(pgt_lock);
283		}
284		spin_unlock(&pgd_lock);
285	}
286}
287
288static bool low_pfn(unsigned long pfn)
289{
290	return pfn < max_low_pfn;
291}
292
293static void dump_pagetable(unsigned long address)
294{
295	pgd_t *base = __va(read_cr3_pa());
296	pgd_t *pgd = &base[pgd_index(address)];
297	p4d_t *p4d;
298	pud_t *pud;
299	pmd_t *pmd;
300	pte_t *pte;
301
302#ifdef CONFIG_X86_PAE
303	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
304	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
305		goto out;
306#define pr_pde pr_cont
307#else
308#define pr_pde pr_info
309#endif
310	p4d = p4d_offset(pgd, address);
311	pud = pud_offset(p4d, address);
312	pmd = pmd_offset(pud, address);
313	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
314#undef pr_pde
315
316	/*
317	 * We must not directly access the pte in the highpte
318	 * case if the page table is located in highmem.
319	 * And let's rather not kmap-atomic the pte, just in case
320	 * it's allocated already:
321	 */
322	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
323		goto out;
324
325	pte = pte_offset_kernel(pmd, address);
326	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
327out:
328	pr_cont("\n");
329}
330
331#else /* CONFIG_X86_64: */
332
333#ifdef CONFIG_CPU_SUP_AMD
334static const char errata93_warning[] =
335KERN_ERR
336"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
337"******* Working around it, but it may cause SEGVs or burn power.\n"
338"******* Please consider a BIOS update.\n"
339"******* Disabling USB legacy in the BIOS may also help.\n";
340#endif
341
342static int bad_address(void *p)
343{
344	unsigned long dummy;
345
346	return get_kernel_nofault(dummy, (unsigned long *)p);
347}
348
349static void dump_pagetable(unsigned long address)
350{
351	pgd_t *base = __va(read_cr3_pa());
352	pgd_t *pgd = base + pgd_index(address);
353	p4d_t *p4d;
354	pud_t *pud;
355	pmd_t *pmd;
356	pte_t *pte;
357
358	if (bad_address(pgd))
359		goto bad;
360
361	pr_info("PGD %lx ", pgd_val(*pgd));
362
363	if (!pgd_present(*pgd))
364		goto out;
365
366	p4d = p4d_offset(pgd, address);
367	if (bad_address(p4d))
368		goto bad;
369
370	pr_cont("P4D %lx ", p4d_val(*p4d));
371	if (!p4d_present(*p4d) || p4d_large(*p4d))
372		goto out;
373
374	pud = pud_offset(p4d, address);
375	if (bad_address(pud))
376		goto bad;
377
378	pr_cont("PUD %lx ", pud_val(*pud));
379	if (!pud_present(*pud) || pud_large(*pud))
380		goto out;
381
382	pmd = pmd_offset(pud, address);
383	if (bad_address(pmd))
384		goto bad;
385
386	pr_cont("PMD %lx ", pmd_val(*pmd));
387	if (!pmd_present(*pmd) || pmd_large(*pmd))
388		goto out;
389
390	pte = pte_offset_kernel(pmd, address);
391	if (bad_address(pte))
392		goto bad;
393
394	pr_cont("PTE %lx", pte_val(*pte));
395out:
396	pr_cont("\n");
397	return;
398bad:
399	pr_info("BAD\n");
400}
401
402#endif /* CONFIG_X86_64 */
403
404/*
405 * Workaround for K8 erratum #93 & buggy BIOS.
406 *
407 * BIOS SMM functions are required to use a specific workaround
408 * to avoid corruption of the 64bit RIP register on C stepping K8.
409 *
410 * A lot of BIOS that didn't get tested properly miss this.
411 *
412 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
413 * Try to work around it here.
414 *
415 * Note we only handle faults in kernel here.
416 * Does nothing on 32-bit.
417 */
418static int is_errata93(struct pt_regs *regs, unsigned long address)
419{
420#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
421	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
422	    || boot_cpu_data.x86 != 0xf)
423		return 0;
424
425	if (user_mode(regs))
426		return 0;
427
428	if (address != regs->ip)
429		return 0;
430
431	if ((address >> 32) != 0)
432		return 0;
433
434	address |= 0xffffffffUL << 32;
435	if ((address >= (u64)_stext && address <= (u64)_etext) ||
436	    (address >= MODULES_VADDR && address <= MODULES_END)) {
437		printk_once(errata93_warning);
438		regs->ip = address;
439		return 1;
440	}
441#endif
442	return 0;
443}
444
445/*
446 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
447 * to illegal addresses >4GB.
448 *
449 * We catch this in the page fault handler because these addresses
450 * are not reachable. Just detect this case and return.  Any code
451 * segment in LDT is compatibility mode.
