162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci *  Copyright (C) 1995  Linus Torvalds
462306a36Sopenharmony_ci *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
562306a36Sopenharmony_ci *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
662306a36Sopenharmony_ci */
762306a36Sopenharmony_ci#include <linux/sched.h>		/* test_thread_flag(), ...	*/
862306a36Sopenharmony_ci#include <linux/sched/task_stack.h>	/* task_stack_*(), ...		*/
962306a36Sopenharmony_ci#include <linux/kdebug.h>		/* oops_begin/end, ...		*/
1062306a36Sopenharmony_ci#include <linux/extable.h>		/* search_exception_tables	*/
1162306a36Sopenharmony_ci#include <linux/memblock.h>		/* max_low_pfn			*/
1262306a36Sopenharmony_ci#include <linux/kfence.h>		/* kfence_handle_page_fault	*/
1362306a36Sopenharmony_ci#include <linux/kprobes.h>		/* NOKPROBE_SYMBOL, ...		*/
1462306a36Sopenharmony_ci#include <linux/mmiotrace.h>		/* kmmio_handler, ...		*/
1562306a36Sopenharmony_ci#include <linux/perf_event.h>		/* perf_sw_event		*/
1662306a36Sopenharmony_ci#include <linux/hugetlb.h>		/* hstate_index_to_shift	*/
1762306a36Sopenharmony_ci#include <linux/prefetch.h>		/* prefetchw			*/
1862306a36Sopenharmony_ci#include <linux/context_tracking.h>	/* exception_enter(), ...	*/
1962306a36Sopenharmony_ci#include <linux/uaccess.h>		/* faulthandler_disabled()	*/
2062306a36Sopenharmony_ci#include <linux/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
2162306a36Sopenharmony_ci#include <linux/mm_types.h>
2262306a36Sopenharmony_ci#include <linux/mm.h>			/* find_and_lock_vma() */
2362306a36Sopenharmony_ci
2462306a36Sopenharmony_ci#include <asm/cpufeature.h>		/* boot_cpu_has, ...		*/
2562306a36Sopenharmony_ci#include <asm/traps.h>			/* dotraplinkage, ...		*/
2662306a36Sopenharmony_ci#include <asm/fixmap.h>			/* VSYSCALL_ADDR		*/
2762306a36Sopenharmony_ci#include <asm/vsyscall.h>		/* emulate_vsyscall		*/
2862306a36Sopenharmony_ci#include <asm/vm86.h>			/* struct vm86			*/
2962306a36Sopenharmony_ci#include <asm/mmu_context.h>		/* vma_pkey()			*/
3062306a36Sopenharmony_ci#include <asm/efi.h>			/* efi_crash_gracefully_on_page_fault()*/
3162306a36Sopenharmony_ci#include <asm/desc.h>			/* store_idt(), ...		*/
3262306a36Sopenharmony_ci#include <asm/cpu_entry_area.h>		/* exception stack		*/
3362306a36Sopenharmony_ci#include <asm/pgtable_areas.h>		/* VMALLOC_START, ...		*/
3462306a36Sopenharmony_ci#include <asm/kvm_para.h>		/* kvm_handle_async_pf		*/
3562306a36Sopenharmony_ci#include <asm/vdso.h>			/* fixup_vdso_exception()	*/
3662306a36Sopenharmony_ci#include <asm/irq_stack.h>
3762306a36Sopenharmony_ci
3862306a36Sopenharmony_ci#define CREATE_TRACE_POINTS
3962306a36Sopenharmony_ci#include <asm/trace/exceptions.h>
4062306a36Sopenharmony_ci
4162306a36Sopenharmony_ci/*
4262306a36Sopenharmony_ci * Returns 0 if mmiotrace is disabled, or if the fault is not
4362306a36Sopenharmony_ci * handled by mmiotrace:
4462306a36Sopenharmony_ci */
4562306a36Sopenharmony_cistatic nokprobe_inline int
4662306a36Sopenharmony_cikmmio_fault(struct pt_regs *regs, unsigned long addr)
4762306a36Sopenharmony_ci{
4862306a36Sopenharmony_ci	if (unlikely(is_kmmio_active()))
4962306a36Sopenharmony_ci		if (kmmio_handler(regs, addr) == 1)
5062306a36Sopenharmony_ci			return -1;
5162306a36Sopenharmony_ci	return 0;
5262306a36Sopenharmony_ci}
5362306a36Sopenharmony_ci
5462306a36Sopenharmony_ci/*
5562306a36Sopenharmony_ci * Prefetch quirks:
5662306a36Sopenharmony_ci *
5762306a36Sopenharmony_ci * 32-bit mode:
5862306a36Sopenharmony_ci *
5962306a36Sopenharmony_ci *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
6062306a36Sopenharmony_ci *   Check that here and ignore it.  This is AMD erratum #91.
6162306a36Sopenharmony_ci *
6262306a36Sopenharmony_ci * 64-bit mode:
6362306a36Sopenharmony_ci *
6462306a36Sopenharmony_ci *   Sometimes the CPU reports invalid exceptions on prefetch.
6562306a36Sopenharmony_ci *   Check that here and ignore it.
6662306a36Sopenharmony_ci *
6762306a36Sopenharmony_ci * Opcode checker based on code by Richard Brunner.
6862306a36Sopenharmony_ci */
6962306a36Sopenharmony_cistatic inline int
7062306a36Sopenharmony_cicheck_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
7162306a36Sopenharmony_ci		      unsigned char opcode, int *prefetch)
7262306a36Sopenharmony_ci{
7362306a36Sopenharmony_ci	unsigned char instr_hi = opcode & 0xf0;
7462306a36Sopenharmony_ci	unsigned char instr_lo = opcode & 0x0f;
7562306a36Sopenharmony_ci
7662306a36Sopenharmony_ci	switch (instr_hi) {
7762306a36Sopenharmony_ci	case 0x20:
7862306a36Sopenharmony_ci	case 0x30:
7962306a36Sopenharmony_ci		/*
8062306a36Sopenharmony_ci		 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
8162306a36Sopenharmony_ci		 * In X86_64 long mode, the CPU will signal invalid
8262306a36Sopenharmony_ci		 * opcode if some of these prefixes are present so
8362306a36Sopenharmony_ci		 * X86_64 will never get here anyway
8462306a36Sopenharmony_ci		 */
8562306a36Sopenharmony_ci		return ((instr_lo & 7) == 0x6);
8662306a36Sopenharmony_ci#ifdef CONFIG_X86_64
8762306a36Sopenharmony_ci	case 0x40:
8862306a36Sopenharmony_ci		/*
8962306a36Sopenharmony_ci		 * In 64-bit mode 0x40..0x4F are valid REX prefixes
9062306a36Sopenharmony_ci		 */
9162306a36Sopenharmony_ci		return (!user_mode(regs) || user_64bit_mode(regs));
9262306a36Sopenharmony_ci#endif
9362306a36Sopenharmony_ci	case 0x60:
9462306a36Sopenharmony_ci		/* 0x64 thru 0x67 are valid prefixes in all modes. */
9562306a36Sopenharmony_ci		return (instr_lo & 0xC) == 0x4;
9662306a36Sopenharmony_ci	case 0xF0:
9762306a36Sopenharmony_ci		/* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
9862306a36Sopenharmony_ci		return !instr_lo || (instr_lo>>1) == 1;
9962306a36Sopenharmony_ci	case 0x00:
10062306a36Sopenharmony_ci		/* Prefetch instruction is 0x0F0D or 0x0F18 */
10162306a36Sopenharmony_ci		if (get_kernel_nofault(opcode, instr))
10262306a36Sopenharmony_ci			return 0;
10362306a36Sopenharmony_ci
10462306a36Sopenharmony_ci		*prefetch = (instr_lo == 0xF) &&
10562306a36Sopenharmony_ci			(opcode == 0x0D || opcode == 0x18);
10662306a36Sopenharmony_ci		return 0;
10762306a36Sopenharmony_ci	default:
10862306a36Sopenharmony_ci		return 0;
10962306a36Sopenharmony_ci	}
11062306a36Sopenharmony_ci}
11162306a36Sopenharmony_ci
11262306a36Sopenharmony_cistatic bool is_amd_k8_pre_npt(void)
11362306a36Sopenharmony_ci{
11462306a36Sopenharmony_ci	struct cpuinfo_x86 *c = &boot_cpu_data;
11562306a36Sopenharmony_ci
11662306a36Sopenharmony_ci	return unlikely(IS_ENABLED(CONFIG_CPU_SUP_AMD) &&
11762306a36Sopenharmony_ci			c->x86_vendor == X86_VENDOR_AMD &&
11862306a36Sopenharmony_ci			c->x86 == 0xf && c->x86_model < 0x40);
11962306a36Sopenharmony_ci}
12062306a36Sopenharmony_ci
12162306a36Sopenharmony_cistatic int
12262306a36Sopenharmony_ciis_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
12362306a36Sopenharmony_ci{
12462306a36Sopenharmony_ci	unsigned char *max_instr;
12562306a36Sopenharmony_ci	unsigned char *instr;
12662306a36Sopenharmony_ci	int prefetch = 0;
12762306a36Sopenharmony_ci
12862306a36Sopenharmony_ci	/* Erratum #91 affects AMD K8, pre-NPT CPUs */
12962306a36Sopenharmony_ci	if (!is_amd_k8_pre_npt())
13062306a36Sopenharmony_ci		return 0;
13162306a36Sopenharmony_ci
13262306a36Sopenharmony_ci	/*
13362306a36Sopenharmony_ci	 * If it was a exec (instruction fetch) fault on NX page, then
13462306a36Sopenharmony_ci	 * do not ignore the fault:
13562306a36Sopenharmony_ci	 */
13662306a36Sopenharmony_ci	if (error_code & X86_PF_INSTR)
13762306a36Sopenharmony_ci		return 0;
13862306a36Sopenharmony_ci
13962306a36Sopenharmony_ci	instr = (void *)convert_ip_to_linear(current, regs);
14062306a36Sopenharmony_ci	max_instr = instr + 15;
14162306a36Sopenharmony_ci
14262306a36Sopenharmony_ci	/*
14362306a36Sopenharmony_ci	 * This code has historically always bailed out if IP points to a
14462306a36Sopenharmony_ci	 * not-present page (e.g. due to a race).  No one has ever
14562306a36Sopenharmony_ci	 * complained about this.
14662306a36Sopenharmony_ci	 */
14762306a36Sopenharmony_ci	pagefault_disable();
14862306a36Sopenharmony_ci
14962306a36Sopenharmony_ci	while (instr < max_instr) {
15062306a36Sopenharmony_ci		unsigned char opcode;
15162306a36Sopenharmony_ci
15262306a36Sopenharmony_ci		if (user_mode(regs)) {
15362306a36Sopenharmony_ci			if (get_user(opcode, (unsigned char __user *) instr))
15462306a36Sopenharmony_ci				break;
15562306a36Sopenharmony_ci		} else {
15662306a36Sopenharmony_ci			if (get_kernel_nofault(opcode, instr))
15762306a36Sopenharmony_ci				break;
15862306a36Sopenharmony_ci		}
15962306a36Sopenharmony_ci
16062306a36Sopenharmony_ci		instr++;
16162306a36Sopenharmony_ci
16262306a36Sopenharmony_ci		if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
16362306a36Sopenharmony_ci			break;
16462306a36Sopenharmony_ci	}
16562306a36Sopenharmony_ci
16662306a36Sopenharmony_ci	pagefault_enable();
16762306a36Sopenharmony_ci	return prefetch;
16862306a36Sopenharmony_ci}
16962306a36Sopenharmony_ci
17062306a36Sopenharmony_ciDEFINE_SPINLOCK(pgd_lock);
17162306a36Sopenharmony_ciLIST_HEAD(pgd_list);
17262306a36Sopenharmony_ci
17362306a36Sopenharmony_ci#ifdef CONFIG_X86_32
17462306a36Sopenharmony_cistatic inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
17562306a36Sopenharmony_ci{
17662306a36Sopenharmony_ci	unsigned index = pgd_index(address);
17762306a36Sopenharmony_ci	pgd_t *pgd_k;
17862306a36Sopenharmony_ci	p4d_t *p4d, *p4d_k;
17962306a36Sopenharmony_ci	pud_t *pud, *pud_k;
18062306a36Sopenharmony_ci	pmd_t *pmd, *pmd_k;
18162306a36Sopenharmony_ci
18262306a36Sopenharmony_ci	pgd += index;
18362306a36Sopenharmony_ci	pgd_k = init_mm.pgd + index;
18462306a36Sopenharmony_ci
18562306a36Sopenharmony_ci	if (!pgd_present(*pgd_k))
18662306a36Sopenharmony_ci		return NULL;
18762306a36Sopenharmony_ci
18862306a36Sopenharmony_ci	/*
18962306a36Sopenharmony_ci	 * set_pgd(pgd, *pgd_k); here would be useless on PAE
19062306a36Sopenharmony_ci	 * and redundant with the set_pmd() on non-PAE. As would
19162306a36Sopenharmony_ci	 * set_p4d/set_pud.
