xref: /kernel/linux/linux-6.6/arch/x86/kvm/x86.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 *   Avi Kivity   <avi@qumranet.com>
14 *   Yaniv Kamay  <yaniv@qumranet.com>
15 *   Amit Shah    <amit.shah@qumranet.com>
16 *   Ben-Ami Yassour <benami@il.ibm.com>
17 */
18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20#include <linux/kvm_host.h>
21#include "irq.h"
22#include "ioapic.h"
23#include "mmu.h"
24#include "i8254.h"
25#include "tss.h"
26#include "kvm_cache_regs.h"
27#include "kvm_emulate.h"
28#include "mmu/page_track.h"
29#include "x86.h"
30#include "cpuid.h"
31#include "pmu.h"
32#include "hyperv.h"
33#include "lapic.h"
34#include "xen.h"
35#include "smm.h"
36
37#include <linux/clocksource.h>
38#include <linux/interrupt.h>
39#include <linux/kvm.h>
40#include <linux/fs.h>
41#include <linux/vmalloc.h>
42#include <linux/export.h>
43#include <linux/moduleparam.h>
44#include <linux/mman.h>
45#include <linux/highmem.h>
46#include <linux/iommu.h>
47#include <linux/cpufreq.h>
48#include <linux/user-return-notifier.h>
49#include <linux/srcu.h>
50#include <linux/slab.h>
51#include <linux/perf_event.h>
52#include <linux/uaccess.h>
53#include <linux/hash.h>
54#include <linux/pci.h>
55#include <linux/timekeeper_internal.h>
56#include <linux/pvclock_gtod.h>
57#include <linux/kvm_irqfd.h>
58#include <linux/irqbypass.h>
59#include <linux/sched/stat.h>
60#include <linux/sched/isolation.h>
61#include <linux/mem_encrypt.h>
62#include <linux/entry-kvm.h>
63#include <linux/suspend.h>
64#include <linux/smp.h>
65
66#include <trace/events/ipi.h>
67#include <trace/events/kvm.h>
68
69#include <asm/debugreg.h>
70#include <asm/msr.h>
71#include <asm/desc.h>
72#include <asm/mce.h>
73#include <asm/pkru.h>
74#include <linux/kernel_stat.h>
75#include <asm/fpu/api.h>
76#include <asm/fpu/xcr.h>
77#include <asm/fpu/xstate.h>
78#include <asm/pvclock.h>
79#include <asm/div64.h>
80#include <asm/irq_remapping.h>
81#include <asm/mshyperv.h>
82#include <asm/hypervisor.h>
83#include <asm/tlbflush.h>
84#include <asm/intel_pt.h>
85#include <asm/emulate_prefix.h>
86#include <asm/sgx.h>
87#include <clocksource/hyperv_timer.h>
88
89#define CREATE_TRACE_POINTS
90#include "trace.h"
91
92#define MAX_IO_MSRS 256
93#define KVM_MAX_MCE_BANKS 32
94
95struct kvm_caps kvm_caps __read_mostly = {
96	.supported_mce_cap = MCG_CTL_P | MCG_SER_P,
97};
98EXPORT_SYMBOL_GPL(kvm_caps);
99
100#define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
101
102#define emul_to_vcpu(ctxt) \
103	((struct kvm_vcpu *)(ctxt)->vcpu)
104
105/* EFER defaults:
106 * - enable syscall per default because its emulated by KVM
107 * - enable LME and LMA per default on 64 bit KVM
108 */
109#ifdef CONFIG_X86_64
110static
111u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
112#else
113static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
114#endif
115
116static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
117
118#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
119
120#define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
121
122#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
123                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
124
125static void update_cr8_intercept(struct kvm_vcpu *vcpu);
126static void process_nmi(struct kvm_vcpu *vcpu);
127static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
128static void store_regs(struct kvm_vcpu *vcpu);
129static int sync_regs(struct kvm_vcpu *vcpu);
130static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
131
132static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
134
135static DEFINE_MUTEX(vendor_module_lock);
136struct kvm_x86_ops kvm_x86_ops __read_mostly;
137
138#define KVM_X86_OP(func)					     \
139	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
140				*(((struct kvm_x86_ops *)0)->func));
141#define KVM_X86_OP_OPTIONAL KVM_X86_OP
142#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
143#include <asm/kvm-x86-ops.h>
144EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
145EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
146
147static bool __read_mostly ignore_msrs = 0;
148module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
149
150bool __read_mostly report_ignored_msrs = true;
151module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
152EXPORT_SYMBOL_GPL(report_ignored_msrs);
153
154unsigned int min_timer_period_us = 200;
155module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
156
157static bool __read_mostly kvmclock_periodic_sync = true;
158module_param(kvmclock_periodic_sync, bool, S_IRUGO);
159
160/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
161static u32 __read_mostly tsc_tolerance_ppm = 250;
162module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
163
164/*
165 * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
166 * adaptive tuning starting from default advancement of 1000ns.  '0' disables
167 * advancement entirely.  Any other value is used as-is and disables adaptive
168 * tuning, i.e. allows privileged userspace to set an exact advancement time.
169 */
170static int __read_mostly lapic_timer_advance_ns = -1;
171module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
172
173static bool __read_mostly vector_hashing = true;
174module_param(vector_hashing, bool, S_IRUGO);
175
176bool __read_mostly enable_vmware_backdoor = false;
177module_param(enable_vmware_backdoor, bool, S_IRUGO);
178EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
179
180/*
181 * Flags to manipulate forced emulation behavior (any non-zero value will
182 * enable forced emulation).
183 */
184#define KVM_FEP_CLEAR_RFLAGS_RF	BIT(1)
185static int __read_mostly force_emulation_prefix;
186module_param(force_emulation_prefix, int, 0644);
187
188int __read_mostly pi_inject_timer = -1;
189module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
190
191/* Enable/disable PMU virtualization */
192bool __read_mostly enable_pmu = true;
193EXPORT_SYMBOL_GPL(enable_pmu);
194module_param(enable_pmu, bool, 0444);
195
196bool __read_mostly eager_page_split = true;
197module_param(eager_page_split, bool, 0644);
198
199/* Enable/disable SMT_RSB bug mitigation */
200static bool __read_mostly mitigate_smt_rsb;
201module_param(mitigate_smt_rsb, bool, 0444);
202
203/*
204 * Restoring the host value for MSRs that are only consumed when running in
205 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
206 * returns to userspace, i.e. the kernel can run with the guest's value.
207 */
208#define KVM_MAX_NR_USER_RETURN_MSRS 16
209
210struct kvm_user_return_msrs {
211	struct user_return_notifier urn;
212	bool registered;
213	struct kvm_user_return_msr_values {
214		u64 host;
215		u64 curr;
216	} values[KVM_MAX_NR_USER_RETURN_MSRS];
217};
218
219u32 __read_mostly kvm_nr_uret_msrs;
220EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
221static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
222static struct kvm_user_return_msrs __percpu *user_return_msrs;
223
224#define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
225				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
226				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
227				| XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
228
229u64 __read_mostly host_efer;
230EXPORT_SYMBOL_GPL(host_efer);
231
232bool __read_mostly allow_smaller_maxphyaddr = 0;
233EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
234
235bool __read_mostly enable_apicv = true;
236EXPORT_SYMBOL_GPL(enable_apicv);
237
238u64 __read_mostly host_xss;
239EXPORT_SYMBOL_GPL(host_xss);
240
241u64 __read_mostly host_arch_capabilities;
242EXPORT_SYMBOL_GPL(host_arch_capabilities);
243
244const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
245	KVM_GENERIC_VM_STATS(),
246	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
247	STATS_DESC_COUNTER(VM, mmu_pte_write),
248	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
249	STATS_DESC_COUNTER(VM, mmu_flooded),
250	STATS_DESC_COUNTER(VM, mmu_recycled),
251	STATS_DESC_COUNTER(VM, mmu_cache_miss),
252	STATS_DESC_ICOUNTER(VM, mmu_unsync),
253	STATS_DESC_ICOUNTER(VM, pages_4k),
254	STATS_DESC_ICOUNTER(VM, pages_2m),
255	STATS_DESC_ICOUNTER(VM, pages_1g),
256	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
257	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
258	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
259};
260
261const struct kvm_stats_header kvm_vm_stats_header = {
262	.name_size = KVM_STATS_NAME_SIZE,
263	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
264	.id_offset = sizeof(struct kvm_stats_header),
265	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
266	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
267		       sizeof(kvm_vm_stats_desc),
268};
269
270const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
271	KVM_GENERIC_VCPU_STATS(),
272	STATS_DESC_COUNTER(VCPU, pf_taken),
273	STATS_DESC_COUNTER(VCPU, pf_fixed),
274	STATS_DESC_COUNTER(VCPU, pf_emulate),
275	STATS_DESC_COUNTER(VCPU, pf_spurious),
276	STATS_DESC_COUNTER(VCPU, pf_fast),
277	STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
278	STATS_DESC_COUNTER(VCPU, pf_guest),
279	STATS_DESC_COUNTER(VCPU, tlb_flush),
280	STATS_DESC_COUNTER(VCPU, invlpg),
281	STATS_DESC_COUNTER(VCPU, exits),
282	STATS_DESC_COUNTER(VCPU, io_exits),
283	STATS_DESC_COUNTER(VCPU, mmio_exits),
284	STATS_DESC_COUNTER(VCPU, signal_exits),
285	STATS_DESC_COUNTER(VCPU, irq_window_exits),
286	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
287	STATS_DESC_COUNTER(VCPU, l1d_flush),
288	STATS_DESC_COUNTER(VCPU, halt_exits),
289	STATS_DESC_COUNTER(VCPU, request_irq_exits),
290	STATS_DESC_COUNTER(VCPU, irq_exits),
291	STATS_DESC_COUNTER(VCPU, host_state_reload),
292	STATS_DESC_COUNTER(VCPU, fpu_reload),
293	STATS_DESC_COUNTER(VCPU, insn_emulation),
294	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
295	STATS_DESC_COUNTER(VCPU, hypercalls),
296	STATS_DESC_COUNTER(VCPU, irq_injections),
297	STATS_DESC_COUNTER(VCPU, nmi_injections),
298	STATS_DESC_COUNTER(VCPU, req_event),
299	STATS_DESC_COUNTER(VCPU, nested_run),
300	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
301	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
302	STATS_DESC_COUNTER(VCPU, preemption_reported),
303	STATS_DESC_COUNTER(VCPU, preemption_other),
304	STATS_DESC_IBOOLEAN(VCPU, guest_mode),
305	STATS_DESC_COUNTER(VCPU, notify_window_exits),
306};
307
308const struct kvm_stats_header kvm_vcpu_stats_header = {
309	.name_size = KVM_STATS_NAME_SIZE,
310	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
311	.id_offset = sizeof(struct kvm_stats_header),
312	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
313	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
314		       sizeof(kvm_vcpu_stats_desc),
315};
316
317u64 __read_mostly host_xcr0;
318
319static struct kmem_cache *x86_emulator_cache;
320
321/*
322 * When called, it means the previous get/set msr reached an invalid msr.
323 * Return true if we want to ignore/silent this failed msr access.
324 */
325static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
326{
327	const char *op = write ? "wrmsr" : "rdmsr";
328
329	if (ignore_msrs) {
330		if (report_ignored_msrs)
331			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
332				      op, msr, data);
333		/* Mask the error */
334		return true;
335	} else {
336		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
337				      op, msr, data);
338		return false;
339	}
340}
341
342static struct kmem_cache *kvm_alloc_emulator_cache(void)
343{
344	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
345	unsigned int size = sizeof(struct x86_emulate_ctxt);
346
347	return kmem_cache_create_usercopy("x86_emulator", size,
348					  __alignof__(struct x86_emulate_ctxt),
349					  SLAB_ACCOUNT, useroffset,
350					  size - useroffset, NULL);
351}
352
353static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
354
355static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
356{
357	int i;
358	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
359		vcpu->arch.apf.gfns[i] = ~0;
360}
361
362static void kvm_on_user_return(struct user_return_notifier *urn)
363{
364	unsigned slot;
365	struct kvm_user_return_msrs *msrs
366		= container_of(urn, struct kvm_user_return_msrs, urn);
367	struct kvm_user_return_msr_values *values;
368	unsigned long flags;
369
370	/*
371	 * Disabling irqs at this point since the following code could be
372	 * interrupted and executed through kvm_arch_hardware_disable()
373	 */
374	local_irq_save(flags);
375	if (msrs->registered) {
376		msrs->registered = false;
377		user_return_notifier_unregister(urn);
378	}
379	local_irq_restore(flags);
380	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
381		values = &msrs->values[slot];
382		if (values->host != values->curr) {
383			wrmsrl(kvm_uret_msrs_list[slot], values->host);
384			values->curr = values->host;
385		}
386	}
387}
388
389static int kvm_probe_user_return_msr(u32 msr)
390{
391	u64 val;
392	int ret;
393
394	preempt_disable();
395	ret = rdmsrl_safe(msr, &val);
396	if (ret)
397		goto out;
398	ret = wrmsrl_safe(msr, val);
399out:
400	preempt_enable();
401	return ret;
402}
403
404int kvm_add_user_return_msr(u32 msr)
405{
406	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
407
408	if (kvm_probe_user_return_msr(msr))
409		return -1;
410
411	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
412	return kvm_nr_uret_msrs++;
413}
414EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
415
416int kvm_find_user_return_msr(u32 msr)
417{
418	int i;
419
420	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421		if (kvm_uret_msrs_list[i] == msr)
422			return i;
423	}
424	return -1;
425}
426EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
427
428static void kvm_user_return_msr_cpu_online(void)
429{
430	unsigned int cpu = smp_processor_id();
431	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
432	u64 value;
433	int i;
434
435	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
436		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
437		msrs->values[i].host = value;
438		msrs->values[i].curr = value;
439	}
440}
441
442int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
443{
444	unsigned int cpu = smp_processor_id();
445	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
446	int err;
447
448	value = (value & mask) | (msrs->values[slot].host & ~mask);
449	if (value == msrs->values[slot].curr)
450		return 0;
451	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
452	if (err)
453		return 1;
454
455	msrs->values[slot].curr = value;
456	if (!msrs->registered) {
457		msrs->urn.on_user_return = kvm_on_user_return;
458		user_return_notifier_register(&msrs->urn);
459		msrs->registered = true;
460	}
461	return 0;
462}
463EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
464
465static void drop_user_return_notifiers(void)
466{
467	unsigned int cpu = smp_processor_id();
468	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
469
470	if (msrs->registered)
471		kvm_on_user_return(&msrs->urn);
472}
473
474u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
475{
476	return vcpu->arch.apic_base;
477}
478
479enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
480{
481	return kvm_apic_mode(kvm_get_apic_base(vcpu));
482}
483EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
484
485int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
486{
487	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
488	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
489	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
490		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
491
492	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
493		return 1;
494	if (!msr_info->host_initiated) {
495		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
496			return 1;
497		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
498			return 1;
499	}
500
501	kvm_lapic_set_base(vcpu, msr_info->data);
502	kvm_recalculate_apic_map(vcpu->kvm);
503	return 0;
504}
505
506/*
507 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
508 *
509 * Hardware virtualization extension instructions may fault if a reboot turns
510 * off virtualization while processes are running.  Usually after catching the
511 * fault we just panic; during reboot instead the instruction is ignored.
512 */
513noinstr void kvm_spurious_fault(void)
514{
515	/* Fault while not rebooting.  We want the trace. */
516	BUG_ON(!kvm_rebooting);
517}
518EXPORT_SYMBOL_GPL(kvm_spurious_fault);
519
520#define EXCPT_BENIGN		0
521#define EXCPT_CONTRIBUTORY	1
522#define EXCPT_PF		2
523
524static int exception_class(int vector)
525{
526	switch (vector) {
527	case PF_VECTOR:
528		return EXCPT_PF;
529	case DE_VECTOR:
530	case TS_VECTOR:
531	case NP_VECTOR:
532	case SS_VECTOR:
533	case GP_VECTOR:
534		return EXCPT_CONTRIBUTORY;
535	default:
536		break;
537	}
538	return EXCPT_BENIGN;
539}
540
541#define EXCPT_FAULT		0
542#define EXCPT_TRAP		1
543#define EXCPT_ABORT		2
544#define EXCPT_INTERRUPT		3
545#define EXCPT_DB		4
546
547static int exception_type(int vector)
548{
549	unsigned int mask;
550
551	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
552		return EXCPT_INTERRUPT;
553
554	mask = 1 << vector;
555
556	/*
557	 * #DBs can be trap-like or fault-like, the caller must check other CPU
558	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
559	 */
560	if (mask & (1 << DB_VECTOR))
561		return EXCPT_DB;
562
563	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
564		return EXCPT_TRAP;
565
566	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
567		return EXCPT_ABORT;
568
569	/* Reserved exceptions will result in fault */
570	return EXCPT_FAULT;
571}
572
573void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
574				   struct kvm_queued_exception *ex)
575{
576	if (!ex->has_payload)
577		return;
578
579	switch (ex->vector) {
580	case DB_VECTOR:
581		/*
582		 * "Certain debug exceptions may clear bit 0-3.  The
583		 * remaining contents of the DR6 register are never
584		 * cleared by the processor".
