xref: /kernel/linux/linux-6.6/arch/x86/kvm/xen.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright © 2019 Oracle and/or its affiliates. All rights reserved.
4 * Copyright © 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved.
5 *
6 * KVM Xen emulation
7 */
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include "x86.h"
11#include "xen.h"
12#include "hyperv.h"
13#include "lapic.h"
14
15#include <linux/eventfd.h>
16#include <linux/kvm_host.h>
17#include <linux/sched/stat.h>
18
19#include <trace/events/kvm.h>
20#include <xen/interface/xen.h>
21#include <xen/interface/vcpu.h>
22#include <xen/interface/version.h>
23#include <xen/interface/event_channel.h>
24#include <xen/interface/sched.h>
25
26#include <asm/xen/cpuid.h>
27
28#include "cpuid.h"
29#include "trace.h"
30
31static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm);
32static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data);
33static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r);
34
35DEFINE_STATIC_KEY_DEFERRED_FALSE(kvm_xen_enabled, HZ);
36
37static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn)
38{
39	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
40	struct pvclock_wall_clock *wc;
41	gpa_t gpa = gfn_to_gpa(gfn);
42	u32 *wc_sec_hi;
43	u32 wc_version;
44	u64 wall_nsec;
45	int ret = 0;
46	int idx = srcu_read_lock(&kvm->srcu);
47
48	if (gfn == KVM_XEN_INVALID_GFN) {
49		kvm_gpc_deactivate(gpc);
50		goto out;
51	}
52
53	do {
54		ret = kvm_gpc_activate(gpc, gpa, PAGE_SIZE);
55		if (ret)
56			goto out;
57
58		/*
59		 * This code mirrors kvm_write_wall_clock() except that it writes
60		 * directly through the pfn cache and doesn't mark the page dirty.
61		 */
62		wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
63
64		/* It could be invalid again already, so we need to check */
65		read_lock_irq(&gpc->lock);
66
67		if (gpc->valid)
68			break;
69
70		read_unlock_irq(&gpc->lock);
71	} while (1);
72
73	/* Paranoia checks on the 32-bit struct layout */
74	BUILD_BUG_ON(offsetof(struct compat_shared_info, wc) != 0x900);
75	BUILD_BUG_ON(offsetof(struct compat_shared_info, arch.wc_sec_hi) != 0x924);
76	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
77
78#ifdef CONFIG_X86_64
79	/* Paranoia checks on the 64-bit struct layout */
80	BUILD_BUG_ON(offsetof(struct shared_info, wc) != 0xc00);
81	BUILD_BUG_ON(offsetof(struct shared_info, wc_sec_hi) != 0xc0c);
82
83	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
84		struct shared_info *shinfo = gpc->khva;
85
86		wc_sec_hi = &shinfo->wc_sec_hi;
87		wc = &shinfo->wc;
88	} else
89#endif
90	{
91		struct compat_shared_info *shinfo = gpc->khva;
92
93		wc_sec_hi = &shinfo->arch.wc_sec_hi;
94		wc = &shinfo->wc;
95	}
96
97	/* Increment and ensure an odd value */
98	wc_version = wc->version = (wc->version + 1) | 1;
99	smp_wmb();
100
101	wc->nsec = do_div(wall_nsec,  1000000000);
102	wc->sec = (u32)wall_nsec;
103	*wc_sec_hi = wall_nsec >> 32;
104	smp_wmb();
105
106	wc->version = wc_version + 1;
107	read_unlock_irq(&gpc->lock);
108
109	kvm_make_all_cpus_request(kvm, KVM_REQ_MASTERCLOCK_UPDATE);
110
111out:
112	srcu_read_unlock(&kvm->srcu, idx);
113	return ret;
114}
115
116void kvm_xen_inject_timer_irqs(struct kvm_vcpu *vcpu)
117{
118	if (atomic_read(&vcpu->arch.xen.timer_pending) > 0) {
119		struct kvm_xen_evtchn e;
120
121		e.vcpu_id = vcpu->vcpu_id;
122		e.vcpu_idx = vcpu->vcpu_idx;
123		e.port = vcpu->arch.xen.timer_virq;
124		e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
125
126		kvm_xen_set_evtchn(&e, vcpu->kvm);
127
128		vcpu->arch.xen.timer_expires = 0;
129		atomic_set(&vcpu->arch.xen.timer_pending, 0);
130	}
131}
132
133static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer)
134{
135	struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu,
136					     arch.xen.timer);
137	if (atomic_read(&vcpu->arch.xen.timer_pending))
138		return HRTIMER_NORESTART;
139
140	atomic_inc(&vcpu->arch.xen.timer_pending);
141	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
142	kvm_vcpu_kick(vcpu);
143
144	return HRTIMER_NORESTART;
145}
146
147static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns)
148{
149	atomic_set(&vcpu->arch.xen.timer_pending, 0);
150	vcpu->arch.xen.timer_expires = guest_abs;
151
152	if (delta_ns <= 0) {
153		xen_timer_callback(&vcpu->arch.xen.timer);
154	} else {
155		ktime_t ktime_now = ktime_get();
156		hrtimer_start(&vcpu->arch.xen.timer,
157			      ktime_add_ns(ktime_now, delta_ns),
158			      HRTIMER_MODE_ABS_HARD);
159	}
160}
161
162static void kvm_xen_stop_timer(struct kvm_vcpu *vcpu)
163{
164	hrtimer_cancel(&vcpu->arch.xen.timer);
165	vcpu->arch.xen.timer_expires = 0;
166	atomic_set(&vcpu->arch.xen.timer_pending, 0);
167}
168
169static void kvm_xen_init_timer(struct kvm_vcpu *vcpu)
170{
171	hrtimer_init(&vcpu->arch.xen.timer, CLOCK_MONOTONIC,
172		     HRTIMER_MODE_ABS_HARD);
173	vcpu->arch.xen.timer.function = xen_timer_callback;
174}
175
176static void kvm_xen_update_runstate_guest(struct kvm_vcpu *v, bool atomic)
177{
178	struct kvm_vcpu_xen *vx = &v->arch.xen;
179	struct gfn_to_pfn_cache *gpc1 = &vx->runstate_cache;
180	struct gfn_to_pfn_cache *gpc2 = &vx->runstate2_cache;
181	size_t user_len, user_len1, user_len2;
182	struct vcpu_runstate_info rs;
183	unsigned long flags;
184	size_t times_ofs;
185	uint8_t *update_bit = NULL;
186	uint64_t entry_time;
187	uint64_t *rs_times;
188	int *rs_state;
189
190	/*
191	 * The only difference between 32-bit and 64-bit versions of the
192	 * runstate struct is the alignment of uint64_t in 32-bit, which
193	 * means that the 64-bit version has an additional 4 bytes of
194	 * padding after the first field 'state'. Let's be really really
195	 * paranoid about that, and matching it with our internal data
196	 * structures that we memcpy into it...
197	 */
198	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) != 0);
199	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state) != 0);
200	BUILD_BUG_ON(sizeof(struct compat_vcpu_runstate_info) != 0x2c);
201#ifdef CONFIG_X86_64
202	/*
203	 * The 64-bit structure has 4 bytes of padding before 'state_entry_time'
204	 * so each subsequent field is shifted by 4, and it's 4 bytes longer.
205	 */
206	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
207		     offsetof(struct compat_vcpu_runstate_info, state_entry_time) + 4);
208	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, time) !=
209		     offsetof(struct compat_vcpu_runstate_info, time) + 4);
210	BUILD_BUG_ON(sizeof(struct vcpu_runstate_info) != 0x2c + 4);
211#endif
212	/*
213	 * The state field is in the same place at the start of both structs,
214	 * and is the same size (int) as vx->current_runstate.
215	 */
216	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state) !=
217		     offsetof(struct compat_vcpu_runstate_info, state));
218	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state) !=
219		     sizeof(vx->current_runstate));
220	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state) !=
221		     sizeof(vx->current_runstate));
222
223	/*
224	 * The state_entry_time field is 64 bits in both versions, and the
225	 * XEN_RUNSTATE_UPDATE flag is in the top bit, which given that x86
226	 * is little-endian means that it's in the last *byte* of the word.
227	 * That detail is important later.
228	 */
229	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, state_entry_time) !=
230		     sizeof(uint64_t));
231	BUILD_BUG_ON(sizeof_field(struct compat_vcpu_runstate_info, state_entry_time) !=
232		     sizeof(uint64_t));
233	BUILD_BUG_ON((XEN_RUNSTATE_UPDATE >> 56) != 0x80);
234
235	/*
236	 * The time array is four 64-bit quantities in both versions, matching
237	 * the vx->runstate_times and immediately following state_entry_time.
238	 */
239	BUILD_BUG_ON(offsetof(struct vcpu_runstate_info, state_entry_time) !=
240		     offsetof(struct vcpu_runstate_info, time) - sizeof(uint64_t));
241	BUILD_BUG_ON(offsetof(struct compat_vcpu_runstate_info, state_entry_time) !=
242		     offsetof(struct compat_vcpu_runstate_info, time) - sizeof(uint64_t));
243	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
244		     sizeof_field(struct compat_vcpu_runstate_info, time));
245	BUILD_BUG_ON(sizeof_field(struct vcpu_runstate_info, time) !=
246		     sizeof(vx->runstate_times));
247
248	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
249		user_len = sizeof(struct vcpu_runstate_info);
250		times_ofs = offsetof(struct vcpu_runstate_info,
251				     state_entry_time);
252	} else {
253		user_len = sizeof(struct compat_vcpu_runstate_info);
254		times_ofs = offsetof(struct compat_vcpu_runstate_info,
255				     state_entry_time);
256	}
257
258	/*
259	 * There are basically no alignment constraints. The guest can set it
260	 * up so it crosses from one page to the next, and at arbitrary byte
261	 * alignment (and the 32-bit ABI doesn't align the 64-bit integers
262	 * anyway, even if the overall struct had been 64-bit aligned).