452 */
453static int is_errata100(struct pt_regs *regs, unsigned long address)
454{
455#ifdef CONFIG_X86_64
456	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
457		return 1;
458#endif
459	return 0;
460}
461
462/* Pentium F0 0F C7 C8 bug workaround: */
463static int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
464		       unsigned long address)
465{
466#ifdef CONFIG_X86_F00F_BUG
467	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
468	    idt_is_f00f_address(address)) {
469		handle_invalid_op(regs);
470		return 1;
471	}
472#endif
473	return 0;
474}
475
476static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
477{
478	u32 offset = (index >> 3) * sizeof(struct desc_struct);
479	unsigned long addr;
480	struct ldttss_desc desc;
481
482	if (index == 0) {
483		pr_alert("%s: NULL\n", name);
484		return;
485	}
486
487	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
488		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
489		return;
490	}
491
492	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
493			      sizeof(struct ldttss_desc))) {
494		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
495			 name, index);
496		return;
497	}
498
499	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
500#ifdef CONFIG_X86_64
501	addr |= ((u64)desc.base3 << 32);
502#endif
503	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
504		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
505}
506
507static void
508show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
509{
510	if (!oops_may_print())
511		return;
512
513	if (error_code & X86_PF_INSTR) {
514		unsigned int level;
515		pgd_t *pgd;
516		pte_t *pte;
517
518		pgd = __va(read_cr3_pa());
519		pgd += pgd_index(address);
520
521		pte = lookup_address_in_pgd(pgd, address, &level);
522
523		if (pte && pte_present(*pte) && !pte_exec(*pte))
524			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
525				from_kuid(&init_user_ns, current_uid()));
526		if (pte && pte_present(*pte) && pte_exec(*pte) &&
527				(pgd_flags(*pgd) & _PAGE_USER) &&
528				(__read_cr4() & X86_CR4_SMEP))
529			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
530				from_kuid(&init_user_ns, current_uid()));
531	}
532
533	if (address < PAGE_SIZE && !user_mode(regs))
534		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
535			(void *)address);
536	else
537		pr_alert("BUG: unable to handle page fault for address: %px\n",
538			(void *)address);
539
540	pr_alert("#PF: %s %s in %s mode\n",
541		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
542		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
543		 (error_code & X86_PF_WRITE) ? "write access" :
544					       "read access",
545			     user_mode(regs) ? "user" : "kernel");
546	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
547		 !(error_code & X86_PF_PROT) ? "not-present page" :
548		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
549		 (error_code & X86_PF_PK)    ? "protection keys violation" :
550					       "permissions violation");
551
552	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
553		struct desc_ptr idt, gdt;
554		u16 ldtr, tr;
555
556		/*
557		 * This can happen for quite a few reasons.  The more obvious
558		 * ones are faults accessing the GDT, or LDT.  Perhaps
559		 * surprisingly, if the CPU tries to deliver a benign or
560		 * contributory exception from user code and gets a page fault
561		 * during delivery, the page fault can be delivered as though
562		 * it originated directly from user code.  This could happen
563		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
564		 * kernel or IST stack.
565		 */
566		store_idt(&idt);
567
568		/* Usable even on Xen PV -- it's just slow. */
569		native_store_gdt(&gdt);
570
571		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
572			 idt.address, idt.size, gdt.address, gdt.size);
573
574		store_ldt(ldtr);
575		show_ldttss(&gdt, "LDTR", ldtr);
576
577		store_tr(tr);
578		show_ldttss(&gdt, "TR", tr);
579	}
580
581	dump_pagetable(address);
582}
583
584static noinline void
585pgtable_bad(struct pt_regs *regs, unsigned long error_code,
586	    unsigned long address)
587{
588	struct task_struct *tsk;
589	unsigned long flags;
590	int sig;
591
592	flags = oops_begin();
593	tsk = current;
594	sig = SIGKILL;
595
596	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
597	       tsk->comm, address);
598	dump_pagetable(address);
599
600	if (__die("Bad pagetable", regs, error_code))
601		sig = 0;
602
603	oops_end(flags, regs, sig);
604}
605
606static void sanitize_error_code(unsigned long address,
607				unsigned long *error_code)
608{
609	/*
610	 * To avoid leaking information about the kernel page
611	 * table layout, pretend that user-mode accesses to
612	 * kernel addresses are always protection faults.
613	 *
614	 * NB: This means that failed vsyscalls with vsyscall=none
615	 * will have the PROT bit.  This doesn't leak any
616	 * information and does not appear to cause any problems.
617	 */
618	if (address >= TASK_SIZE_MAX)
619		*error_code |= X86_PF_PROT;
620}
621
622static void set_signal_archinfo(unsigned long address,
623				unsigned long error_code)
624{
625	struct task_struct *tsk = current;
626
627	tsk->thread.trap_nr = X86_TRAP_PF;
628	tsk->thread.error_code = error_code | X86_PF_USER;
629	tsk->thread.cr2 = address;
630}
631
632static noinline void
633page_fault_oops(struct pt_regs *regs, unsigned long error_code,
634		unsigned long address)
635{
636#ifdef CONFIG_VMAP_STACK
637	struct stack_info info;
638#endif
639	unsigned long flags;
640	int sig;
641
642	if (user_mode(regs)) {
643		/*
644		 * Implicit kernel access from user mode?  Skip the stack
645		 * overflow and EFI special cases.