585		 */
586		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
587		/*
588		 * In order to reflect the #DB exception payload in guest
589		 * dr6, three components need to be considered: active low
590		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
591		 * DR6_BS and DR6_BT)
592		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
593		 * In the target guest dr6:
594		 * FIXED_1 bits should always be set.
595		 * Active low bits should be cleared if 1-setting in payload.
596		 * Active high bits should be set if 1-setting in payload.
597		 *
598		 * Note, the payload is compatible with the pending debug
599		 * exceptions/exit qualification under VMX, that active_low bits
600		 * are active high in payload.
601		 * So they need to be flipped for DR6.
602		 */
603		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
604		vcpu->arch.dr6 |= ex->payload;
605		vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
606
607		/*
608		 * The #DB payload is defined as compatible with the 'pending
609		 * debug exceptions' field under VMX, not DR6. While bit 12 is
610		 * defined in the 'pending debug exceptions' field (enabled
611		 * breakpoint), it is reserved and must be zero in DR6.
612		 */
613		vcpu->arch.dr6 &= ~BIT(12);
614		break;
615	case PF_VECTOR:
616		vcpu->arch.cr2 = ex->payload;
617		break;
618	}
619
620	ex->has_payload = false;
621	ex->payload = 0;
622}
623EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
624
625static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
626				       bool has_error_code, u32 error_code,
627				       bool has_payload, unsigned long payload)
628{
629	struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
630
631	ex->vector = vector;
632	ex->injected = false;
633	ex->pending = true;
634	ex->has_error_code = has_error_code;
635	ex->error_code = error_code;
636	ex->has_payload = has_payload;
637	ex->payload = payload;
638}
639
640/* Forcibly leave the nested mode in cases like a vCPU reset */
641static void kvm_leave_nested(struct kvm_vcpu *vcpu)
642{
643	kvm_x86_ops.nested_ops->leave_nested(vcpu);
644}
645
646static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
647		unsigned nr, bool has_error, u32 error_code,
648	        bool has_payload, unsigned long payload, bool reinject)
649{
650	u32 prev_nr;
651	int class1, class2;
652
653	kvm_make_request(KVM_REQ_EVENT, vcpu);
654
655	/*
656	 * If the exception is destined for L2 and isn't being reinjected,
657	 * morph it to a VM-Exit if L1 wants to intercept the exception.  A
658	 * previously injected exception is not checked because it was checked
659	 * when it was original queued, and re-checking is incorrect if _L1_
660	 * injected the exception, in which case it's exempt from interception.
661	 */
662	if (!reinject && is_guest_mode(vcpu) &&
663	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
664		kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
665					   has_payload, payload);
666		return;
667	}
668
669	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
670	queue:
671		if (reinject) {
672			/*
673			 * On VM-Entry, an exception can be pending if and only
674			 * if event injection was blocked by nested_run_pending.
675			 * In that case, however, vcpu_enter_guest() requests an
676			 * immediate exit, and the guest shouldn't proceed far
677			 * enough to need reinjection.
678			 */
679			WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
680			vcpu->arch.exception.injected = true;
681			if (WARN_ON_ONCE(has_payload)) {
682				/*
683				 * A reinjected event has already
684				 * delivered its payload.
685				 */
686				has_payload = false;
687				payload = 0;
688			}
689		} else {
690			vcpu->arch.exception.pending = true;
691			vcpu->arch.exception.injected = false;
692		}
693		vcpu->arch.exception.has_error_code = has_error;
694		vcpu->arch.exception.vector = nr;
695		vcpu->arch.exception.error_code = error_code;
696		vcpu->arch.exception.has_payload = has_payload;
697		vcpu->arch.exception.payload = payload;
698		if (!is_guest_mode(vcpu))
699			kvm_deliver_exception_payload(vcpu,
700						      &vcpu->arch.exception);
701		return;
702	}
703
704	/* to check exception */
705	prev_nr = vcpu->arch.exception.vector;
706	if (prev_nr == DF_VECTOR) {
707		/* triple fault -> shutdown */
708		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
709		return;
710	}
711	class1 = exception_class(prev_nr);
712	class2 = exception_class(nr);
713	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
714	    (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
715		/*
716		 * Synthesize #DF.  Clear the previously injected or pending
717		 * exception so as not to incorrectly trigger shutdown.
718		 */
719		vcpu->arch.exception.injected = false;
720		vcpu->arch.exception.pending = false;
721
722		kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
723	} else {
724		/* replace previous exception with a new one in a hope
725		   that instruction re-execution will regenerate lost
726		   exception */
727		goto queue;
728	}
729}
730
731void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
732{
733	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
734}
735EXPORT_SYMBOL_GPL(kvm_queue_exception);
736
737void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
738{
739	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
740}
741EXPORT_SYMBOL_GPL(kvm_requeue_exception);
742
743void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
744			   unsigned long payload)
745{
746	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
747}
748EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
749
750static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
751				    u32 error_code, unsigned long payload)
752{
753	kvm_multiple_exception(vcpu, nr, true, error_code,
754			       true, payload, false);
755}
756
757int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
758{
759	if (err)
760		kvm_inject_gp(vcpu, 0);
761	else
762		return kvm_skip_emulated_instruction(vcpu);
763
764	return 1;
765}
766EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
767
768static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
769{
770	if (err) {
771		kvm_inject_gp(vcpu, 0);
772		return 1;
773	}
774
775	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
776				       EMULTYPE_COMPLETE_USER_EXIT);
777}
778
779void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
780{
781	++vcpu->stat.pf_guest;
782
783	/*
784	 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
785	 * whether or not L1 wants to intercept "regular" #PF.
786	 */
787	if (is_guest_mode(vcpu) && fault->async_page_fault)
788		kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
789					   true, fault->error_code,
790					   true, fault->address);
791	else
792		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
793					fault->address);
794}
795
796void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
797				    struct x86_exception *fault)
798{
799	struct kvm_mmu *fault_mmu;
800	WARN_ON_ONCE(fault->vector != PF_VECTOR);
801
802	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
803					       vcpu->arch.walk_mmu;
804
805	/*
806	 * Invalidate the TLB entry for the faulting address, if it exists,
807	 * else the access will fault indefinitely (and to emulate hardware).
808	 */
809	if ((fault->error_code & PFERR_PRESENT_MASK) &&
810	    !(fault->error_code & PFERR_RSVD_MASK))
811		kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
812					KVM_MMU_ROOT_CURRENT);
813
814	fault_mmu->inject_page_fault(vcpu, fault);
815}
816EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
817
818void kvm_inject_nmi(struct kvm_vcpu *vcpu)
819{
820	atomic_inc(&vcpu->arch.nmi_queued);
821	kvm_make_request(KVM_REQ_NMI, vcpu);
822}
823
824void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
825{
826	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
827}
828EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
829
830void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
831{
832	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
833}
834EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
835
836/*
837 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
838 * a #GP and return false.
839 */
840bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
841{
842	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
843		return true;
844	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
845	return false;
846}
847
848bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
849{
850	if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
851		return true;
852
853	kvm_queue_exception(vcpu, UD_VECTOR);
854	return false;
855}
856EXPORT_SYMBOL_GPL(kvm_require_dr);
857
858static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
859{
860	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
861}
862
863/*
864 * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
865 */
866int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
867{
868	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
869	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
870	gpa_t real_gpa;
871	int i;
872	int ret;
873	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
874
875	/*
876	 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
877	 * to an L1 GPA.
878	 */
879	real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
880				     PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
881	if (real_gpa == INVALID_GPA)
882		return 0;
883
884	/* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
885	ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
886				       cr3 & GENMASK(11, 5), sizeof(pdpte));
887	if (ret < 0)
888		return 0;
889
890	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
891		if ((pdpte[i] & PT_PRESENT_MASK) &&
892		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
893			return 0;
894		}
895	}
896
897	/*
898	 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
899	 * Shadow page roots need to be reconstructed instead.
900	 */
901	if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
902		kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
903
904	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
905	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
906	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
907	vcpu->arch.pdptrs_from_userspace = false;
908
909	return 1;
910}
911EXPORT_SYMBOL_GPL(load_pdptrs);
912
913static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
914{
915#ifdef CONFIG_X86_64
916	if (cr0 & 0xffffffff00000000UL)
917		return false;
918#endif
919
920	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
921		return false;
922
923	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
924		return false;
925
926	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
927}
928
929void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
930{
931	/*
932	 * CR0.WP is incorporated into the MMU role, but only for non-nested,
933	 * indirect shadow MMUs.  If paging is disabled, no updates are needed
934	 * as there are no permission bits to emulate.  If TDP is enabled, the
935	 * MMU's metadata needs to be updated, e.g. so that emulating guest
936	 * translations does the right thing, but there's no need to unload the
937	 * root as CR0.WP doesn't affect SPTEs.
938	 */
939	if ((cr0 ^ old_cr0) == X86_CR0_WP) {
940		if (!(cr0 & X86_CR0_PG))
941			return;
942
943		if (tdp_enabled) {
944			kvm_init_mmu(vcpu);
945			return;
946		}
947	}
948
949	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
950		kvm_clear_async_pf_completion_queue(vcpu);
951		kvm_async_pf_hash_reset(vcpu);
952
953		/*
954		 * Clearing CR0.PG is defined to flush the TLB from the guest's
955		 * perspective.
956		 */
957		if (!(cr0 & X86_CR0_PG))
958			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
959	}
960
961	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
962		kvm_mmu_reset_context(vcpu);
963
964	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
965	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
966	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
967		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
968}
969EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
970
971int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
972{
973	unsigned long old_cr0 = kvm_read_cr0(vcpu);
974
975	if (!kvm_is_valid_cr0(vcpu, cr0))
976		return 1;
977
978	cr0 |= X86_CR0_ET;
979
980	/* Write to CR0 reserved bits are ignored, even on Intel. */
981	cr0 &= ~CR0_RESERVED_BITS;
982
983#ifdef CONFIG_X86_64
984	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
985	    (cr0 & X86_CR0_PG)) {
986		int cs_db, cs_l;
987
988		if (!is_pae(vcpu))
989			return 1;
990		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
991		if (cs_l)
992			return 1;
993	}
994#endif
995	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
996	    is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
997	    !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
998		return 1;
999
1000	if (!(cr0 & X86_CR0_PG) &&
1001	    (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
1002		return 1;
1003
1004	static_call(kvm_x86_set_cr0)(vcpu, cr0);
1005
1006	kvm_post_set_cr0(vcpu, old_cr0, cr0);
1007
1008	return 0;
1009}
1010EXPORT_SYMBOL_GPL(kvm_set_cr0);
1011
1012void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
1013{
1014	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
1015}
1016EXPORT_SYMBOL_GPL(kvm_lmsw);
1017
1018void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
1019{
1020	if (vcpu->arch.guest_state_protected)
1021		return;
1022
1023	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1024
1025		if (vcpu->arch.xcr0 != host_xcr0)
1026			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1027
1028		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1029		    vcpu->arch.ia32_xss != host_xss)
1030			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1031	}
1032
1033	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1034	    vcpu->arch.pkru != vcpu->arch.host_pkru &&
1035	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1036	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
1037		write_pkru(vcpu->arch.pkru);
1038}
1039EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1040
1041void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1042{
1043	if (vcpu->arch.guest_state_protected)
1044		return;
1045
1046	if (cpu_feature_enabled(X86_FEATURE_PKU) &&
1047	    ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1048	     kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
1049		vcpu->arch.pkru = rdpkru();
1050		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1051			write_pkru(vcpu->arch.host_pkru);
1052	}
1053
1054	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
1055
1056		if (vcpu->arch.xcr0 != host_xcr0)
1057			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1058
1059		if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
1060		    vcpu->arch.ia32_xss != host_xss)
1061			wrmsrl(MSR_IA32_XSS, host_xss);
1062	}
1063
1064}
1065EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1066
1067#ifdef CONFIG_X86_64
1068static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1069{
1070	return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1071}
1072#endif
1073
1074static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1075{
1076	u64 xcr0 = xcr;
1077	u64 old_xcr0 = vcpu->arch.xcr0;
1078	u64 valid_bits;
1079
1080	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1081	if (index != XCR_XFEATURE_ENABLED_MASK)
1082		return 1;
1083	if (!(xcr0 & XFEATURE_MASK_FP))
1084		return 1;
1085	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1086		return 1;
1087
1088	/*
1089	 * Do not allow the guest to set bits that we do not support
1090	 * saving.  However, xcr0 bit 0 is always set, even if the
1091	 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1092	 */
1093	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1094	if (xcr0 & ~valid_bits)
1095		return 1;
1096
1097	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1098	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1099		return 1;
1100
1101	if (xcr0 & XFEATURE_MASK_AVX512) {
1102		if (!(xcr0 & XFEATURE_MASK_YMM))
1103			return 1;
1104		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1105			return 1;
1106	}
1107
1108	if ((xcr0 & XFEATURE_MASK_XTILE) &&
1109	    ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1110		return 1;
1111
1112	vcpu->arch.xcr0 = xcr0;
1113
1114	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1115		kvm_update_cpuid_runtime(vcpu);
1116	return 0;
1117}
1118
1119int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1120{
1121	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1122	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1123	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1124		kvm_inject_gp(vcpu, 0);
1125		return 1;
1126	}
1127
1128	return kvm_skip_emulated_instruction(vcpu);
1129}
1130EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1131
1132bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1133{
1134	if (cr4 & cr4_reserved_bits)
1135		return false;
1136
1137	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1138		return false;
1139
1140	return true;
1141}
1142EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1143
1144static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1145{
1146	return __kvm_is_valid_cr4(vcpu, cr4) &&
1147	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1148}
1149
1150void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1151{
1152	if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1153		kvm_mmu_reset_context(vcpu);
1154
1155	/*
1156	 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1157	 * according to the SDM; however, stale prev_roots could be reused
1158	 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1159	 * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1160	 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1161	 * so fall through.
1162	 */
1163	if (!tdp_enabled &&
1164	    (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1165		kvm_mmu_unload(vcpu);
1166
1167	/*
1168	 * The TLB has to be flushed for all PCIDs if any of the following
1169	 * (architecturally required) changes happen:
1170	 * - CR4.PCIDE is changed from 1 to 0
1171	 * - CR4.PGE is toggled
1172	 *
1173	 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1174	 */
1175	if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1176	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1177		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1178
1179	/*
1180	 * The TLB has to be flushed for the current PCID if any of the
1181	 * following (architecturally required) changes happen:
1182	 * - CR4.SMEP is changed from 0 to 1
1183	 * - CR4.PAE is toggled
1184	 */
1185	else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1186		 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1187		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1188
1189}
1190EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1191
1192int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1193{
1194	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1195
1196	if (!kvm_is_valid_cr4(vcpu, cr4))
1197		return 1;
1198
1199	if (is_long_mode(vcpu)) {
1200		if (!(cr4 & X86_CR4_PAE))
1201			return 1;
1202		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1203			return 1;
1204	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1205		   && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1206		   && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1207		return 1;
1208
1209	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1210		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1211		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1212			return 1;
1213	}
1214
1215	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1216
1217	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1218
1219	return 0;
1220}
1221EXPORT_SYMBOL_GPL(kvm_set_cr4);
1222
1223static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1224{
1225	struct kvm_mmu *mmu = vcpu->arch.mmu;
1226	unsigned long roots_to_free = 0;
1227	int i;
1228
1229	/*
1230	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1231	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1232	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1233	 * the invalidation, but the guest's TLB entries need to be flushed as
1234	 * the CPU may have cached entries in its TLB for the target PCID.
1235	 */
1236	if (unlikely(tdp_enabled)) {
1237		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1238		return;
1239	}
1240
1241	/*
1242	 * If neither the current CR3 nor any of the prev_roots use the given
1243	 * PCID, then nothing needs to be done here because a resync will
1244	 * happen anyway before switching to any other CR3.
1245	 */
1246	if (kvm_get_active_pcid(vcpu) == pcid) {
1247		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1248		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1249	}
1250
1251	/*
1252	 * If PCID is disabled, there is no need to free prev_roots even if the
1253	 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1254	 * with PCIDE=0.