263	 */
264	if ((gpc1->gpa & ~PAGE_MASK) + user_len >= PAGE_SIZE) {
265		user_len1 = PAGE_SIZE - (gpc1->gpa & ~PAGE_MASK);
266		user_len2 = user_len - user_len1;
267	} else {
268		user_len1 = user_len;
269		user_len2 = 0;
270	}
271	BUG_ON(user_len1 + user_len2 != user_len);
272
273 retry:
274	/*
275	 * Attempt to obtain the GPC lock on *both* (if there are two)
276	 * gfn_to_pfn caches that cover the region.
277	 */
278	if (atomic) {
279		local_irq_save(flags);
280		if (!read_trylock(&gpc1->lock)) {
281			local_irq_restore(flags);
282			return;
283		}
284	} else {
285		read_lock_irqsave(&gpc1->lock, flags);
286	}
287	while (!kvm_gpc_check(gpc1, user_len1)) {
288		read_unlock_irqrestore(&gpc1->lock, flags);
289
290		/* When invoked from kvm_sched_out() we cannot sleep */
291		if (atomic)
292			return;
293
294		if (kvm_gpc_refresh(gpc1, user_len1))
295			return;
296
297		read_lock_irqsave(&gpc1->lock, flags);
298	}
299
300	if (likely(!user_len2)) {
301		/*
302		 * Set up three pointers directly to the runstate_info
303		 * struct in the guest (via the GPC).
304		 *
305		 *  • @rs_state   → state field
306		 *  • @rs_times   → state_entry_time field.
307		 *  • @update_bit → last byte of state_entry_time, which
308		 *                  contains the XEN_RUNSTATE_UPDATE bit.
309		 */
310		rs_state = gpc1->khva;
311		rs_times = gpc1->khva + times_ofs;
312		if (v->kvm->arch.xen.runstate_update_flag)
313			update_bit = ((void *)(&rs_times[1])) - 1;
314	} else {
315		/*
316		 * The guest's runstate_info is split across two pages and we
317		 * need to hold and validate both GPCs simultaneously. We can
318		 * declare a lock ordering GPC1 > GPC2 because nothing else
319		 * takes them more than one at a time. Set a subclass on the
320		 * gpc1 lock to make lockdep shut up about it.
321		 */
322		lock_set_subclass(&gpc1->lock.dep_map, 1, _THIS_IP_);
323		if (atomic) {
324			if (!read_trylock(&gpc2->lock)) {
325				read_unlock_irqrestore(&gpc1->lock, flags);
326				return;
327			}
328		} else {
329			read_lock(&gpc2->lock);
330		}
331
332		if (!kvm_gpc_check(gpc2, user_len2)) {
333			read_unlock(&gpc2->lock);
334			read_unlock_irqrestore(&gpc1->lock, flags);
335
336			/* When invoked from kvm_sched_out() we cannot sleep */
337			if (atomic)
338				return;
339
340			/*
341			 * Use kvm_gpc_activate() here because if the runstate
342			 * area was configured in 32-bit mode and only extends
343			 * to the second page now because the guest changed to
344			 * 64-bit mode, the second GPC won't have been set up.
345			 */
346			if (kvm_gpc_activate(gpc2, gpc1->gpa + user_len1,
347					     user_len2))
348				return;
349
350			/*
351			 * We dropped the lock on GPC1 so we have to go all the
352			 * way back and revalidate that too.
353			 */
354			goto retry;
355		}
356
357		/*
358		 * In this case, the runstate_info struct will be assembled on
359		 * the kernel stack (compat or not as appropriate) and will
360		 * be copied to GPC1/GPC2 with a dual memcpy. Set up the three
361		 * rs pointers accordingly.
362		 */
363		rs_times = &rs.state_entry_time;
364
365		/*
366		 * The rs_state pointer points to the start of what we'll
367		 * copy to the guest, which in the case of a compat guest
368		 * is the 32-bit field that the compiler thinks is padding.
369		 */
370		rs_state = ((void *)rs_times) - times_ofs;
371
372		/*
373		 * The update_bit is still directly in the guest memory,
374		 * via one GPC or the other.
375		 */
376		if (v->kvm->arch.xen.runstate_update_flag) {
377			if (user_len1 >= times_ofs + sizeof(uint64_t))
378				update_bit = gpc1->khva + times_ofs +
379					sizeof(uint64_t) - 1;
380			else
381				update_bit = gpc2->khva + times_ofs +
382					sizeof(uint64_t) - 1 - user_len1;
383		}
384
385#ifdef CONFIG_X86_64
386		/*
387		 * Don't leak kernel memory through the padding in the 64-bit
388		 * version of the struct.
389		 */
390		memset(&rs, 0, offsetof(struct vcpu_runstate_info, state_entry_time));
391#endif
392	}
393
394	/*
395	 * First, set the XEN_RUNSTATE_UPDATE bit in the top bit of the
396	 * state_entry_time field, directly in the guest. We need to set
397	 * that (and write-barrier) before writing to the rest of the
398	 * structure, and clear it last. Just as Xen does, we address the
399	 * single *byte* in which it resides because it might be in a
400	 * different cache line to the rest of the 64-bit word, due to
401	 * the (lack of) alignment constraints.
402	 */
403	entry_time = vx->runstate_entry_time;
404	if (update_bit) {
405		entry_time |= XEN_RUNSTATE_UPDATE;
406		*update_bit = (vx->runstate_entry_time | XEN_RUNSTATE_UPDATE) >> 56;
407		smp_wmb();
408	}
409
410	/*
411	 * Now assemble the actual structure, either on our kernel stack
412	 * or directly in the guest according to how the rs_state and
413	 * rs_times pointers were set up above.
414	 */
415	*rs_state = vx->current_runstate;
416	rs_times[0] = entry_time;
417	memcpy(rs_times + 1, vx->runstate_times, sizeof(vx->runstate_times));
418
419	/* For the split case, we have to then copy it to the guest. */
420	if (user_len2) {
421		memcpy(gpc1->khva, rs_state, user_len1);
422		memcpy(gpc2->khva, ((void *)rs_state) + user_len1, user_len2);
423	}
424	smp_wmb();
425
426	/* Finally, clear the XEN_RUNSTATE_UPDATE bit. */
427	if (update_bit) {
428		entry_time &= ~XEN_RUNSTATE_UPDATE;
429		*update_bit = entry_time >> 56;
430		smp_wmb();
431	}
432
433	if (user_len2)
434		read_unlock(&gpc2->lock);
435
436	read_unlock_irqrestore(&gpc1->lock, flags);
437
438	mark_page_dirty_in_slot(v->kvm, gpc1->memslot, gpc1->gpa >> PAGE_SHIFT);
439	if (user_len2)
440		mark_page_dirty_in_slot(v->kvm, gpc2->memslot, gpc2->gpa >> PAGE_SHIFT);
441}
442
443void kvm_xen_update_runstate(struct kvm_vcpu *v, int state)
444{
445	struct kvm_vcpu_xen *vx = &v->arch.xen;
446	u64 now = get_kvmclock_ns(v->kvm);
447	u64 delta_ns = now - vx->runstate_entry_time;
448	u64 run_delay = current->sched_info.run_delay;
449
450	if (unlikely(!vx->runstate_entry_time))
451		vx->current_runstate = RUNSTATE_offline;
452
453	/*
454	 * Time waiting for the scheduler isn't "stolen" if the
455	 * vCPU wasn't running anyway.
456	 */
457	if (vx->current_runstate == RUNSTATE_running) {
458		u64 steal_ns = run_delay - vx->last_steal;
459
460		delta_ns -= steal_ns;
461
462		vx->runstate_times[RUNSTATE_runnable] += steal_ns;
463	}
464	vx->last_steal = run_delay;
465
466	vx->runstate_times[vx->current_runstate] += delta_ns;
467	vx->current_runstate = state;
468	vx->runstate_entry_time = now;
469
470	if (vx->runstate_cache.active)
471		kvm_xen_update_runstate_guest(v, state == RUNSTATE_runnable);
472}
473
474void kvm_xen_inject_vcpu_vector(struct kvm_vcpu *v)
475{
476	struct kvm_lapic_irq irq = { };
477	int r;
478
479	irq.dest_id = v->vcpu_id;
480	irq.vector = v->arch.xen.upcall_vector;
481	irq.dest_mode = APIC_DEST_PHYSICAL;
482	irq.shorthand = APIC_DEST_NOSHORT;
483	irq.delivery_mode = APIC_DM_FIXED;
484	irq.level = 1;
485
486	/* The fast version will always work for physical unicast */
487	WARN_ON_ONCE(!kvm_irq_delivery_to_apic_fast(v->kvm, NULL, &irq, &r, NULL));
488}
489
490/*
491 * On event channel delivery, the vcpu_info may not have been accessible.
492 * In that case, there are bits in vcpu->arch.xen.evtchn_pending_sel which
493 * need to be marked into the vcpu_info (and evtchn_upcall_pending set).
494 * Do so now that we can sleep in the context of the vCPU to bring the
495 * page in, and refresh the pfn cache for it.
496 */
497void kvm_xen_inject_pending_events(struct kvm_vcpu *v)
498{
499	unsigned long evtchn_pending_sel = READ_ONCE(v->arch.xen.evtchn_pending_sel);
500	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
501	unsigned long flags;
502
503	if (!evtchn_pending_sel)
504		return;
505
506	/*
507	 * Yes, this is an open-coded loop. But that's just what put_user()
508	 * does anyway. Page it in and retry the instruction. We're just a
509	 * little more honest about it.