646		 */
647		goto oops;
648	}
649
650#ifdef CONFIG_VMAP_STACK
651	/*
652	 * Stack overflow?  During boot, we can fault near the initial
653	 * stack in the direct map, but that's not an overflow -- check
654	 * that we're in vmalloc space to avoid this.
655	 */
656	if (is_vmalloc_addr((void *)address) &&
657	    get_stack_guard_info((void *)address, &info)) {
658		/*
659		 * We're likely to be running with very little stack space
660		 * left.  It's plausible that we'd hit this condition but
661		 * double-fault even before we get this far, in which case
662		 * we're fine: the double-fault handler will deal with it.
663		 *
664		 * We don't want to make it all the way into the oops code
665		 * and then double-fault, though, because we're likely to
666		 * break the console driver and lose most of the stack dump.
667		 */
668		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
669			      handle_stack_overflow,
670			      ASM_CALL_ARG3,
671			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
672
673		unreachable();
674	}
675#endif
676
677	/*
678	 * Buggy firmware could access regions which might page fault.  If
679	 * this happens, EFI has a special OOPS path that will try to
680	 * avoid hanging the system.
681	 */
682	if (IS_ENABLED(CONFIG_EFI))
683		efi_crash_gracefully_on_page_fault(address);
684
685	/* Only not-present faults should be handled by KFENCE. */
686	if (!(error_code & X86_PF_PROT) &&
687	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
688		return;
689
690oops:
691	/*
692	 * Oops. The kernel tried to access some bad page. We'll have to
693	 * terminate things with extreme prejudice:
694	 */
695	flags = oops_begin();
696
697	show_fault_oops(regs, error_code, address);
698
699	if (task_stack_end_corrupted(current))
700		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
701
702	sig = SIGKILL;
703	if (__die("Oops", regs, error_code))
704		sig = 0;
705
706	/* Executive summary in case the body of the oops scrolled away */
707	printk(KERN_DEFAULT "CR2: %016lx\n", address);
708
709	oops_end(flags, regs, sig);
710}
711
712static noinline void
713kernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
714			 unsigned long address, int signal, int si_code,
715			 u32 pkey)
716{
717	WARN_ON_ONCE(user_mode(regs));
718
719	/* Are we prepared to handle this kernel fault? */
720	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
721		/*
722		 * Any interrupt that takes a fault gets the fixup. This makes
723		 * the below recursive fault logic only apply to a faults from
724		 * task context.
725		 */
726		if (in_interrupt())
727			return;
728
729		/*
730		 * Per the above we're !in_interrupt(), aka. task context.
731		 *
732		 * In this case we need to make sure we're not recursively
733		 * faulting through the emulate_vsyscall() logic.
734		 */
735		if (current->thread.sig_on_uaccess_err && signal) {
736			sanitize_error_code(address, &error_code);
737
738			set_signal_archinfo(address, error_code);
739
740			if (si_code == SEGV_PKUERR) {
741				force_sig_pkuerr((void __user *)address, pkey);
742			} else {
743				/* XXX: hwpoison faults will set the wrong code. */
744				force_sig_fault(signal, si_code, (void __user *)address);
745			}
746		}
747
748		/*
749		 * Barring that, we can do the fixup and be happy.
750		 */
751		return;
752	}
753
754	/*
755	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
756	 * instruction.
757	 */
758	if (is_prefetch(regs, error_code, address))
759		return;
760
761	page_fault_oops(regs, error_code, address);
762}
763
764/*
765 * Print out info about fatal segfaults, if the show_unhandled_signals
766 * sysctl is set:
767 */
768static inline void
769show_signal_msg(struct pt_regs *regs, unsigned long error_code,
770		unsigned long address, struct task_struct *tsk)
771{
772	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
773	/* This is a racy snapshot, but it's better than nothing. */
774	int cpu = raw_smp_processor_id();
775
776	if (!unhandled_signal(tsk, SIGSEGV))
777		return;
778
779	if (!printk_ratelimit())
780		return;
781
782	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
783		loglvl, tsk->comm, task_pid_nr(tsk), address,
784		(void *)regs->ip, (void *)regs->sp, error_code);
785
786	print_vma_addr(KERN_CONT " in ", regs->ip);
787
788	/*
789	 * Dump the likely CPU where the fatal segfault happened.
790	 * This can help identify faulty hardware.