1255	 */
1256	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
1257		return;
1258
1259	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1260		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1261			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1262
1263	kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1264}
1265
1266int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1267{
1268	bool skip_tlb_flush = false;
1269	unsigned long pcid = 0;
1270#ifdef CONFIG_X86_64
1271	if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
1272		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1273		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1274		pcid = cr3 & X86_CR3_PCID_MASK;
1275	}
1276#endif
1277
1278	/* PDPTRs are always reloaded for PAE paging. */
1279	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1280		goto handle_tlb_flush;
1281
1282	/*
1283	 * Do not condition the GPA check on long mode, this helper is used to
1284	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1285	 * the current vCPU mode is accurate.
1286	 */
1287	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1288		return 1;
1289
1290	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1291		return 1;
1292
1293	if (cr3 != kvm_read_cr3(vcpu))
1294		kvm_mmu_new_pgd(vcpu, cr3);
1295
1296	vcpu->arch.cr3 = cr3;
1297	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1298	/* Do not call post_set_cr3, we do not get here for confidential guests.  */
1299
1300handle_tlb_flush:
1301	/*
1302	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1303	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1304	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1305	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1306	 * i.e. only PCID=0 can be relevant.
1307	 */
1308	if (!skip_tlb_flush)
1309		kvm_invalidate_pcid(vcpu, pcid);
1310
1311	return 0;
1312}
1313EXPORT_SYMBOL_GPL(kvm_set_cr3);
1314
1315int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1316{
1317	if (cr8 & CR8_RESERVED_BITS)
1318		return 1;
1319	if (lapic_in_kernel(vcpu))
1320		kvm_lapic_set_tpr(vcpu, cr8);
1321	else
1322		vcpu->arch.cr8 = cr8;
1323	return 0;
1324}
1325EXPORT_SYMBOL_GPL(kvm_set_cr8);
1326
1327unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1328{
1329	if (lapic_in_kernel(vcpu))
1330		return kvm_lapic_get_cr8(vcpu);
1331	else
1332		return vcpu->arch.cr8;
1333}
1334EXPORT_SYMBOL_GPL(kvm_get_cr8);
1335
1336static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1337{
1338	int i;
1339
1340	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1341		for (i = 0; i < KVM_NR_DB_REGS; i++)
1342			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1343	}
1344}
1345
1346void kvm_update_dr7(struct kvm_vcpu *vcpu)
1347{
1348	unsigned long dr7;
1349
1350	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1351		dr7 = vcpu->arch.guest_debug_dr7;
1352	else
1353		dr7 = vcpu->arch.dr7;
1354	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1355	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1356	if (dr7 & DR7_BP_EN_MASK)
1357		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1358}
1359EXPORT_SYMBOL_GPL(kvm_update_dr7);
1360
1361static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1362{
1363	u64 fixed = DR6_FIXED_1;
1364
1365	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1366		fixed |= DR6_RTM;
1367
1368	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1369		fixed |= DR6_BUS_LOCK;
1370	return fixed;
1371}
1372
1373int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1374{
1375	size_t size = ARRAY_SIZE(vcpu->arch.db);
1376
1377	switch (dr) {
1378	case 0 ... 3:
1379		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1380		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1381			vcpu->arch.eff_db[dr] = val;
1382		break;
1383	case 4:
1384	case 6:
1385		if (!kvm_dr6_valid(val))
1386			return 1; /* #GP */
1387		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1388		break;
1389	case 5:
1390	default: /* 7 */
1391		if (!kvm_dr7_valid(val))
1392			return 1; /* #GP */
1393		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1394		kvm_update_dr7(vcpu);
1395		break;
1396	}
1397
1398	return 0;
1399}
1400EXPORT_SYMBOL_GPL(kvm_set_dr);
1401
1402void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1403{
1404	size_t size = ARRAY_SIZE(vcpu->arch.db);
1405
1406	switch (dr) {
1407	case 0 ... 3:
1408		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1409		break;
1410	case 4:
1411	case 6:
1412		*val = vcpu->arch.dr6;
1413		break;
1414	case 5:
1415	default: /* 7 */
1416		*val = vcpu->arch.dr7;
1417		break;
1418	}
1419}
1420EXPORT_SYMBOL_GPL(kvm_get_dr);
1421
1422int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1423{
1424	u32 ecx = kvm_rcx_read(vcpu);
1425	u64 data;
1426
1427	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1428		kvm_inject_gp(vcpu, 0);
1429		return 1;
1430	}
1431
1432	kvm_rax_write(vcpu, (u32)data);
1433	kvm_rdx_write(vcpu, data >> 32);
1434	return kvm_skip_emulated_instruction(vcpu);
1435}
1436EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1437
1438/*
1439 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1440 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1441 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.  msrs_to_save holds MSRs that
1442 * require host support, i.e. should be probed via RDMSR.  emulated_msrs holds
1443 * MSRs that KVM emulates without strictly requiring host support.
1444 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1445 * CPUID leafs.  Note, msr_based_features isn't mutually exclusive with
1446 * msrs_to_save and emulated_msrs.
1447 */
1448
1449static const u32 msrs_to_save_base[] = {
1450	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1451	MSR_STAR,
1452#ifdef CONFIG_X86_64
1453	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1454#endif
1455	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1456	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1457	MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
1458	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1459	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1460	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1461	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1462	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1463	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1464	MSR_IA32_UMWAIT_CONTROL,
1465
1466	MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1467};
1468
1469static const u32 msrs_to_save_pmu[] = {
1470	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1471	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1472	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1473	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1474	MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1475
1476	/* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1477	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1478	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1479	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1480	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1481	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1482	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1483	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1484	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1485
1486	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1487	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1488
1489	/* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1490	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1491	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1492	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1493	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1494
1495	MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1496	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1497	MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
1498};
1499
1500static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1501			ARRAY_SIZE(msrs_to_save_pmu)];
1502static unsigned num_msrs_to_save;
1503
1504static const u32 emulated_msrs_all[] = {
1505	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1506	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1507	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1508	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1509	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1510	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1511	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1512	HV_X64_MSR_RESET,
1513	HV_X64_MSR_VP_INDEX,
1514	HV_X64_MSR_VP_RUNTIME,
1515	HV_X64_MSR_SCONTROL,
1516	HV_X64_MSR_STIMER0_CONFIG,
1517	HV_X64_MSR_VP_ASSIST_PAGE,
1518	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1519	HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
1520	HV_X64_MSR_SYNDBG_OPTIONS,
1521	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1522	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1523	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1524
1525	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1526	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1527
1528	MSR_IA32_TSC_ADJUST,
1529	MSR_IA32_TSC_DEADLINE,
1530	MSR_IA32_ARCH_CAPABILITIES,
1531	MSR_IA32_PERF_CAPABILITIES,
1532	MSR_IA32_MISC_ENABLE,
1533	MSR_IA32_MCG_STATUS,
1534	MSR_IA32_MCG_CTL,
1535	MSR_IA32_MCG_EXT_CTL,
1536	MSR_IA32_SMBASE,
1537	MSR_SMI_COUNT,
1538	MSR_PLATFORM_INFO,
1539	MSR_MISC_FEATURES_ENABLES,
1540	MSR_AMD64_VIRT_SPEC_CTRL,
1541	MSR_AMD64_TSC_RATIO,
1542	MSR_IA32_POWER_CTL,
1543	MSR_IA32_UCODE_REV,
1544
1545	/*
1546	 * KVM always supports the "true" VMX control MSRs, even if the host
1547	 * does not.  The VMX MSRs as a whole are considered "emulated" as KVM
1548	 * doesn't strictly require them to exist in the host (ignoring that
1549	 * KVM would refuse to load in the first place if the core set of MSRs
1550	 * aren't supported).
1551	 */
1552	MSR_IA32_VMX_BASIC,
1553	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1554	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1555	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1556	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1557	MSR_IA32_VMX_MISC,
1558	MSR_IA32_VMX_CR0_FIXED0,
1559	MSR_IA32_VMX_CR4_FIXED0,
1560	MSR_IA32_VMX_VMCS_ENUM,
1561	MSR_IA32_VMX_PROCBASED_CTLS2,
1562	MSR_IA32_VMX_EPT_VPID_CAP,
1563	MSR_IA32_VMX_VMFUNC,
1564
1565	MSR_K7_HWCR,
1566	MSR_KVM_POLL_CONTROL,
1567};
1568
1569static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1570static unsigned num_emulated_msrs;
1571
1572/*
1573 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1574 * that are effectively CPUID leafs.  VMX MSRs are also included in the set of
1575 * feature MSRs, but are handled separately to allow expedited lookups.
1576 */
1577static const u32 msr_based_features_all_except_vmx[] = {
1578	MSR_AMD64_DE_CFG,
1579	MSR_IA32_UCODE_REV,
1580	MSR_IA32_ARCH_CAPABILITIES,
1581	MSR_IA32_PERF_CAPABILITIES,
1582};
1583
1584static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1585			      (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
1586static unsigned int num_msr_based_features;
1587
1588/*
1589 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1590 * patch, are immutable once the vCPU model is defined.
1591 */
1592static bool kvm_is_immutable_feature_msr(u32 msr)
1593{
1594	int i;
1595
1596	if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1597		return true;
1598
1599	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1600		if (msr == msr_based_features_all_except_vmx[i])
1601			return msr != MSR_IA32_UCODE_REV;
1602	}
1603
1604	return false;
1605}
1606
1607/*
1608 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1609 * does not yet virtualize. These include:
1610 *   10 - MISC_PACKAGE_CTRLS
1611 *   11 - ENERGY_FILTERING_CTL
1612 *   12 - DOITM
1613 *   18 - FB_CLEAR_CTRL
1614 *   21 - XAPIC_DISABLE_STATUS
1615 *   23 - OVERCLOCKING_STATUS
1616 */
1617
1618#define KVM_SUPPORTED_ARCH_CAP \
1619	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1620	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1621	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1622	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1623	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \
1624	 ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR)
1625
1626static u64 kvm_get_arch_capabilities(void)
1627{
1628	u64 data = host_arch_capabilities & KVM_SUPPORTED_ARCH_CAP;
1629
1630	/*
1631	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632	 * the nested hypervisor runs with NX huge pages.  If it is not,
1633	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1634	 * L1 guests, so it need not worry about its own (L2) guests.
1635	 */
1636	data |= ARCH_CAP_PSCHANGE_MC_NO;
1637
1638	/*
1639	 * If we're doing cache flushes (either "always" or "cond")
1640	 * we will do one whenever the guest does a vmlaunch/vmresume.
1641	 * If an outer hypervisor is doing the cache flush for us
1642	 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
1643	 * capability to the guest too, and if EPT is disabled we're not
1644	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1645	 * require a nested hypervisor to do a flush of its own.
1646	 */
1647	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649
1650	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651		data |= ARCH_CAP_RDCL_NO;
1652	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653		data |= ARCH_CAP_SSB_NO;
1654	if (!boot_cpu_has_bug(X86_BUG_MDS))
1655		data |= ARCH_CAP_MDS_NO;
1656	if (!boot_cpu_has_bug(X86_BUG_RFDS))
1657		data |= ARCH_CAP_RFDS_NO;
1658
1659	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1660		/*
1661		 * If RTM=0 because the kernel has disabled TSX, the host might
1662		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1663		 * and therefore knows that there cannot be TAA) but keep
1664		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1665		 * and we want to allow migrating those guests to tsx=off hosts.
1666		 */
1667		data &= ~ARCH_CAP_TAA_NO;
1668	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1669		data |= ARCH_CAP_TAA_NO;
1670	} else {
1671		/*
1672		 * Nothing to do here; we emulate TSX_CTRL if present on the
1673		 * host so the guest can choose between disabling TSX or
1674		 * using VERW to clear CPU buffers.
1675		 */
1676	}
1677
1678	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1679		data |= ARCH_CAP_GDS_NO;
1680
1681	return data;
1682}
1683
1684static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1685{
1686	switch (msr->index) {
1687	case MSR_IA32_ARCH_CAPABILITIES:
1688		msr->data = kvm_get_arch_capabilities();
1689		break;
1690	case MSR_IA32_PERF_CAPABILITIES:
1691		msr->data = kvm_caps.supported_perf_cap;
1692		break;
1693	case MSR_IA32_UCODE_REV:
1694		rdmsrl_safe(msr->index, &msr->data);
1695		break;
1696	default:
1697		return static_call(kvm_x86_get_msr_feature)(msr);
1698	}
1699	return 0;
1700}
1701
1702static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1703{
1704	struct kvm_msr_entry msr;
1705	int r;
1706
1707	msr.index = index;
1708	r = kvm_get_msr_feature(&msr);
1709
1710	if (r == KVM_MSR_RET_INVALID) {
1711		/* Unconditionally clear the output for simplicity */
1712		*data = 0;
1713		if (kvm_msr_ignored_check(index, 0, false))
1714			r = 0;
1715	}
1716
1717	if (r)
1718		return r;
1719
1720	*data = msr.data;
1721
1722	return 0;
1723}
1724
1725static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1726{
1727	if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1728		return false;
1729
1730	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1731		return false;
1732
1733	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1734		return false;
1735
1736	if (efer & (EFER_LME | EFER_LMA) &&
1737	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1738		return false;
1739
1740	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1741		return false;
1742
1743	return true;
1744
1745}
1746bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1747{
1748	if (efer & efer_reserved_bits)
1749		return false;
1750
1751	return __kvm_valid_efer(vcpu, efer);
1752}
1753EXPORT_SYMBOL_GPL(kvm_valid_efer);
1754
1755static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1756{
1757	u64 old_efer = vcpu->arch.efer;
1758	u64 efer = msr_info->data;
1759	int r;
1760
1761	if (efer & efer_reserved_bits)
1762		return 1;
1763
1764	if (!msr_info->host_initiated) {
1765		if (!__kvm_valid_efer(vcpu, efer))
1766			return 1;
1767
1768		if (is_paging(vcpu) &&
1769		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1770			return 1;
1771	}
1772
1773	efer &= ~EFER_LMA;
1774	efer |= vcpu->arch.efer & EFER_LMA;
1775
1776	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1777	if (r) {
1778		WARN_ON(r > 0);
1779		return r;
1780	}
1781
1782	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1783		kvm_mmu_reset_context(vcpu);
1784
1785	return 0;
1786}
1787
1788void kvm_enable_efer_bits(u64 mask)
1789{
1790       efer_reserved_bits &= ~mask;
1791}
1792EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1793
1794bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1795{
1796	struct kvm_x86_msr_filter *msr_filter;
1797	struct msr_bitmap_range *ranges;
1798	struct kvm *kvm = vcpu->kvm;
1799	bool allowed;
1800	int idx;
1801	u32 i;
1802
1803	/* x2APIC MSRs do not support filtering. */
1804	if (index >= 0x800 && index <= 0x8ff)
1805		return true;
1806
1807	idx = srcu_read_lock(&kvm->srcu);
1808
1809	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1810	if (!msr_filter) {
1811		allowed = true;
1812		goto out;
1813	}
1814
1815	allowed = msr_filter->default_allow;
1816	ranges = msr_filter->ranges;
1817
1818	for (i = 0; i < msr_filter->count; i++) {
1819		u32 start = ranges[i].base;
1820		u32 end = start + ranges[i].nmsrs;
1821		u32 flags = ranges[i].flags;
1822		unsigned long *bitmap = ranges[i].bitmap;
1823
1824		if ((index >= start) && (index < end) && (flags & type)) {
1825			allowed = test_bit(index - start, bitmap);
1826			break;
1827		}
1828	}
1829
1830out:
1831	srcu_read_unlock(&kvm->srcu, idx);
1832
1833	return allowed;
1834}
1835EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1836
1837/*
1838 * Write @data into the MSR specified by @index.  Select MSR specific fault
1839 * checks are bypassed if @host_initiated is %true.
1840 * Returns 0 on success, non-0 otherwise.
1841 * Assumes vcpu_load() was already called.
1842 */
1843static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1844			 bool host_initiated)
1845{
1846	struct msr_data msr;
1847
1848	switch (index) {
1849	case MSR_FS_BASE:
1850	case MSR_GS_BASE:
1851	case MSR_KERNEL_GS_BASE:
1852	case MSR_CSTAR:
1853	case MSR_LSTAR:
1854		if (is_noncanonical_address(data, vcpu))
1855			return 1;
1856		break;
1857	case MSR_IA32_SYSENTER_EIP:
1858	case MSR_IA32_SYSENTER_ESP:
1859		/*
1860		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1861		 * non-canonical address is written on Intel but not on
1862		 * AMD (which ignores the top 32-bits, because it does
1863		 * not implement 64-bit SYSENTER).
1864		 *
1865		 * 64-bit code should hence be able to write a non-canonical
1866		 * value on AMD.  Making the address canonical ensures that
1867		 * vmentry does not fail on Intel after writing a non-canonical
1868		 * value, and that something deterministic happens if the guest
1869		 * invokes 64-bit SYSENTER.