510	 */
511	read_lock_irqsave(&gpc->lock, flags);
512	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
513		read_unlock_irqrestore(&gpc->lock, flags);
514
515		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info)))
516			return;
517
518		read_lock_irqsave(&gpc->lock, flags);
519	}
520
521	/* Now gpc->khva is a valid kernel address for the vcpu_info */
522	if (IS_ENABLED(CONFIG_64BIT) && v->kvm->arch.xen.long_mode) {
523		struct vcpu_info *vi = gpc->khva;
524
525		asm volatile(LOCK_PREFIX "orq %0, %1\n"
526			     "notq %0\n"
527			     LOCK_PREFIX "andq %0, %2\n"
528			     : "=r" (evtchn_pending_sel),
529			       "+m" (vi->evtchn_pending_sel),
530			       "+m" (v->arch.xen.evtchn_pending_sel)
531			     : "0" (evtchn_pending_sel));
532		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
533	} else {
534		u32 evtchn_pending_sel32 = evtchn_pending_sel;
535		struct compat_vcpu_info *vi = gpc->khva;
536
537		asm volatile(LOCK_PREFIX "orl %0, %1\n"
538			     "notl %0\n"
539			     LOCK_PREFIX "andl %0, %2\n"
540			     : "=r" (evtchn_pending_sel32),
541			       "+m" (vi->evtchn_pending_sel),
542			       "+m" (v->arch.xen.evtchn_pending_sel)
543			     : "0" (evtchn_pending_sel32));
544		WRITE_ONCE(vi->evtchn_upcall_pending, 1);
545	}
546	read_unlock_irqrestore(&gpc->lock, flags);
547
548	/* For the per-vCPU lapic vector, deliver it as MSI. */
549	if (v->arch.xen.upcall_vector)
550		kvm_xen_inject_vcpu_vector(v);
551
552	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
553}
554
555int __kvm_xen_has_interrupt(struct kvm_vcpu *v)
556{
557	struct gfn_to_pfn_cache *gpc = &v->arch.xen.vcpu_info_cache;
558	unsigned long flags;
559	u8 rc = 0;
560
561	/*
562	 * If the global upcall vector (HVMIRQ_callback_vector) is set and
563	 * the vCPU's evtchn_upcall_pending flag is set, the IRQ is pending.
564	 */
565
566	/* No need for compat handling here */
567	BUILD_BUG_ON(offsetof(struct vcpu_info, evtchn_upcall_pending) !=
568		     offsetof(struct compat_vcpu_info, evtchn_upcall_pending));
569	BUILD_BUG_ON(sizeof(rc) !=
570		     sizeof_field(struct vcpu_info, evtchn_upcall_pending));
571	BUILD_BUG_ON(sizeof(rc) !=
572		     sizeof_field(struct compat_vcpu_info, evtchn_upcall_pending));
573
574	read_lock_irqsave(&gpc->lock, flags);
575	while (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
576		read_unlock_irqrestore(&gpc->lock, flags);
577
578		/*
579		 * This function gets called from kvm_vcpu_block() after setting the
580		 * task to TASK_INTERRUPTIBLE, to see if it needs to wake immediately
581		 * from a HLT. So we really mustn't sleep. If the page ended up absent
582		 * at that point, just return 1 in order to trigger an immediate wake,
583		 * and we'll end up getting called again from a context where we *can*
584		 * fault in the page and wait for it.
585		 */
586		if (in_atomic() || !task_is_running(current))
587			return 1;
588
589		if (kvm_gpc_refresh(gpc, sizeof(struct vcpu_info))) {
590			/*
591			 * If this failed, userspace has screwed up the
592			 * vcpu_info mapping. No interrupts for you.
593			 */
594			return 0;
595		}
596		read_lock_irqsave(&gpc->lock, flags);
597	}
598
599	rc = ((struct vcpu_info *)gpc->khva)->evtchn_upcall_pending;
600	read_unlock_irqrestore(&gpc->lock, flags);
601	return rc;
602}
603
604int kvm_xen_hvm_set_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
605{
606	int r = -ENOENT;
607
608
609	switch (data->type) {
610	case KVM_XEN_ATTR_TYPE_LONG_MODE:
611		if (!IS_ENABLED(CONFIG_64BIT) && data->u.long_mode) {
612			r = -EINVAL;
613		} else {
614			mutex_lock(&kvm->arch.xen.xen_lock);
615			kvm->arch.xen.long_mode = !!data->u.long_mode;
616			mutex_unlock(&kvm->arch.xen.xen_lock);
617			r = 0;
618		}
619		break;
620
621	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
622		mutex_lock(&kvm->arch.xen.xen_lock);
623		r = kvm_xen_shared_info_init(kvm, data->u.shared_info.gfn);
624		mutex_unlock(&kvm->arch.xen.xen_lock);
625		break;
626
627	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
628		if (data->u.vector && data->u.vector < 0x10)
629			r = -EINVAL;
630		else {
631			mutex_lock(&kvm->arch.xen.xen_lock);
632			kvm->arch.xen.upcall_vector = data->u.vector;
633			mutex_unlock(&kvm->arch.xen.xen_lock);
634			r = 0;
635		}
636		break;
637
638	case KVM_XEN_ATTR_TYPE_EVTCHN:
639		r = kvm_xen_setattr_evtchn(kvm, data);
640		break;
641
642	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
643		mutex_lock(&kvm->arch.xen.xen_lock);
644		kvm->arch.xen.xen_version = data->u.xen_version;
645		mutex_unlock(&kvm->arch.xen.xen_lock);
646		r = 0;
647		break;
648
649	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
650		if (!sched_info_on()) {
651			r = -EOPNOTSUPP;
652			break;
653		}
654		mutex_lock(&kvm->arch.xen.xen_lock);
655		kvm->arch.xen.runstate_update_flag = !!data->u.runstate_update_flag;
656		mutex_unlock(&kvm->arch.xen.xen_lock);
657		r = 0;
658		break;
659
660	default:
661		break;
662	}
663
664	return r;
665}
666
667int kvm_xen_hvm_get_attr(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
668{
669	int r = -ENOENT;
670
671	mutex_lock(&kvm->arch.xen.xen_lock);
672
673	switch (data->type) {
674	case KVM_XEN_ATTR_TYPE_LONG_MODE:
675		data->u.long_mode = kvm->arch.xen.long_mode;
676		r = 0;
677		break;
678
679	case KVM_XEN_ATTR_TYPE_SHARED_INFO:
680		if (kvm->arch.xen.shinfo_cache.active)
681			data->u.shared_info.gfn = gpa_to_gfn(kvm->arch.xen.shinfo_cache.gpa);
682		else
683			data->u.shared_info.gfn = KVM_XEN_INVALID_GFN;
684		r = 0;
685		break;
686
687	case KVM_XEN_ATTR_TYPE_UPCALL_VECTOR:
688		data->u.vector = kvm->arch.xen.upcall_vector;
689		r = 0;
690		break;
691
692	case KVM_XEN_ATTR_TYPE_XEN_VERSION:
693		data->u.xen_version = kvm->arch.xen.xen_version;
694		r = 0;
695		break;
696
697	case KVM_XEN_ATTR_TYPE_RUNSTATE_UPDATE_FLAG:
698		if (!sched_info_on()) {
699			r = -EOPNOTSUPP;
700			break;
701		}
702		data->u.runstate_update_flag = kvm->arch.xen.runstate_update_flag;
703		r = 0;
704		break;
705
706	default:
707		break;
708	}
709
710	mutex_unlock(&kvm->arch.xen.xen_lock);
711	return r;
712}
713
714int kvm_xen_vcpu_set_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
715{
716	int idx, r = -ENOENT;
717
718	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
719	idx = srcu_read_lock(&vcpu->kvm->srcu);
720
721	switch (data->type) {
722	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
723		/* No compat necessary here. */
724		BUILD_BUG_ON(sizeof(struct vcpu_info) !=
725			     sizeof(struct compat_vcpu_info));
726		BUILD_BUG_ON(offsetof(struct vcpu_info, time) !=
727			     offsetof(struct compat_vcpu_info, time));
728
729		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
730			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
731			r = 0;
732			break;
733		}
734
735		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_info_cache,
736				     data->u.gpa, sizeof(struct vcpu_info));
737		if (!r)
738			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
739
740		break;
741
742	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
743		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
744			kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
745			r = 0;
746			break;
747		}
748
749		r = kvm_gpc_activate(&vcpu->arch.xen.vcpu_time_info_cache,
750				     data->u.gpa,
751				     sizeof(struct pvclock_vcpu_time_info));
752		if (!r)
753			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
754		break;
755
756	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR: {
757		size_t sz, sz1, sz2;
758
759		if (!sched_info_on()) {
760			r = -EOPNOTSUPP;
761			break;
762		}
763		if (data->u.gpa == KVM_XEN_INVALID_GPA) {
764			r = 0;
765		deactivate_out:
766			kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
767			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
768			break;
769		}
770
771		/*
772		 * If the guest switches to 64-bit mode after setting the runstate
773		 * address, that's actually OK. kvm_xen_update_runstate_guest()
774		 * will cope.