19262306a36Sopenharmony_ci	 */
19362306a36Sopenharmony_ci	p4d = p4d_offset(pgd, address);
19462306a36Sopenharmony_ci	p4d_k = p4d_offset(pgd_k, address);
19562306a36Sopenharmony_ci	if (!p4d_present(*p4d_k))
19662306a36Sopenharmony_ci		return NULL;
19762306a36Sopenharmony_ci
19862306a36Sopenharmony_ci	pud = pud_offset(p4d, address);
19962306a36Sopenharmony_ci	pud_k = pud_offset(p4d_k, address);
20062306a36Sopenharmony_ci	if (!pud_present(*pud_k))
20162306a36Sopenharmony_ci		return NULL;
20262306a36Sopenharmony_ci
20362306a36Sopenharmony_ci	pmd = pmd_offset(pud, address);
20462306a36Sopenharmony_ci	pmd_k = pmd_offset(pud_k, address);
20562306a36Sopenharmony_ci
20662306a36Sopenharmony_ci	if (pmd_present(*pmd) != pmd_present(*pmd_k))
20762306a36Sopenharmony_ci		set_pmd(pmd, *pmd_k);
20862306a36Sopenharmony_ci
20962306a36Sopenharmony_ci	if (!pmd_present(*pmd_k))
21062306a36Sopenharmony_ci		return NULL;
21162306a36Sopenharmony_ci	else
21262306a36Sopenharmony_ci		BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
21362306a36Sopenharmony_ci
21462306a36Sopenharmony_ci	return pmd_k;
21562306a36Sopenharmony_ci}
21662306a36Sopenharmony_ci
21762306a36Sopenharmony_ci/*
21862306a36Sopenharmony_ci *   Handle a fault on the vmalloc or module mapping area
21962306a36Sopenharmony_ci *
22062306a36Sopenharmony_ci *   This is needed because there is a race condition between the time
22162306a36Sopenharmony_ci *   when the vmalloc mapping code updates the PMD to the point in time
22262306a36Sopenharmony_ci *   where it synchronizes this update with the other page-tables in the
22362306a36Sopenharmony_ci *   system.
22462306a36Sopenharmony_ci *
22562306a36Sopenharmony_ci *   In this race window another thread/CPU can map an area on the same
22662306a36Sopenharmony_ci *   PMD, finds it already present and does not synchronize it with the
22762306a36Sopenharmony_ci *   rest of the system yet. As a result v[mz]alloc might return areas
22862306a36Sopenharmony_ci *   which are not mapped in every page-table in the system, causing an
22962306a36Sopenharmony_ci *   unhandled page-fault when they are accessed.
23062306a36Sopenharmony_ci */
23162306a36Sopenharmony_cistatic noinline int vmalloc_fault(unsigned long address)
23262306a36Sopenharmony_ci{
23362306a36Sopenharmony_ci	unsigned long pgd_paddr;
23462306a36Sopenharmony_ci	pmd_t *pmd_k;
23562306a36Sopenharmony_ci	pte_t *pte_k;
23662306a36Sopenharmony_ci
23762306a36Sopenharmony_ci	/* Make sure we are in vmalloc area: */
23862306a36Sopenharmony_ci	if (!(address >= VMALLOC_START && address < VMALLOC_END))
23962306a36Sopenharmony_ci		return -1;
24062306a36Sopenharmony_ci
24162306a36Sopenharmony_ci	/*
24262306a36Sopenharmony_ci	 * Synchronize this task's top level page-table
24362306a36Sopenharmony_ci	 * with the 'reference' page table.
24462306a36Sopenharmony_ci	 *
24562306a36Sopenharmony_ci	 * Do _not_ use "current" here. We might be inside
24662306a36Sopenharmony_ci	 * an interrupt in the middle of a task switch..
24762306a36Sopenharmony_ci	 */
24862306a36Sopenharmony_ci	pgd_paddr = read_cr3_pa();
24962306a36Sopenharmony_ci	pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
25062306a36Sopenharmony_ci	if (!pmd_k)
25162306a36Sopenharmony_ci		return -1;
25262306a36Sopenharmony_ci
25362306a36Sopenharmony_ci	if (pmd_large(*pmd_k))
25462306a36Sopenharmony_ci		return 0;
25562306a36Sopenharmony_ci
25662306a36Sopenharmony_ci	pte_k = pte_offset_kernel(pmd_k, address);
25762306a36Sopenharmony_ci	if (!pte_present(*pte_k))
25862306a36Sopenharmony_ci		return -1;
25962306a36Sopenharmony_ci
26062306a36Sopenharmony_ci	return 0;
26162306a36Sopenharmony_ci}
26262306a36Sopenharmony_ciNOKPROBE_SYMBOL(vmalloc_fault);
26362306a36Sopenharmony_ci
26462306a36Sopenharmony_civoid arch_sync_kernel_mappings(unsigned long start, unsigned long end)
26562306a36Sopenharmony_ci{
26662306a36Sopenharmony_ci	unsigned long addr;
26762306a36Sopenharmony_ci
26862306a36Sopenharmony_ci	for (addr = start & PMD_MASK;
26962306a36Sopenharmony_ci	     addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
27062306a36Sopenharmony_ci	     addr += PMD_SIZE) {
27162306a36Sopenharmony_ci		struct page *page;
27262306a36Sopenharmony_ci
27362306a36Sopenharmony_ci		spin_lock(&pgd_lock);
27462306a36Sopenharmony_ci		list_for_each_entry(page, &pgd_list, lru) {
27562306a36Sopenharmony_ci			spinlock_t *pgt_lock;
27662306a36Sopenharmony_ci
27762306a36Sopenharmony_ci			/* the pgt_lock only for Xen */
27862306a36Sopenharmony_ci			pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
27962306a36Sopenharmony_ci
28062306a36Sopenharmony_ci			spin_lock(pgt_lock);
28162306a36Sopenharmony_ci			vmalloc_sync_one(page_address(page), addr);
28262306a36Sopenharmony_ci			spin_unlock(pgt_lock);
28362306a36Sopenharmony_ci		}
28462306a36Sopenharmony_ci		spin_unlock(&pgd_lock);
28562306a36Sopenharmony_ci	}
28662306a36Sopenharmony_ci}
28762306a36Sopenharmony_ci
28862306a36Sopenharmony_cistatic bool low_pfn(unsigned long pfn)
28962306a36Sopenharmony_ci{
29062306a36Sopenharmony_ci	return pfn < max_low_pfn;
29162306a36Sopenharmony_ci}
29262306a36Sopenharmony_ci
29362306a36Sopenharmony_cistatic void dump_pagetable(unsigned long address)
29462306a36Sopenharmony_ci{
29562306a36Sopenharmony_ci	pgd_t *base = __va(read_cr3_pa());
29662306a36Sopenharmony_ci	pgd_t *pgd = &base[pgd_index(address)];
29762306a36Sopenharmony_ci	p4d_t *p4d;
29862306a36Sopenharmony_ci	pud_t *pud;
29962306a36Sopenharmony_ci	pmd_t *pmd;
30062306a36Sopenharmony_ci	pte_t *pte;
30162306a36Sopenharmony_ci
30262306a36Sopenharmony_ci#ifdef CONFIG_X86_PAE
30362306a36Sopenharmony_ci	pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
30462306a36Sopenharmony_ci	if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
30562306a36Sopenharmony_ci		goto out;
30662306a36Sopenharmony_ci#define pr_pde pr_cont
30762306a36Sopenharmony_ci#else
30862306a36Sopenharmony_ci#define pr_pde pr_info
30962306a36Sopenharmony_ci#endif
31062306a36Sopenharmony_ci	p4d = p4d_offset(pgd, address);
31162306a36Sopenharmony_ci	pud = pud_offset(p4d, address);
31262306a36Sopenharmony_ci	pmd = pmd_offset(pud, address);
31362306a36Sopenharmony_ci	pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
31462306a36Sopenharmony_ci#undef pr_pde
31562306a36Sopenharmony_ci
31662306a36Sopenharmony_ci	/*
31762306a36Sopenharmony_ci	 * We must not directly access the pte in the highpte
31862306a36Sopenharmony_ci	 * case if the page table is located in highmem.
31962306a36Sopenharmony_ci	 * And let's rather not kmap-atomic the pte, just in case
32062306a36Sopenharmony_ci	 * it's allocated already:
32162306a36Sopenharmony_ci	 */
32262306a36Sopenharmony_ci	if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
32362306a36Sopenharmony_ci		goto out;
32462306a36Sopenharmony_ci
32562306a36Sopenharmony_ci	pte = pte_offset_kernel(pmd, address);
32662306a36Sopenharmony_ci	pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
32762306a36Sopenharmony_ciout:
32862306a36Sopenharmony_ci	pr_cont("\n");
32962306a36Sopenharmony_ci}
33062306a36Sopenharmony_ci
33162306a36Sopenharmony_ci#else /* CONFIG_X86_64: */
33262306a36Sopenharmony_ci
33362306a36Sopenharmony_ci#ifdef CONFIG_CPU_SUP_AMD
33462306a36Sopenharmony_cistatic const char errata93_warning[] =
33562306a36Sopenharmony_ciKERN_ERR
33662306a36Sopenharmony_ci"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
33762306a36Sopenharmony_ci"******* Working around it, but it may cause SEGVs or burn power.\n"
33862306a36Sopenharmony_ci"******* Please consider a BIOS update.\n"
33962306a36Sopenharmony_ci"******* Disabling USB legacy in the BIOS may also help.\n";
34062306a36Sopenharmony_ci#endif
34162306a36Sopenharmony_ci
34262306a36Sopenharmony_cistatic int bad_address(void *p)
34362306a36Sopenharmony_ci{
34462306a36Sopenharmony_ci	unsigned long dummy;
34562306a36Sopenharmony_ci
34662306a36Sopenharmony_ci	return get_kernel_nofault(dummy, (unsigned long *)p);
34762306a36Sopenharmony_ci}
34862306a36Sopenharmony_ci
34962306a36Sopenharmony_cistatic void dump_pagetable(unsigned long address)
35062306a36Sopenharmony_ci{
35162306a36Sopenharmony_ci	pgd_t *base = __va(read_cr3_pa());
35262306a36Sopenharmony_ci	pgd_t *pgd = base + pgd_index(address);
35362306a36Sopenharmony_ci	p4d_t *p4d;
35462306a36Sopenharmony_ci	pud_t *pud;
35562306a36Sopenharmony_ci	pmd_t *pmd;
35662306a36Sopenharmony_ci	pte_t *pte;
35762306a36Sopenharmony_ci
35862306a36Sopenharmony_ci	if (bad_address(pgd))
35962306a36Sopenharmony_ci		goto bad;
36062306a36Sopenharmony_ci
36162306a36Sopenharmony_ci	pr_info("PGD %lx ", pgd_val(*pgd));
36262306a36Sopenharmony_ci
36362306a36Sopenharmony_ci	if (!pgd_present(*pgd))
36462306a36Sopenharmony_ci		goto out;
36562306a36Sopenharmony_ci
36662306a36Sopenharmony_ci	p4d = p4d_offset(pgd, address);
36762306a36Sopenharmony_ci	if (bad_address(p4d))
36862306a36Sopenharmony_ci		goto bad;
36962306a36Sopenharmony_ci
37062306a36Sopenharmony_ci	pr_cont("P4D %lx ", p4d_val(*p4d));
37162306a36Sopenharmony_ci	if (!p4d_present(*p4d) || p4d_large(*p4d))
37262306a36Sopenharmony_ci		goto out;
37362306a36Sopenharmony_ci
37462306a36Sopenharmony_ci	pud = pud_offset(p4d, address);
37562306a36Sopenharmony_ci	if (bad_address(pud))
37662306a36Sopenharmony_ci		goto bad;
37762306a36Sopenharmony_ci
37862306a36Sopenharmony_ci	pr_cont("PUD %lx ", pud_val(*pud));
37962306a36Sopenharmony_ci	if (!pud_present(*pud) || pud_large(*pud))
38062306a36Sopenharmony_ci		goto out;
38162306a36Sopenharmony_ci
38262306a36Sopenharmony_ci	pmd = pmd_offset(pud, address);
38362306a36Sopenharmony_ci	if (bad_address(pmd))
38462306a36Sopenharmony_ci		goto bad;
38562306a36Sopenharmony_ci
38662306a36Sopenharmony_ci	pr_cont("PMD %lx ", pmd_val(*pmd));
38762306a36Sopenharmony_ci	if (!pmd_present(*pmd) || pmd_large(*pmd))
38862306a36Sopenharmony_ci		goto out;
38962306a36Sopenharmony_ci
39062306a36Sopenharmony_ci	pte = pte_offset_kernel(pmd, address);
39162306a36Sopenharmony_ci	if (bad_address(pte))
39262306a36Sopenharmony_ci		goto bad;
39362306a36Sopenharmony_ci
39462306a36Sopenharmony_ci	pr_cont("PTE %lx", pte_val(*pte));
39562306a36Sopenharmony_ciout:
39662306a36Sopenharmony_ci	pr_cont("\n");
39762306a36Sopenharmony_ci	return;
39862306a36Sopenharmony_cibad:
39962306a36Sopenharmony_ci	pr_info("BAD\n");
40062306a36Sopenharmony_ci}
40162306a36Sopenharmony_ci
40262306a36Sopenharmony_ci#endif /* CONFIG_X86_64 */
40362306a36Sopenharmony_ci
40462306a36Sopenharmony_ci/*
40562306a36Sopenharmony_ci * Workaround for K8 erratum #93 & buggy BIOS.