791	 */
792	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
793	       topology_core_id(cpu), topology_physical_package_id(cpu));
794
795
796	printk(KERN_CONT "\n");
797
798	show_opcodes(regs, loglvl);
799}
800
801static void
802__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
803		       unsigned long address, u32 pkey, int si_code)
804{
805	struct task_struct *tsk = current;
806
807	if (!user_mode(regs)) {
808		kernelmode_fixup_or_oops(regs, error_code, address,
809					 SIGSEGV, si_code, pkey);
810		return;
811	}
812
813	if (!(error_code & X86_PF_USER)) {
814		/* Implicit user access to kernel memory -- just oops */
815		page_fault_oops(regs, error_code, address);
816		return;
817	}
818
819	/*
820	 * User mode accesses just cause a SIGSEGV.
821	 * It's possible to have interrupts off here:
822	 */
823	local_irq_enable();
824
825	/*
826	 * Valid to do another page fault here because this one came
827	 * from user space:
828	 */
829	if (is_prefetch(regs, error_code, address))
830		return;
831
832	if (is_errata100(regs, address))
833		return;
834
835	sanitize_error_code(address, &error_code);
836
837	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
838		return;
839
840	if (likely(show_unhandled_signals))
841		show_signal_msg(regs, error_code, address, tsk);
842
843	set_signal_archinfo(address, error_code);
844
845	if (si_code == SEGV_PKUERR)
846		force_sig_pkuerr((void __user *)address, pkey);
847	else
848		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
849
850	local_irq_disable();
851}
852
853static noinline void
854bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
855		     unsigned long address)
856{
857	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
858}
859
860static void
861__bad_area(struct pt_regs *regs, unsigned long error_code,
862	   unsigned long address, u32 pkey, int si_code)
863{
864	struct mm_struct *mm = current->mm;
865	/*
866	 * Something tried to access memory that isn't in our memory map..
867	 * Fix it, but check if it's kernel or user first..
868	 */
869	mmap_read_unlock(mm);
870
871	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
872}
873
874static inline bool bad_area_access_from_pkeys(unsigned long error_code,
875		struct vm_area_struct *vma)
876{
877	/* This code is always called on the current mm */
878	bool foreign = false;
879
880	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
881		return false;
882	if (error_code & X86_PF_PK)
883		return true;
884	/* this checks permission keys on the VMA: */
885	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
886				       (error_code & X86_PF_INSTR), foreign))
887		return true;
888	return false;
889}
890
891static noinline void
892bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
893		      unsigned long address, struct vm_area_struct *vma)
894{
895	/*
896	 * This OSPKE check is not strictly necessary at runtime.
897	 * But, doing it this way allows compiler optimizations
898	 * if pkeys are compiled out.
899	 */
900	if (bad_area_access_from_pkeys(error_code, vma)) {
901		/*
902		 * A protection key fault means that the PKRU value did not allow
903		 * access to some PTE.  Userspace can figure out what PKRU was
904		 * from the XSAVE state.  This function captures the pkey from
905		 * the vma and passes it to userspace so userspace can discover
906		 * which protection key was set on the PTE.
907		 *
908		 * If we get here, we know that the hardware signaled a X86_PF_PK
909		 * fault and that there was a VMA once we got in the fault
910		 * handler.  It does *not* guarantee that the VMA we find here
911		 * was the one that we faulted on.
912		 *
913		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
914		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
915		 * 3. T1   : faults...
916		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
917		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
918		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
919		 *	     faulted on a pte with its pkey=4.
920		 */
921		u32 pkey = vma_pkey(vma);
922
923		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
924	} else {
925		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
926	}
927}
928
929static void
930do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
931	  vm_fault_t fault)
932{
933	/* Kernel mode? Handle exceptions or die: */
934	if (!user_mode(regs)) {
935		kernelmode_fixup_or_oops(regs, error_code, address,
936					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
937		return;
938	}
939
940	/* User-space => ok to do another page fault: */
941	if (is_prefetch(regs, error_code, address))
942		return;
943
944	sanitize_error_code(address, &error_code);
945
946	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
947		return;
948
949	set_signal_archinfo(address, error_code);
950
951#ifdef CONFIG_MEMORY_FAILURE
952	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
953		struct task_struct *tsk = current;
954		unsigned lsb = 0;
955
956		pr_err(
957	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
958			tsk->comm, tsk->pid, address);
959		if (fault & VM_FAULT_HWPOISON_LARGE)
960			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
961		if (fault & VM_FAULT_HWPOISON)
962			lsb = PAGE_SHIFT;
963		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
964		return;
965	}
966#endif
967	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
968}
969
970static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
971{
972	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
973		return 0;
974
975	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
976		return 0;
977
978	return 1;
979}
980
981/*
982 * Handle a spurious fault caused by a stale TLB entry.
983 *
984 * This allows us to lazily refresh the TLB when increasing the
985 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
986 * eagerly is very expensive since that implies doing a full
987 * cross-processor TLB flush, even if no stale TLB entries exist
988 * on other processors.