775		 */
776		if (IS_ENABLED(CONFIG_64BIT) && vcpu->kvm->arch.xen.long_mode)
777			sz = sizeof(struct vcpu_runstate_info);
778		else
779			sz = sizeof(struct compat_vcpu_runstate_info);
780
781		/* How much fits in the (first) page? */
782		sz1 = PAGE_SIZE - (data->u.gpa & ~PAGE_MASK);
783		r = kvm_gpc_activate(&vcpu->arch.xen.runstate_cache,
784				     data->u.gpa, sz1);
785		if (r)
786			goto deactivate_out;
787
788		/* Either map the second page, or deactivate the second GPC */
789		if (sz1 >= sz) {
790			kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
791		} else {
792			sz2 = sz - sz1;
793			BUG_ON((data->u.gpa + sz1) & ~PAGE_MASK);
794			r = kvm_gpc_activate(&vcpu->arch.xen.runstate2_cache,
795					     data->u.gpa + sz1, sz2);
796			if (r)
797				goto deactivate_out;
798		}
799
800		kvm_xen_update_runstate_guest(vcpu, false);
801		break;
802	}
803	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
804		if (!sched_info_on()) {
805			r = -EOPNOTSUPP;
806			break;
807		}
808		if (data->u.runstate.state > RUNSTATE_offline) {
809			r = -EINVAL;
810			break;
811		}
812
813		kvm_xen_update_runstate(vcpu, data->u.runstate.state);
814		r = 0;
815		break;
816
817	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
818		if (!sched_info_on()) {
819			r = -EOPNOTSUPP;
820			break;
821		}
822		if (data->u.runstate.state > RUNSTATE_offline) {
823			r = -EINVAL;
824			break;
825		}
826		if (data->u.runstate.state_entry_time !=
827		    (data->u.runstate.time_running +
828		     data->u.runstate.time_runnable +
829		     data->u.runstate.time_blocked +
830		     data->u.runstate.time_offline)) {
831			r = -EINVAL;
832			break;
833		}
834		if (get_kvmclock_ns(vcpu->kvm) <
835		    data->u.runstate.state_entry_time) {
836			r = -EINVAL;
837			break;
838		}
839
840		vcpu->arch.xen.current_runstate = data->u.runstate.state;
841		vcpu->arch.xen.runstate_entry_time =
842			data->u.runstate.state_entry_time;
843		vcpu->arch.xen.runstate_times[RUNSTATE_running] =
844			data->u.runstate.time_running;
845		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] =
846			data->u.runstate.time_runnable;
847		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] =
848			data->u.runstate.time_blocked;
849		vcpu->arch.xen.runstate_times[RUNSTATE_offline] =
850			data->u.runstate.time_offline;
851		vcpu->arch.xen.last_steal = current->sched_info.run_delay;
852		r = 0;
853		break;
854
855	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
856		if (!sched_info_on()) {
857			r = -EOPNOTSUPP;
858			break;
859		}
860		if (data->u.runstate.state > RUNSTATE_offline &&
861		    data->u.runstate.state != (u64)-1) {
862			r = -EINVAL;
863			break;
864		}
865		/* The adjustment must add up */
866		if (data->u.runstate.state_entry_time !=
867		    (data->u.runstate.time_running +
868		     data->u.runstate.time_runnable +
869		     data->u.runstate.time_blocked +
870		     data->u.runstate.time_offline)) {
871			r = -EINVAL;
872			break;
873		}
874
875		if (get_kvmclock_ns(vcpu->kvm) <
876		    (vcpu->arch.xen.runstate_entry_time +
877		     data->u.runstate.state_entry_time)) {
878			r = -EINVAL;
879			break;
880		}
881
882		vcpu->arch.xen.runstate_entry_time +=
883			data->u.runstate.state_entry_time;
884		vcpu->arch.xen.runstate_times[RUNSTATE_running] +=
885			data->u.runstate.time_running;
886		vcpu->arch.xen.runstate_times[RUNSTATE_runnable] +=
887			data->u.runstate.time_runnable;
888		vcpu->arch.xen.runstate_times[RUNSTATE_blocked] +=
889			data->u.runstate.time_blocked;
890		vcpu->arch.xen.runstate_times[RUNSTATE_offline] +=
891			data->u.runstate.time_offline;
892
893		if (data->u.runstate.state <= RUNSTATE_offline)
894			kvm_xen_update_runstate(vcpu, data->u.runstate.state);
895		else if (vcpu->arch.xen.runstate_cache.active)
896			kvm_xen_update_runstate_guest(vcpu, false);
897		r = 0;
898		break;
899
900	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
901		if (data->u.vcpu_id >= KVM_MAX_VCPUS)
902			r = -EINVAL;
903		else {
904			vcpu->arch.xen.vcpu_id = data->u.vcpu_id;
905			r = 0;
906		}
907		break;
908
909	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
910		if (data->u.timer.port &&
911		    data->u.timer.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL) {
912			r = -EINVAL;
913			break;
914		}
915
916		if (!vcpu->arch.xen.timer.function)
917			kvm_xen_init_timer(vcpu);
918
919		/* Stop the timer (if it's running) before changing the vector */
920		kvm_xen_stop_timer(vcpu);
921		vcpu->arch.xen.timer_virq = data->u.timer.port;
922
923		/* Start the timer if the new value has a valid vector+expiry. */
924		if (data->u.timer.port && data->u.timer.expires_ns)
925			kvm_xen_start_timer(vcpu, data->u.timer.expires_ns,
926					    data->u.timer.expires_ns -
927					    get_kvmclock_ns(vcpu->kvm));
928
929		r = 0;
930		break;
931
932	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
933		if (data->u.vector && data->u.vector < 0x10)
934			r = -EINVAL;
935		else {
936			vcpu->arch.xen.upcall_vector = data->u.vector;
937			r = 0;
938		}
939		break;
940
941	default:
942		break;
943	}
944
945	srcu_read_unlock(&vcpu->kvm->srcu, idx);
946	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
947	return r;
948}
949
950int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data)
951{
952	int r = -ENOENT;
953
954	mutex_lock(&vcpu->kvm->arch.xen.xen_lock);
955
956	switch (data->type) {
957	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_INFO:
958		if (vcpu->arch.xen.vcpu_info_cache.active)
959			data->u.gpa = vcpu->arch.xen.vcpu_info_cache.gpa;
960		else
961			data->u.gpa = KVM_XEN_INVALID_GPA;
962		r = 0;
963		break;
964
965	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_TIME_INFO:
966		if (vcpu->arch.xen.vcpu_time_info_cache.active)
967			data->u.gpa = vcpu->arch.xen.vcpu_time_info_cache.gpa;
968		else
969			data->u.gpa = KVM_XEN_INVALID_GPA;
970		r = 0;
971		break;
972
973	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADDR:
974		if (!sched_info_on()) {
975			r = -EOPNOTSUPP;
976			break;
977		}
978		if (vcpu->arch.xen.runstate_cache.active) {
979			data->u.gpa = vcpu->arch.xen.runstate_cache.gpa;
980			r = 0;
981		}
982		break;
983
984	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_CURRENT:
985		if (!sched_info_on()) {
986			r = -EOPNOTSUPP;
987			break;
988		}
989		data->u.runstate.state = vcpu->arch.xen.current_runstate;
990		r = 0;
991		break;
992
993	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_DATA:
994		if (!sched_info_on()) {
995			r = -EOPNOTSUPP;
996			break;
997		}
998		data->u.runstate.state = vcpu->arch.xen.current_runstate;
999		data->u.runstate.state_entry_time =
1000			vcpu->arch.xen.runstate_entry_time;
1001		data->u.runstate.time_running =
1002			vcpu->arch.xen.runstate_times[RUNSTATE_running];
1003		data->u.runstate.time_runnable =
1004			vcpu->arch.xen.runstate_times[RUNSTATE_runnable];
1005		data->u.runstate.time_blocked =
1006			vcpu->arch.xen.runstate_times[RUNSTATE_blocked];
1007		data->u.runstate.time_offline =
1008			vcpu->arch.xen.runstate_times[RUNSTATE_offline];
1009		r = 0;
1010		break;
1011
1012	case KVM_XEN_VCPU_ATTR_TYPE_RUNSTATE_ADJUST:
1013		r = -EINVAL;
1014		break;
1015
1016	case KVM_XEN_VCPU_ATTR_TYPE_VCPU_ID:
1017		data->u.vcpu_id = vcpu->arch.xen.vcpu_id;
1018		r = 0;
1019		break;
1020
1021	case KVM_XEN_VCPU_ATTR_TYPE_TIMER:
1022		data->u.timer.port = vcpu->arch.xen.timer_virq;
1023		data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL;
1024		data->u.timer.expires_ns = vcpu->arch.xen.timer_expires;
1025		r = 0;
1026		break;
1027
1028	case KVM_XEN_VCPU_ATTR_TYPE_UPCALL_VECTOR:
1029		data->u.vector = vcpu->arch.xen.upcall_vector;
1030		r = 0;
1031		break;
1032
1033	default:
1034		break;
1035	}
1036
1037	mutex_unlock(&vcpu->kvm->arch.xen.xen_lock);
1038	return r;
1039}
1040
1041int kvm_xen_write_hypercall_page(struct kvm_vcpu *vcpu, u64 data)
1042{
1043	struct kvm *kvm = vcpu->kvm;
1044	u32 page_num = data & ~PAGE_MASK;
1045	u64 page_addr = data & PAGE_MASK;
1046	bool lm = is_long_mode(vcpu);
1047
1048	/* Latch long_mode for shared_info pages etc. */
1049	vcpu->kvm->arch.xen.long_mode = lm;
1050
1051	/*
1052	 * If Xen hypercall intercept is enabled, fill the hypercall
1053	 * page with VMCALL/VMMCALL instructions since that's what
1054	 * we catch. Else the VMM has provided the hypercall pages
1055	 * with instructions of its own choosing, so use those.
1056	 */
1057	if (kvm_xen_hypercall_enabled(kvm)) {
1058		u8 instructions[32];
1059		int i;
1060
1061		if (page_num)
1062			return 1;
1063
1064		/* mov imm32, %eax */
1065		instructions[0] = 0xb8;
1066
1067		/* vmcall / vmmcall */
1068		static_call(kvm_x86_patch_hypercall)(vcpu, instructions + 5);
1069
1070		/* ret */
1071		instructions[8] = 0xc3;
1072
1073		/* int3 to pad */
1074		memset(instructions + 9, 0xcc, sizeof(instructions) - 9);
1075
1076		for (i = 0; i < PAGE_SIZE / sizeof(instructions); i++) {
1077			*(u32 *)&instructions[1] = i;
1078			if (kvm_vcpu_write_guest(vcpu,
1079						 page_addr + (i * sizeof(instructions)),
1080						 instructions, sizeof(instructions)))
1081				return 1;
1082		}
1083	} else {
1084		/*
1085		 * Note, truncation is a non-issue as 'lm' is guaranteed to be
1086		 * false for a 32-bit kernel, i.e. when hva_t is only 4 bytes.
1087		 */
1088		hva_t blob_addr = lm ? kvm->arch.xen_hvm_config.blob_addr_64
1089				     : kvm->arch.xen_hvm_config.blob_addr_32;
1090		u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1091				  : kvm->arch.xen_hvm_config.blob_size_32;
1092		u8 *page;
1093		int ret;
1094
1095		if (page_num >= blob_size)
1096			return 1;
1097
1098		blob_addr += page_num * PAGE_SIZE;
1099
1100		page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);
1101		if (IS_ERR(page))
1102			return PTR_ERR(page);
1103
1104		ret = kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE);
1105		kfree(page);
1106		if (ret)
1107			return 1;
1108	}
1109	return 0;
1110}
1111
1112int kvm_xen_hvm_config(struct kvm *kvm, struct kvm_xen_hvm_config *xhc)
1113{
1114	/* Only some feature flags need to be *enabled* by userspace */
1115	u32 permitted_flags = KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
1116		KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
1117
1118	if (xhc->flags & ~permitted_flags)
1119		return -EINVAL;
1120
1121	/*
1122	 * With hypercall interception the kernel generates its own
1123	 * hypercall page so it must not be provided.