40662306a36Sopenharmony_ci *
40762306a36Sopenharmony_ci * BIOS SMM functions are required to use a specific workaround
40862306a36Sopenharmony_ci * to avoid corruption of the 64bit RIP register on C stepping K8.
40962306a36Sopenharmony_ci *
41062306a36Sopenharmony_ci * A lot of BIOS that didn't get tested properly miss this.
41162306a36Sopenharmony_ci *
41262306a36Sopenharmony_ci * The OS sees this as a page fault with the upper 32bits of RIP cleared.
41362306a36Sopenharmony_ci * Try to work around it here.
41462306a36Sopenharmony_ci *
41562306a36Sopenharmony_ci * Note we only handle faults in kernel here.
41662306a36Sopenharmony_ci * Does nothing on 32-bit.
41762306a36Sopenharmony_ci */
41862306a36Sopenharmony_cistatic int is_errata93(struct pt_regs *regs, unsigned long address)
41962306a36Sopenharmony_ci{
42062306a36Sopenharmony_ci#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
42162306a36Sopenharmony_ci	if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
42262306a36Sopenharmony_ci	    || boot_cpu_data.x86 != 0xf)
42362306a36Sopenharmony_ci		return 0;
42462306a36Sopenharmony_ci
42562306a36Sopenharmony_ci	if (user_mode(regs))
42662306a36Sopenharmony_ci		return 0;
42762306a36Sopenharmony_ci
42862306a36Sopenharmony_ci	if (address != regs->ip)
42962306a36Sopenharmony_ci		return 0;
43062306a36Sopenharmony_ci
43162306a36Sopenharmony_ci	if ((address >> 32) != 0)
43262306a36Sopenharmony_ci		return 0;
43362306a36Sopenharmony_ci
43462306a36Sopenharmony_ci	address |= 0xffffffffUL << 32;
43562306a36Sopenharmony_ci	if ((address >= (u64)_stext && address <= (u64)_etext) ||
43662306a36Sopenharmony_ci	    (address >= MODULES_VADDR && address <= MODULES_END)) {
43762306a36Sopenharmony_ci		printk_once(errata93_warning);
43862306a36Sopenharmony_ci		regs->ip = address;
43962306a36Sopenharmony_ci		return 1;
44062306a36Sopenharmony_ci	}
44162306a36Sopenharmony_ci#endif
44262306a36Sopenharmony_ci	return 0;
44362306a36Sopenharmony_ci}
44462306a36Sopenharmony_ci
44562306a36Sopenharmony_ci/*
44662306a36Sopenharmony_ci * Work around K8 erratum #100 K8 in compat mode occasionally jumps
44762306a36Sopenharmony_ci * to illegal addresses >4GB.
44862306a36Sopenharmony_ci *
44962306a36Sopenharmony_ci * We catch this in the page fault handler because these addresses
45062306a36Sopenharmony_ci * are not reachable. Just detect this case and return.  Any code
45162306a36Sopenharmony_ci * segment in LDT is compatibility mode.
45262306a36Sopenharmony_ci */
45362306a36Sopenharmony_cistatic int is_errata100(struct pt_regs *regs, unsigned long address)
45462306a36Sopenharmony_ci{
45562306a36Sopenharmony_ci#ifdef CONFIG_X86_64
45662306a36Sopenharmony_ci	if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
45762306a36Sopenharmony_ci		return 1;
45862306a36Sopenharmony_ci#endif
45962306a36Sopenharmony_ci	return 0;
46062306a36Sopenharmony_ci}
46162306a36Sopenharmony_ci
46262306a36Sopenharmony_ci/* Pentium F0 0F C7 C8 bug workaround: */
46362306a36Sopenharmony_cistatic int is_f00f_bug(struct pt_regs *regs, unsigned long error_code,
46462306a36Sopenharmony_ci		       unsigned long address)
46562306a36Sopenharmony_ci{
46662306a36Sopenharmony_ci#ifdef CONFIG_X86_F00F_BUG
46762306a36Sopenharmony_ci	if (boot_cpu_has_bug(X86_BUG_F00F) && !(error_code & X86_PF_USER) &&
46862306a36Sopenharmony_ci	    idt_is_f00f_address(address)) {
46962306a36Sopenharmony_ci		handle_invalid_op(regs);
47062306a36Sopenharmony_ci		return 1;
47162306a36Sopenharmony_ci	}
47262306a36Sopenharmony_ci#endif
47362306a36Sopenharmony_ci	return 0;
47462306a36Sopenharmony_ci}
47562306a36Sopenharmony_ci
47662306a36Sopenharmony_cistatic void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
47762306a36Sopenharmony_ci{
47862306a36Sopenharmony_ci	u32 offset = (index >> 3) * sizeof(struct desc_struct);
47962306a36Sopenharmony_ci	unsigned long addr;
48062306a36Sopenharmony_ci	struct ldttss_desc desc;
48162306a36Sopenharmony_ci
48262306a36Sopenharmony_ci	if (index == 0) {
48362306a36Sopenharmony_ci		pr_alert("%s: NULL\n", name);
48462306a36Sopenharmony_ci		return;
48562306a36Sopenharmony_ci	}
48662306a36Sopenharmony_ci
48762306a36Sopenharmony_ci	if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
48862306a36Sopenharmony_ci		pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
48962306a36Sopenharmony_ci		return;
49062306a36Sopenharmony_ci	}
49162306a36Sopenharmony_ci
49262306a36Sopenharmony_ci	if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
49362306a36Sopenharmony_ci			      sizeof(struct ldttss_desc))) {
49462306a36Sopenharmony_ci		pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
49562306a36Sopenharmony_ci			 name, index);
49662306a36Sopenharmony_ci		return;
49762306a36Sopenharmony_ci	}
49862306a36Sopenharmony_ci
49962306a36Sopenharmony_ci	addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
50062306a36Sopenharmony_ci#ifdef CONFIG_X86_64
50162306a36Sopenharmony_ci	addr |= ((u64)desc.base3 << 32);
50262306a36Sopenharmony_ci#endif
50362306a36Sopenharmony_ci	pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
50462306a36Sopenharmony_ci		 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
50562306a36Sopenharmony_ci}
50662306a36Sopenharmony_ci
50762306a36Sopenharmony_cistatic void
50862306a36Sopenharmony_cishow_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
50962306a36Sopenharmony_ci{
51062306a36Sopenharmony_ci	if (!oops_may_print())
51162306a36Sopenharmony_ci		return;
51262306a36Sopenharmony_ci
51362306a36Sopenharmony_ci	if (error_code & X86_PF_INSTR) {
51462306a36Sopenharmony_ci		unsigned int level;
51562306a36Sopenharmony_ci		pgd_t *pgd;
51662306a36Sopenharmony_ci		pte_t *pte;
51762306a36Sopenharmony_ci
51862306a36Sopenharmony_ci		pgd = __va(read_cr3_pa());
51962306a36Sopenharmony_ci		pgd += pgd_index(address);
52062306a36Sopenharmony_ci
52162306a36Sopenharmony_ci		pte = lookup_address_in_pgd(pgd, address, &level);
52262306a36Sopenharmony_ci
52362306a36Sopenharmony_ci		if (pte && pte_present(*pte) && !pte_exec(*pte))
52462306a36Sopenharmony_ci			pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
52562306a36Sopenharmony_ci				from_kuid(&init_user_ns, current_uid()));
52662306a36Sopenharmony_ci		if (pte && pte_present(*pte) && pte_exec(*pte) &&
52762306a36Sopenharmony_ci				(pgd_flags(*pgd) & _PAGE_USER) &&
52862306a36Sopenharmony_ci				(__read_cr4() & X86_CR4_SMEP))
52962306a36Sopenharmony_ci			pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
53062306a36Sopenharmony_ci				from_kuid(&init_user_ns, current_uid()));
53162306a36Sopenharmony_ci	}
53262306a36Sopenharmony_ci
53362306a36Sopenharmony_ci	if (address < PAGE_SIZE && !user_mode(regs))
53462306a36Sopenharmony_ci		pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
53562306a36Sopenharmony_ci			(void *)address);
53662306a36Sopenharmony_ci	else
53762306a36Sopenharmony_ci		pr_alert("BUG: unable to handle page fault for address: %px\n",
53862306a36Sopenharmony_ci			(void *)address);
53962306a36Sopenharmony_ci
54062306a36Sopenharmony_ci	pr_alert("#PF: %s %s in %s mode\n",
54162306a36Sopenharmony_ci		 (error_code & X86_PF_USER)  ? "user" : "supervisor",
54262306a36Sopenharmony_ci		 (error_code & X86_PF_INSTR) ? "instruction fetch" :
54362306a36Sopenharmony_ci		 (error_code & X86_PF_WRITE) ? "write access" :
54462306a36Sopenharmony_ci					       "read access",
54562306a36Sopenharmony_ci			     user_mode(regs) ? "user" : "kernel");
54662306a36Sopenharmony_ci	pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
54762306a36Sopenharmony_ci		 !(error_code & X86_PF_PROT) ? "not-present page" :
54862306a36Sopenharmony_ci		 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
54962306a36Sopenharmony_ci		 (error_code & X86_PF_PK)    ? "protection keys violation" :
55062306a36Sopenharmony_ci					       "permissions violation");
55162306a36Sopenharmony_ci
55262306a36Sopenharmony_ci	if (!(error_code & X86_PF_USER) && user_mode(regs)) {
55362306a36Sopenharmony_ci		struct desc_ptr idt, gdt;
55462306a36Sopenharmony_ci		u16 ldtr, tr;
55562306a36Sopenharmony_ci
55662306a36Sopenharmony_ci		/*
55762306a36Sopenharmony_ci		 * This can happen for quite a few reasons.  The more obvious
55862306a36Sopenharmony_ci		 * ones are faults accessing the GDT, or LDT.  Perhaps
55962306a36Sopenharmony_ci		 * surprisingly, if the CPU tries to deliver a benign or
56062306a36Sopenharmony_ci		 * contributory exception from user code and gets a page fault
56162306a36Sopenharmony_ci		 * during delivery, the page fault can be delivered as though
56262306a36Sopenharmony_ci		 * it originated directly from user code.  This could happen
56362306a36Sopenharmony_ci		 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
56462306a36Sopenharmony_ci		 * kernel or IST stack.