1870		 */
1871		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1872		break;
1873	case MSR_TSC_AUX:
1874		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1875			return 1;
1876
1877		if (!host_initiated &&
1878		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1879		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1880			return 1;
1881
1882		/*
1883		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1884		 * incomplete and conflicting architectural behavior.  Current
1885		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1886		 * reserved and always read as zeros.  Enforce Intel's reserved
1887		 * bits check if and only if the guest CPU is Intel, and clear
1888		 * the bits in all other cases.  This ensures cross-vendor
1889		 * migration will provide consistent behavior for the guest.
1890		 */
1891		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1892			return 1;
1893
1894		data = (u32)data;
1895		break;
1896	}
1897
1898	msr.data = data;
1899	msr.index = index;
1900	msr.host_initiated = host_initiated;
1901
1902	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1903}
1904
1905static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1906				     u32 index, u64 data, bool host_initiated)
1907{
1908	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1909
1910	if (ret == KVM_MSR_RET_INVALID)
1911		if (kvm_msr_ignored_check(index, data, true))
1912			ret = 0;
1913
1914	return ret;
1915}
1916
1917/*
1918 * Read the MSR specified by @index into @data.  Select MSR specific fault
1919 * checks are bypassed if @host_initiated is %true.
1920 * Returns 0 on success, non-0 otherwise.
1921 * Assumes vcpu_load() was already called.
1922 */
1923int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1924		  bool host_initiated)
1925{
1926	struct msr_data msr;
1927	int ret;
1928
1929	switch (index) {
1930	case MSR_TSC_AUX:
1931		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1932			return 1;
1933
1934		if (!host_initiated &&
1935		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1936		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1937			return 1;
1938		break;
1939	}
1940
1941	msr.index = index;
1942	msr.host_initiated = host_initiated;
1943
1944	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1945	if (!ret)
1946		*data = msr.data;
1947	return ret;
1948}
1949
1950static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1951				     u32 index, u64 *data, bool host_initiated)
1952{
1953	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1954
1955	if (ret == KVM_MSR_RET_INVALID) {
1956		/* Unconditionally clear *data for simplicity */
1957		*data = 0;
1958		if (kvm_msr_ignored_check(index, 0, false))
1959			ret = 0;
1960	}
1961
1962	return ret;
1963}
1964
1965static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1966{
1967	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1968		return KVM_MSR_RET_FILTERED;
1969	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1970}
1971
1972static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1973{
1974	if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1975		return KVM_MSR_RET_FILTERED;
1976	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1977}
1978
1979int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1980{
1981	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1982}
1983EXPORT_SYMBOL_GPL(kvm_get_msr);
1984
1985int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1986{
1987	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1988}
1989EXPORT_SYMBOL_GPL(kvm_set_msr);
1990
1991static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1992{
1993	if (!vcpu->run->msr.error) {
1994		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1995		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1996	}
1997}
1998
1999static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
2000{
2001	return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
2002}
2003
2004static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2005{
2006	complete_userspace_rdmsr(vcpu);
2007	return complete_emulated_msr_access(vcpu);
2008}
2009
2010static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
2011{
2012	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
2013}
2014
2015static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2016{
2017	complete_userspace_rdmsr(vcpu);
2018	return complete_fast_msr_access(vcpu);
2019}
2020
2021static u64 kvm_msr_reason(int r)
2022{
2023	switch (r) {
2024	case KVM_MSR_RET_INVALID:
2025		return KVM_MSR_EXIT_REASON_UNKNOWN;
2026	case KVM_MSR_RET_FILTERED:
2027		return KVM_MSR_EXIT_REASON_FILTER;
2028	default:
2029		return KVM_MSR_EXIT_REASON_INVAL;
2030	}
2031}
2032
2033static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2034			      u32 exit_reason, u64 data,
2035			      int (*completion)(struct kvm_vcpu *vcpu),
2036			      int r)
2037{
2038	u64 msr_reason = kvm_msr_reason(r);
2039
2040	/* Check if the user wanted to know about this MSR fault */
2041	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2042		return 0;
2043
2044	vcpu->run->exit_reason = exit_reason;
2045	vcpu->run->msr.error = 0;
2046	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2047	vcpu->run->msr.reason = msr_reason;
2048	vcpu->run->msr.index = index;
2049	vcpu->run->msr.data = data;
2050	vcpu->arch.complete_userspace_io = completion;
2051
2052	return 1;
2053}
2054
2055int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2056{
2057	u32 ecx = kvm_rcx_read(vcpu);
2058	u64 data;
2059	int r;
2060
2061	r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2062
2063	if (!r) {
2064		trace_kvm_msr_read(ecx, data);
2065
2066		kvm_rax_write(vcpu, data & -1u);
2067		kvm_rdx_write(vcpu, (data >> 32) & -1u);
2068	} else {
2069		/* MSR read failed? See if we should ask user space */
2070		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2071				       complete_fast_rdmsr, r))
2072			return 0;
2073		trace_kvm_msr_read_ex(ecx);
2074	}
2075
2076	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2077}
2078EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2079
2080int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2081{
2082	u32 ecx = kvm_rcx_read(vcpu);
2083	u64 data = kvm_read_edx_eax(vcpu);
2084	int r;
2085
2086	r = kvm_set_msr_with_filter(vcpu, ecx, data);
2087
2088	if (!r) {
2089		trace_kvm_msr_write(ecx, data);
2090	} else {
2091		/* MSR write failed? See if we should ask user space */
2092		if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2093				       complete_fast_msr_access, r))
2094			return 0;
2095		/* Signal all other negative errors to userspace */
2096		if (r < 0)
2097			return r;
2098		trace_kvm_msr_write_ex(ecx, data);
2099	}
2100
2101	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2102}
2103EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2104
2105int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2106{
2107	return kvm_skip_emulated_instruction(vcpu);
2108}
2109
2110int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2111{
2112	/* Treat an INVD instruction as a NOP and just skip it. */
2113	return kvm_emulate_as_nop(vcpu);
2114}
2115EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2116
2117int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2118{
2119	kvm_queue_exception(vcpu, UD_VECTOR);
2120	return 1;
2121}
2122EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2123
2124
2125static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2126{
2127	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2128	    !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2129		return kvm_handle_invalid_op(vcpu);
2130
2131	pr_warn_once("%s instruction emulated as NOP!\n", insn);
2132	return kvm_emulate_as_nop(vcpu);
2133}
2134int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2135{
2136	return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2137}
2138EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2139
2140int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2141{
2142	return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2143}
2144EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2145
2146static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2147{
2148	xfer_to_guest_mode_prepare();
2149	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2150		xfer_to_guest_mode_work_pending();
2151}
2152
2153/*
2154 * The fast path for frequent and performance sensitive wrmsr emulation,
2155 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2156 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2157 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2158 * other cases which must be called after interrupts are enabled on the host.
2159 */
2160static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2161{
2162	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2163		return 1;
2164
2165	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2166	    ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2167	    ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2168	    ((u32)(data >> 32) != X2APIC_BROADCAST))
2169		return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2170
2171	return 1;
2172}
2173
2174static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2175{
2176	if (!kvm_can_use_hv_timer(vcpu))
2177		return 1;
2178
2179	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2180	return 0;
2181}
2182
2183fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2184{
2185	u32 msr = kvm_rcx_read(vcpu);
2186	u64 data;
2187	fastpath_t ret = EXIT_FASTPATH_NONE;
2188
2189	kvm_vcpu_srcu_read_lock(vcpu);
2190
2191	switch (msr) {
2192	case APIC_BASE_MSR + (APIC_ICR >> 4):
2193		data = kvm_read_edx_eax(vcpu);
2194		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2195			kvm_skip_emulated_instruction(vcpu);
2196			ret = EXIT_FASTPATH_EXIT_HANDLED;
2197		}
2198		break;
2199	case MSR_IA32_TSC_DEADLINE:
2200		data = kvm_read_edx_eax(vcpu);
2201		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2202			kvm_skip_emulated_instruction(vcpu);
2203			ret = EXIT_FASTPATH_REENTER_GUEST;
2204		}
2205		break;
2206	default:
2207		break;
2208	}
2209
2210	if (ret != EXIT_FASTPATH_NONE)
2211		trace_kvm_msr_write(msr, data);
2212
2213	kvm_vcpu_srcu_read_unlock(vcpu);
2214
2215	return ret;
2216}
2217EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2218
2219/*
2220 * Adapt set_msr() to msr_io()'s calling convention
2221 */
2222static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2223{
2224	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2225}
2226
2227static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2228{
2229	u64 val;
2230
2231	/*
2232	 * Disallow writes to immutable feature MSRs after KVM_RUN.  KVM does
2233	 * not support modifying the guest vCPU model on the fly, e.g. changing
2234	 * the nVMX capabilities while L2 is running is nonsensical.  Ignore
2235	 * writes of the same value, e.g. to allow userspace to blindly stuff
2236	 * all MSRs when emulating RESET.
2237	 */
2238	if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2239		if (do_get_msr(vcpu, index, &val) || *data != val)
2240			return -EINVAL;
2241
2242		return 0;
2243	}
2244
2245	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2246}
2247
2248#ifdef CONFIG_X86_64
2249struct pvclock_clock {
2250	int vclock_mode;
2251	u64 cycle_last;
2252	u64 mask;
2253	u32 mult;
2254	u32 shift;
2255	u64 base_cycles;
2256	u64 offset;
2257};
2258
2259struct pvclock_gtod_data {
2260	seqcount_t	seq;
2261
2262	struct pvclock_clock clock; /* extract of a clocksource struct */
2263	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2264
2265	ktime_t		offs_boot;
2266	u64		wall_time_sec;
2267};
2268
2269static struct pvclock_gtod_data pvclock_gtod_data;
2270
2271static void update_pvclock_gtod(struct timekeeper *tk)
2272{
2273	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2274
2275	write_seqcount_begin(&vdata->seq);
2276
2277	/* copy pvclock gtod data */
2278	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2279	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2280	vdata->clock.mask		= tk->tkr_mono.mask;
2281	vdata->clock.mult		= tk->tkr_mono.mult;
2282	vdata->clock.shift		= tk->tkr_mono.shift;
2283	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2284	vdata->clock.offset		= tk->tkr_mono.base;
2285
2286	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2287	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2288	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2289	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2290	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2291	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2292	vdata->raw_clock.offset		= tk->tkr_raw.base;
2293
2294	vdata->wall_time_sec            = tk->xtime_sec;
2295
2296	vdata->offs_boot		= tk->offs_boot;
2297
2298	write_seqcount_end(&vdata->seq);
2299}
2300
2301static s64 get_kvmclock_base_ns(void)
2302{
2303	/* Count up from boot time, but with the frequency of the raw clock.  */
2304	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2305}
2306#else
2307static s64 get_kvmclock_base_ns(void)
2308{
2309	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2310	return ktime_get_boottime_ns();
2311}
2312#endif
2313
2314static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2315{
2316	int version;
2317	int r;
2318	struct pvclock_wall_clock wc;
2319	u32 wc_sec_hi;
2320	u64 wall_nsec;
2321
2322	if (!wall_clock)
2323		return;
2324
2325	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2326	if (r)
2327		return;
2328
2329	if (version & 1)
2330		++version;  /* first time write, random junk */
2331
2332	++version;
2333
2334	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2335		return;
2336
2337	/*
2338	 * The guest calculates current wall clock time by adding
2339	 * system time (updated by kvm_guest_time_update below) to the
2340	 * wall clock specified here.  We do the reverse here.
2341	 */
2342	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2343
2344	wc.nsec = do_div(wall_nsec, 1000000000);
2345	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2346	wc.version = version;
2347
2348	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2349
2350	if (sec_hi_ofs) {
2351		wc_sec_hi = wall_nsec >> 32;
2352		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2353				&wc_sec_hi, sizeof(wc_sec_hi));
2354	}
2355
2356	version++;
2357	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2358}
2359
2360static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2361				  bool old_msr, bool host_initiated)
2362{
2363	struct kvm_arch *ka = &vcpu->kvm->arch;
2364
2365	if (vcpu->vcpu_id == 0 && !host_initiated) {
2366		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2367			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2368
2369		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2370	}
2371
2372	vcpu->arch.time = system_time;
2373	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2374
2375	/* we verify if the enable bit is set... */
2376	if (system_time & 1)
2377		kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
2378				 sizeof(struct pvclock_vcpu_time_info));
2379	else
2380		kvm_gpc_deactivate(&vcpu->arch.pv_time);
2381
2382	return;
2383}
2384
2385static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2386{
2387	do_shl32_div32(dividend, divisor);
2388	return dividend;
2389}
2390
2391static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2392			       s8 *pshift, u32 *pmultiplier)
2393{
2394	uint64_t scaled64;
2395	int32_t  shift = 0;
2396	uint64_t tps64;
2397	uint32_t tps32;
2398
2399	tps64 = base_hz;
2400	scaled64 = scaled_hz;
2401	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2402		tps64 >>= 1;
2403		shift--;
2404	}
2405
2406	tps32 = (uint32_t)tps64;
2407	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2408		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2409			scaled64 >>= 1;
2410		else
2411			tps32 <<= 1;
2412		shift++;
2413	}
2414
2415	*pshift = shift;
2416	*pmultiplier = div_frac(scaled64, tps32);
2417}
2418
2419#ifdef CONFIG_X86_64
2420static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2421#endif
2422
2423static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2424static unsigned long max_tsc_khz;
2425
2426static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2427{
2428	u64 v = (u64)khz * (1000000 + ppm);
2429	do_div(v, 1000000);
2430	return v;
2431}
2432
2433static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2434
2435static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2436{
2437	u64 ratio;
2438
2439	/* Guest TSC same frequency as host TSC? */
2440	if (!scale) {
2441		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2442		return 0;
2443	}
2444
2445	/* TSC scaling supported? */
2446	if (!kvm_caps.has_tsc_control) {
2447		if (user_tsc_khz > tsc_khz) {
2448			vcpu->arch.tsc_catchup = 1;
2449			vcpu->arch.tsc_always_catchup = 1;
2450			return 0;
2451		} else {
2452			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2453			return -1;
2454		}
2455	}
2456
2457	/* TSC scaling required  - calculate ratio */
2458	ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2459				user_tsc_khz, tsc_khz);
2460
2461	if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2462		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2463			            user_tsc_khz);
2464		return -1;
2465	}
2466
2467	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2468	return 0;
2469}
2470
2471static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2472{
2473	u32 thresh_lo, thresh_hi;
2474	int use_scaling = 0;
2475
2476	/* tsc_khz can be zero if TSC calibration fails */
2477	if (user_tsc_khz == 0) {
2478		/* set tsc_scaling_ratio to a safe value */
2479		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2480		return -1;
2481	}
2482
2483	/* Compute a scale to convert nanoseconds in TSC cycles */
2484	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2485			   &vcpu->arch.virtual_tsc_shift,
2486			   &vcpu->arch.virtual_tsc_mult);
2487	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2488
2489	/*
2490	 * Compute the variation in TSC rate which is acceptable
2491	 * within the range of tolerance and decide if the
2492	 * rate being applied is within that bounds of the hardware
2493	 * rate.  If so, no scaling or compensation need be done.
2494	 */
2495	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2496	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2497	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2498		pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2499			 user_tsc_khz, thresh_lo, thresh_hi);
2500		use_scaling = 1;
2501	}
2502	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2503}
2504
2505static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2506{
2507	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2508				      vcpu->arch.virtual_tsc_mult,
2509				      vcpu->arch.virtual_tsc_shift);
2510	tsc += vcpu->arch.this_tsc_write;
2511	return tsc;
2512}
2513
2514#ifdef CONFIG_X86_64
2515static inline int gtod_is_based_on_tsc(int mode)
2516{
2517	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2518}
2519#endif
2520
2521static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2522{
2523#ifdef CONFIG_X86_64
2524	bool vcpus_matched;
2525	struct kvm_arch *ka = &vcpu->kvm->arch;
2526	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2527
2528	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2529			 atomic_read(&vcpu->kvm->online_vcpus));
2530
2531	/*
2532	 * Once the masterclock is enabled, always perform request in
2533	 * order to update it.
2534	 *
2535	 * In order to enable masterclock, the host clocksource must be TSC
2536	 * and the vcpus need to have matched TSCs.  When that happens,
2537	 * perform request to enable masterclock.
2538	 */
2539	if (ka->use_master_clock ||
2540	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2541		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2542
2543	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2544			    atomic_read(&vcpu->kvm->online_vcpus),
2545		            ka->use_master_clock, gtod->clock.vclock_mode);
2546#endif
2547}
2548
2549/*
2550 * Multiply tsc by a fixed point number represented by ratio.