989 *
990 * Spurious faults may only occur if the TLB contains an entry with
991 * fewer permission than the page table entry.  Non-present (P = 0)
992 * and reserved bit (R = 1) faults are never spurious.
993 *
994 * There are no security implications to leaving a stale TLB when
995 * increasing the permissions on a page.
996 *
997 * Returns non-zero if a spurious fault was handled, zero otherwise.
998 *
999 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1000 * (Optional Invalidation).
1001 */
1002static noinline int
1003spurious_kernel_fault(unsigned long error_code, unsigned long address)
1004{
1005	pgd_t *pgd;
1006	p4d_t *p4d;
1007	pud_t *pud;
1008	pmd_t *pmd;
1009	pte_t *pte;
1010	int ret;
1011
1012	/*
1013	 * Only writes to RO or instruction fetches from NX may cause
1014	 * spurious faults.
1015	 *
1016	 * These could be from user or supervisor accesses but the TLB
1017	 * is only lazily flushed after a kernel mapping protection
1018	 * change, so user accesses are not expected to cause spurious
1019	 * faults.
1020	 */
1021	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1022	    error_code != (X86_PF_INSTR | X86_PF_PROT))
1023		return 0;
1024
1025	pgd = init_mm.pgd + pgd_index(address);
1026	if (!pgd_present(*pgd))
1027		return 0;
1028
1029	p4d = p4d_offset(pgd, address);
1030	if (!p4d_present(*p4d))
1031		return 0;
1032
1033	if (p4d_large(*p4d))
1034		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1035
1036	pud = pud_offset(p4d, address);
1037	if (!pud_present(*pud))
1038		return 0;
1039
1040	if (pud_large(*pud))
1041		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1042
1043	pmd = pmd_offset(pud, address);
1044	if (!pmd_present(*pmd))
1045		return 0;
1046
1047	if (pmd_large(*pmd))
1048		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1049
1050	pte = pte_offset_kernel(pmd, address);
1051	if (!pte_present(*pte))
1052		return 0;
1053
1054	ret = spurious_kernel_fault_check(error_code, pte);
1055	if (!ret)
1056		return 0;
1057
1058	/*
1059	 * Make sure we have permissions in PMD.
1060	 * If not, then there's a bug in the page tables:
1061	 */
1062	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1063	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1064
1065	return ret;
1066}
1067NOKPROBE_SYMBOL(spurious_kernel_fault);
1068
1069int show_unhandled_signals = 1;
1070
1071static inline int
1072access_error(unsigned long error_code, struct vm_area_struct *vma)
1073{
1074	/* This is only called for the current mm, so: */
1075	bool foreign = false;
1076
1077	/*
1078	 * Read or write was blocked by protection keys.  This is
1079	 * always an unconditional error and can never result in
1080	 * a follow-up action to resolve the fault, like a COW.
1081	 */
1082	if (error_code & X86_PF_PK)
1083		return 1;
1084
1085	/*
1086	 * SGX hardware blocked the access.  This usually happens
1087	 * when the enclave memory contents have been destroyed, like
1088	 * after a suspend/resume cycle. In any case, the kernel can't
1089	 * fix the cause of the fault.  Handle the fault as an access
1090	 * error even in cases where no actual access violation
1091	 * occurred.  This allows userspace to rebuild the enclave in
1092	 * response to the signal.
1093	 */
1094	if (unlikely(error_code & X86_PF_SGX))
1095		return 1;
1096
1097	/*
1098	 * Make sure to check the VMA so that we do not perform
1099	 * faults just to hit a X86_PF_PK as soon as we fill in a
1100	 * page.
1101	 */
1102	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1103				       (error_code & X86_PF_INSTR), foreign))
1104		return 1;
1105
1106	/*
1107	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
1108	 * shadow stack VMAs. All other accesses result in an error.
1109	 */
1110	if (error_code & X86_PF_SHSTK) {
1111		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
1112			return 1;
1113		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1114			return 1;
1115		return 0;
1116	}
1117
1118	if (error_code & X86_PF_WRITE) {
1119		/* write, present and write, not present: */
1120		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
1121			return 1;
1122		if (unlikely(!(vma->vm_flags & VM_WRITE)))
1123			return 1;
1124		return 0;
1125	}
1126
1127	/* read, present: */
1128	if (unlikely(error_code & X86_PF_PROT))
1129		return 1;
1130
1131	/* read, not present: */
1132	if (unlikely(!vma_is_accessible(vma)))
1133		return 1;
1134
1135	return 0;
1136}
1137
1138bool fault_in_kernel_space(unsigned long address)
1139{
1140	/*
1141	 * On 64-bit systems, the vsyscall page is at an address above
1142	 * TASK_SIZE_MAX, but is not considered part of the kernel
1143	 * address space.