56562306a36Sopenharmony_ci		 */
56662306a36Sopenharmony_ci		store_idt(&idt);
56762306a36Sopenharmony_ci
56862306a36Sopenharmony_ci		/* Usable even on Xen PV -- it's just slow. */
56962306a36Sopenharmony_ci		native_store_gdt(&gdt);
57062306a36Sopenharmony_ci
57162306a36Sopenharmony_ci		pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
57262306a36Sopenharmony_ci			 idt.address, idt.size, gdt.address, gdt.size);
57362306a36Sopenharmony_ci
57462306a36Sopenharmony_ci		store_ldt(ldtr);
57562306a36Sopenharmony_ci		show_ldttss(&gdt, "LDTR", ldtr);
57662306a36Sopenharmony_ci
57762306a36Sopenharmony_ci		store_tr(tr);
57862306a36Sopenharmony_ci		show_ldttss(&gdt, "TR", tr);
57962306a36Sopenharmony_ci	}
58062306a36Sopenharmony_ci
58162306a36Sopenharmony_ci	dump_pagetable(address);
58262306a36Sopenharmony_ci}
58362306a36Sopenharmony_ci
58462306a36Sopenharmony_cistatic noinline void
58562306a36Sopenharmony_cipgtable_bad(struct pt_regs *regs, unsigned long error_code,
58662306a36Sopenharmony_ci	    unsigned long address)
58762306a36Sopenharmony_ci{
58862306a36Sopenharmony_ci	struct task_struct *tsk;
58962306a36Sopenharmony_ci	unsigned long flags;
59062306a36Sopenharmony_ci	int sig;
59162306a36Sopenharmony_ci
59262306a36Sopenharmony_ci	flags = oops_begin();
59362306a36Sopenharmony_ci	tsk = current;
59462306a36Sopenharmony_ci	sig = SIGKILL;
59562306a36Sopenharmony_ci
59662306a36Sopenharmony_ci	printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
59762306a36Sopenharmony_ci	       tsk->comm, address);
59862306a36Sopenharmony_ci	dump_pagetable(address);
59962306a36Sopenharmony_ci
60062306a36Sopenharmony_ci	if (__die("Bad pagetable", regs, error_code))
60162306a36Sopenharmony_ci		sig = 0;
60262306a36Sopenharmony_ci
60362306a36Sopenharmony_ci	oops_end(flags, regs, sig);
60462306a36Sopenharmony_ci}
60562306a36Sopenharmony_ci
60662306a36Sopenharmony_cistatic void sanitize_error_code(unsigned long address,
60762306a36Sopenharmony_ci				unsigned long *error_code)
60862306a36Sopenharmony_ci{
60962306a36Sopenharmony_ci	/*
61062306a36Sopenharmony_ci	 * To avoid leaking information about the kernel page
61162306a36Sopenharmony_ci	 * table layout, pretend that user-mode accesses to
61262306a36Sopenharmony_ci	 * kernel addresses are always protection faults.
61362306a36Sopenharmony_ci	 *
61462306a36Sopenharmony_ci	 * NB: This means that failed vsyscalls with vsyscall=none
61562306a36Sopenharmony_ci	 * will have the PROT bit.  This doesn't leak any
61662306a36Sopenharmony_ci	 * information and does not appear to cause any problems.
61762306a36Sopenharmony_ci	 */
61862306a36Sopenharmony_ci	if (address >= TASK_SIZE_MAX)
61962306a36Sopenharmony_ci		*error_code |= X86_PF_PROT;
62062306a36Sopenharmony_ci}
62162306a36Sopenharmony_ci
62262306a36Sopenharmony_cistatic void set_signal_archinfo(unsigned long address,
62362306a36Sopenharmony_ci				unsigned long error_code)
62462306a36Sopenharmony_ci{
62562306a36Sopenharmony_ci	struct task_struct *tsk = current;
62662306a36Sopenharmony_ci
62762306a36Sopenharmony_ci	tsk->thread.trap_nr = X86_TRAP_PF;
62862306a36Sopenharmony_ci	tsk->thread.error_code = error_code | X86_PF_USER;
62962306a36Sopenharmony_ci	tsk->thread.cr2 = address;
63062306a36Sopenharmony_ci}
63162306a36Sopenharmony_ci
63262306a36Sopenharmony_cistatic noinline void
63362306a36Sopenharmony_cipage_fault_oops(struct pt_regs *regs, unsigned long error_code,
63462306a36Sopenharmony_ci		unsigned long address)
63562306a36Sopenharmony_ci{
63662306a36Sopenharmony_ci#ifdef CONFIG_VMAP_STACK
63762306a36Sopenharmony_ci	struct stack_info info;
63862306a36Sopenharmony_ci#endif
63962306a36Sopenharmony_ci	unsigned long flags;
64062306a36Sopenharmony_ci	int sig;
64162306a36Sopenharmony_ci
64262306a36Sopenharmony_ci	if (user_mode(regs)) {
64362306a36Sopenharmony_ci		/*
64462306a36Sopenharmony_ci		 * Implicit kernel access from user mode?  Skip the stack
64562306a36Sopenharmony_ci		 * overflow and EFI special cases.
64662306a36Sopenharmony_ci		 */
64762306a36Sopenharmony_ci		goto oops;
64862306a36Sopenharmony_ci	}
64962306a36Sopenharmony_ci
65062306a36Sopenharmony_ci#ifdef CONFIG_VMAP_STACK
65162306a36Sopenharmony_ci	/*
65262306a36Sopenharmony_ci	 * Stack overflow?  During boot, we can fault near the initial
65362306a36Sopenharmony_ci	 * stack in the direct map, but that's not an overflow -- check
65462306a36Sopenharmony_ci	 * that we're in vmalloc space to avoid this.
65562306a36Sopenharmony_ci	 */
65662306a36Sopenharmony_ci	if (is_vmalloc_addr((void *)address) &&
65762306a36Sopenharmony_ci	    get_stack_guard_info((void *)address, &info)) {
65862306a36Sopenharmony_ci		/*
65962306a36Sopenharmony_ci		 * We're likely to be running with very little stack space
66062306a36Sopenharmony_ci		 * left.  It's plausible that we'd hit this condition but
66162306a36Sopenharmony_ci		 * double-fault even before we get this far, in which case
66262306a36Sopenharmony_ci		 * we're fine: the double-fault handler will deal with it.
66362306a36Sopenharmony_ci		 *
66462306a36Sopenharmony_ci		 * We don't want to make it all the way into the oops code
66562306a36Sopenharmony_ci		 * and then double-fault, though, because we're likely to
66662306a36Sopenharmony_ci		 * break the console driver and lose most of the stack dump.
66762306a36Sopenharmony_ci		 */
66862306a36Sopenharmony_ci		call_on_stack(__this_cpu_ist_top_va(DF) - sizeof(void*),
66962306a36Sopenharmony_ci			      handle_stack_overflow,
67062306a36Sopenharmony_ci			      ASM_CALL_ARG3,
67162306a36Sopenharmony_ci			      , [arg1] "r" (regs), [arg2] "r" (address), [arg3] "r" (&info));
67262306a36Sopenharmony_ci
67362306a36Sopenharmony_ci		unreachable();
67462306a36Sopenharmony_ci	}
67562306a36Sopenharmony_ci#endif
67662306a36Sopenharmony_ci
67762306a36Sopenharmony_ci	/*
67862306a36Sopenharmony_ci	 * Buggy firmware could access regions which might page fault.  If
67962306a36Sopenharmony_ci	 * this happens, EFI has a special OOPS path that will try to
68062306a36Sopenharmony_ci	 * avoid hanging the system.
68162306a36Sopenharmony_ci	 */
68262306a36Sopenharmony_ci	if (IS_ENABLED(CONFIG_EFI))
68362306a36Sopenharmony_ci		efi_crash_gracefully_on_page_fault(address);
68462306a36Sopenharmony_ci
68562306a36Sopenharmony_ci	/* Only not-present faults should be handled by KFENCE. */
68662306a36Sopenharmony_ci	if (!(error_code & X86_PF_PROT) &&
68762306a36Sopenharmony_ci	    kfence_handle_page_fault(address, error_code & X86_PF_WRITE, regs))
68862306a36Sopenharmony_ci		return;
68962306a36Sopenharmony_ci
69062306a36Sopenharmony_cioops:
69162306a36Sopenharmony_ci	/*
69262306a36Sopenharmony_ci	 * Oops. The kernel tried to access some bad page. We'll have to
69362306a36Sopenharmony_ci	 * terminate things with extreme prejudice:
69462306a36Sopenharmony_ci	 */
69562306a36Sopenharmony_ci	flags = oops_begin();
69662306a36Sopenharmony_ci
69762306a36Sopenharmony_ci	show_fault_oops(regs, error_code, address);
69862306a36Sopenharmony_ci
69962306a36Sopenharmony_ci	if (task_stack_end_corrupted(current))
70062306a36Sopenharmony_ci		printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
70162306a36Sopenharmony_ci
70262306a36Sopenharmony_ci	sig = SIGKILL;
70362306a36Sopenharmony_ci	if (__die("Oops", regs, error_code))
70462306a36Sopenharmony_ci		sig = 0;
70562306a36Sopenharmony_ci
70662306a36Sopenharmony_ci	/* Executive summary in case the body of the oops scrolled away */
70762306a36Sopenharmony_ci	printk(KERN_DEFAULT "CR2: %016lx\n", address);
70862306a36Sopenharmony_ci
70962306a36Sopenharmony_ci	oops_end(flags, regs, sig);
71062306a36Sopenharmony_ci}
71162306a36Sopenharmony_ci
71262306a36Sopenharmony_cistatic noinline void
71362306a36Sopenharmony_cikernelmode_fixup_or_oops(struct pt_regs *regs, unsigned long error_code,
71462306a36Sopenharmony_ci			 unsigned long address, int signal, int si_code,
71562306a36Sopenharmony_ci			 u32 pkey)
71662306a36Sopenharmony_ci{
71762306a36Sopenharmony_ci	WARN_ON_ONCE(user_mode(regs));
71862306a36Sopenharmony_ci
71962306a36Sopenharmony_ci	/* Are we prepared to handle this kernel fault? */
72062306a36Sopenharmony_ci	if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
72162306a36Sopenharmony_ci		/*
72262306a36Sopenharmony_ci		 * Any interrupt that takes a fault gets the fixup. This makes
72362306a36Sopenharmony_ci		 * the below recursive fault logic only apply to a faults from
72462306a36Sopenharmony_ci		 * task context.
72562306a36Sopenharmony_ci		 */
72662306a36Sopenharmony_ci		if (in_interrupt())
72762306a36Sopenharmony_ci			return;
72862306a36Sopenharmony_ci
72962306a36Sopenharmony_ci		/*
73062306a36Sopenharmony_ci		 * Per the above we're !in_interrupt(), aka. task context.
73162306a36Sopenharmony_ci		 *
73262306a36Sopenharmony_ci		 * In this case we need to make sure we're not recursively
73362306a36Sopenharmony_ci		 * faulting through the emulate_vsyscall() logic.
73462306a36Sopenharmony_ci		 */
73562306a36Sopenharmony_ci		if (current->thread.sig_on_uaccess_err && signal) {
73662306a36Sopenharmony_ci			sanitize_error_code(address, &error_code);
73762306a36Sopenharmony_ci
73862306a36Sopenharmony_ci			set_signal_archinfo(address, error_code);
73962306a36Sopenharmony_ci
74062306a36Sopenharmony_ci			if (si_code == SEGV_PKUERR) {
74162306a36Sopenharmony_ci				force_sig_pkuerr((void __user *)address, pkey);
74262306a36Sopenharmony_ci			} else {
74362306a36Sopenharmony_ci				/* XXX: hwpoison faults will set the wrong code. */
74462306a36Sopenharmony_ci				force_sig_fault(signal, si_code, (void __user *)address);
74562306a36Sopenharmony_ci			}
74662306a36Sopenharmony_ci		}
74762306a36Sopenharmony_ci
74862306a36Sopenharmony_ci		/*
74962306a36Sopenharmony_ci		 * Barring that, we can do the fixup and be happy.
75062306a36Sopenharmony_ci		 */
75162306a36Sopenharmony_ci		return;
75262306a36Sopenharmony_ci	}
75362306a36Sopenharmony_ci
75462306a36Sopenharmony_ci	/*
75562306a36Sopenharmony_ci	 * AMD erratum #91 manifests as a spurious page fault on a PREFETCH
75662306a36Sopenharmony_ci	 * instruction.
75762306a36Sopenharmony_ci	 */
75862306a36Sopenharmony_ci	if (is_prefetch(regs, error_code, address))
75962306a36Sopenharmony_ci		return;
76062306a36Sopenharmony_ci
76162306a36Sopenharmony_ci	page_fault_oops(regs, error_code, address);
76262306a36Sopenharmony_ci}
76362306a36Sopenharmony_ci
76462306a36Sopenharmony_ci/*
76562306a36Sopenharmony_ci * Print out info about fatal segfaults, if the show_unhandled_signals
76662306a36Sopenharmony_ci * sysctl is set:
76762306a36Sopenharmony_ci */
76862306a36Sopenharmony_cistatic inline void
76962306a36Sopenharmony_cishow_signal_msg(struct pt_regs *regs, unsigned long error_code,
77062306a36Sopenharmony_ci		unsigned long address, struct task_struct *tsk)
77162306a36Sopenharmony_ci{
77262306a36Sopenharmony_ci	const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
77362306a36Sopenharmony_ci	/* This is a racy snapshot, but it's better than nothing. */
77462306a36Sopenharmony_ci	int cpu = raw_smp_processor_id();
77562306a36Sopenharmony_ci
77662306a36Sopenharmony_ci	if (!unhandled_signal(tsk, SIGSEGV))
77762306a36Sopenharmony_ci		return;
77862306a36Sopenharmony_ci
77962306a36Sopenharmony_ci	if (!printk_ratelimit())
78062306a36Sopenharmony_ci		return;
78162306a36Sopenharmony_ci
78262306a36Sopenharmony_ci	printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
78362306a36Sopenharmony_ci		loglvl, tsk->comm, task_pid_nr(tsk), address,
78462306a36Sopenharmony_ci		(void *)regs->ip, (void *)regs->sp, error_code);
78562306a36Sopenharmony_ci
78662306a36Sopenharmony_ci	print_vma_addr(KERN_CONT " in ", regs->ip);
78762306a36Sopenharmony_ci
78862306a36Sopenharmony_ci	/*
78962306a36Sopenharmony_ci	 * Dump the likely CPU where the fatal segfault happened.