2551 *
2552 * The most significant 64-N bits (mult) of ratio represent the
2553 * integral part of the fixed point number; the remaining N bits
2554 * (frac) represent the fractional part, ie. ratio represents a fixed
2555 * point number (mult + frac * 2^(-N)).
2556 *
2557 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2558 */
2559static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2560{
2561	return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2562}
2563
2564u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2565{
2566	u64 _tsc = tsc;
2567
2568	if (ratio != kvm_caps.default_tsc_scaling_ratio)
2569		_tsc = __scale_tsc(ratio, tsc);
2570
2571	return _tsc;
2572}
2573
2574static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2575{
2576	u64 tsc;
2577
2578	tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2579
2580	return target_tsc - tsc;
2581}
2582
2583u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2584{
2585	return vcpu->arch.l1_tsc_offset +
2586		kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2587}
2588EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2589
2590u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2591{
2592	u64 nested_offset;
2593
2594	if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2595		nested_offset = l1_offset;
2596	else
2597		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2598						kvm_caps.tsc_scaling_ratio_frac_bits);
2599
2600	nested_offset += l2_offset;
2601	return nested_offset;
2602}
2603EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2604
2605u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2606{
2607	if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2608		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2609				       kvm_caps.tsc_scaling_ratio_frac_bits);
2610
2611	return l1_multiplier;
2612}
2613EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2614
2615static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2616{
2617	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2618				   vcpu->arch.l1_tsc_offset,
2619				   l1_offset);
2620
2621	vcpu->arch.l1_tsc_offset = l1_offset;
2622
2623	/*
2624	 * If we are here because L1 chose not to trap WRMSR to TSC then
2625	 * according to the spec this should set L1's TSC (as opposed to
2626	 * setting L1's offset for L2).
2627	 */
2628	if (is_guest_mode(vcpu))
2629		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2630			l1_offset,
2631			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2632			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2633	else
2634		vcpu->arch.tsc_offset = l1_offset;
2635
2636	static_call(kvm_x86_write_tsc_offset)(vcpu);
2637}
2638
2639static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2640{
2641	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2642
2643	/* Userspace is changing the multiplier while L2 is active */
2644	if (is_guest_mode(vcpu))
2645		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2646			l1_multiplier,
2647			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2648	else
2649		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2650
2651	if (kvm_caps.has_tsc_control)
2652		static_call(kvm_x86_write_tsc_multiplier)(vcpu);
2653}
2654
2655static inline bool kvm_check_tsc_unstable(void)
2656{
2657#ifdef CONFIG_X86_64
2658	/*
2659	 * TSC is marked unstable when we're running on Hyper-V,
2660	 * 'TSC page' clocksource is good.
2661	 */
2662	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2663		return false;
2664#endif
2665	return check_tsc_unstable();
2666}
2667
2668/*
2669 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2670 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2671 * participates in.
2672 */
2673static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2674				  u64 ns, bool matched)
2675{
2676	struct kvm *kvm = vcpu->kvm;
2677
2678	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2679
2680	/*
2681	 * We also track th most recent recorded KHZ, write and time to
2682	 * allow the matching interval to be extended at each write.
2683	 */
2684	kvm->arch.last_tsc_nsec = ns;
2685	kvm->arch.last_tsc_write = tsc;
2686	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2687	kvm->arch.last_tsc_offset = offset;
2688
2689	vcpu->arch.last_guest_tsc = tsc;
2690
2691	kvm_vcpu_write_tsc_offset(vcpu, offset);
2692
2693	if (!matched) {
2694		/*
2695		 * We split periods of matched TSC writes into generations.
2696		 * For each generation, we track the original measured
2697		 * nanosecond time, offset, and write, so if TSCs are in
2698		 * sync, we can match exact offset, and if not, we can match
2699		 * exact software computation in compute_guest_tsc()
2700		 *
2701		 * These values are tracked in kvm->arch.cur_xxx variables.
2702		 */
2703		kvm->arch.cur_tsc_generation++;
2704		kvm->arch.cur_tsc_nsec = ns;
2705		kvm->arch.cur_tsc_write = tsc;
2706		kvm->arch.cur_tsc_offset = offset;
2707		kvm->arch.nr_vcpus_matched_tsc = 0;
2708	} else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2709		kvm->arch.nr_vcpus_matched_tsc++;
2710	}
2711
2712	/* Keep track of which generation this VCPU has synchronized to */
2713	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2714	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2715	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2716
2717	kvm_track_tsc_matching(vcpu);
2718}
2719
2720static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2721{
2722	struct kvm *kvm = vcpu->kvm;
2723	u64 offset, ns, elapsed;
2724	unsigned long flags;
2725	bool matched = false;
2726	bool synchronizing = false;
2727
2728	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2729	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2730	ns = get_kvmclock_base_ns();
2731	elapsed = ns - kvm->arch.last_tsc_nsec;
2732
2733	if (vcpu->arch.virtual_tsc_khz) {
2734		if (data == 0) {
2735			/*
2736			 * detection of vcpu initialization -- need to sync
2737			 * with other vCPUs. This particularly helps to keep
2738			 * kvm_clock stable after CPU hotplug
2739			 */
2740			synchronizing = true;
2741		} else {
2742			u64 tsc_exp = kvm->arch.last_tsc_write +
2743						nsec_to_cycles(vcpu, elapsed);
2744			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2745			/*
2746			 * Special case: TSC write with a small delta (1 second)
2747			 * of virtual cycle time against real time is
2748			 * interpreted as an attempt to synchronize the CPU.
2749			 */
2750			synchronizing = data < tsc_exp + tsc_hz &&
2751					data + tsc_hz > tsc_exp;
2752		}
2753	}
2754
2755	/*
2756	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2757	 * TSC, we add elapsed time in this computation.  We could let the
2758	 * compensation code attempt to catch up if we fall behind, but
2759	 * it's better to try to match offsets from the beginning.
2760         */
2761	if (synchronizing &&
2762	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2763		if (!kvm_check_tsc_unstable()) {
2764			offset = kvm->arch.cur_tsc_offset;
2765		} else {
2766			u64 delta = nsec_to_cycles(vcpu, elapsed);
2767			data += delta;
2768			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2769		}
2770		matched = true;
2771	}
2772
2773	__kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2774	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2775}
2776
2777static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2778					   s64 adjustment)
2779{
2780	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2781	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2782}
2783
2784static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2785{
2786	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2787		WARN_ON(adjustment < 0);
2788	adjustment = kvm_scale_tsc((u64) adjustment,
2789				   vcpu->arch.l1_tsc_scaling_ratio);
2790	adjust_tsc_offset_guest(vcpu, adjustment);
2791}
2792
2793#ifdef CONFIG_X86_64
2794
2795static u64 read_tsc(void)
2796{
2797	u64 ret = (u64)rdtsc_ordered();
2798	u64 last = pvclock_gtod_data.clock.cycle_last;
2799
2800	if (likely(ret >= last))
2801		return ret;
2802
2803	/*
2804	 * GCC likes to generate cmov here, but this branch is extremely
2805	 * predictable (it's just a function of time and the likely is
2806	 * very likely) and there's a data dependence, so force GCC
2807	 * to generate a branch instead.  I don't barrier() because
2808	 * we don't actually need a barrier, and if this function
2809	 * ever gets inlined it will generate worse code.
2810	 */
2811	asm volatile ("");
2812	return last;
2813}
2814
2815static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2816			  int *mode)
2817{
2818	u64 tsc_pg_val;
2819	long v;
2820
2821	switch (clock->vclock_mode) {
2822	case VDSO_CLOCKMODE_HVCLOCK:
2823		if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2824					 tsc_timestamp, &tsc_pg_val)) {
2825			/* TSC page valid */
2826			*mode = VDSO_CLOCKMODE_HVCLOCK;
2827			v = (tsc_pg_val - clock->cycle_last) &
2828				clock->mask;
2829		} else {
2830			/* TSC page invalid */
2831			*mode = VDSO_CLOCKMODE_NONE;
2832		}
2833		break;
2834	case VDSO_CLOCKMODE_TSC:
2835		*mode = VDSO_CLOCKMODE_TSC;
2836		*tsc_timestamp = read_tsc();
2837		v = (*tsc_timestamp - clock->cycle_last) &
2838			clock->mask;
2839		break;
2840	default:
2841		*mode = VDSO_CLOCKMODE_NONE;
2842	}
2843
2844	if (*mode == VDSO_CLOCKMODE_NONE)
2845		*tsc_timestamp = v = 0;
2846
2847	return v * clock->mult;
2848}
2849
2850static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2851{
2852	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2853	unsigned long seq;
2854	int mode;
2855	u64 ns;
2856
2857	do {
2858		seq = read_seqcount_begin(&gtod->seq);
2859		ns = gtod->raw_clock.base_cycles;
2860		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2861		ns >>= gtod->raw_clock.shift;
2862		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2863	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2864	*t = ns;
2865
2866	return mode;
2867}
2868
2869static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2870{
2871	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2872	unsigned long seq;
2873	int mode;
2874	u64 ns;
2875
2876	do {
2877		seq = read_seqcount_begin(&gtod->seq);
2878		ts->tv_sec = gtod->wall_time_sec;
2879		ns = gtod->clock.base_cycles;
2880		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2881		ns >>= gtod->clock.shift;
2882	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2883
2884	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2885	ts->tv_nsec = ns;
2886
2887	return mode;
2888}
2889
2890/* returns true if host is using TSC based clocksource */
2891static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2892{
2893	/* checked again under seqlock below */
2894	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2895		return false;
2896
2897	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2898						      tsc_timestamp));
2899}
2900
2901/* returns true if host is using TSC based clocksource */
2902static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2903					   u64 *tsc_timestamp)
2904{
2905	/* checked again under seqlock below */
2906	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2907		return false;
2908
2909	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2910}
2911#endif
2912
2913/*
2914 *
2915 * Assuming a stable TSC across physical CPUS, and a stable TSC
2916 * across virtual CPUs, the following condition is possible.
2917 * Each numbered line represents an event visible to both
2918 * CPUs at the next numbered event.
2919 *
2920 * "timespecX" represents host monotonic time. "tscX" represents
2921 * RDTSC value.
2922 *
2923 * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2924 *
2925 * 1.  read timespec0,tsc0
2926 * 2.					| timespec1 = timespec0 + N
2927 * 					| tsc1 = tsc0 + M
2928 * 3. transition to guest		| transition to guest
2929 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2930 * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2931 * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2932 *
2933 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2934 *
2935 * 	- ret0 < ret1
2936 *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2937 *		...
2938 *	- 0 < N - M => M < N
2939 *
2940 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2941 * always the case (the difference between two distinct xtime instances
2942 * might be smaller then the difference between corresponding TSC reads,
2943 * when updating guest vcpus pvclock areas).
2944 *
2945 * To avoid that problem, do not allow visibility of distinct
2946 * system_timestamp/tsc_timestamp values simultaneously: use a master
2947 * copy of host monotonic time values. Update that master copy
2948 * in lockstep.
2949 *
2950 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2951 *
2952 */
2953
2954static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2955{
2956#ifdef CONFIG_X86_64
2957	struct kvm_arch *ka = &kvm->arch;
2958	int vclock_mode;
2959	bool host_tsc_clocksource, vcpus_matched;
2960
2961	lockdep_assert_held(&kvm->arch.tsc_write_lock);
2962	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2963			atomic_read(&kvm->online_vcpus));
2964
2965	/*
2966	 * If the host uses TSC clock, then passthrough TSC as stable
2967	 * to the guest.
2968	 */
2969	host_tsc_clocksource = kvm_get_time_and_clockread(
2970					&ka->master_kernel_ns,
2971					&ka->master_cycle_now);
2972
2973	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2974				&& !ka->backwards_tsc_observed
2975				&& !ka->boot_vcpu_runs_old_kvmclock;
2976
2977	if (ka->use_master_clock)
2978		atomic_set(&kvm_guest_has_master_clock, 1);
2979
2980	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2981	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2982					vcpus_matched);
2983#endif
2984}
2985
2986static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2987{
2988	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2989}
2990
2991static void __kvm_start_pvclock_update(struct kvm *kvm)
2992{
2993	raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2994	write_seqcount_begin(&kvm->arch.pvclock_sc);
2995}
2996
2997static void kvm_start_pvclock_update(struct kvm *kvm)
2998{
2999	kvm_make_mclock_inprogress_request(kvm);
3000
3001	/* no guest entries from this point */
3002	__kvm_start_pvclock_update(kvm);
3003}
3004
3005static void kvm_end_pvclock_update(struct kvm *kvm)
3006{
3007	struct kvm_arch *ka = &kvm->arch;
3008	struct kvm_vcpu *vcpu;
3009	unsigned long i;
3010
3011	write_seqcount_end(&ka->pvclock_sc);
3012	raw_spin_unlock_irq(&ka->tsc_write_lock);
3013	kvm_for_each_vcpu(i, vcpu, kvm)
3014		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3015
3016	/* guest entries allowed */
3017	kvm_for_each_vcpu(i, vcpu, kvm)
3018		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
3019}
3020
3021static void kvm_update_masterclock(struct kvm *kvm)
3022{
3023	kvm_hv_request_tsc_page_update(kvm);
3024	kvm_start_pvclock_update(kvm);
3025	pvclock_update_vm_gtod_copy(kvm);
3026	kvm_end_pvclock_update(kvm);
3027}
3028
3029/*
3030 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3031 * per-CPU value (which may be zero if a CPU is going offline).  Note, tsc_khz
3032 * can change during boot even if the TSC is constant, as it's possible for KVM
3033 * to be loaded before TSC calibration completes.  Ideally, KVM would get a
3034 * notification when calibration completes, but practically speaking calibration
3035 * will complete before userspace is alive enough to create VMs.
3036 */
3037static unsigned long get_cpu_tsc_khz(void)
3038{
3039	if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3040		return tsc_khz;
3041	else
3042		return __this_cpu_read(cpu_tsc_khz);
3043}
3044
3045/* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
3046static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3047{
3048	struct kvm_arch *ka = &kvm->arch;
3049	struct pvclock_vcpu_time_info hv_clock;
3050
3051	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
3052	get_cpu();
3053
3054	data->flags = 0;
3055	if (ka->use_master_clock &&
3056	    (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
3057#ifdef CONFIG_X86_64
3058		struct timespec64 ts;
3059
3060		if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3061			data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3062			data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3063		} else
3064#endif
3065		data->host_tsc = rdtsc();
3066
3067		data->flags |= KVM_CLOCK_TSC_STABLE;
3068		hv_clock.tsc_timestamp = ka->master_cycle_now;
3069		hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3070		kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
3071				   &hv_clock.tsc_shift,
3072				   &hv_clock.tsc_to_system_mul);
3073		data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3074	} else {
3075		data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3076	}
3077
3078	put_cpu();
3079}
3080
3081static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3082{
3083	struct kvm_arch *ka = &kvm->arch;
3084	unsigned seq;
3085
3086	do {
3087		seq = read_seqcount_begin(&ka->pvclock_sc);
3088		__get_kvmclock(kvm, data);
3089	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3090}
3091
3092u64 get_kvmclock_ns(struct kvm *kvm)
3093{
3094	struct kvm_clock_data data;
3095
3096	get_kvmclock(kvm, &data);
3097	return data.clock;
3098}
3099
3100static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3101				    struct gfn_to_pfn_cache *gpc,
3102				    unsigned int offset)
3103{
3104	struct kvm_vcpu_arch *vcpu = &v->arch;
3105	struct pvclock_vcpu_time_info *guest_hv_clock;
3106	unsigned long flags;
3107
3108	read_lock_irqsave(&gpc->lock, flags);
3109	while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
3110		read_unlock_irqrestore(&gpc->lock, flags);
3111
3112		if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
3113			return;
3114
3115		read_lock_irqsave(&gpc->lock, flags);
3116	}
3117
3118	guest_hv_clock = (void *)(gpc->khva + offset);
3119
3120	/*
3121	 * This VCPU is paused, but it's legal for a guest to read another
3122	 * VCPU's kvmclock, so we really have to follow the specification where
3123	 * it says that version is odd if data is being modified, and even after
3124	 * it is consistent.
3125	 */
3126
3127	guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3128	smp_wmb();
3129
3130	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3131	vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3132
3133	if (vcpu->pvclock_set_guest_stopped_request) {
3134		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3135		vcpu->pvclock_set_guest_stopped_request = false;
3136	}
3137
3138	memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3139	smp_wmb();
3140
3141	guest_hv_clock->version = ++vcpu->hv_clock.version;
3142
3143	mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3144	read_unlock_irqrestore(&gpc->lock, flags);
3145
3146	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3147}
3148
3149static int kvm_guest_time_update(struct kvm_vcpu *v)
3150{
3151	unsigned long flags, tgt_tsc_khz;
3152	unsigned seq;
3153	struct kvm_vcpu_arch *vcpu = &v->arch;
3154	struct kvm_arch *ka = &v->kvm->arch;
3155	s64 kernel_ns;
3156	u64 tsc_timestamp, host_tsc;
3157	u8 pvclock_flags;
3158	bool use_master_clock;
3159
3160	kernel_ns = 0;
3161	host_tsc = 0;
3162
3163	/*
3164	 * If the host uses TSC clock, then passthrough TSC as stable
3165	 * to the guest.