1144	 */
1145	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1146		return false;
1147
1148	return address >= TASK_SIZE_MAX;
1149}
1150
1151/*
1152 * Called for all faults where 'address' is part of the kernel address
1153 * space.  Might get called for faults that originate from *code* that
1154 * ran in userspace or the kernel.
1155 */
1156static void
1157do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1158		   unsigned long address)
1159{
1160	/*
1161	 * Protection keys exceptions only happen on user pages.  We
1162	 * have no user pages in the kernel portion of the address
1163	 * space, so do not expect them here.
1164	 */
1165	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1166
1167#ifdef CONFIG_X86_32
1168	/*
1169	 * We can fault-in kernel-space virtual memory on-demand. The
1170	 * 'reference' page table is init_mm.pgd.
1171	 *
1172	 * NOTE! We MUST NOT take any locks for this case. We may
1173	 * be in an interrupt or a critical region, and should
1174	 * only copy the information from the master page table,
1175	 * nothing more.
1176	 *
1177	 * Before doing this on-demand faulting, ensure that the
1178	 * fault is not any of the following:
1179	 * 1. A fault on a PTE with a reserved bit set.
1180	 * 2. A fault caused by a user-mode access.  (Do not demand-
1181	 *    fault kernel memory due to user-mode accesses).
1182	 * 3. A fault caused by a page-level protection violation.
1183	 *    (A demand fault would be on a non-present page which
1184	 *     would have X86_PF_PROT==0).
1185	 *
1186	 * This is only needed to close a race condition on x86-32 in
1187	 * the vmalloc mapping/unmapping code. See the comment above
1188	 * vmalloc_fault() for details. On x86-64 the race does not
1189	 * exist as the vmalloc mappings don't need to be synchronized
1190	 * there.
1191	 */
1192	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1193		if (vmalloc_fault(address) >= 0)
1194			return;
1195	}
1196#endif
1197
1198	if (is_f00f_bug(regs, hw_error_code, address))
1199		return;
1200
1201	/* Was the fault spurious, caused by lazy TLB invalidation? */
1202	if (spurious_kernel_fault(hw_error_code, address))
1203		return;
1204
1205	/* kprobes don't want to hook the spurious faults: */
1206	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1207		return;
1208
1209	/*
1210	 * Note, despite being a "bad area", there are quite a few
1211	 * acceptable reasons to get here, such as erratum fixups
1212	 * and handling kernel code that can fault, like get_user().
1213	 *
1214	 * Don't take the mm semaphore here. If we fixup a prefetch
1215	 * fault we could otherwise deadlock:
1216	 */
1217	bad_area_nosemaphore(regs, hw_error_code, address);
1218}
1219NOKPROBE_SYMBOL(do_kern_addr_fault);
1220
1221/*
1222 * Handle faults in the user portion of the address space.  Nothing in here
1223 * should check X86_PF_USER without a specific justification: for almost
1224 * all purposes, we should treat a normal kernel access to user memory
1225 * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
1226 * The one exception is AC flag handling, which is, per the x86
1227 * architecture, special for WRUSS.
1228 */
1229static inline
1230void do_user_addr_fault(struct pt_regs *regs,
1231			unsigned long error_code,
1232			unsigned long address)
1233{
1234	struct vm_area_struct *vma;
1235	struct task_struct *tsk;
1236	struct mm_struct *mm;
1237	vm_fault_t fault;
1238	unsigned int flags = FAULT_FLAG_DEFAULT;
1239
1240	tsk = current;
1241	mm = tsk->mm;
1242
1243	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
1244		/*
1245		 * Whoops, this is kernel mode code trying to execute from
1246		 * user memory.  Unless this is AMD erratum #93, which
1247		 * corrupts RIP such that it looks like a user address,
1248		 * this is unrecoverable.  Don't even try to look up the
1249		 * VMA or look for extable entries.
1250		 */
1251		if (is_errata93(regs, address))
1252			return;
1253
1254		page_fault_oops(regs, error_code, address);
1255		return;
1256	}
1257
1258	/* kprobes don't want to hook the spurious faults: */
1259	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
1260		return;
1261
1262	/*
1263	 * Reserved bits are never expected to be set on
1264	 * entries in the user portion of the page tables.
1265	 */
1266	if (unlikely(error_code & X86_PF_RSVD))
1267		pgtable_bad(regs, error_code, address);
1268
1269	/*
1270	 * If SMAP is on, check for invalid kernel (supervisor) access to user
1271	 * pages in the user address space.  The odd case here is WRUSS,
1272	 * which, according to the preliminary documentation, does not respect
1273	 * SMAP and will have the USER bit set so, in all cases, SMAP
1274	 * enforcement appears to be consistent with the USER bit.
1275	 */
1276	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1277		     !(error_code & X86_PF_USER) &&
1278		     !(regs->flags & X86_EFLAGS_AC))) {
1279		/*
1280		 * No extable entry here.  This was a kernel access to an
1281		 * invalid pointer.  get_kernel_nofault() will not get here.