79062306a36Sopenharmony_ci	 * This can help identify faulty hardware.
79162306a36Sopenharmony_ci	 */
79262306a36Sopenharmony_ci	printk(KERN_CONT " likely on CPU %d (core %d, socket %d)", cpu,
79362306a36Sopenharmony_ci	       topology_core_id(cpu), topology_physical_package_id(cpu));
79462306a36Sopenharmony_ci
79562306a36Sopenharmony_ci
79662306a36Sopenharmony_ci	printk(KERN_CONT "\n");
79762306a36Sopenharmony_ci
79862306a36Sopenharmony_ci	show_opcodes(regs, loglvl);
79962306a36Sopenharmony_ci}
80062306a36Sopenharmony_ci
80162306a36Sopenharmony_cistatic void
80262306a36Sopenharmony_ci__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
80362306a36Sopenharmony_ci		       unsigned long address, u32 pkey, int si_code)
80462306a36Sopenharmony_ci{
80562306a36Sopenharmony_ci	struct task_struct *tsk = current;
80662306a36Sopenharmony_ci
80762306a36Sopenharmony_ci	if (!user_mode(regs)) {
80862306a36Sopenharmony_ci		kernelmode_fixup_or_oops(regs, error_code, address,
80962306a36Sopenharmony_ci					 SIGSEGV, si_code, pkey);
81062306a36Sopenharmony_ci		return;
81162306a36Sopenharmony_ci	}
81262306a36Sopenharmony_ci
81362306a36Sopenharmony_ci	if (!(error_code & X86_PF_USER)) {
81462306a36Sopenharmony_ci		/* Implicit user access to kernel memory -- just oops */
81562306a36Sopenharmony_ci		page_fault_oops(regs, error_code, address);
81662306a36Sopenharmony_ci		return;
81762306a36Sopenharmony_ci	}
81862306a36Sopenharmony_ci
81962306a36Sopenharmony_ci	/*
82062306a36Sopenharmony_ci	 * User mode accesses just cause a SIGSEGV.
82162306a36Sopenharmony_ci	 * It's possible to have interrupts off here:
82262306a36Sopenharmony_ci	 */
82362306a36Sopenharmony_ci	local_irq_enable();
82462306a36Sopenharmony_ci
82562306a36Sopenharmony_ci	/*
82662306a36Sopenharmony_ci	 * Valid to do another page fault here because this one came
82762306a36Sopenharmony_ci	 * from user space:
82862306a36Sopenharmony_ci	 */
82962306a36Sopenharmony_ci	if (is_prefetch(regs, error_code, address))
83062306a36Sopenharmony_ci		return;
83162306a36Sopenharmony_ci
83262306a36Sopenharmony_ci	if (is_errata100(regs, address))
83362306a36Sopenharmony_ci		return;
83462306a36Sopenharmony_ci
83562306a36Sopenharmony_ci	sanitize_error_code(address, &error_code);
83662306a36Sopenharmony_ci
83762306a36Sopenharmony_ci	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
83862306a36Sopenharmony_ci		return;
83962306a36Sopenharmony_ci
84062306a36Sopenharmony_ci	if (likely(show_unhandled_signals))
84162306a36Sopenharmony_ci		show_signal_msg(regs, error_code, address, tsk);
84262306a36Sopenharmony_ci
84362306a36Sopenharmony_ci	set_signal_archinfo(address, error_code);
84462306a36Sopenharmony_ci
84562306a36Sopenharmony_ci	if (si_code == SEGV_PKUERR)
84662306a36Sopenharmony_ci		force_sig_pkuerr((void __user *)address, pkey);
84762306a36Sopenharmony_ci	else
84862306a36Sopenharmony_ci		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
84962306a36Sopenharmony_ci
85062306a36Sopenharmony_ci	local_irq_disable();
85162306a36Sopenharmony_ci}
85262306a36Sopenharmony_ci
85362306a36Sopenharmony_cistatic noinline void
85462306a36Sopenharmony_cibad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
85562306a36Sopenharmony_ci		     unsigned long address)
85662306a36Sopenharmony_ci{
85762306a36Sopenharmony_ci	__bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
85862306a36Sopenharmony_ci}
85962306a36Sopenharmony_ci
86062306a36Sopenharmony_cistatic void
86162306a36Sopenharmony_ci__bad_area(struct pt_regs *regs, unsigned long error_code,
86262306a36Sopenharmony_ci	   unsigned long address, u32 pkey, int si_code)
86362306a36Sopenharmony_ci{
86462306a36Sopenharmony_ci	struct mm_struct *mm = current->mm;
86562306a36Sopenharmony_ci	/*
86662306a36Sopenharmony_ci	 * Something tried to access memory that isn't in our memory map..
86762306a36Sopenharmony_ci	 * Fix it, but check if it's kernel or user first..
86862306a36Sopenharmony_ci	 */
86962306a36Sopenharmony_ci	mmap_read_unlock(mm);
87062306a36Sopenharmony_ci
87162306a36Sopenharmony_ci	__bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
87262306a36Sopenharmony_ci}
87362306a36Sopenharmony_ci
87462306a36Sopenharmony_cistatic inline bool bad_area_access_from_pkeys(unsigned long error_code,
87562306a36Sopenharmony_ci		struct vm_area_struct *vma)
87662306a36Sopenharmony_ci{
87762306a36Sopenharmony_ci	/* This code is always called on the current mm */
87862306a36Sopenharmony_ci	bool foreign = false;
87962306a36Sopenharmony_ci
88062306a36Sopenharmony_ci	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
88162306a36Sopenharmony_ci		return false;
88262306a36Sopenharmony_ci	if (error_code & X86_PF_PK)
88362306a36Sopenharmony_ci		return true;
88462306a36Sopenharmony_ci	/* this checks permission keys on the VMA: */
88562306a36Sopenharmony_ci	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
88662306a36Sopenharmony_ci				       (error_code & X86_PF_INSTR), foreign))
88762306a36Sopenharmony_ci		return true;
88862306a36Sopenharmony_ci	return false;
88962306a36Sopenharmony_ci}
89062306a36Sopenharmony_ci
89162306a36Sopenharmony_cistatic noinline void
89262306a36Sopenharmony_cibad_area_access_error(struct pt_regs *regs, unsigned long error_code,
89362306a36Sopenharmony_ci		      unsigned long address, struct vm_area_struct *vma)
89462306a36Sopenharmony_ci{
89562306a36Sopenharmony_ci	/*
89662306a36Sopenharmony_ci	 * This OSPKE check is not strictly necessary at runtime.
89762306a36Sopenharmony_ci	 * But, doing it this way allows compiler optimizations
89862306a36Sopenharmony_ci	 * if pkeys are compiled out.
89962306a36Sopenharmony_ci	 */
90062306a36Sopenharmony_ci	if (bad_area_access_from_pkeys(error_code, vma)) {
90162306a36Sopenharmony_ci		/*
90262306a36Sopenharmony_ci		 * A protection key fault means that the PKRU value did not allow
90362306a36Sopenharmony_ci		 * access to some PTE.  Userspace can figure out what PKRU was
90462306a36Sopenharmony_ci		 * from the XSAVE state.  This function captures the pkey from
90562306a36Sopenharmony_ci		 * the vma and passes it to userspace so userspace can discover
90662306a36Sopenharmony_ci		 * which protection key was set on the PTE.
90762306a36Sopenharmony_ci		 *
90862306a36Sopenharmony_ci		 * If we get here, we know that the hardware signaled a X86_PF_PK
90962306a36Sopenharmony_ci		 * fault and that there was a VMA once we got in the fault
91062306a36Sopenharmony_ci		 * handler.  It does *not* guarantee that the VMA we find here
91162306a36Sopenharmony_ci		 * was the one that we faulted on.
91262306a36Sopenharmony_ci		 *
91362306a36Sopenharmony_ci		 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
91462306a36Sopenharmony_ci		 * 2. T1   : set PKRU to deny access to pkey=4, touches page
91562306a36Sopenharmony_ci		 * 3. T1   : faults...
91662306a36Sopenharmony_ci		 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
91762306a36Sopenharmony_ci		 * 5. T1   : enters fault handler, takes mmap_lock, etc...
91862306a36Sopenharmony_ci		 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
91962306a36Sopenharmony_ci		 *	     faulted on a pte with its pkey=4.
92062306a36Sopenharmony_ci		 */
92162306a36Sopenharmony_ci		u32 pkey = vma_pkey(vma);
92262306a36Sopenharmony_ci
92362306a36Sopenharmony_ci		__bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
92462306a36Sopenharmony_ci	} else {
92562306a36Sopenharmony_ci		__bad_area(regs, error_code, address, 0, SEGV_ACCERR);
92662306a36Sopenharmony_ci	}
92762306a36Sopenharmony_ci}
92862306a36Sopenharmony_ci
92962306a36Sopenharmony_cistatic void
93062306a36Sopenharmony_cido_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
93162306a36Sopenharmony_ci	  vm_fault_t fault)
93262306a36Sopenharmony_ci{
93362306a36Sopenharmony_ci	/* Kernel mode? Handle exceptions or die: */
93462306a36Sopenharmony_ci	if (!user_mode(regs)) {
93562306a36Sopenharmony_ci		kernelmode_fixup_or_oops(regs, error_code, address,
93662306a36Sopenharmony_ci					 SIGBUS, BUS_ADRERR, ARCH_DEFAULT_PKEY);
93762306a36Sopenharmony_ci		return;
93862306a36Sopenharmony_ci	}
93962306a36Sopenharmony_ci
94062306a36Sopenharmony_ci	/* User-space => ok to do another page fault: */
94162306a36Sopenharmony_ci	if (is_prefetch(regs, error_code, address))
94262306a36Sopenharmony_ci		return;
94362306a36Sopenharmony_ci
94462306a36Sopenharmony_ci	sanitize_error_code(address, &error_code);
94562306a36Sopenharmony_ci
94662306a36Sopenharmony_ci	if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
94762306a36Sopenharmony_ci		return;
94862306a36Sopenharmony_ci
94962306a36Sopenharmony_ci	set_signal_archinfo(address, error_code);
95062306a36Sopenharmony_ci
95162306a36Sopenharmony_ci#ifdef CONFIG_MEMORY_FAILURE
95262306a36Sopenharmony_ci	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
95362306a36Sopenharmony_ci		struct task_struct *tsk = current;
95462306a36Sopenharmony_ci		unsigned lsb = 0;
95562306a36Sopenharmony_ci
95662306a36Sopenharmony_ci		pr_err(
95762306a36Sopenharmony_ci	"MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
95862306a36Sopenharmony_ci			tsk->comm, tsk->pid, address);
95962306a36Sopenharmony_ci		if (fault & VM_FAULT_HWPOISON_LARGE)
96062306a36Sopenharmony_ci			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
96162306a36Sopenharmony_ci		if (fault & VM_FAULT_HWPOISON)
96262306a36Sopenharmony_ci			lsb = PAGE_SHIFT;
96362306a36Sopenharmony_ci		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
96462306a36Sopenharmony_ci		return;
96562306a36Sopenharmony_ci	}
96662306a36Sopenharmony_ci#endif
96762306a36Sopenharmony_ci	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
96862306a36Sopenharmony_ci}
96962306a36Sopenharmony_ci
97062306a36Sopenharmony_cistatic int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
97162306a36Sopenharmony_ci{
97262306a36Sopenharmony_ci	if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
97362306a36Sopenharmony_ci		return 0;
97462306a36Sopenharmony_ci
97562306a36Sopenharmony_ci	if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
97662306a36Sopenharmony_ci		return 0;
97762306a36Sopenharmony_ci
97862306a36Sopenharmony_ci	return 1;
97962306a36Sopenharmony_ci}
98062306a36Sopenharmony_ci
98162306a36Sopenharmony_ci/*
98262306a36Sopenharmony_ci * Handle a spurious fault caused by a stale TLB entry.
98362306a36Sopenharmony_ci *
98462306a36Sopenharmony_ci * This allows us to lazily refresh the TLB when increasing the
98562306a36Sopenharmony_ci * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
98662306a36Sopenharmony_ci * eagerly is very expensive since that implies doing a full
98762306a36Sopenharmony_ci * cross-processor TLB flush, even if no stale TLB entries exist
98862306a36Sopenharmony_ci * on other processors.