1124	 */
1125	if ((xhc->flags & KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL) &&
1126	    (xhc->blob_addr_32 || xhc->blob_addr_64 ||
1127	     xhc->blob_size_32 || xhc->blob_size_64))
1128		return -EINVAL;
1129
1130	mutex_lock(&kvm->arch.xen.xen_lock);
1131
1132	if (xhc->msr && !kvm->arch.xen_hvm_config.msr)
1133		static_branch_inc(&kvm_xen_enabled.key);
1134	else if (!xhc->msr && kvm->arch.xen_hvm_config.msr)
1135		static_branch_slow_dec_deferred(&kvm_xen_enabled);
1136
1137	memcpy(&kvm->arch.xen_hvm_config, xhc, sizeof(*xhc));
1138
1139	mutex_unlock(&kvm->arch.xen.xen_lock);
1140	return 0;
1141}
1142
1143static int kvm_xen_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
1144{
1145	kvm_rax_write(vcpu, result);
1146	return kvm_skip_emulated_instruction(vcpu);
1147}
1148
1149static int kvm_xen_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
1150{
1151	struct kvm_run *run = vcpu->run;
1152
1153	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.xen.hypercall_rip)))
1154		return 1;
1155
1156	return kvm_xen_hypercall_set_result(vcpu, run->xen.u.hcall.result);
1157}
1158
1159static inline int max_evtchn_port(struct kvm *kvm)
1160{
1161	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode)
1162		return EVTCHN_2L_NR_CHANNELS;
1163	else
1164		return COMPAT_EVTCHN_2L_NR_CHANNELS;
1165}
1166
1167static bool wait_pending_event(struct kvm_vcpu *vcpu, int nr_ports,
1168			       evtchn_port_t *ports)
1169{
1170	struct kvm *kvm = vcpu->kvm;
1171	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1172	unsigned long *pending_bits;
1173	unsigned long flags;
1174	bool ret = true;
1175	int idx, i;
1176
1177	idx = srcu_read_lock(&kvm->srcu);
1178	read_lock_irqsave(&gpc->lock, flags);
1179	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1180		goto out_rcu;
1181
1182	ret = false;
1183	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1184		struct shared_info *shinfo = gpc->khva;
1185		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1186	} else {
1187		struct compat_shared_info *shinfo = gpc->khva;
1188		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1189	}
1190
1191	for (i = 0; i < nr_ports; i++) {
1192		if (test_bit(ports[i], pending_bits)) {
1193			ret = true;
1194			break;
1195		}
1196	}
1197
1198 out_rcu:
1199	read_unlock_irqrestore(&gpc->lock, flags);
1200	srcu_read_unlock(&kvm->srcu, idx);
1201
1202	return ret;
1203}
1204
1205static bool kvm_xen_schedop_poll(struct kvm_vcpu *vcpu, bool longmode,
1206				 u64 param, u64 *r)
1207{
1208	struct sched_poll sched_poll;
1209	evtchn_port_t port, *ports;
1210	struct x86_exception e;
1211	int i;
1212
1213	if (!lapic_in_kernel(vcpu) ||
1214	    !(vcpu->kvm->arch.xen_hvm_config.flags & KVM_XEN_HVM_CONFIG_EVTCHN_SEND))
1215		return false;
1216
1217	if (IS_ENABLED(CONFIG_64BIT) && !longmode) {
1218		struct compat_sched_poll sp32;
1219
1220		/* Sanity check that the compat struct definition is correct */
1221		BUILD_BUG_ON(sizeof(sp32) != 16);
1222
1223		if (kvm_read_guest_virt(vcpu, param, &sp32, sizeof(sp32), &e)) {
1224			*r = -EFAULT;
1225			return true;
1226		}
1227
1228		/*
1229		 * This is a 32-bit pointer to an array of evtchn_port_t which
1230		 * are uint32_t, so once it's converted no further compat
1231		 * handling is needed.
1232		 */
1233		sched_poll.ports = (void *)(unsigned long)(sp32.ports);
1234		sched_poll.nr_ports = sp32.nr_ports;
1235		sched_poll.timeout = sp32.timeout;
1236	} else {
1237		if (kvm_read_guest_virt(vcpu, param, &sched_poll,
1238					sizeof(sched_poll), &e)) {
1239			*r = -EFAULT;
1240			return true;
1241		}
1242	}
1243
1244	if (unlikely(sched_poll.nr_ports > 1)) {
1245		/* Xen (unofficially) limits number of pollers to 128 */
1246		if (sched_poll.nr_ports > 128) {
1247			*r = -EINVAL;
1248			return true;
1249		}
1250
1251		ports = kmalloc_array(sched_poll.nr_ports,
1252				      sizeof(*ports), GFP_KERNEL);
1253		if (!ports) {
1254			*r = -ENOMEM;
1255			return true;
1256		}
1257	} else
1258		ports = &port;
1259
1260	if (kvm_read_guest_virt(vcpu, (gva_t)sched_poll.ports, ports,
1261				sched_poll.nr_ports * sizeof(*ports), &e)) {
1262		*r = -EFAULT;
1263		return true;
1264	}
1265
1266	for (i = 0; i < sched_poll.nr_ports; i++) {
1267		if (ports[i] >= max_evtchn_port(vcpu->kvm)) {
1268			*r = -EINVAL;
1269			goto out;
1270		}
1271	}
1272
1273	if (sched_poll.nr_ports == 1)
1274		vcpu->arch.xen.poll_evtchn = port;
1275	else
1276		vcpu->arch.xen.poll_evtchn = -1;
1277
1278	set_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1279
1280	if (!wait_pending_event(vcpu, sched_poll.nr_ports, ports)) {
1281		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
1282
1283		if (sched_poll.timeout)
1284			mod_timer(&vcpu->arch.xen.poll_timer,
1285				  jiffies + nsecs_to_jiffies(sched_poll.timeout));
1286
1287		kvm_vcpu_halt(vcpu);
1288
1289		if (sched_poll.timeout)
1290			del_timer(&vcpu->arch.xen.poll_timer);
1291
1292		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
1293	}
1294
1295	vcpu->arch.xen.poll_evtchn = 0;
1296	*r = 0;
1297out:
1298	/* Really, this is only needed in case of timeout */
1299	clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask);
1300
1301	if (unlikely(sched_poll.nr_ports > 1))
1302		kfree(ports);
1303	return true;
1304}
1305
1306static void cancel_evtchn_poll(struct timer_list *t)
1307{
1308	struct kvm_vcpu *vcpu = from_timer(vcpu, t, arch.xen.poll_timer);
1309
1310	kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1311	kvm_vcpu_kick(vcpu);
1312}
1313
1314static bool kvm_xen_hcall_sched_op(struct kvm_vcpu *vcpu, bool longmode,
1315				   int cmd, u64 param, u64 *r)
1316{
1317	switch (cmd) {
1318	case SCHEDOP_poll:
1319		if (kvm_xen_schedop_poll(vcpu, longmode, param, r))
1320			return true;
1321		fallthrough;
1322	case SCHEDOP_yield:
1323		kvm_vcpu_on_spin(vcpu, true);
1324		*r = 0;
1325		return true;
1326	default:
1327		break;
1328	}
1329
1330	return false;
1331}
1332
1333struct compat_vcpu_set_singleshot_timer {
1334    uint64_t timeout_abs_ns;
1335    uint32_t flags;
1336} __attribute__((packed));
1337
1338static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd,
1339				  int vcpu_id, u64 param, u64 *r)
1340{
1341	struct vcpu_set_singleshot_timer oneshot;
1342	struct x86_exception e;
1343	s64 delta;
1344
1345	if (!kvm_xen_timer_enabled(vcpu))
1346		return false;
1347
1348	switch (cmd) {
1349	case VCPUOP_set_singleshot_timer:
1350		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1351			*r = -EINVAL;
1352			return true;
1353		}
1354
1355		/*
1356		 * The only difference for 32-bit compat is the 4 bytes of
1357		 * padding after the interesting part of the structure. So
1358		 * for a faithful emulation of Xen we have to *try* to copy
1359		 * the padding and return -EFAULT if we can't. Otherwise we
1360		 * might as well just have copied the 12-byte 32-bit struct.
1361		 */
1362		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1363			     offsetof(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1364		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, timeout_abs_ns) !=
1365			     sizeof_field(struct vcpu_set_singleshot_timer, timeout_abs_ns));
1366		BUILD_BUG_ON(offsetof(struct compat_vcpu_set_singleshot_timer, flags) !=
1367			     offsetof(struct vcpu_set_singleshot_timer, flags));
1368		BUILD_BUG_ON(sizeof_field(struct compat_vcpu_set_singleshot_timer, flags) !=
1369			     sizeof_field(struct vcpu_set_singleshot_timer, flags));
1370
1371		if (kvm_read_guest_virt(vcpu, param, &oneshot, longmode ? sizeof(oneshot) :
1372					sizeof(struct compat_vcpu_set_singleshot_timer), &e)) {
1373			*r = -EFAULT;
1374			return true;
1375		}
1376
1377		delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm);
1378		if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) {
1379			*r = -ETIME;
1380			return true;
1381		}
1382
1383		kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta);
1384		*r = 0;
1385		return true;
1386
1387	case VCPUOP_stop_singleshot_timer:
1388		if (vcpu->arch.xen.vcpu_id != vcpu_id) {
1389			*r = -EINVAL;
1390			return true;
1391		}
1392		kvm_xen_stop_timer(vcpu);
1393		*r = 0;
1394		return true;
1395	}
1396
1397	return false;
1398}
1399
1400static bool kvm_xen_hcall_set_timer_op(struct kvm_vcpu *vcpu, uint64_t timeout,
1401				       u64 *r)
1402{
1403	if (!kvm_xen_timer_enabled(vcpu))
1404		return false;
1405
1406	if (timeout) {
1407		uint64_t guest_now = get_kvmclock_ns(vcpu->kvm);
1408		int64_t delta = timeout - guest_now;
1409
1410		/* Xen has a 'Linux workaround' in do_set_timer_op() which
1411		 * checks for negative absolute timeout values (caused by
1412		 * integer overflow), and for values about 13 days in the
1413		 * future (2^50ns) which would be caused by jiffies
1414		 * overflow. For those cases, it sets the timeout 100ms in
1415		 * the future (not *too* soon, since if a guest really did
1416		 * set a long timeout on purpose we don't want to keep
1417		 * churning CPU time by waking it up).