1282		 */
1283		page_fault_oops(regs, error_code, address);
1284		return;
1285	}
1286
1287	/*
1288	 * If we're in an interrupt, have no user context or are running
1289	 * in a region with pagefaults disabled then we must not take the fault
1290	 */
1291	if (unlikely(faulthandler_disabled() || !mm)) {
1292		bad_area_nosemaphore(regs, error_code, address);
1293		return;
1294	}
1295
1296	/*
1297	 * It's safe to allow irq's after cr2 has been saved and the
1298	 * vmalloc fault has been handled.
1299	 *
1300	 * User-mode registers count as a user access even for any
1301	 * potential system fault or CPU buglet:
1302	 */
1303	if (user_mode(regs)) {
1304		local_irq_enable();
1305		flags |= FAULT_FLAG_USER;
1306	} else {
1307		if (regs->flags & X86_EFLAGS_IF)
1308			local_irq_enable();
1309	}
1310
1311	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1312
1313	/*
1314	 * Read-only permissions can not be expressed in shadow stack PTEs.
1315	 * Treat all shadow stack accesses as WRITE faults. This ensures
1316	 * that the MM will prepare everything (e.g., break COW) such that
1317	 * maybe_mkwrite() can create a proper shadow stack PTE.
1318	 */
1319	if (error_code & X86_PF_SHSTK)
1320		flags |= FAULT_FLAG_WRITE;
1321	if (error_code & X86_PF_WRITE)
1322		flags |= FAULT_FLAG_WRITE;
1323	if (error_code & X86_PF_INSTR)
1324		flags |= FAULT_FLAG_INSTRUCTION;
1325
1326#ifdef CONFIG_X86_64
1327	/*
1328	 * Faults in the vsyscall page might need emulation.  The
1329	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
1330	 * considered to be part of the user address space.
1331	 *
1332	 * The vsyscall page does not have a "real" VMA, so do this
1333	 * emulation before we go searching for VMAs.
1334	 *
1335	 * PKRU never rejects instruction fetches, so we don't need
1336	 * to consider the PF_PK bit.
1337	 */
1338	if (is_vsyscall_vaddr(address)) {
1339		if (emulate_vsyscall(error_code, regs, address))
1340			return;
1341	}
1342#endif
1343
1344	if (!(flags & FAULT_FLAG_USER))
1345		goto lock_mmap;
1346
1347	vma = lock_vma_under_rcu(mm, address);
1348	if (!vma)
1349		goto lock_mmap;
1350
1351	if (unlikely(access_error(error_code, vma))) {
1352		vma_end_read(vma);
1353		goto lock_mmap;
1354	}
1355	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
1356	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
1357		vma_end_read(vma);
1358
1359	if (!(fault & VM_FAULT_RETRY)) {
1360		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
1361		goto done;
1362	}
1363	count_vm_vma_lock_event(VMA_LOCK_RETRY);
1364
1365	/* Quick path to respond to signals */
1366	if (fault_signal_pending(fault, regs)) {
1367		if (!user_mode(regs))
1368			kernelmode_fixup_or_oops(regs, error_code, address,
1369						 SIGBUS, BUS_ADRERR,
1370						 ARCH_DEFAULT_PKEY);
1371		return;
1372	}
1373lock_mmap:
1374
1375retry:
1376	vma = lock_mm_and_find_vma(mm, address, regs);
1377	if (unlikely(!vma)) {
1378		bad_area_nosemaphore(regs, error_code, address);
1379		return;
1380	}
1381
1382	/*
1383	 * Ok, we have a good vm_area for this memory access, so
1384	 * we can handle it..
1385	 */
1386	if (unlikely(access_error(error_code, vma))) {
1387		bad_area_access_error(regs, error_code, address, vma);
1388		return;
1389	}
1390
1391	/*
1392	 * If for any reason at all we couldn't handle the fault,
1393	 * make sure we exit gracefully rather than endlessly redo
1394	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1395	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1396	 *
1397	 * Note that handle_userfault() may also release and reacquire mmap_lock
1398	 * (and not return with VM_FAULT_RETRY), when returning to userland to
1399	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1400	 * (potentially after handling any pending signal during the return to
1401	 * userland). The return to userland is identified whenever
1402	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1403	 */
1404	fault = handle_mm_fault(vma, address, flags, regs);
1405
1406	if (fault_signal_pending(fault, regs)) {
1407		/*
1408		 * Quick path to respond to signals.  The core mm code
1409		 * has unlocked the mm for us if we get here.
1410		 */
1411		if (!user_mode(regs))
1412			kernelmode_fixup_or_oops(regs, error_code, address,
1413						 SIGBUS, BUS_ADRERR,
1414						 ARCH_DEFAULT_PKEY);
1415		return;
1416	}
1417
1418	/* The fault is fully completed (including releasing mmap lock) */
1419	if (fault & VM_FAULT_COMPLETED)
1420		return;
1421
1422	/*
1423	 * If we need to retry the mmap_lock has already been released,
1424	 * and if there is a fatal signal pending there is no guarantee
1425	 * that we made any progress. Handle this case first.