3166	 */
3167	do {
3168		seq = read_seqcount_begin(&ka->pvclock_sc);
3169		use_master_clock = ka->use_master_clock;
3170		if (use_master_clock) {
3171			host_tsc = ka->master_cycle_now;
3172			kernel_ns = ka->master_kernel_ns;
3173		}
3174	} while (read_seqcount_retry(&ka->pvclock_sc, seq));
3175
3176	/* Keep irq disabled to prevent changes to the clock */
3177	local_irq_save(flags);
3178	tgt_tsc_khz = get_cpu_tsc_khz();
3179	if (unlikely(tgt_tsc_khz == 0)) {
3180		local_irq_restore(flags);
3181		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3182		return 1;
3183	}
3184	if (!use_master_clock) {
3185		host_tsc = rdtsc();
3186		kernel_ns = get_kvmclock_base_ns();
3187	}
3188
3189	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3190
3191	/*
3192	 * We may have to catch up the TSC to match elapsed wall clock
3193	 * time for two reasons, even if kvmclock is used.
3194	 *   1) CPU could have been running below the maximum TSC rate
3195	 *   2) Broken TSC compensation resets the base at each VCPU
3196	 *      entry to avoid unknown leaps of TSC even when running
3197	 *      again on the same CPU.  This may cause apparent elapsed
3198	 *      time to disappear, and the guest to stand still or run
3199	 *	very slowly.
3200	 */
3201	if (vcpu->tsc_catchup) {
3202		u64 tsc = compute_guest_tsc(v, kernel_ns);
3203		if (tsc > tsc_timestamp) {
3204			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3205			tsc_timestamp = tsc;
3206		}
3207	}
3208
3209	local_irq_restore(flags);
3210
3211	/* With all the info we got, fill in the values */
3212
3213	if (kvm_caps.has_tsc_control)
3214		tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3215					    v->arch.l1_tsc_scaling_ratio);
3216
3217	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3218		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3219				   &vcpu->hv_clock.tsc_shift,
3220				   &vcpu->hv_clock.tsc_to_system_mul);
3221		vcpu->hw_tsc_khz = tgt_tsc_khz;
3222		kvm_xen_update_tsc_info(v);
3223	}
3224
3225	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3226	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3227	vcpu->last_guest_tsc = tsc_timestamp;
3228
3229	/* If the host uses TSC clocksource, then it is stable */
3230	pvclock_flags = 0;
3231	if (use_master_clock)
3232		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3233
3234	vcpu->hv_clock.flags = pvclock_flags;
3235
3236	if (vcpu->pv_time.active)
3237		kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3238	if (vcpu->xen.vcpu_info_cache.active)
3239		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3240					offsetof(struct compat_vcpu_info, time));
3241	if (vcpu->xen.vcpu_time_info_cache.active)
3242		kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3243	kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3244	return 0;
3245}
3246
3247/*
3248 * kvmclock updates which are isolated to a given vcpu, such as
3249 * vcpu->cpu migration, should not allow system_timestamp from
3250 * the rest of the vcpus to remain static. Otherwise ntp frequency
3251 * correction applies to one vcpu's system_timestamp but not
3252 * the others.
3253 *
3254 * So in those cases, request a kvmclock update for all vcpus.
3255 * We need to rate-limit these requests though, as they can
3256 * considerably slow guests that have a large number of vcpus.
3257 * The time for a remote vcpu to update its kvmclock is bound
3258 * by the delay we use to rate-limit the updates.
3259 */
3260
3261#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3262
3263static void kvmclock_update_fn(struct work_struct *work)
3264{
3265	unsigned long i;
3266	struct delayed_work *dwork = to_delayed_work(work);
3267	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3268					   kvmclock_update_work);
3269	struct kvm *kvm = container_of(ka, struct kvm, arch);
3270	struct kvm_vcpu *vcpu;
3271
3272	kvm_for_each_vcpu(i, vcpu, kvm) {
3273		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3274		kvm_vcpu_kick(vcpu);
3275	}
3276}
3277
3278static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3279{
3280	struct kvm *kvm = v->kvm;
3281
3282	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3283	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3284					KVMCLOCK_UPDATE_DELAY);
3285}
3286
3287#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3288
3289static void kvmclock_sync_fn(struct work_struct *work)
3290{
3291	struct delayed_work *dwork = to_delayed_work(work);
3292	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3293					   kvmclock_sync_work);
3294	struct kvm *kvm = container_of(ka, struct kvm, arch);
3295
3296	if (!kvmclock_periodic_sync)
3297		return;
3298
3299	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3300	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3301					KVMCLOCK_SYNC_PERIOD);
3302}
3303
3304/* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3305static bool is_mci_control_msr(u32 msr)
3306{
3307	return (msr & 3) == 0;
3308}
3309static bool is_mci_status_msr(u32 msr)
3310{
3311	return (msr & 3) == 1;
3312}
3313
3314/*
3315 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3316 */
3317static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3318{
3319	/* McStatusWrEn enabled? */
3320	if (guest_cpuid_is_amd_or_hygon(vcpu))
3321		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3322
3323	return false;
3324}
3325
3326static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3327{
3328	u64 mcg_cap = vcpu->arch.mcg_cap;
3329	unsigned bank_num = mcg_cap & 0xff;
3330	u32 msr = msr_info->index;
3331	u64 data = msr_info->data;
3332	u32 offset, last_msr;
3333
3334	switch (msr) {
3335	case MSR_IA32_MCG_STATUS:
3336		vcpu->arch.mcg_status = data;
3337		break;
3338	case MSR_IA32_MCG_CTL:
3339		if (!(mcg_cap & MCG_CTL_P) &&
3340		    (data || !msr_info->host_initiated))
3341			return 1;
3342		if (data != 0 && data != ~(u64)0)
3343			return 1;
3344		vcpu->arch.mcg_ctl = data;
3345		break;
3346	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3347		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3348		if (msr > last_msr)
3349			return 1;
3350
3351		if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3352			return 1;
3353		/* An attempt to write a 1 to a reserved bit raises #GP */
3354		if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3355			return 1;
3356		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3357					    last_msr + 1 - MSR_IA32_MC0_CTL2);
3358		vcpu->arch.mci_ctl2_banks[offset] = data;
3359		break;
3360	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3361		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3362		if (msr > last_msr)
3363			return 1;
3364
3365		/*
3366		 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3367		 * values are architecturally undefined.  But, some Linux
3368		 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3369		 * issue on AMD K8s, allow bit 10 to be clear when setting all
3370		 * other bits in order to avoid an uncaught #GP in the guest.
3371		 *
3372		 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3373		 * single-bit ECC data errors.
3374		 */
3375		if (is_mci_control_msr(msr) &&
3376		    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3377			return 1;
3378
3379		/*
3380		 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3381		 * AMD-based CPUs allow non-zero values, but if and only if
3382		 * HWCR[McStatusWrEn] is set.
3383		 */
3384		if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3385		    data != 0 && !can_set_mci_status(vcpu))
3386			return 1;
3387
3388		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3389					    last_msr + 1 - MSR_IA32_MC0_CTL);
3390		vcpu->arch.mce_banks[offset] = data;
3391		break;
3392	default:
3393		return 1;
3394	}
3395	return 0;
3396}
3397
3398static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3399{
3400	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3401
3402	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3403}
3404
3405static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3406{
3407	gpa_t gpa = data & ~0x3f;
3408
3409	/* Bits 4:5 are reserved, Should be zero */
3410	if (data & 0x30)
3411		return 1;
3412
3413	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3414	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3415		return 1;
3416
3417	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3418	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3419		return 1;
3420
3421	if (!lapic_in_kernel(vcpu))
3422		return data ? 1 : 0;
3423
3424	vcpu->arch.apf.msr_en_val = data;
3425
3426	if (!kvm_pv_async_pf_enabled(vcpu)) {
3427		kvm_clear_async_pf_completion_queue(vcpu);
3428		kvm_async_pf_hash_reset(vcpu);
3429		return 0;
3430	}
3431
3432	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3433					sizeof(u64)))
3434		return 1;
3435
3436	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3437	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3438
3439	kvm_async_pf_wakeup_all(vcpu);
3440
3441	return 0;
3442}
3443
3444static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3445{
3446	/* Bits 8-63 are reserved */
3447	if (data >> 8)
3448		return 1;
3449
3450	if (!lapic_in_kernel(vcpu))
3451		return 1;
3452
3453	vcpu->arch.apf.msr_int_val = data;
3454
3455	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3456
3457	return 0;
3458}
3459
3460static void kvmclock_reset(struct kvm_vcpu *vcpu)
3461{
3462	kvm_gpc_deactivate(&vcpu->arch.pv_time);
3463	vcpu->arch.time = 0;
3464}
3465
3466static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3467{
3468	++vcpu->stat.tlb_flush;
3469	static_call(kvm_x86_flush_tlb_all)(vcpu);
3470
3471	/* Flushing all ASIDs flushes the current ASID... */
3472	kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3473}
3474
3475static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3476{
3477	++vcpu->stat.tlb_flush;
3478
3479	if (!tdp_enabled) {
3480		/*
3481		 * A TLB flush on behalf of the guest is equivalent to
3482		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3483		 * a forced sync of the shadow page tables.  Ensure all the
3484		 * roots are synced and the guest TLB in hardware is clean.
3485		 */
3486		kvm_mmu_sync_roots(vcpu);
3487		kvm_mmu_sync_prev_roots(vcpu);
3488	}
3489
3490	static_call(kvm_x86_flush_tlb_guest)(vcpu);
3491
3492	/*
3493	 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3494	 * grained flushing.
3495	 */
3496	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3497}
3498
3499
3500static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3501{
3502	++vcpu->stat.tlb_flush;
3503	static_call(kvm_x86_flush_tlb_current)(vcpu);
3504}
3505
3506/*
3507 * Service "local" TLB flush requests, which are specific to the current MMU
3508 * context.  In addition to the generic event handling in vcpu_enter_guest(),
3509 * TLB flushes that are targeted at an MMU context also need to be serviced
3510 * prior before nested VM-Enter/VM-Exit.
3511 */
3512void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3513{
3514	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3515		kvm_vcpu_flush_tlb_current(vcpu);
3516
3517	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3518		kvm_vcpu_flush_tlb_guest(vcpu);
3519}
3520EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3521
3522static void record_steal_time(struct kvm_vcpu *vcpu)
3523{
3524	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3525	struct kvm_steal_time __user *st;
3526	struct kvm_memslots *slots;
3527	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3528	u64 steal;
3529	u32 version;
3530
3531	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3532		kvm_xen_runstate_set_running(vcpu);
3533		return;
3534	}
3535
3536	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3537		return;
3538
3539	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3540		return;
3541
3542	slots = kvm_memslots(vcpu->kvm);
3543
3544	if (unlikely(slots->generation != ghc->generation ||
3545		     gpa != ghc->gpa ||
3546		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3547		/* We rely on the fact that it fits in a single page. */
3548		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3549
3550		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3551		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3552			return;
3553	}
3554
3555	st = (struct kvm_steal_time __user *)ghc->hva;
3556	/*
3557	 * Doing a TLB flush here, on the guest's behalf, can avoid
3558	 * expensive IPIs.
3559	 */
3560	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3561		u8 st_preempted = 0;
3562		int err = -EFAULT;
3563
3564		if (!user_access_begin(st, sizeof(*st)))
3565			return;
3566
3567		asm volatile("1: xchgb %0, %2\n"
3568			     "xor %1, %1\n"
3569			     "2:\n"
3570			     _ASM_EXTABLE_UA(1b, 2b)
3571			     : "+q" (st_preempted),
3572			       "+&r" (err),
3573			       "+m" (st->preempted));
3574		if (err)
3575			goto out;
3576
3577		user_access_end();
3578
3579		vcpu->arch.st.preempted = 0;
3580
3581		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3582				       st_preempted & KVM_VCPU_FLUSH_TLB);
3583		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3584			kvm_vcpu_flush_tlb_guest(vcpu);
3585
3586		if (!user_access_begin(st, sizeof(*st)))
3587			goto dirty;
3588	} else {
3589		if (!user_access_begin(st, sizeof(*st)))
3590			return;
3591
3592		unsafe_put_user(0, &st->preempted, out);
3593		vcpu->arch.st.preempted = 0;
3594	}
3595
3596	unsafe_get_user(version, &st->version, out);
3597	if (version & 1)
3598		version += 1;  /* first time write, random junk */
3599
3600	version += 1;
3601	unsafe_put_user(version, &st->version, out);
3602
3603	smp_wmb();
3604
3605	unsafe_get_user(steal, &st->steal, out);
3606	steal += current->sched_info.run_delay -
3607		vcpu->arch.st.last_steal;
3608	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3609	unsafe_put_user(steal, &st->steal, out);
3610
3611	version += 1;
3612	unsafe_put_user(version, &st->version, out);
3613
3614 out:
3615	user_access_end();
3616 dirty:
3617	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3618}
3619
3620static bool kvm_is_msr_to_save(u32 msr_index)
3621{
3622	unsigned int i;
3623
3624	for (i = 0; i < num_msrs_to_save; i++) {
3625		if (msrs_to_save[i] == msr_index)
3626			return true;
3627	}
3628
3629	return false;
3630}
3631
3632int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3633{
3634	u32 msr = msr_info->index;
3635	u64 data = msr_info->data;
3636
3637	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3638		return kvm_xen_write_hypercall_page(vcpu, data);
3639
3640	switch (msr) {
3641	case MSR_AMD64_NB_CFG:
3642	case MSR_IA32_UCODE_WRITE:
3643	case MSR_VM_HSAVE_PA:
3644	case MSR_AMD64_PATCH_LOADER:
3645	case MSR_AMD64_BU_CFG2:
3646	case MSR_AMD64_DC_CFG:
3647	case MSR_AMD64_TW_CFG:
3648	case MSR_F15H_EX_CFG:
3649		break;
3650
3651	case MSR_IA32_UCODE_REV:
3652		if (msr_info->host_initiated)
3653			vcpu->arch.microcode_version = data;
3654		break;
3655	case MSR_IA32_ARCH_CAPABILITIES:
3656		if (!msr_info->host_initiated)
3657			return 1;
3658		vcpu->arch.arch_capabilities = data;
3659		break;
3660	case MSR_IA32_PERF_CAPABILITIES:
3661		if (!msr_info->host_initiated)
3662			return 1;
3663		if (data & ~kvm_caps.supported_perf_cap)
3664			return 1;
3665
3666		/*
3667		 * Note, this is not just a performance optimization!  KVM
3668		 * disallows changing feature MSRs after the vCPU has run; PMU
3669		 * refresh will bug the VM if called after the vCPU has run.
3670		 */
3671		if (vcpu->arch.perf_capabilities == data)
3672			break;
3673
3674		vcpu->arch.perf_capabilities = data;
3675		kvm_pmu_refresh(vcpu);
3676		break;
3677	case MSR_IA32_PRED_CMD:
3678		if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3679			return 1;
3680
3681		if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3682			return 1;
3683		if (!data)
3684			break;
3685
3686		wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3687		break;
3688	case MSR_IA32_FLUSH_CMD:
3689		if (!msr_info->host_initiated &&
3690		    !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3691			return 1;
3692
3693		if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3694			return 1;
3695		if (!data)
3696			break;
3697
3698		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3699		break;
3700	case MSR_EFER:
3701		return set_efer(vcpu, msr_info);
3702	case MSR_K7_HWCR:
3703		data &= ~(u64)0x40;	/* ignore flush filter disable */
3704		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3705		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3706
3707		/* Handle McStatusWrEn */
3708		if (data == BIT_ULL(18)) {
3709			vcpu->arch.msr_hwcr = data;
3710		} else if (data != 0) {
3711			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3712			return 1;
3713		}
3714		break;
3715	case MSR_FAM10H_MMIO_CONF_BASE:
3716		if (data != 0) {
3717			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3718			return 1;
3719		}
3720		break;
3721	case MSR_IA32_CR_PAT:
3722		if (!kvm_pat_valid(data))
3723			return 1;
3724
3725		vcpu->arch.pat = data;
3726		break;
3727	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3728	case MSR_MTRRdefType:
3729		return kvm_mtrr_set_msr(vcpu, msr, data);
3730	case MSR_IA32_APICBASE:
3731		return kvm_set_apic_base(vcpu, msr_info);
3732	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3733		return kvm_x2apic_msr_write(vcpu, msr, data);
3734	case MSR_IA32_TSC_DEADLINE:
3735		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3736		break;
3737	case MSR_IA32_TSC_ADJUST:
3738		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3739			if (!msr_info->host_initiated) {
3740				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3741				adjust_tsc_offset_guest(vcpu, adj);
3742				/* Before back to guest, tsc_timestamp must be adjusted
3743				 * as well, otherwise guest's percpu pvclock time could jump.