1418		 */
1419		if (unlikely((int64_t)timeout < 0 ||
1420			     (delta > 0 && (uint32_t) (delta >> 50) != 0))) {
1421			delta = 100 * NSEC_PER_MSEC;
1422			timeout = guest_now + delta;
1423		}
1424
1425		kvm_xen_start_timer(vcpu, timeout, delta);
1426	} else {
1427		kvm_xen_stop_timer(vcpu);
1428	}
1429
1430	*r = 0;
1431	return true;
1432}
1433
1434int kvm_xen_hypercall(struct kvm_vcpu *vcpu)
1435{
1436	bool longmode;
1437	u64 input, params[6], r = -ENOSYS;
1438	bool handled = false;
1439	u8 cpl;
1440
1441	input = (u64)kvm_register_read(vcpu, VCPU_REGS_RAX);
1442
1443	/* Hyper-V hypercalls get bit 31 set in EAX */
1444	if ((input & 0x80000000) &&
1445	    kvm_hv_hypercall_enabled(vcpu))
1446		return kvm_hv_hypercall(vcpu);
1447
1448	longmode = is_64_bit_hypercall(vcpu);
1449	if (!longmode) {
1450		params[0] = (u32)kvm_rbx_read(vcpu);
1451		params[1] = (u32)kvm_rcx_read(vcpu);
1452		params[2] = (u32)kvm_rdx_read(vcpu);
1453		params[3] = (u32)kvm_rsi_read(vcpu);
1454		params[4] = (u32)kvm_rdi_read(vcpu);
1455		params[5] = (u32)kvm_rbp_read(vcpu);
1456	}
1457#ifdef CONFIG_X86_64
1458	else {
1459		params[0] = (u64)kvm_rdi_read(vcpu);
1460		params[1] = (u64)kvm_rsi_read(vcpu);
1461		params[2] = (u64)kvm_rdx_read(vcpu);
1462		params[3] = (u64)kvm_r10_read(vcpu);
1463		params[4] = (u64)kvm_r8_read(vcpu);
1464		params[5] = (u64)kvm_r9_read(vcpu);
1465	}
1466#endif
1467	cpl = static_call(kvm_x86_get_cpl)(vcpu);
1468	trace_kvm_xen_hypercall(cpl, input, params[0], params[1], params[2],
1469				params[3], params[4], params[5]);
1470
1471	/*
1472	 * Only allow hypercall acceleration for CPL0. The rare hypercalls that
1473	 * are permitted in guest userspace can be handled by the VMM.
1474	 */
1475	if (unlikely(cpl > 0))
1476		goto handle_in_userspace;
1477
1478	switch (input) {
1479	case __HYPERVISOR_xen_version:
1480		if (params[0] == XENVER_version && vcpu->kvm->arch.xen.xen_version) {
1481			r = vcpu->kvm->arch.xen.xen_version;
1482			handled = true;
1483		}
1484		break;
1485	case __HYPERVISOR_event_channel_op:
1486		if (params[0] == EVTCHNOP_send)
1487			handled = kvm_xen_hcall_evtchn_send(vcpu, params[1], &r);
1488		break;
1489	case __HYPERVISOR_sched_op:
1490		handled = kvm_xen_hcall_sched_op(vcpu, longmode, params[0],
1491						 params[1], &r);
1492		break;
1493	case __HYPERVISOR_vcpu_op:
1494		handled = kvm_xen_hcall_vcpu_op(vcpu, longmode, params[0], params[1],
1495						params[2], &r);
1496		break;
1497	case __HYPERVISOR_set_timer_op: {
1498		u64 timeout = params[0];
1499		/* In 32-bit mode, the 64-bit timeout is in two 32-bit params. */
1500		if (!longmode)
1501			timeout |= params[1] << 32;
1502		handled = kvm_xen_hcall_set_timer_op(vcpu, timeout, &r);
1503		break;
1504	}
1505	default:
1506		break;
1507	}
1508
1509	if (handled)
1510		return kvm_xen_hypercall_set_result(vcpu, r);
1511
1512handle_in_userspace:
1513	vcpu->run->exit_reason = KVM_EXIT_XEN;
1514	vcpu->run->xen.type = KVM_EXIT_XEN_HCALL;
1515	vcpu->run->xen.u.hcall.longmode = longmode;
1516	vcpu->run->xen.u.hcall.cpl = cpl;
1517	vcpu->run->xen.u.hcall.input = input;
1518	vcpu->run->xen.u.hcall.params[0] = params[0];
1519	vcpu->run->xen.u.hcall.params[1] = params[1];
1520	vcpu->run->xen.u.hcall.params[2] = params[2];
1521	vcpu->run->xen.u.hcall.params[3] = params[3];
1522	vcpu->run->xen.u.hcall.params[4] = params[4];
1523	vcpu->run->xen.u.hcall.params[5] = params[5];
1524	vcpu->arch.xen.hypercall_rip = kvm_get_linear_rip(vcpu);
1525	vcpu->arch.complete_userspace_io =
1526		kvm_xen_hypercall_complete_userspace;
1527
1528	return 0;
1529}
1530
1531static void kvm_xen_check_poller(struct kvm_vcpu *vcpu, int port)
1532{
1533	int poll_evtchn = vcpu->arch.xen.poll_evtchn;
1534
1535	if ((poll_evtchn == port || poll_evtchn == -1) &&
1536	    test_and_clear_bit(vcpu->vcpu_idx, vcpu->kvm->arch.xen.poll_mask)) {
1537		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1538		kvm_vcpu_kick(vcpu);
1539	}
1540}
1541
1542/*
1543 * The return value from this function is propagated to kvm_set_irq() API,
1544 * so it returns:
1545 *  < 0   Interrupt was ignored (masked or not delivered for other reasons)
1546 *  = 0   Interrupt was coalesced (previous irq is still pending)
1547 *  > 0   Number of CPUs interrupt was delivered to
1548 *
1549 * It is also called directly from kvm_arch_set_irq_inatomic(), where the
1550 * only check on its return value is a comparison with -EWOULDBLOCK'.
1551 */
1552int kvm_xen_set_evtchn_fast(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1553{
1554	struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1555	struct kvm_vcpu *vcpu;
1556	unsigned long *pending_bits, *mask_bits;
1557	unsigned long flags;
1558	int port_word_bit;
1559	bool kick_vcpu = false;
1560	int vcpu_idx, idx, rc;
1561
1562	vcpu_idx = READ_ONCE(xe->vcpu_idx);
1563	if (vcpu_idx >= 0)
1564		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
1565	else {
1566		vcpu = kvm_get_vcpu_by_id(kvm, xe->vcpu_id);
1567		if (!vcpu)
1568			return -EINVAL;
1569		WRITE_ONCE(xe->vcpu_idx, vcpu->vcpu_idx);
1570	}
1571
1572	if (!vcpu->arch.xen.vcpu_info_cache.active)
1573		return -EINVAL;
1574
1575	if (xe->port >= max_evtchn_port(kvm))
1576		return -EINVAL;
1577
1578	rc = -EWOULDBLOCK;
1579
1580	idx = srcu_read_lock(&kvm->srcu);
1581
1582	read_lock_irqsave(&gpc->lock, flags);
1583	if (!kvm_gpc_check(gpc, PAGE_SIZE))
1584		goto out_rcu;
1585
1586	if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1587		struct shared_info *shinfo = gpc->khva;
1588		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1589		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1590		port_word_bit = xe->port / 64;
1591	} else {
1592		struct compat_shared_info *shinfo = gpc->khva;
1593		pending_bits = (unsigned long *)&shinfo->evtchn_pending;
1594		mask_bits = (unsigned long *)&shinfo->evtchn_mask;
1595		port_word_bit = xe->port / 32;
1596	}
1597
1598	/*
1599	 * If this port wasn't already set, and if it isn't masked, then
1600	 * we try to set the corresponding bit in the in-kernel shadow of
1601	 * evtchn_pending_sel for the target vCPU. And if *that* wasn't
1602	 * already set, then we kick the vCPU in question to write to the
1603	 * *real* evtchn_pending_sel in its own guest vcpu_info struct.
1604	 */
1605	if (test_and_set_bit(xe->port, pending_bits)) {
1606		rc = 0; /* It was already raised */
1607	} else if (test_bit(xe->port, mask_bits)) {
1608		rc = -ENOTCONN; /* Masked */
1609		kvm_xen_check_poller(vcpu, xe->port);
1610	} else {
1611		rc = 1; /* Delivered to the bitmap in shared_info. */
1612		/* Now switch to the vCPU's vcpu_info to set the index and pending_sel */
1613		read_unlock_irqrestore(&gpc->lock, flags);
1614		gpc = &vcpu->arch.xen.vcpu_info_cache;
1615
1616		read_lock_irqsave(&gpc->lock, flags);
1617		if (!kvm_gpc_check(gpc, sizeof(struct vcpu_info))) {
1618			/*
1619			 * Could not access the vcpu_info. Set the bit in-kernel
1620			 * and prod the vCPU to deliver it for itself.