98962306a36Sopenharmony_ci *
99062306a36Sopenharmony_ci * Spurious faults may only occur if the TLB contains an entry with
99162306a36Sopenharmony_ci * fewer permission than the page table entry.  Non-present (P = 0)
99262306a36Sopenharmony_ci * and reserved bit (R = 1) faults are never spurious.
99362306a36Sopenharmony_ci *
99462306a36Sopenharmony_ci * There are no security implications to leaving a stale TLB when
99562306a36Sopenharmony_ci * increasing the permissions on a page.
99662306a36Sopenharmony_ci *
99762306a36Sopenharmony_ci * Returns non-zero if a spurious fault was handled, zero otherwise.
99862306a36Sopenharmony_ci *
99962306a36Sopenharmony_ci * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
100062306a36Sopenharmony_ci * (Optional Invalidation).
100162306a36Sopenharmony_ci */
100262306a36Sopenharmony_cistatic noinline int
100362306a36Sopenharmony_cispurious_kernel_fault(unsigned long error_code, unsigned long address)
100462306a36Sopenharmony_ci{
100562306a36Sopenharmony_ci	pgd_t *pgd;
100662306a36Sopenharmony_ci	p4d_t *p4d;
100762306a36Sopenharmony_ci	pud_t *pud;
100862306a36Sopenharmony_ci	pmd_t *pmd;
100962306a36Sopenharmony_ci	pte_t *pte;
101062306a36Sopenharmony_ci	int ret;
101162306a36Sopenharmony_ci
101262306a36Sopenharmony_ci	/*
101362306a36Sopenharmony_ci	 * Only writes to RO or instruction fetches from NX may cause
101462306a36Sopenharmony_ci	 * spurious faults.
101562306a36Sopenharmony_ci	 *
101662306a36Sopenharmony_ci	 * These could be from user or supervisor accesses but the TLB
101762306a36Sopenharmony_ci	 * is only lazily flushed after a kernel mapping protection
101862306a36Sopenharmony_ci	 * change, so user accesses are not expected to cause spurious
101962306a36Sopenharmony_ci	 * faults.
102062306a36Sopenharmony_ci	 */
102162306a36Sopenharmony_ci	if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
102262306a36Sopenharmony_ci	    error_code != (X86_PF_INSTR | X86_PF_PROT))
102362306a36Sopenharmony_ci		return 0;
102462306a36Sopenharmony_ci
102562306a36Sopenharmony_ci	pgd = init_mm.pgd + pgd_index(address);
102662306a36Sopenharmony_ci	if (!pgd_present(*pgd))
102762306a36Sopenharmony_ci		return 0;
102862306a36Sopenharmony_ci
102962306a36Sopenharmony_ci	p4d = p4d_offset(pgd, address);
103062306a36Sopenharmony_ci	if (!p4d_present(*p4d))
103162306a36Sopenharmony_ci		return 0;
103262306a36Sopenharmony_ci
103362306a36Sopenharmony_ci	if (p4d_large(*p4d))
103462306a36Sopenharmony_ci		return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
103562306a36Sopenharmony_ci
103662306a36Sopenharmony_ci	pud = pud_offset(p4d, address);
103762306a36Sopenharmony_ci	if (!pud_present(*pud))
103862306a36Sopenharmony_ci		return 0;
103962306a36Sopenharmony_ci
104062306a36Sopenharmony_ci	if (pud_large(*pud))
104162306a36Sopenharmony_ci		return spurious_kernel_fault_check(error_code, (pte_t *) pud);
104262306a36Sopenharmony_ci
104362306a36Sopenharmony_ci	pmd = pmd_offset(pud, address);
104462306a36Sopenharmony_ci	if (!pmd_present(*pmd))
104562306a36Sopenharmony_ci		return 0;
104662306a36Sopenharmony_ci
104762306a36Sopenharmony_ci	if (pmd_large(*pmd))
104862306a36Sopenharmony_ci		return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
104962306a36Sopenharmony_ci
105062306a36Sopenharmony_ci	pte = pte_offset_kernel(pmd, address);
105162306a36Sopenharmony_ci	if (!pte_present(*pte))
105262306a36Sopenharmony_ci		return 0;
105362306a36Sopenharmony_ci
105462306a36Sopenharmony_ci	ret = spurious_kernel_fault_check(error_code, pte);
105562306a36Sopenharmony_ci	if (!ret)
105662306a36Sopenharmony_ci		return 0;
105762306a36Sopenharmony_ci
105862306a36Sopenharmony_ci	/*
105962306a36Sopenharmony_ci	 * Make sure we have permissions in PMD.
106062306a36Sopenharmony_ci	 * If not, then there's a bug in the page tables:
106162306a36Sopenharmony_ci	 */
106262306a36Sopenharmony_ci	ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
106362306a36Sopenharmony_ci	WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
106462306a36Sopenharmony_ci
106562306a36Sopenharmony_ci	return ret;
106662306a36Sopenharmony_ci}
106762306a36Sopenharmony_ciNOKPROBE_SYMBOL(spurious_kernel_fault);
106862306a36Sopenharmony_ci
106962306a36Sopenharmony_ciint show_unhandled_signals = 1;
107062306a36Sopenharmony_ci
107162306a36Sopenharmony_cistatic inline int
107262306a36Sopenharmony_ciaccess_error(unsigned long error_code, struct vm_area_struct *vma)
107362306a36Sopenharmony_ci{
107462306a36Sopenharmony_ci	/* This is only called for the current mm, so: */
107562306a36Sopenharmony_ci	bool foreign = false;
107662306a36Sopenharmony_ci
107762306a36Sopenharmony_ci	/*
107862306a36Sopenharmony_ci	 * Read or write was blocked by protection keys.  This is
107962306a36Sopenharmony_ci	 * always an unconditional error and can never result in
108062306a36Sopenharmony_ci	 * a follow-up action to resolve the fault, like a COW.
108162306a36Sopenharmony_ci	 */
108262306a36Sopenharmony_ci	if (error_code & X86_PF_PK)
108362306a36Sopenharmony_ci		return 1;
108462306a36Sopenharmony_ci
108562306a36Sopenharmony_ci	/*
108662306a36Sopenharmony_ci	 * SGX hardware blocked the access.  This usually happens
108762306a36Sopenharmony_ci	 * when the enclave memory contents have been destroyed, like
108862306a36Sopenharmony_ci	 * after a suspend/resume cycle. In any case, the kernel can't
108962306a36Sopenharmony_ci	 * fix the cause of the fault.  Handle the fault as an access
109062306a36Sopenharmony_ci	 * error even in cases where no actual access violation
109162306a36Sopenharmony_ci	 * occurred.  This allows userspace to rebuild the enclave in
109262306a36Sopenharmony_ci	 * response to the signal.
109362306a36Sopenharmony_ci	 */
109462306a36Sopenharmony_ci	if (unlikely(error_code & X86_PF_SGX))
109562306a36Sopenharmony_ci		return 1;
109662306a36Sopenharmony_ci
109762306a36Sopenharmony_ci	/*
109862306a36Sopenharmony_ci	 * Make sure to check the VMA so that we do not perform
109962306a36Sopenharmony_ci	 * faults just to hit a X86_PF_PK as soon as we fill in a
110062306a36Sopenharmony_ci	 * page.
110162306a36Sopenharmony_ci	 */
110262306a36Sopenharmony_ci	if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
110362306a36Sopenharmony_ci				       (error_code & X86_PF_INSTR), foreign))
110462306a36Sopenharmony_ci		return 1;
110562306a36Sopenharmony_ci
110662306a36Sopenharmony_ci	/*
110762306a36Sopenharmony_ci	 * Shadow stack accesses (PF_SHSTK=1) are only permitted to
110862306a36Sopenharmony_ci	 * shadow stack VMAs. All other accesses result in an error.
110962306a36Sopenharmony_ci	 */
111062306a36Sopenharmony_ci	if (error_code & X86_PF_SHSTK) {
111162306a36Sopenharmony_ci		if (unlikely(!(vma->vm_flags & VM_SHADOW_STACK)))
111262306a36Sopenharmony_ci			return 1;
111362306a36Sopenharmony_ci		if (unlikely(!(vma->vm_flags & VM_WRITE)))
111462306a36Sopenharmony_ci			return 1;
111562306a36Sopenharmony_ci		return 0;
111662306a36Sopenharmony_ci	}
111762306a36Sopenharmony_ci
111862306a36Sopenharmony_ci	if (error_code & X86_PF_WRITE) {
111962306a36Sopenharmony_ci		/* write, present and write, not present: */
112062306a36Sopenharmony_ci		if (unlikely(vma->vm_flags & VM_SHADOW_STACK))
112162306a36Sopenharmony_ci			return 1;
112262306a36Sopenharmony_ci		if (unlikely(!(vma->vm_flags & VM_WRITE)))
112362306a36Sopenharmony_ci			return 1;
112462306a36Sopenharmony_ci		return 0;
112562306a36Sopenharmony_ci	}
112662306a36Sopenharmony_ci
112762306a36Sopenharmony_ci	/* read, present: */
112862306a36Sopenharmony_ci	if (unlikely(error_code & X86_PF_PROT))
112962306a36Sopenharmony_ci		return 1;
113062306a36Sopenharmony_ci
113162306a36Sopenharmony_ci	/* read, not present: */
113262306a36Sopenharmony_ci	if (unlikely(!vma_is_accessible(vma)))
113362306a36Sopenharmony_ci		return 1;
113462306a36Sopenharmony_ci
113562306a36Sopenharmony_ci	return 0;
113662306a36Sopenharmony_ci}
113762306a36Sopenharmony_ci
113862306a36Sopenharmony_cibool fault_in_kernel_space(unsigned long address)
113962306a36Sopenharmony_ci{
114062306a36Sopenharmony_ci	/*
114162306a36Sopenharmony_ci	 * On 64-bit systems, the vsyscall page is at an address above
114262306a36Sopenharmony_ci	 * TASK_SIZE_MAX, but is not considered part of the kernel
114362306a36Sopenharmony_ci	 * address space.
114462306a36Sopenharmony_ci	 */
114562306a36Sopenharmony_ci	if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
114662306a36Sopenharmony_ci		return false;
114762306a36Sopenharmony_ci
114862306a36Sopenharmony_ci	return address >= TASK_SIZE_MAX;
114962306a36Sopenharmony_ci}
115062306a36Sopenharmony_ci
115162306a36Sopenharmony_ci/*
115262306a36Sopenharmony_ci * Called for all faults where 'address' is part of the kernel address
115362306a36Sopenharmony_ci * space.  Might get called for faults that originate from *code* that
115462306a36Sopenharmony_ci * ran in userspace or the kernel.
115562306a36Sopenharmony_ci */
115662306a36Sopenharmony_cistatic void
115762306a36Sopenharmony_cido_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
115862306a36Sopenharmony_ci		   unsigned long address)
115962306a36Sopenharmony_ci{
116062306a36Sopenharmony_ci	/*
116162306a36Sopenharmony_ci	 * Protection keys exceptions only happen on user pages.  We
116262306a36Sopenharmony_ci	 * have no user pages in the kernel portion of the address
116362306a36Sopenharmony_ci	 * space, so do not expect them here.
116462306a36Sopenharmony_ci	 */
116562306a36Sopenharmony_ci	WARN_ON_ONCE(hw_error_code & X86_PF_PK);
116662306a36Sopenharmony_ci
116762306a36Sopenharmony_ci#ifdef CONFIG_X86_32
116862306a36Sopenharmony_ci	/*
116962306a36Sopenharmony_ci	 * We can fault-in kernel-space virtual memory on-demand. The
117062306a36Sopenharmony_ci	 * 'reference' page table is init_mm.pgd.
117162306a36Sopenharmony_ci	 *
117262306a36Sopenharmony_ci	 * NOTE! We MUST NOT take any locks for this case. We may
117362306a36Sopenharmony_ci	 * be in an interrupt or a critical region, and should
117462306a36Sopenharmony_ci	 * only copy the information from the master page table,
117562306a36Sopenharmony_ci	 * nothing more.
117662306a36Sopenharmony_ci	 *
117762306a36Sopenharmony_ci	 * Before doing this on-demand faulting, ensure that the
117862306a36Sopenharmony_ci	 * fault is not any of the following:
117962306a36Sopenharmony_ci	 * 1. A fault on a PTE with a reserved bit set.
118062306a36Sopenharmony_ci	 * 2. A fault caused by a user-mode access.  (Do not demand-
118162306a36Sopenharmony_ci	 *    fault kernel memory due to user-mode accesses).
118262306a36Sopenharmony_ci	 * 3. A fault caused by a page-level protection violation.
118362306a36Sopenharmony_ci	 *    (A demand fault would be on a non-present page which
118462306a36Sopenharmony_ci	 *     would have X86_PF_PROT==0).