3744				 */
3745				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3746			}
3747			vcpu->arch.ia32_tsc_adjust_msr = data;
3748		}
3749		break;
3750	case MSR_IA32_MISC_ENABLE: {
3751		u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3752
3753		if (!msr_info->host_initiated) {
3754			/* RO bits */
3755			if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3756				return 1;
3757
3758			/* R bits, i.e. writes are ignored, but don't fault. */
3759			data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3760			data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3761		}
3762
3763		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3764		    ((old_val ^ data)  & MSR_IA32_MISC_ENABLE_MWAIT)) {
3765			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3766				return 1;
3767			vcpu->arch.ia32_misc_enable_msr = data;
3768			kvm_update_cpuid_runtime(vcpu);
3769		} else {
3770			vcpu->arch.ia32_misc_enable_msr = data;
3771		}
3772		break;
3773	}
3774	case MSR_IA32_SMBASE:
3775		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
3776			return 1;
3777		vcpu->arch.smbase = data;
3778		break;
3779	case MSR_IA32_POWER_CTL:
3780		vcpu->arch.msr_ia32_power_ctl = data;
3781		break;
3782	case MSR_IA32_TSC:
3783		if (msr_info->host_initiated) {
3784			kvm_synchronize_tsc(vcpu, data);
3785		} else {
3786			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3787			adjust_tsc_offset_guest(vcpu, adj);
3788			vcpu->arch.ia32_tsc_adjust_msr += adj;
3789		}
3790		break;
3791	case MSR_IA32_XSS:
3792		if (!msr_info->host_initiated &&
3793		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3794			return 1;
3795		/*
3796		 * KVM supports exposing PT to the guest, but does not support
3797		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3798		 * XSAVES/XRSTORS to save/restore PT MSRs.
3799		 */
3800		if (data & ~kvm_caps.supported_xss)
3801			return 1;
3802		vcpu->arch.ia32_xss = data;
3803		kvm_update_cpuid_runtime(vcpu);
3804		break;
3805	case MSR_SMI_COUNT:
3806		if (!msr_info->host_initiated)
3807			return 1;
3808		vcpu->arch.smi_count = data;
3809		break;
3810	case MSR_KVM_WALL_CLOCK_NEW:
3811		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3812			return 1;
3813
3814		vcpu->kvm->arch.wall_clock = data;
3815		kvm_write_wall_clock(vcpu->kvm, data, 0);
3816		break;
3817	case MSR_KVM_WALL_CLOCK:
3818		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3819			return 1;
3820
3821		vcpu->kvm->arch.wall_clock = data;
3822		kvm_write_wall_clock(vcpu->kvm, data, 0);
3823		break;
3824	case MSR_KVM_SYSTEM_TIME_NEW:
3825		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3826			return 1;
3827
3828		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3829		break;
3830	case MSR_KVM_SYSTEM_TIME:
3831		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3832			return 1;
3833
3834		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3835		break;
3836	case MSR_KVM_ASYNC_PF_EN:
3837		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3838			return 1;
3839
3840		if (kvm_pv_enable_async_pf(vcpu, data))
3841			return 1;
3842		break;
3843	case MSR_KVM_ASYNC_PF_INT:
3844		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3845			return 1;
3846
3847		if (kvm_pv_enable_async_pf_int(vcpu, data))
3848			return 1;
3849		break;
3850	case MSR_KVM_ASYNC_PF_ACK:
3851		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3852			return 1;
3853		if (data & 0x1) {
3854			vcpu->arch.apf.pageready_pending = false;
3855			kvm_check_async_pf_completion(vcpu);
3856		}
3857		break;
3858	case MSR_KVM_STEAL_TIME:
3859		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3860			return 1;
3861
3862		if (unlikely(!sched_info_on()))
3863			return 1;
3864
3865		if (data & KVM_STEAL_RESERVED_MASK)
3866			return 1;
3867
3868		vcpu->arch.st.msr_val = data;
3869
3870		if (!(data & KVM_MSR_ENABLED))
3871			break;
3872
3873		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3874
3875		break;
3876	case MSR_KVM_PV_EOI_EN:
3877		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3878			return 1;
3879
3880		if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3881			return 1;
3882		break;
3883
3884	case MSR_KVM_POLL_CONTROL:
3885		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3886			return 1;
3887
3888		/* only enable bit supported */
3889		if (data & (-1ULL << 1))
3890			return 1;
3891
3892		vcpu->arch.msr_kvm_poll_control = data;
3893		break;
3894
3895	case MSR_IA32_MCG_CTL:
3896	case MSR_IA32_MCG_STATUS:
3897	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3898	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3899		return set_msr_mce(vcpu, msr_info);
3900
3901	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3902	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3903	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3904	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3905		if (kvm_pmu_is_valid_msr(vcpu, msr))
3906			return kvm_pmu_set_msr(vcpu, msr_info);
3907
3908		if (data)
3909			kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3910		break;
3911	case MSR_K7_CLK_CTL:
3912		/*
3913		 * Ignore all writes to this no longer documented MSR.
3914		 * Writes are only relevant for old K7 processors,
3915		 * all pre-dating SVM, but a recommended workaround from
3916		 * AMD for these chips. It is possible to specify the
3917		 * affected processor models on the command line, hence
3918		 * the need to ignore the workaround.
3919		 */
3920		break;
3921	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3922	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3923	case HV_X64_MSR_SYNDBG_OPTIONS:
3924	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3925	case HV_X64_MSR_CRASH_CTL:
3926	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3927	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3928	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3929	case HV_X64_MSR_TSC_EMULATION_STATUS:
3930	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
3931		return kvm_hv_set_msr_common(vcpu, msr, data,
3932					     msr_info->host_initiated);
3933	case MSR_IA32_BBL_CR_CTL3:
3934		/* Drop writes to this legacy MSR -- see rdmsr
3935		 * counterpart for further detail.
3936		 */
3937		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
3938		break;
3939	case MSR_AMD64_OSVW_ID_LENGTH:
3940		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3941			return 1;
3942		vcpu->arch.osvw.length = data;
3943		break;
3944	case MSR_AMD64_OSVW_STATUS:
3945		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3946			return 1;
3947		vcpu->arch.osvw.status = data;
3948		break;
3949	case MSR_PLATFORM_INFO:
3950		if (!msr_info->host_initiated ||
3951		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3952		     cpuid_fault_enabled(vcpu)))
3953			return 1;
3954		vcpu->arch.msr_platform_info = data;
3955		break;
3956	case MSR_MISC_FEATURES_ENABLES:
3957		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3958		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3959		     !supports_cpuid_fault(vcpu)))
3960			return 1;
3961		vcpu->arch.msr_misc_features_enables = data;
3962		break;
3963#ifdef CONFIG_X86_64
3964	case MSR_IA32_XFD:
3965		if (!msr_info->host_initiated &&
3966		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3967			return 1;
3968
3969		if (data & ~kvm_guest_supported_xfd(vcpu))
3970			return 1;
3971
3972		fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3973		break;
3974	case MSR_IA32_XFD_ERR:
3975		if (!msr_info->host_initiated &&
3976		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3977			return 1;
3978
3979		if (data & ~kvm_guest_supported_xfd(vcpu))
3980			return 1;
3981
3982		vcpu->arch.guest_fpu.xfd_err = data;
3983		break;
3984#endif
3985	default:
3986		if (kvm_pmu_is_valid_msr(vcpu, msr))
3987			return kvm_pmu_set_msr(vcpu, msr_info);
3988
3989		/*
3990		 * Userspace is allowed to write '0' to MSRs that KVM reports
3991		 * as to-be-saved, even if an MSRs isn't fully supported.
3992		 */
3993		if (msr_info->host_initiated && !data &&
3994		    kvm_is_msr_to_save(msr))
3995			break;
3996
3997		return KVM_MSR_RET_INVALID;
3998	}
3999	return 0;
4000}
4001EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4002
4003static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
4004{
4005	u64 data;
4006	u64 mcg_cap = vcpu->arch.mcg_cap;
4007	unsigned bank_num = mcg_cap & 0xff;
4008	u32 offset, last_msr;
4009
4010	switch (msr) {
4011	case MSR_IA32_P5_MC_ADDR:
4012	case MSR_IA32_P5_MC_TYPE:
4013		data = 0;
4014		break;
4015	case MSR_IA32_MCG_CAP:
4016		data = vcpu->arch.mcg_cap;
4017		break;
4018	case MSR_IA32_MCG_CTL:
4019		if (!(mcg_cap & MCG_CTL_P) && !host)
4020			return 1;
4021		data = vcpu->arch.mcg_ctl;
4022		break;
4023	case MSR_IA32_MCG_STATUS:
4024		data = vcpu->arch.mcg_status;
4025		break;
4026	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4027		last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4028		if (msr > last_msr)
4029			return 1;
4030
4031		if (!(mcg_cap & MCG_CMCI_P) && !host)
4032			return 1;
4033		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4034					    last_msr + 1 - MSR_IA32_MC0_CTL2);
4035		data = vcpu->arch.mci_ctl2_banks[offset];
4036		break;
4037	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4038		last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4039		if (msr > last_msr)
4040			return 1;
4041
4042		offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4043					    last_msr + 1 - MSR_IA32_MC0_CTL);
4044		data = vcpu->arch.mce_banks[offset];
4045		break;
4046	default:
4047		return 1;
4048	}
4049	*pdata = data;
4050	return 0;
4051}
4052
4053int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
4054{
4055	switch (msr_info->index) {
4056	case MSR_IA32_PLATFORM_ID:
4057	case MSR_IA32_EBL_CR_POWERON:
4058	case MSR_IA32_LASTBRANCHFROMIP:
4059	case MSR_IA32_LASTBRANCHTOIP:
4060	case MSR_IA32_LASTINTFROMIP:
4061	case MSR_IA32_LASTINTTOIP:
4062	case MSR_AMD64_SYSCFG:
4063	case MSR_K8_TSEG_ADDR:
4064	case MSR_K8_TSEG_MASK:
4065	case MSR_VM_HSAVE_PA:
4066	case MSR_K8_INT_PENDING_MSG:
4067	case MSR_AMD64_NB_CFG:
4068	case MSR_FAM10H_MMIO_CONF_BASE:
4069	case MSR_AMD64_BU_CFG2:
4070	case MSR_IA32_PERF_CTL:
4071	case MSR_AMD64_DC_CFG:
4072	case MSR_AMD64_TW_CFG:
4073	case MSR_F15H_EX_CFG:
4074	/*
4075	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4076	 * limit) MSRs. Just return 0, as we do not want to expose the host
4077	 * data here. Do not conditionalize this on CPUID, as KVM does not do
4078	 * so for existing CPU-specific MSRs.
4079	 */
4080	case MSR_RAPL_POWER_UNIT:
4081	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
4082	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
4083	case MSR_PKG_ENERGY_STATUS:	/* Total package */
4084	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
4085		msr_info->data = 0;
4086		break;
4087	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4088	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4089	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4090	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
4091		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4092			return kvm_pmu_get_msr(vcpu, msr_info);
4093		msr_info->data = 0;
4094		break;
4095	case MSR_IA32_UCODE_REV:
4096		msr_info->data = vcpu->arch.microcode_version;
4097		break;
4098	case MSR_IA32_ARCH_CAPABILITIES:
4099		if (!msr_info->host_initiated &&
4100		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4101			return 1;
4102		msr_info->data = vcpu->arch.arch_capabilities;
4103		break;
4104	case MSR_IA32_PERF_CAPABILITIES:
4105		if (!msr_info->host_initiated &&
4106		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4107			return 1;
4108		msr_info->data = vcpu->arch.perf_capabilities;
4109		break;
4110	case MSR_IA32_POWER_CTL:
4111		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4112		break;
4113	case MSR_IA32_TSC: {
4114		/*
4115		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4116		 * even when not intercepted. AMD manual doesn't explicitly
4117		 * state this but appears to behave the same.
4118		 *
4119		 * On userspace reads and writes, however, we unconditionally
4120		 * return L1's TSC value to ensure backwards-compatible
4121		 * behavior for migration.
4122		 */
4123		u64 offset, ratio;
4124
4125		if (msr_info->host_initiated) {
4126			offset = vcpu->arch.l1_tsc_offset;
4127			ratio = vcpu->arch.l1_tsc_scaling_ratio;
4128		} else {
4129			offset = vcpu->arch.tsc_offset;
4130			ratio = vcpu->arch.tsc_scaling_ratio;
4131		}
4132
4133		msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4134		break;
4135	}
4136	case MSR_IA32_CR_PAT:
4137		msr_info->data = vcpu->arch.pat;
4138		break;
4139	case MSR_MTRRcap:
4140	case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4141	case MSR_MTRRdefType:
4142		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4143	case 0xcd: /* fsb frequency */
4144		msr_info->data = 3;
4145		break;
4146		/*
4147		 * MSR_EBC_FREQUENCY_ID
4148		 * Conservative value valid for even the basic CPU models.
4149		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4150		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4151		 * and 266MHz for model 3, or 4. Set Core Clock
4152		 * Frequency to System Bus Frequency Ratio to 1 (bits
4153		 * 31:24) even though these are only valid for CPU
4154		 * models > 2, however guests may end up dividing or
4155		 * multiplying by zero otherwise.
4156		 */
4157	case MSR_EBC_FREQUENCY_ID:
4158		msr_info->data = 1 << 24;
4159		break;
4160	case MSR_IA32_APICBASE:
4161		msr_info->data = kvm_get_apic_base(vcpu);
4162		break;
4163	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4164		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4165	case MSR_IA32_TSC_DEADLINE:
4166		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4167		break;
4168	case MSR_IA32_TSC_ADJUST:
4169		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4170		break;
4171	case MSR_IA32_MISC_ENABLE:
4172		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4173		break;
4174	case MSR_IA32_SMBASE:
4175		if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
4176			return 1;
4177		msr_info->data = vcpu->arch.smbase;
4178		break;
4179	case MSR_SMI_COUNT:
4180		msr_info->data = vcpu->arch.smi_count;
4181		break;
4182	case MSR_IA32_PERF_STATUS:
4183		/* TSC increment by tick */
4184		msr_info->data = 1000ULL;
4185		/* CPU multiplier */
4186		msr_info->data |= (((uint64_t)4ULL) << 40);
4187		break;
4188	case MSR_EFER:
4189		msr_info->data = vcpu->arch.efer;
4190		break;
4191	case MSR_KVM_WALL_CLOCK:
4192		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4193			return 1;
4194
4195		msr_info->data = vcpu->kvm->arch.wall_clock;
4196		break;
4197	case MSR_KVM_WALL_CLOCK_NEW:
4198		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4199			return 1;
4200
4201		msr_info->data = vcpu->kvm->arch.wall_clock;
4202		break;
4203	case MSR_KVM_SYSTEM_TIME:
4204		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4205			return 1;
4206
4207		msr_info->data = vcpu->arch.time;
4208		break;
4209	case MSR_KVM_SYSTEM_TIME_NEW:
4210		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4211			return 1;
4212
4213		msr_info->data = vcpu->arch.time;
4214		break;
4215	case MSR_KVM_ASYNC_PF_EN:
4216		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4217			return 1;
4218
4219		msr_info->data = vcpu->arch.apf.msr_en_val;
4220		break;
4221	case MSR_KVM_ASYNC_PF_INT:
4222		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4223			return 1;
4224
4225		msr_info->data = vcpu->arch.apf.msr_int_val;
4226		break;
4227	case MSR_KVM_ASYNC_PF_ACK:
4228		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4229			return 1;
4230
4231		msr_info->data = 0;
4232		break;
4233	case MSR_KVM_STEAL_TIME:
4234		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4235			return 1;
4236
4237		msr_info->data = vcpu->arch.st.msr_val;
4238		break;
4239	case MSR_KVM_PV_EOI_EN:
4240		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4241			return 1;
4242
4243		msr_info->data = vcpu->arch.pv_eoi.msr_val;
4244		break;
4245	case MSR_KVM_POLL_CONTROL:
4246		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4247			return 1;
4248
4249		msr_info->data = vcpu->arch.msr_kvm_poll_control;
4250		break;
4251	case MSR_IA32_P5_MC_ADDR:
4252	case MSR_IA32_P5_MC_TYPE:
4253	case MSR_IA32_MCG_CAP:
4254	case MSR_IA32_MCG_CTL:
4255	case MSR_IA32_MCG_STATUS:
4256	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4257	case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4258		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4259				   msr_info->host_initiated);
4260	case MSR_IA32_XSS:
4261		if (!msr_info->host_initiated &&
4262		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4263			return 1;
4264		msr_info->data = vcpu->arch.ia32_xss;
4265		break;
4266	case MSR_K7_CLK_CTL:
4267		/*
4268		 * Provide expected ramp-up count for K7. All other
4269		 * are set to zero, indicating minimum divisors for
4270		 * every field.