1621			 */
1622			if (!test_and_set_bit(port_word_bit, &vcpu->arch.xen.evtchn_pending_sel))
1623				kick_vcpu = true;
1624			goto out_rcu;
1625		}
1626
1627		if (IS_ENABLED(CONFIG_64BIT) && kvm->arch.xen.long_mode) {
1628			struct vcpu_info *vcpu_info = gpc->khva;
1629			if (!test_and_set_bit(port_word_bit, &vcpu_info->evtchn_pending_sel)) {
1630				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1631				kick_vcpu = true;
1632			}
1633		} else {
1634			struct compat_vcpu_info *vcpu_info = gpc->khva;
1635			if (!test_and_set_bit(port_word_bit,
1636					      (unsigned long *)&vcpu_info->evtchn_pending_sel)) {
1637				WRITE_ONCE(vcpu_info->evtchn_upcall_pending, 1);
1638				kick_vcpu = true;
1639			}
1640		}
1641
1642		/* For the per-vCPU lapic vector, deliver it as MSI. */
1643		if (kick_vcpu && vcpu->arch.xen.upcall_vector) {
1644			kvm_xen_inject_vcpu_vector(vcpu);
1645			kick_vcpu = false;
1646		}
1647	}
1648
1649 out_rcu:
1650	read_unlock_irqrestore(&gpc->lock, flags);
1651	srcu_read_unlock(&kvm->srcu, idx);
1652
1653	if (kick_vcpu) {
1654		kvm_make_request(KVM_REQ_UNBLOCK, vcpu);
1655		kvm_vcpu_kick(vcpu);
1656	}
1657
1658	return rc;
1659}
1660
1661static int kvm_xen_set_evtchn(struct kvm_xen_evtchn *xe, struct kvm *kvm)
1662{
1663	bool mm_borrowed = false;
1664	int rc;
1665
1666	rc = kvm_xen_set_evtchn_fast(xe, kvm);
1667	if (rc != -EWOULDBLOCK)
1668		return rc;
1669
1670	if (current->mm != kvm->mm) {
1671		/*
1672		 * If not on a thread which already belongs to this KVM,
1673		 * we'd better be in the irqfd workqueue.
1674		 */
1675		if (WARN_ON_ONCE(current->mm))
1676			return -EINVAL;
1677
1678		kthread_use_mm(kvm->mm);
1679		mm_borrowed = true;
1680	}
1681
1682	mutex_lock(&kvm->arch.xen.xen_lock);
1683
1684	/*
1685	 * It is theoretically possible for the page to be unmapped
1686	 * and the MMU notifier to invalidate the shared_info before
1687	 * we even get to use it. In that case, this looks like an
1688	 * infinite loop. It was tempting to do it via the userspace
1689	 * HVA instead... but that just *hides* the fact that it's
1690	 * an infinite loop, because if a fault occurs and it waits
1691	 * for the page to come back, it can *still* immediately
1692	 * fault and have to wait again, repeatedly.
1693	 *
1694	 * Conversely, the page could also have been reinstated by
1695	 * another thread before we even obtain the mutex above, so
1696	 * check again *first* before remapping it.
1697	 */
1698	do {
1699		struct gfn_to_pfn_cache *gpc = &kvm->arch.xen.shinfo_cache;
1700		int idx;
1701
1702		rc = kvm_xen_set_evtchn_fast(xe, kvm);
1703		if (rc != -EWOULDBLOCK)
1704			break;
1705
1706		idx = srcu_read_lock(&kvm->srcu);
1707		rc = kvm_gpc_refresh(gpc, PAGE_SIZE);
1708		srcu_read_unlock(&kvm->srcu, idx);
1709	} while(!rc);
1710
1711	mutex_unlock(&kvm->arch.xen.xen_lock);
1712
1713	if (mm_borrowed)
1714		kthread_unuse_mm(kvm->mm);
1715
1716	return rc;
1717}
1718
1719/* This is the version called from kvm_set_irq() as the .set function */
1720static int evtchn_set_fn(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
1721			 int irq_source_id, int level, bool line_status)
1722{
1723	if (!level)
1724		return -EINVAL;
1725
1726	return kvm_xen_set_evtchn(&e->xen_evtchn, kvm);
1727}
1728
1729/*
1730 * Set up an event channel interrupt from the KVM IRQ routing table.
1731 * Used for e.g. PIRQ from passed through physical devices.
1732 */
1733int kvm_xen_setup_evtchn(struct kvm *kvm,
1734			 struct kvm_kernel_irq_routing_entry *e,
1735			 const struct kvm_irq_routing_entry *ue)
1736
1737{
1738	struct kvm_vcpu *vcpu;
1739
1740	if (ue->u.xen_evtchn.port >= max_evtchn_port(kvm))
1741		return -EINVAL;
1742
1743	/* We only support 2 level event channels for now */
1744	if (ue->u.xen_evtchn.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1745		return -EINVAL;
1746
1747	/*
1748	 * Xen gives us interesting mappings from vCPU index to APIC ID,
1749	 * which means kvm_get_vcpu_by_id() has to iterate over all vCPUs
1750	 * to find it. Do that once at setup time, instead of every time.
1751	 * But beware that on live update / live migration, the routing
1752	 * table might be reinstated before the vCPU threads have finished
1753	 * recreating their vCPUs.
1754	 */
1755	vcpu = kvm_get_vcpu_by_id(kvm, ue->u.xen_evtchn.vcpu);
1756	if (vcpu)
1757		e->xen_evtchn.vcpu_idx = vcpu->vcpu_idx;
1758	else
1759		e->xen_evtchn.vcpu_idx = -1;
1760
1761	e->xen_evtchn.port = ue->u.xen_evtchn.port;
1762	e->xen_evtchn.vcpu_id = ue->u.xen_evtchn.vcpu;
1763	e->xen_evtchn.priority = ue->u.xen_evtchn.priority;
1764	e->set = evtchn_set_fn;
1765
1766	return 0;
1767}
1768
1769/*
1770 * Explicit event sending from userspace with KVM_XEN_HVM_EVTCHN_SEND ioctl.
1771 */
1772int kvm_xen_hvm_evtchn_send(struct kvm *kvm, struct kvm_irq_routing_xen_evtchn *uxe)
1773{
1774	struct kvm_xen_evtchn e;
1775	int ret;
1776
1777	if (!uxe->port || uxe->port >= max_evtchn_port(kvm))
1778		return -EINVAL;
1779
1780	/* We only support 2 level event channels for now */
1781	if (uxe->priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1782		return -EINVAL;
1783
1784	e.port = uxe->port;
1785	e.vcpu_id = uxe->vcpu;
1786	e.vcpu_idx = -1;
1787	e.priority = uxe->priority;
1788
1789	ret = kvm_xen_set_evtchn(&e, kvm);
1790
1791	/*
1792	 * None of that 'return 1 if it actually got delivered' nonsense.
1793	 * We don't care if it was masked (-ENOTCONN) either.
1794	 */
1795	if (ret > 0 || ret == -ENOTCONN)
1796		ret = 0;
1797
1798	return ret;
1799}
1800
1801/*
1802 * Support for *outbound* event channel events via the EVTCHNOP_send hypercall.
1803 */
1804struct evtchnfd {
1805	u32 send_port;
1806	u32 type;
1807	union {
1808		struct kvm_xen_evtchn port;
1809		struct {
1810			u32 port; /* zero */
1811			struct eventfd_ctx *ctx;
1812		} eventfd;
1813	} deliver;
1814};
1815
1816/*
1817 * Update target vCPU or priority for a registered sending channel.
1818 */
1819static int kvm_xen_eventfd_update(struct kvm *kvm,
1820				  struct kvm_xen_hvm_attr *data)
1821{
1822	u32 port = data->u.evtchn.send_port;
1823	struct evtchnfd *evtchnfd;
1824	int ret;
1825
1826	/* Protect writes to evtchnfd as well as the idr lookup.  */
1827	mutex_lock(&kvm->arch.xen.xen_lock);
1828	evtchnfd = idr_find(&kvm->arch.xen.evtchn_ports, port);
1829
1830	ret = -ENOENT;
1831	if (!evtchnfd)
1832		goto out_unlock;
1833
1834	/* For an UPDATE, nothing may change except the priority/vcpu */
1835	ret = -EINVAL;
1836	if (evtchnfd->type != data->u.evtchn.type)
1837		goto out_unlock;
1838
1839	/*
1840	 * Port cannot change, and if it's zero that was an eventfd
1841	 * which can't be changed either.
1842	 */
1843	if (!evtchnfd->deliver.port.port ||
1844	    evtchnfd->deliver.port.port != data->u.evtchn.deliver.port.port)
1845		goto out_unlock;
1846
1847	/* We only support 2 level event channels for now */
1848	if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1849		goto out_unlock;
1850
1851	evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1852	if (evtchnfd->deliver.port.vcpu_id != data->u.evtchn.deliver.port.vcpu) {
1853		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1854		evtchnfd->deliver.port.vcpu_idx = -1;
1855	}
1856	ret = 0;
1857out_unlock:
1858	mutex_unlock(&kvm->arch.xen.xen_lock);
1859	return ret;
1860}
1861
1862/*
1863 * Configure the target (eventfd or local port delivery) for sending on
1864 * a given event channel.