1426	 */
1427	if (unlikely(fault & VM_FAULT_RETRY)) {
1428		flags |= FAULT_FLAG_TRIED;
1429		goto retry;
1430	}
1431
1432	mmap_read_unlock(mm);
1433done:
1434	if (likely(!(fault & VM_FAULT_ERROR)))
1435		return;
1436
1437	if (fatal_signal_pending(current) && !user_mode(regs)) {
1438		kernelmode_fixup_or_oops(regs, error_code, address,
1439					 0, 0, ARCH_DEFAULT_PKEY);
1440		return;
1441	}
1442
1443	if (fault & VM_FAULT_OOM) {
1444		/* Kernel mode? Handle exceptions or die: */
1445		if (!user_mode(regs)) {
1446			kernelmode_fixup_or_oops(regs, error_code, address,
1447						 SIGSEGV, SEGV_MAPERR,
1448						 ARCH_DEFAULT_PKEY);
1449			return;
1450		}
1451
1452		/*
1453		 * We ran out of memory, call the OOM killer, and return the
1454		 * userspace (which will retry the fault, or kill us if we got
1455		 * oom-killed):
1456		 */
1457		pagefault_out_of_memory();
1458	} else {
1459		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1460			     VM_FAULT_HWPOISON_LARGE))
1461			do_sigbus(regs, error_code, address, fault);
1462		else if (fault & VM_FAULT_SIGSEGV)
1463			bad_area_nosemaphore(regs, error_code, address);
1464		else
1465			BUG();
1466	}
1467}
1468NOKPROBE_SYMBOL(do_user_addr_fault);
1469
1470static __always_inline void
1471trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1472			 unsigned long address)
1473{
1474	if (!trace_pagefault_enabled())
1475		return;
1476
1477	if (user_mode(regs))
1478		trace_page_fault_user(address, regs, error_code);
1479	else
1480		trace_page_fault_kernel(address, regs, error_code);
1481}
1482
1483static __always_inline void
1484handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1485			      unsigned long address)
1486{
1487	trace_page_fault_entries(regs, error_code, address);
1488
1489	if (unlikely(kmmio_fault(regs, address)))
1490		return;
1491
1492	/* Was the fault on kernel-controlled part of the address space? */
1493	if (unlikely(fault_in_kernel_space(address))) {
1494		do_kern_addr_fault(regs, error_code, address);
1495	} else {
1496		do_user_addr_fault(regs, error_code, address);
1497		/*
1498		 * User address page fault handling might have reenabled
1499		 * interrupts. Fixing up all potential exit points of
1500		 * do_user_addr_fault() and its leaf functions is just not
1501		 * doable w/o creating an unholy mess or turning the code
1502		 * upside down.
1503		 */
1504		local_irq_disable();
1505	}
1506}
1507
1508DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1509{
1510	unsigned long address = read_cr2();
1511	irqentry_state_t state;
1512
1513	prefetchw(&current->mm->mmap_lock);
1514
1515	/*
1516	 * KVM uses #PF vector to deliver 'page not present' events to guests
1517	 * (asynchronous page fault mechanism). The event happens when a
1518	 * userspace task is trying to access some valid (from guest's point of
1519	 * view) memory which is not currently mapped by the host (e.g. the
1520	 * memory is swapped out). Note, the corresponding "page ready" event
1521	 * which is injected when the memory becomes available, is delivered via
1522	 * an interrupt mechanism and not a #PF exception
1523	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1524	 *
1525	 * We are relying on the interrupted context being sane (valid RSP,
1526	 * relevant locks not held, etc.), which is fine as long as the
1527	 * interrupted context had IF=1.  We are also relying on the KVM
1528	 * async pf type field and CR2 being read consistently instead of
1529	 * getting values from real and async page faults mixed up.
1530	 *
1531	 * Fingers crossed.
1532	 *
1533	 * The async #PF handling code takes care of idtentry handling
1534	 * itself.
1535	 */
1536	if (kvm_handle_async_pf(regs, (u32)address))
1537		return;
1538
1539	/*
1540	 * Entry handling for valid #PF from kernel mode is slightly
1541	 * different: RCU is already watching and ct_irq_enter() must not
1542	 * be invoked because a kernel fault on a user space address might
1543	 * sleep.
1544	 *
1545	 * In case the fault hit a RCU idle region the conditional entry
1546	 * code reenabled RCU to avoid subsequent wreckage which helps
1547	 * debuggability.
1548	 */
1549	state = irqentry_enter(regs);
1550
1551	instrumentation_begin();
1552	handle_page_fault(regs, error_code, address);
1553	instrumentation_end();
1554
1555	irqentry_exit(regs, state);
1556}
1557