118562306a36Sopenharmony_ci	 *
118662306a36Sopenharmony_ci	 * This is only needed to close a race condition on x86-32 in
118762306a36Sopenharmony_ci	 * the vmalloc mapping/unmapping code. See the comment above
118862306a36Sopenharmony_ci	 * vmalloc_fault() for details. On x86-64 the race does not
118962306a36Sopenharmony_ci	 * exist as the vmalloc mappings don't need to be synchronized
119062306a36Sopenharmony_ci	 * there.
119162306a36Sopenharmony_ci	 */
119262306a36Sopenharmony_ci	if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
119362306a36Sopenharmony_ci		if (vmalloc_fault(address) >= 0)
119462306a36Sopenharmony_ci			return;
119562306a36Sopenharmony_ci	}
119662306a36Sopenharmony_ci#endif
119762306a36Sopenharmony_ci
119862306a36Sopenharmony_ci	if (is_f00f_bug(regs, hw_error_code, address))
119962306a36Sopenharmony_ci		return;
120062306a36Sopenharmony_ci
120162306a36Sopenharmony_ci	/* Was the fault spurious, caused by lazy TLB invalidation? */
120262306a36Sopenharmony_ci	if (spurious_kernel_fault(hw_error_code, address))
120362306a36Sopenharmony_ci		return;
120462306a36Sopenharmony_ci
120562306a36Sopenharmony_ci	/* kprobes don't want to hook the spurious faults: */
120662306a36Sopenharmony_ci	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
120762306a36Sopenharmony_ci		return;
120862306a36Sopenharmony_ci
120962306a36Sopenharmony_ci	/*
121062306a36Sopenharmony_ci	 * Note, despite being a "bad area", there are quite a few
121162306a36Sopenharmony_ci	 * acceptable reasons to get here, such as erratum fixups
121262306a36Sopenharmony_ci	 * and handling kernel code that can fault, like get_user().
121362306a36Sopenharmony_ci	 *
121462306a36Sopenharmony_ci	 * Don't take the mm semaphore here. If we fixup a prefetch
121562306a36Sopenharmony_ci	 * fault we could otherwise deadlock:
121662306a36Sopenharmony_ci	 */
121762306a36Sopenharmony_ci	bad_area_nosemaphore(regs, hw_error_code, address);
121862306a36Sopenharmony_ci}
121962306a36Sopenharmony_ciNOKPROBE_SYMBOL(do_kern_addr_fault);
122062306a36Sopenharmony_ci
122162306a36Sopenharmony_ci/*
122262306a36Sopenharmony_ci * Handle faults in the user portion of the address space.  Nothing in here
122362306a36Sopenharmony_ci * should check X86_PF_USER without a specific justification: for almost
122462306a36Sopenharmony_ci * all purposes, we should treat a normal kernel access to user memory
122562306a36Sopenharmony_ci * (e.g. get_user(), put_user(), etc.) the same as the WRUSS instruction.
122662306a36Sopenharmony_ci * The one exception is AC flag handling, which is, per the x86
122762306a36Sopenharmony_ci * architecture, special for WRUSS.
122862306a36Sopenharmony_ci */
122962306a36Sopenharmony_cistatic inline
123062306a36Sopenharmony_civoid do_user_addr_fault(struct pt_regs *regs,
123162306a36Sopenharmony_ci			unsigned long error_code,
123262306a36Sopenharmony_ci			unsigned long address)
123362306a36Sopenharmony_ci{
123462306a36Sopenharmony_ci	struct vm_area_struct *vma;
123562306a36Sopenharmony_ci	struct task_struct *tsk;
123662306a36Sopenharmony_ci	struct mm_struct *mm;
123762306a36Sopenharmony_ci	vm_fault_t fault;
123862306a36Sopenharmony_ci	unsigned int flags = FAULT_FLAG_DEFAULT;
123962306a36Sopenharmony_ci
124062306a36Sopenharmony_ci	tsk = current;
124162306a36Sopenharmony_ci	mm = tsk->mm;
124262306a36Sopenharmony_ci
124362306a36Sopenharmony_ci	if (unlikely((error_code & (X86_PF_USER | X86_PF_INSTR)) == X86_PF_INSTR)) {
124462306a36Sopenharmony_ci		/*
124562306a36Sopenharmony_ci		 * Whoops, this is kernel mode code trying to execute from
124662306a36Sopenharmony_ci		 * user memory.  Unless this is AMD erratum #93, which
124762306a36Sopenharmony_ci		 * corrupts RIP such that it looks like a user address,
124862306a36Sopenharmony_ci		 * this is unrecoverable.  Don't even try to look up the
124962306a36Sopenharmony_ci		 * VMA or look for extable entries.
125062306a36Sopenharmony_ci		 */
125162306a36Sopenharmony_ci		if (is_errata93(regs, address))
125262306a36Sopenharmony_ci			return;
125362306a36Sopenharmony_ci
125462306a36Sopenharmony_ci		page_fault_oops(regs, error_code, address);
125562306a36Sopenharmony_ci		return;
125662306a36Sopenharmony_ci	}
125762306a36Sopenharmony_ci
125862306a36Sopenharmony_ci	/* kprobes don't want to hook the spurious faults: */
125962306a36Sopenharmony_ci	if (WARN_ON_ONCE(kprobe_page_fault(regs, X86_TRAP_PF)))
126062306a36Sopenharmony_ci		return;
126162306a36Sopenharmony_ci
126262306a36Sopenharmony_ci	/*
126362306a36Sopenharmony_ci	 * Reserved bits are never expected to be set on
126462306a36Sopenharmony_ci	 * entries in the user portion of the page tables.
126562306a36Sopenharmony_ci	 */
126662306a36Sopenharmony_ci	if (unlikely(error_code & X86_PF_RSVD))
126762306a36Sopenharmony_ci		pgtable_bad(regs, error_code, address);
126862306a36Sopenharmony_ci
126962306a36Sopenharmony_ci	/*
127062306a36Sopenharmony_ci	 * If SMAP is on, check for invalid kernel (supervisor) access to user
127162306a36Sopenharmony_ci	 * pages in the user address space.  The odd case here is WRUSS,
127262306a36Sopenharmony_ci	 * which, according to the preliminary documentation, does not respect
127362306a36Sopenharmony_ci	 * SMAP and will have the USER bit set so, in all cases, SMAP
127462306a36Sopenharmony_ci	 * enforcement appears to be consistent with the USER bit.
127562306a36Sopenharmony_ci	 */
127662306a36Sopenharmony_ci	if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
127762306a36Sopenharmony_ci		     !(error_code & X86_PF_USER) &&
127862306a36Sopenharmony_ci		     !(regs->flags & X86_EFLAGS_AC))) {
127962306a36Sopenharmony_ci		/*
128062306a36Sopenharmony_ci		 * No extable entry here.  This was a kernel access to an
128162306a36Sopenharmony_ci		 * invalid pointer.  get_kernel_nofault() will not get here.
128262306a36Sopenharmony_ci		 */
128362306a36Sopenharmony_ci		page_fault_oops(regs, error_code, address);
128462306a36Sopenharmony_ci		return;
128562306a36Sopenharmony_ci	}
128662306a36Sopenharmony_ci
128762306a36Sopenharmony_ci	/*
128862306a36Sopenharmony_ci	 * If we're in an interrupt, have no user context or are running
128962306a36Sopenharmony_ci	 * in a region with pagefaults disabled then we must not take the fault
129062306a36Sopenharmony_ci	 */
129162306a36Sopenharmony_ci	if (unlikely(faulthandler_disabled() || !mm)) {
129262306a36Sopenharmony_ci		bad_area_nosemaphore(regs, error_code, address);
129362306a36Sopenharmony_ci		return;
129462306a36Sopenharmony_ci	}
129562306a36Sopenharmony_ci
129662306a36Sopenharmony_ci	/*
129762306a36Sopenharmony_ci	 * It's safe to allow irq's after cr2 has been saved and the
129862306a36Sopenharmony_ci	 * vmalloc fault has been handled.
129962306a36Sopenharmony_ci	 *
130062306a36Sopenharmony_ci	 * User-mode registers count as a user access even for any
130162306a36Sopenharmony_ci	 * potential system fault or CPU buglet:
130262306a36Sopenharmony_ci	 */
130362306a36Sopenharmony_ci	if (user_mode(regs)) {
130462306a36Sopenharmony_ci		local_irq_enable();
130562306a36Sopenharmony_ci		flags |= FAULT_FLAG_USER;
130662306a36Sopenharmony_ci	} else {
130762306a36Sopenharmony_ci		if (regs->flags & X86_EFLAGS_IF)
130862306a36Sopenharmony_ci			local_irq_enable();
130962306a36Sopenharmony_ci	}
131062306a36Sopenharmony_ci
131162306a36Sopenharmony_ci	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
131262306a36Sopenharmony_ci
131362306a36Sopenharmony_ci	/*
131462306a36Sopenharmony_ci	 * Read-only permissions can not be expressed in shadow stack PTEs.
131562306a36Sopenharmony_ci	 * Treat all shadow stack accesses as WRITE faults. This ensures
131662306a36Sopenharmony_ci	 * that the MM will prepare everything (e.g., break COW) such that
131762306a36Sopenharmony_ci	 * maybe_mkwrite() can create a proper shadow stack PTE.
131862306a36Sopenharmony_ci	 */
131962306a36Sopenharmony_ci	if (error_code & X86_PF_SHSTK)
132062306a36Sopenharmony_ci		flags |= FAULT_FLAG_WRITE;
132162306a36Sopenharmony_ci	if (error_code & X86_PF_WRITE)
132262306a36Sopenharmony_ci		flags |= FAULT_FLAG_WRITE;
132362306a36Sopenharmony_ci	if (error_code & X86_PF_INSTR)
132462306a36Sopenharmony_ci		flags |= FAULT_FLAG_INSTRUCTION;
132562306a36Sopenharmony_ci
132662306a36Sopenharmony_ci#ifdef CONFIG_X86_64
132762306a36Sopenharmony_ci	/*
132862306a36Sopenharmony_ci	 * Faults in the vsyscall page might need emulation.  The
132962306a36Sopenharmony_ci	 * vsyscall page is at a high address (>PAGE_OFFSET), but is
133062306a36Sopenharmony_ci	 * considered to be part of the user address space.
133162306a36Sopenharmony_ci	 *
133262306a36Sopenharmony_ci	 * The vsyscall page does not have a "real" VMA, so do this
133362306a36Sopenharmony_ci	 * emulation before we go searching for VMAs.
133462306a36Sopenharmony_ci	 *
133562306a36Sopenharmony_ci	 * PKRU never rejects instruction fetches, so we don't need
133662306a36Sopenharmony_ci	 * to consider the PF_PK bit.
133762306a36Sopenharmony_ci	 */
133862306a36Sopenharmony_ci	if (is_vsyscall_vaddr(address)) {
133962306a36Sopenharmony_ci		if (emulate_vsyscall(error_code, regs, address))
134062306a36Sopenharmony_ci			return;
134162306a36Sopenharmony_ci	}
134262306a36Sopenharmony_ci#endif
134362306a36Sopenharmony_ci
134462306a36Sopenharmony_ci	if (!(flags & FAULT_FLAG_USER))
134562306a36Sopenharmony_ci		goto lock_mmap;
134662306a36Sopenharmony_ci
134762306a36Sopenharmony_ci	vma = lock_vma_under_rcu(mm, address);
134862306a36Sopenharmony_ci	if (!vma)
134962306a36Sopenharmony_ci		goto lock_mmap;
135062306a36Sopenharmony_ci
135162306a36Sopenharmony_ci	if (unlikely(access_error(error_code, vma))) {
135262306a36Sopenharmony_ci		vma_end_read(vma);
135362306a36Sopenharmony_ci		goto lock_mmap;
135462306a36Sopenharmony_ci	}
135562306a36Sopenharmony_ci	fault = handle_mm_fault(vma, address, flags | FAULT_FLAG_VMA_LOCK, regs);
135662306a36Sopenharmony_ci	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
135762306a36Sopenharmony_ci		vma_end_read(vma);
135862306a36Sopenharmony_ci
135962306a36Sopenharmony_ci	if (!(fault & VM_FAULT_RETRY)) {
136062306a36Sopenharmony_ci		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
136162306a36Sopenharmony_ci		goto done;
136262306a36Sopenharmony_ci	}
136362306a36Sopenharmony_ci	count_vm_vma_lock_event(VMA_LOCK_RETRY);
136462306a36Sopenharmony_ci
136562306a36Sopenharmony_ci	/* Quick path to respond to signals */
136662306a36Sopenharmony_ci	if (fault_signal_pending(fault, regs)) {
136762306a36Sopenharmony_ci		if (!user_mode(regs))
136862306a36Sopenharmony_ci			kernelmode_fixup_or_oops(regs, error_code, address,
136962306a36Sopenharmony_ci						 SIGBUS, BUS_ADRERR,
137062306a36Sopenharmony_ci						 ARCH_DEFAULT_PKEY);
137162306a36Sopenharmony_ci		return;
137262306a36Sopenharmony_ci	}
137362306a36Sopenharmony_cilock_mmap:
137462306a36Sopenharmony_ci
137562306a36Sopenharmony_ciretry:
137662306a36Sopenharmony_ci	vma = lock_mm_and_find_vma(mm, address, regs);
137762306a36Sopenharmony_ci	if (unlikely(!vma)) {
137862306a36Sopenharmony_ci		bad_area_nosemaphore(regs, error_code, address);
137962306a36Sopenharmony_ci		return;
138062306a36Sopenharmony_ci	}
138162306a36Sopenharmony_ci
138262306a36Sopenharmony_ci	/*
138362306a36Sopenharmony_ci	 * Ok, we have a good vm_area for this memory access, so
138462306a36Sopenharmony_ci	 * we can handle it..