1865 */
1866static int kvm_xen_eventfd_assign(struct kvm *kvm,
1867				  struct kvm_xen_hvm_attr *data)
1868{
1869	u32 port = data->u.evtchn.send_port;
1870	struct eventfd_ctx *eventfd = NULL;
1871	struct evtchnfd *evtchnfd;
1872	int ret = -EINVAL;
1873
1874	evtchnfd = kzalloc(sizeof(struct evtchnfd), GFP_KERNEL);
1875	if (!evtchnfd)
1876		return -ENOMEM;
1877
1878	switch(data->u.evtchn.type) {
1879	case EVTCHNSTAT_ipi:
1880		/* IPI  must map back to the same port# */
1881		if (data->u.evtchn.deliver.port.port != data->u.evtchn.send_port)
1882			goto out_noeventfd; /* -EINVAL */
1883		break;
1884
1885	case EVTCHNSTAT_interdomain:
1886		if (data->u.evtchn.deliver.port.port) {
1887			if (data->u.evtchn.deliver.port.port >= max_evtchn_port(kvm))
1888				goto out_noeventfd; /* -EINVAL */
1889		} else {
1890			eventfd = eventfd_ctx_fdget(data->u.evtchn.deliver.eventfd.fd);
1891			if (IS_ERR(eventfd)) {
1892				ret = PTR_ERR(eventfd);
1893				goto out_noeventfd;
1894			}
1895		}
1896		break;
1897
1898	case EVTCHNSTAT_virq:
1899	case EVTCHNSTAT_closed:
1900	case EVTCHNSTAT_unbound:
1901	case EVTCHNSTAT_pirq:
1902	default: /* Unknown event channel type */
1903		goto out; /* -EINVAL */
1904	}
1905
1906	evtchnfd->send_port = data->u.evtchn.send_port;
1907	evtchnfd->type = data->u.evtchn.type;
1908	if (eventfd) {
1909		evtchnfd->deliver.eventfd.ctx = eventfd;
1910	} else {
1911		/* We only support 2 level event channels for now */
1912		if (data->u.evtchn.deliver.port.priority != KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL)
1913			goto out; /* -EINVAL; */
1914
1915		evtchnfd->deliver.port.port = data->u.evtchn.deliver.port.port;
1916		evtchnfd->deliver.port.vcpu_id = data->u.evtchn.deliver.port.vcpu;
1917		evtchnfd->deliver.port.vcpu_idx = -1;
1918		evtchnfd->deliver.port.priority = data->u.evtchn.deliver.port.priority;
1919	}
1920
1921	mutex_lock(&kvm->arch.xen.xen_lock);
1922	ret = idr_alloc(&kvm->arch.xen.evtchn_ports, evtchnfd, port, port + 1,
1923			GFP_KERNEL);
1924	mutex_unlock(&kvm->arch.xen.xen_lock);
1925	if (ret >= 0)
1926		return 0;
1927
1928	if (ret == -ENOSPC)
1929		ret = -EEXIST;
1930out:
1931	if (eventfd)
1932		eventfd_ctx_put(eventfd);
1933out_noeventfd:
1934	kfree(evtchnfd);
1935	return ret;
1936}
1937
1938static int kvm_xen_eventfd_deassign(struct kvm *kvm, u32 port)
1939{
1940	struct evtchnfd *evtchnfd;
1941
1942	mutex_lock(&kvm->arch.xen.xen_lock);
1943	evtchnfd = idr_remove(&kvm->arch.xen.evtchn_ports, port);
1944	mutex_unlock(&kvm->arch.xen.xen_lock);
1945
1946	if (!evtchnfd)
1947		return -ENOENT;
1948
1949	synchronize_srcu(&kvm->srcu);
1950	if (!evtchnfd->deliver.port.port)
1951		eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1952	kfree(evtchnfd);
1953	return 0;
1954}
1955
1956static int kvm_xen_eventfd_reset(struct kvm *kvm)
1957{
1958	struct evtchnfd *evtchnfd, **all_evtchnfds;
1959	int i;
1960	int n = 0;
1961
1962	mutex_lock(&kvm->arch.xen.xen_lock);
1963
1964	/*
1965	 * Because synchronize_srcu() cannot be called inside the
1966	 * critical section, first collect all the evtchnfd objects
1967	 * in an array as they are removed from evtchn_ports.
1968	 */
1969	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i)
1970		n++;
1971
1972	all_evtchnfds = kmalloc_array(n, sizeof(struct evtchnfd *), GFP_KERNEL);
1973	if (!all_evtchnfds) {
1974		mutex_unlock(&kvm->arch.xen.xen_lock);
1975		return -ENOMEM;
1976	}
1977
1978	n = 0;
1979	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
1980		all_evtchnfds[n++] = evtchnfd;
1981		idr_remove(&kvm->arch.xen.evtchn_ports, evtchnfd->send_port);
1982	}
1983	mutex_unlock(&kvm->arch.xen.xen_lock);
1984
1985	synchronize_srcu(&kvm->srcu);
1986
1987	while (n--) {
1988		evtchnfd = all_evtchnfds[n];
1989		if (!evtchnfd->deliver.port.port)
1990			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
1991		kfree(evtchnfd);
1992	}
1993	kfree(all_evtchnfds);
1994
1995	return 0;
1996}
1997
1998static int kvm_xen_setattr_evtchn(struct kvm *kvm, struct kvm_xen_hvm_attr *data)
1999{
2000	u32 port = data->u.evtchn.send_port;
2001
2002	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_RESET)
2003		return kvm_xen_eventfd_reset(kvm);
2004
2005	if (!port || port >= max_evtchn_port(kvm))
2006		return -EINVAL;
2007
2008	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_DEASSIGN)
2009		return kvm_xen_eventfd_deassign(kvm, port);
2010	if (data->u.evtchn.flags == KVM_XEN_EVTCHN_UPDATE)
2011		return kvm_xen_eventfd_update(kvm, data);
2012	if (data->u.evtchn.flags)
2013		return -EINVAL;
2014
2015	return kvm_xen_eventfd_assign(kvm, data);
2016}
2017
2018static bool kvm_xen_hcall_evtchn_send(struct kvm_vcpu *vcpu, u64 param, u64 *r)
2019{
2020	struct evtchnfd *evtchnfd;
2021	struct evtchn_send send;
2022	struct x86_exception e;
2023
2024	/* Sanity check: this structure is the same for 32-bit and 64-bit */
2025	BUILD_BUG_ON(sizeof(send) != 4);
2026	if (kvm_read_guest_virt(vcpu, param, &send, sizeof(send), &e)) {
2027		*r = -EFAULT;
2028		return true;
2029	}
2030
2031	/*
2032	 * evtchnfd is protected by kvm->srcu; the idr lookup instead
2033	 * is protected by RCU.
2034	 */
2035	rcu_read_lock();
2036	evtchnfd = idr_find(&vcpu->kvm->arch.xen.evtchn_ports, send.port);
2037	rcu_read_unlock();
2038	if (!evtchnfd)
2039		return false;
2040
2041	if (evtchnfd->deliver.port.port) {
2042		int ret = kvm_xen_set_evtchn(&evtchnfd->deliver.port, vcpu->kvm);
2043		if (ret < 0 && ret != -ENOTCONN)
2044			return false;
2045	} else {
2046		eventfd_signal(evtchnfd->deliver.eventfd.ctx, 1);
2047	}
2048
2049	*r = 0;
2050	return true;
2051}
2052
2053void kvm_xen_init_vcpu(struct kvm_vcpu *vcpu)
2054{
2055	vcpu->arch.xen.vcpu_id = vcpu->vcpu_idx;
2056	vcpu->arch.xen.poll_evtchn = 0;
2057
2058	timer_setup(&vcpu->arch.xen.poll_timer, cancel_evtchn_poll, 0);
2059
2060	kvm_gpc_init(&vcpu->arch.xen.runstate_cache, vcpu->kvm, NULL,
2061		     KVM_HOST_USES_PFN);
2062	kvm_gpc_init(&vcpu->arch.xen.runstate2_cache, vcpu->kvm, NULL,
2063		     KVM_HOST_USES_PFN);
2064	kvm_gpc_init(&vcpu->arch.xen.vcpu_info_cache, vcpu->kvm, NULL,
2065		     KVM_HOST_USES_PFN);
2066	kvm_gpc_init(&vcpu->arch.xen.vcpu_time_info_cache, vcpu->kvm, NULL,
2067		     KVM_HOST_USES_PFN);
2068}
2069
2070void kvm_xen_destroy_vcpu(struct kvm_vcpu *vcpu)
2071{
2072	if (kvm_xen_timer_enabled(vcpu))
2073		kvm_xen_stop_timer(vcpu);
2074
2075	kvm_gpc_deactivate(&vcpu->arch.xen.runstate_cache);
2076	kvm_gpc_deactivate(&vcpu->arch.xen.runstate2_cache);
2077	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_info_cache);
2078	kvm_gpc_deactivate(&vcpu->arch.xen.vcpu_time_info_cache);
2079
2080	del_timer_sync(&vcpu->arch.xen.poll_timer);
2081}
2082
2083void kvm_xen_update_tsc_info(struct kvm_vcpu *vcpu)
2084{
2085	struct kvm_cpuid_entry2 *entry;
2086	u32 function;
2087
2088	if (!vcpu->arch.xen.cpuid.base)
2089		return;
2090
2091	function = vcpu->arch.xen.cpuid.base | XEN_CPUID_LEAF(3);
2092	if (function > vcpu->arch.xen.cpuid.limit)
2093		return;
2094
2095	entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
2096	if (entry) {
2097		entry->ecx = vcpu->arch.hv_clock.tsc_to_system_mul;
2098		entry->edx = vcpu->arch.hv_clock.tsc_shift;
2099	}
2100
2101	entry = kvm_find_cpuid_entry_index(vcpu, function, 2);
2102	if (entry)
2103		entry->eax = vcpu->arch.hw_tsc_khz;
2104}
2105
2106void kvm_xen_init_vm(struct kvm *kvm)
2107{
2108	mutex_init(&kvm->arch.xen.xen_lock);
2109	idr_init(&kvm->arch.xen.evtchn_ports);
2110	kvm_gpc_init(&kvm->arch.xen.shinfo_cache, kvm, NULL, KVM_HOST_USES_PFN);
2111}
2112
2113void kvm_xen_destroy_vm(struct kvm *kvm)
2114{
2115	struct evtchnfd *evtchnfd;
2116	int i;
2117
2118	kvm_gpc_deactivate(&kvm->arch.xen.shinfo_cache);
2119
2120	idr_for_each_entry(&kvm->arch.xen.evtchn_ports, evtchnfd, i) {
2121		if (!evtchnfd->deliver.port.port)
2122			eventfd_ctx_put(evtchnfd->deliver.eventfd.ctx);
2123		kfree(evtchnfd);
2124	}
2125	idr_destroy(&kvm->arch.xen.evtchn_ports);
2126
2127	if (kvm->arch.xen_hvm_config.msr)
2128		static_branch_slow_dec_deferred(&kvm_xen_enabled);
2129}
2130