138562306a36Sopenharmony_ci	 */
138662306a36Sopenharmony_ci	if (unlikely(access_error(error_code, vma))) {
138762306a36Sopenharmony_ci		bad_area_access_error(regs, error_code, address, vma);
138862306a36Sopenharmony_ci		return;
138962306a36Sopenharmony_ci	}
139062306a36Sopenharmony_ci
139162306a36Sopenharmony_ci	/*
139262306a36Sopenharmony_ci	 * If for any reason at all we couldn't handle the fault,
139362306a36Sopenharmony_ci	 * make sure we exit gracefully rather than endlessly redo
139462306a36Sopenharmony_ci	 * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
139562306a36Sopenharmony_ci	 * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
139662306a36Sopenharmony_ci	 *
139762306a36Sopenharmony_ci	 * Note that handle_userfault() may also release and reacquire mmap_lock
139862306a36Sopenharmony_ci	 * (and not return with VM_FAULT_RETRY), when returning to userland to
139962306a36Sopenharmony_ci	 * repeat the page fault later with a VM_FAULT_NOPAGE retval
140062306a36Sopenharmony_ci	 * (potentially after handling any pending signal during the return to
140162306a36Sopenharmony_ci	 * userland). The return to userland is identified whenever
140262306a36Sopenharmony_ci	 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
140362306a36Sopenharmony_ci	 */
140462306a36Sopenharmony_ci	fault = handle_mm_fault(vma, address, flags, regs);
140562306a36Sopenharmony_ci
140662306a36Sopenharmony_ci	if (fault_signal_pending(fault, regs)) {
140762306a36Sopenharmony_ci		/*
140862306a36Sopenharmony_ci		 * Quick path to respond to signals.  The core mm code
140962306a36Sopenharmony_ci		 * has unlocked the mm for us if we get here.
141062306a36Sopenharmony_ci		 */
141162306a36Sopenharmony_ci		if (!user_mode(regs))
141262306a36Sopenharmony_ci			kernelmode_fixup_or_oops(regs, error_code, address,
141362306a36Sopenharmony_ci						 SIGBUS, BUS_ADRERR,
141462306a36Sopenharmony_ci						 ARCH_DEFAULT_PKEY);
141562306a36Sopenharmony_ci		return;
141662306a36Sopenharmony_ci	}
141762306a36Sopenharmony_ci
141862306a36Sopenharmony_ci	/* The fault is fully completed (including releasing mmap lock) */
141962306a36Sopenharmony_ci	if (fault & VM_FAULT_COMPLETED)
142062306a36Sopenharmony_ci		return;
142162306a36Sopenharmony_ci
142262306a36Sopenharmony_ci	/*
142362306a36Sopenharmony_ci	 * If we need to retry the mmap_lock has already been released,
142462306a36Sopenharmony_ci	 * and if there is a fatal signal pending there is no guarantee
142562306a36Sopenharmony_ci	 * that we made any progress. Handle this case first.
142662306a36Sopenharmony_ci	 */
142762306a36Sopenharmony_ci	if (unlikely(fault & VM_FAULT_RETRY)) {
142862306a36Sopenharmony_ci		flags |= FAULT_FLAG_TRIED;
142962306a36Sopenharmony_ci		goto retry;
143062306a36Sopenharmony_ci	}
143162306a36Sopenharmony_ci
143262306a36Sopenharmony_ci	mmap_read_unlock(mm);
143362306a36Sopenharmony_cidone:
143462306a36Sopenharmony_ci	if (likely(!(fault & VM_FAULT_ERROR)))
143562306a36Sopenharmony_ci		return;
143662306a36Sopenharmony_ci
143762306a36Sopenharmony_ci	if (fatal_signal_pending(current) && !user_mode(regs)) {
143862306a36Sopenharmony_ci		kernelmode_fixup_or_oops(regs, error_code, address,
143962306a36Sopenharmony_ci					 0, 0, ARCH_DEFAULT_PKEY);
144062306a36Sopenharmony_ci		return;
144162306a36Sopenharmony_ci	}
144262306a36Sopenharmony_ci
144362306a36Sopenharmony_ci	if (fault & VM_FAULT_OOM) {
144462306a36Sopenharmony_ci		/* Kernel mode? Handle exceptions or die: */
144562306a36Sopenharmony_ci		if (!user_mode(regs)) {
144662306a36Sopenharmony_ci			kernelmode_fixup_or_oops(regs, error_code, address,
144762306a36Sopenharmony_ci						 SIGSEGV, SEGV_MAPERR,
144862306a36Sopenharmony_ci						 ARCH_DEFAULT_PKEY);
144962306a36Sopenharmony_ci			return;
145062306a36Sopenharmony_ci		}
145162306a36Sopenharmony_ci
145262306a36Sopenharmony_ci		/*
145362306a36Sopenharmony_ci		 * We ran out of memory, call the OOM killer, and return the
145462306a36Sopenharmony_ci		 * userspace (which will retry the fault, or kill us if we got
145562306a36Sopenharmony_ci		 * oom-killed):
145662306a36Sopenharmony_ci		 */
145762306a36Sopenharmony_ci		pagefault_out_of_memory();
145862306a36Sopenharmony_ci	} else {
145962306a36Sopenharmony_ci		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
146062306a36Sopenharmony_ci			     VM_FAULT_HWPOISON_LARGE))
146162306a36Sopenharmony_ci			do_sigbus(regs, error_code, address, fault);
146262306a36Sopenharmony_ci		else if (fault & VM_FAULT_SIGSEGV)
146362306a36Sopenharmony_ci			bad_area_nosemaphore(regs, error_code, address);
146462306a36Sopenharmony_ci		else
146562306a36Sopenharmony_ci			BUG();
146662306a36Sopenharmony_ci	}
146762306a36Sopenharmony_ci}
146862306a36Sopenharmony_ciNOKPROBE_SYMBOL(do_user_addr_fault);
146962306a36Sopenharmony_ci
147062306a36Sopenharmony_cistatic __always_inline void
147162306a36Sopenharmony_citrace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
147262306a36Sopenharmony_ci			 unsigned long address)
147362306a36Sopenharmony_ci{
147462306a36Sopenharmony_ci	if (!trace_pagefault_enabled())
147562306a36Sopenharmony_ci		return;
147662306a36Sopenharmony_ci
147762306a36Sopenharmony_ci	if (user_mode(regs))
147862306a36Sopenharmony_ci		trace_page_fault_user(address, regs, error_code);
147962306a36Sopenharmony_ci	else
148062306a36Sopenharmony_ci		trace_page_fault_kernel(address, regs, error_code);
148162306a36Sopenharmony_ci}
148262306a36Sopenharmony_ci
148362306a36Sopenharmony_cistatic __always_inline void
148462306a36Sopenharmony_cihandle_page_fault(struct pt_regs *regs, unsigned long error_code,
148562306a36Sopenharmony_ci			      unsigned long address)
148662306a36Sopenharmony_ci{
148762306a36Sopenharmony_ci	trace_page_fault_entries(regs, error_code, address);
148862306a36Sopenharmony_ci
148962306a36Sopenharmony_ci	if (unlikely(kmmio_fault(regs, address)))
149062306a36Sopenharmony_ci		return;
149162306a36Sopenharmony_ci
149262306a36Sopenharmony_ci	/* Was the fault on kernel-controlled part of the address space? */
149362306a36Sopenharmony_ci	if (unlikely(fault_in_kernel_space(address))) {
149462306a36Sopenharmony_ci		do_kern_addr_fault(regs, error_code, address);
149562306a36Sopenharmony_ci	} else {
149662306a36Sopenharmony_ci		do_user_addr_fault(regs, error_code, address);
149762306a36Sopenharmony_ci		/*
149862306a36Sopenharmony_ci		 * User address page fault handling might have reenabled
149962306a36Sopenharmony_ci		 * interrupts. Fixing up all potential exit points of
150062306a36Sopenharmony_ci		 * do_user_addr_fault() and its leaf functions is just not
150162306a36Sopenharmony_ci		 * doable w/o creating an unholy mess or turning the code
150262306a36Sopenharmony_ci		 * upside down.
150362306a36Sopenharmony_ci		 */
150462306a36Sopenharmony_ci		local_irq_disable();
150562306a36Sopenharmony_ci	}
150662306a36Sopenharmony_ci}
150762306a36Sopenharmony_ci
150862306a36Sopenharmony_ciDEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
150962306a36Sopenharmony_ci{
151062306a36Sopenharmony_ci	unsigned long address = read_cr2();
151162306a36Sopenharmony_ci	irqentry_state_t state;
151262306a36Sopenharmony_ci
151362306a36Sopenharmony_ci	prefetchw(&current->mm->mmap_lock);
151462306a36Sopenharmony_ci
151562306a36Sopenharmony_ci	/*
151662306a36Sopenharmony_ci	 * KVM uses #PF vector to deliver 'page not present' events to guests
151762306a36Sopenharmony_ci	 * (asynchronous page fault mechanism). The event happens when a
151862306a36Sopenharmony_ci	 * userspace task is trying to access some valid (from guest's point of
151962306a36Sopenharmony_ci	 * view) memory which is not currently mapped by the host (e.g. the
152062306a36Sopenharmony_ci	 * memory is swapped out). Note, the corresponding "page ready" event
152162306a36Sopenharmony_ci	 * which is injected when the memory becomes available, is delivered via
152262306a36Sopenharmony_ci	 * an interrupt mechanism and not a #PF exception
152362306a36Sopenharmony_ci	 * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
152462306a36Sopenharmony_ci	 *
152562306a36Sopenharmony_ci	 * We are relying on the interrupted context being sane (valid RSP,
152662306a36Sopenharmony_ci	 * relevant locks not held, etc.), which is fine as long as the
152762306a36Sopenharmony_ci	 * interrupted context had IF=1.  We are also relying on the KVM
152862306a36Sopenharmony_ci	 * async pf type field and CR2 being read consistently instead of
152962306a36Sopenharmony_ci	 * getting values from real and async page faults mixed up.
153062306a36Sopenharmony_ci	 *
153162306a36Sopenharmony_ci	 * Fingers crossed.
153262306a36Sopenharmony_ci	 *
153362306a36Sopenharmony_ci	 * The async #PF handling code takes care of idtentry handling
153462306a36Sopenharmony_ci	 * itself.
153562306a36Sopenharmony_ci	 */
153662306a36Sopenharmony_ci	if (kvm_handle_async_pf(regs, (u32)address))
153762306a36Sopenharmony_ci		return;
153862306a36Sopenharmony_ci
153962306a36Sopenharmony_ci	/*
154062306a36Sopenharmony_ci	 * Entry handling for valid #PF from kernel mode is slightly
154162306a36Sopenharmony_ci	 * different: RCU is already watching and ct_irq_enter() must not
154262306a36Sopenharmony_ci	 * be invoked because a kernel fault on a user space address might
154362306a36Sopenharmony_ci	 * sleep.
154462306a36Sopenharmony_ci	 *
154562306a36Sopenharmony_ci	 * In case the fault hit a RCU idle region the conditional entry
154662306a36Sopenharmony_ci	 * code reenabled RCU to avoid subsequent wreckage which helps
154762306a36Sopenharmony_ci	 * debuggability.
154862306a36Sopenharmony_ci	 */
154962306a36Sopenharmony_ci	state = irqentry_enter(regs);
155062306a36Sopenharmony_ci
155162306a36Sopenharmony_ci	instrumentation_begin();
155262306a36Sopenharmony_ci	handle_page_fault(regs, error_code, address);
155362306a36Sopenharmony_ci	instrumentation_end();
155462306a36Sopenharmony_ci
155562306a36Sopenharmony_ci	irqentry_exit(regs, state);
155662306a36Sopenharmony_ci}
1557