4271		 *
4272		 * This prevents guest kernels on AMD host with CPU
4273		 * type 6, model 8 and higher from exploding due to
4274		 * the rdmsr failing.
4275		 */
4276		msr_info->data = 0x20000000;
4277		break;
4278	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4279	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4280	case HV_X64_MSR_SYNDBG_OPTIONS:
4281	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4282	case HV_X64_MSR_CRASH_CTL:
4283	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4284	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4285	case HV_X64_MSR_TSC_EMULATION_CONTROL:
4286	case HV_X64_MSR_TSC_EMULATION_STATUS:
4287	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
4288		return kvm_hv_get_msr_common(vcpu,
4289					     msr_info->index, &msr_info->data,
4290					     msr_info->host_initiated);
4291	case MSR_IA32_BBL_CR_CTL3:
4292		/* This legacy MSR exists but isn't fully documented in current
4293		 * silicon.  It is however accessed by winxp in very narrow
4294		 * scenarios where it sets bit #19, itself documented as
4295		 * a "reserved" bit.  Best effort attempt to source coherent
4296		 * read data here should the balance of the register be
4297		 * interpreted by the guest:
4298		 *
4299		 * L2 cache control register 3: 64GB range, 256KB size,
4300		 * enabled, latency 0x1, configured
4301		 */
4302		msr_info->data = 0xbe702111;
4303		break;
4304	case MSR_AMD64_OSVW_ID_LENGTH:
4305		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4306			return 1;
4307		msr_info->data = vcpu->arch.osvw.length;
4308		break;
4309	case MSR_AMD64_OSVW_STATUS:
4310		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4311			return 1;
4312		msr_info->data = vcpu->arch.osvw.status;
4313		break;
4314	case MSR_PLATFORM_INFO:
4315		if (!msr_info->host_initiated &&
4316		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4317			return 1;
4318		msr_info->data = vcpu->arch.msr_platform_info;
4319		break;
4320	case MSR_MISC_FEATURES_ENABLES:
4321		msr_info->data = vcpu->arch.msr_misc_features_enables;
4322		break;
4323	case MSR_K7_HWCR:
4324		msr_info->data = vcpu->arch.msr_hwcr;
4325		break;
4326#ifdef CONFIG_X86_64
4327	case MSR_IA32_XFD:
4328		if (!msr_info->host_initiated &&
4329		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4330			return 1;
4331
4332		msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4333		break;
4334	case MSR_IA32_XFD_ERR:
4335		if (!msr_info->host_initiated &&
4336		    !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4337			return 1;
4338
4339		msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4340		break;
4341#endif
4342	default:
4343		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4344			return kvm_pmu_get_msr(vcpu, msr_info);
4345
4346		/*
4347		 * Userspace is allowed to read MSRs that KVM reports as
4348		 * to-be-saved, even if an MSR isn't fully supported.
4349		 */
4350		if (msr_info->host_initiated &&
4351		    kvm_is_msr_to_save(msr_info->index)) {
4352			msr_info->data = 0;
4353			break;
4354		}
4355
4356		return KVM_MSR_RET_INVALID;
4357	}
4358	return 0;
4359}
4360EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4361
4362/*
4363 * Read or write a bunch of msrs. All parameters are kernel addresses.
4364 *
4365 * @return number of msrs set successfully.
4366 */
4367static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4368		    struct kvm_msr_entry *entries,
4369		    int (*do_msr)(struct kvm_vcpu *vcpu,
4370				  unsigned index, u64 *data))
4371{
4372	int i;
4373
4374	for (i = 0; i < msrs->nmsrs; ++i)
4375		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4376			break;
4377
4378	return i;
4379}
4380
4381/*
4382 * Read or write a bunch of msrs. Parameters are user addresses.
4383 *
4384 * @return number of msrs set successfully.
4385 */
4386static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4387		  int (*do_msr)(struct kvm_vcpu *vcpu,
4388				unsigned index, u64 *data),
4389		  int writeback)
4390{
4391	struct kvm_msrs msrs;
4392	struct kvm_msr_entry *entries;
4393	unsigned size;
4394	int r;
4395
4396	r = -EFAULT;
4397	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4398		goto out;
4399
4400	r = -E2BIG;
4401	if (msrs.nmsrs >= MAX_IO_MSRS)
4402		goto out;
4403
4404	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4405	entries = memdup_user(user_msrs->entries, size);
4406	if (IS_ERR(entries)) {
4407		r = PTR_ERR(entries);
4408		goto out;
4409	}
4410
4411	r = __msr_io(vcpu, &msrs, entries, do_msr);
4412
4413	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4414		r = -EFAULT;
4415
4416	kfree(entries);
4417out:
4418	return r;
4419}
4420
4421static inline bool kvm_can_mwait_in_guest(void)
4422{
4423	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4424		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4425		boot_cpu_has(X86_FEATURE_ARAT);
4426}
4427
4428static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4429					    struct kvm_cpuid2 __user *cpuid_arg)
4430{
4431	struct kvm_cpuid2 cpuid;
4432	int r;
4433
4434	r = -EFAULT;
4435	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4436		return r;
4437
4438	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4439	if (r)
4440		return r;
4441
4442	r = -EFAULT;
4443	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4444		return r;
4445
4446	return 0;
4447}
4448
4449int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4450{
4451	int r = 0;
4452
4453	switch (ext) {
4454	case KVM_CAP_IRQCHIP:
4455	case KVM_CAP_HLT:
4456	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4457	case KVM_CAP_SET_TSS_ADDR:
4458	case KVM_CAP_EXT_CPUID:
4459	case KVM_CAP_EXT_EMUL_CPUID:
4460	case KVM_CAP_CLOCKSOURCE:
4461	case KVM_CAP_PIT:
4462	case KVM_CAP_NOP_IO_DELAY:
4463	case KVM_CAP_MP_STATE:
4464	case KVM_CAP_SYNC_MMU:
4465	case KVM_CAP_USER_NMI:
4466	case KVM_CAP_REINJECT_CONTROL:
4467	case KVM_CAP_IRQ_INJECT_STATUS:
4468	case KVM_CAP_IOEVENTFD:
4469	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4470	case KVM_CAP_PIT2:
4471	case KVM_CAP_PIT_STATE2:
4472	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4473	case KVM_CAP_VCPU_EVENTS:
4474	case KVM_CAP_HYPERV:
4475	case KVM_CAP_HYPERV_VAPIC:
4476	case KVM_CAP_HYPERV_SPIN:
4477	case KVM_CAP_HYPERV_SYNIC:
4478	case KVM_CAP_HYPERV_SYNIC2:
4479	case KVM_CAP_HYPERV_VP_INDEX:
4480	case KVM_CAP_HYPERV_EVENTFD:
4481	case KVM_CAP_HYPERV_TLBFLUSH:
4482	case KVM_CAP_HYPERV_SEND_IPI:
4483	case KVM_CAP_HYPERV_CPUID:
4484	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4485	case KVM_CAP_SYS_HYPERV_CPUID:
4486	case KVM_CAP_PCI_SEGMENT:
4487	case KVM_CAP_DEBUGREGS:
4488	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4489	case KVM_CAP_XSAVE:
4490	case KVM_CAP_ASYNC_PF:
4491	case KVM_CAP_ASYNC_PF_INT:
4492	case KVM_CAP_GET_TSC_KHZ:
4493	case KVM_CAP_KVMCLOCK_CTRL:
4494	case KVM_CAP_READONLY_MEM:
4495	case KVM_CAP_HYPERV_TIME:
4496	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4497	case KVM_CAP_TSC_DEADLINE_TIMER:
4498	case KVM_CAP_DISABLE_QUIRKS:
4499	case KVM_CAP_SET_BOOT_CPU_ID:
4500 	case KVM_CAP_SPLIT_IRQCHIP:
4501	case KVM_CAP_IMMEDIATE_EXIT:
4502	case KVM_CAP_PMU_EVENT_FILTER:
4503	case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
4504	case KVM_CAP_GET_MSR_FEATURES:
4505	case KVM_CAP_MSR_PLATFORM_INFO:
4506	case KVM_CAP_EXCEPTION_PAYLOAD:
4507	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4508	case KVM_CAP_SET_GUEST_DEBUG:
4509	case KVM_CAP_LAST_CPU:
4510	case KVM_CAP_X86_USER_SPACE_MSR:
4511	case KVM_CAP_X86_MSR_FILTER:
4512	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4513#ifdef CONFIG_X86_SGX_KVM
4514	case KVM_CAP_SGX_ATTRIBUTE:
4515#endif
4516	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4517	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4518	case KVM_CAP_SREGS2:
4519	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4520	case KVM_CAP_VCPU_ATTRIBUTES:
4521	case KVM_CAP_SYS_ATTRIBUTES:
4522	case KVM_CAP_VAPIC:
4523	case KVM_CAP_ENABLE_CAP:
4524	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4525	case KVM_CAP_IRQFD_RESAMPLE:
4526		r = 1;
4527		break;
4528	case KVM_CAP_EXIT_HYPERCALL:
4529		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4530		break;
4531	case KVM_CAP_SET_GUEST_DEBUG2:
4532		return KVM_GUESTDBG_VALID_MASK;
4533#ifdef CONFIG_KVM_XEN
4534	case KVM_CAP_XEN_HVM:
4535		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4536		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4537		    KVM_XEN_HVM_CONFIG_SHARED_INFO |
4538		    KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4539		    KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4540		if (sched_info_on())
4541			r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4542			     KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
4543		break;
4544#endif
4545	case KVM_CAP_SYNC_REGS:
4546		r = KVM_SYNC_X86_VALID_FIELDS;
4547		break;
4548	case KVM_CAP_ADJUST_CLOCK:
4549		r = KVM_CLOCK_VALID_FLAGS;
4550		break;
4551	case KVM_CAP_X86_DISABLE_EXITS:
4552		r = KVM_X86_DISABLE_EXITS_PAUSE;
4553
4554		if (!mitigate_smt_rsb) {
4555			r |= KVM_X86_DISABLE_EXITS_HLT |
4556			     KVM_X86_DISABLE_EXITS_CSTATE;
4557
4558			if (kvm_can_mwait_in_guest())
4559				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4560		}
4561		break;
4562	case KVM_CAP_X86_SMM:
4563		if (!IS_ENABLED(CONFIG_KVM_SMM))
4564			break;
4565
4566		/* SMBASE is usually relocated above 1M on modern chipsets,
4567		 * and SMM handlers might indeed rely on 4G segment limits,
4568		 * so do not report SMM to be available if real mode is
4569		 * emulated via vm86 mode.  Still, do not go to great lengths
4570		 * to avoid userspace's usage of the feature, because it is a
4571		 * fringe case that is not enabled except via specific settings
4572		 * of the module parameters.
4573		 */
4574		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4575		break;
4576	case KVM_CAP_NR_VCPUS:
4577		r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4578		break;
4579	case KVM_CAP_MAX_VCPUS:
4580		r = KVM_MAX_VCPUS;
4581		break;
4582	case KVM_CAP_MAX_VCPU_ID:
4583		r = KVM_MAX_VCPU_IDS;
4584		break;
4585	case KVM_CAP_PV_MMU:	/* obsolete */
4586		r = 0;
4587		break;
4588	case KVM_CAP_MCE:
4589		r = KVM_MAX_MCE_BANKS;
4590		break;
4591	case KVM_CAP_XCRS:
4592		r = boot_cpu_has(X86_FEATURE_XSAVE);
4593		break;
4594	case KVM_CAP_TSC_CONTROL:
4595	case KVM_CAP_VM_TSC_CONTROL:
4596		r = kvm_caps.has_tsc_control;
4597		break;
4598	case KVM_CAP_X2APIC_API:
4599		r = KVM_X2APIC_API_VALID_FLAGS;
4600		break;
4601	case KVM_CAP_NESTED_STATE:
4602		r = kvm_x86_ops.nested_ops->get_state ?
4603			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4604		break;
4605	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4606		r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
4607		break;
4608	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4609		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4610		break;
4611	case KVM_CAP_SMALLER_MAXPHYADDR:
4612		r = (int) allow_smaller_maxphyaddr;
4613		break;
4614	case KVM_CAP_STEAL_TIME:
4615		r = sched_info_on();
4616		break;
4617	case KVM_CAP_X86_BUS_LOCK_EXIT:
4618		if (kvm_caps.has_bus_lock_exit)
4619			r = KVM_BUS_LOCK_DETECTION_OFF |
4620			    KVM_BUS_LOCK_DETECTION_EXIT;
4621		else
4622			r = 0;
4623		break;
4624	case KVM_CAP_XSAVE2: {
4625		r = xstate_required_size(kvm_get_filtered_xcr0(), false);
4626		if (r < sizeof(struct kvm_xsave))
4627			r = sizeof(struct kvm_xsave);
4628		break;
4629	}
4630	case KVM_CAP_PMU_CAPABILITY:
4631		r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4632		break;
4633	case KVM_CAP_DISABLE_QUIRKS2:
4634		r = KVM_X86_VALID_QUIRKS;
4635		break;
4636	case KVM_CAP_X86_NOTIFY_VMEXIT:
4637		r = kvm_caps.has_notify_vmexit;
4638		break;
4639	default:
4640		break;
4641	}
4642	return r;
4643}
4644
4645static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4646{
4647	void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4648
4649	if ((u64)(unsigned long)uaddr != attr->addr)
4650		return ERR_PTR_USR(-EFAULT);
4651	return uaddr;
4652}
4653
4654static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4655{
4656	u64 __user *uaddr = kvm_get_attr_addr(attr);
4657
4658	if (attr->group)
4659		return -ENXIO;
4660
4661	if (IS_ERR(uaddr))
4662		return PTR_ERR(uaddr);
4663
4664	switch (attr->attr) {
4665	case KVM_X86_XCOMP_GUEST_SUPP:
4666		if (put_user(kvm_caps.supported_xcr0, uaddr))
4667			return -EFAULT;
4668		return 0;
4669	default:
4670		return -ENXIO;
4671	}
4672}
4673
4674static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4675{
4676	if (attr->group)
4677		return -ENXIO;
4678
4679	switch (attr->attr) {
4680	case KVM_X86_XCOMP_GUEST_SUPP:
4681		return 0;
4682	default:
4683		return -ENXIO;
4684	}
4685}
4686
4687long kvm_arch_dev_ioctl(struct file *filp,
4688			unsigned int ioctl, unsigned long arg)
4689{
4690	void __user *argp = (void __user *)arg;
4691	long r;
4692
4693	switch (ioctl) {
4694	case KVM_GET_MSR_INDEX_LIST: {
4695		struct kvm_msr_list __user *user_msr_list = argp;
4696		struct kvm_msr_list msr_list;
4697		unsigned n;
4698
4699		r = -EFAULT;
4700		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4701			goto out;
4702		n = msr_list.nmsrs;
4703		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4704		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4705			goto out;
4706		r = -E2BIG;
4707		if (n < msr_list.nmsrs)
4708			goto out;
4709		r = -EFAULT;
4710		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4711				 num_msrs_to_save * sizeof(u32)))
4712			goto out;
4713		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4714				 &emulated_msrs,
4715				 num_emulated_msrs * sizeof(u32)))
4716			goto out;
4717		r = 0;
4718		break;
4719	}
4720	case KVM_GET_SUPPORTED_CPUID:
4721	case KVM_GET_EMULATED_CPUID: {
4722		struct kvm_cpuid2 __user *cpuid_arg = argp;
4723		struct kvm_cpuid2 cpuid;
4724
4725		r = -EFAULT;
4726		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4727			goto out;
4728
4729		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4730					    ioctl);
4731		if (r)
4732			goto out;
4733
4734		r = -EFAULT;
4735		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4736			goto out;
4737		r = 0;
4738		break;
4739	}
4740	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4741		r = -EFAULT;
4742		if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4743				 sizeof(kvm_caps.supported_mce_cap)))
4744			goto out;
4745		r = 0;
4746		break;
4747	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4748		struct kvm_msr_list __user *user_msr_list = argp;
4749		struct kvm_msr_list msr_list;
4750		unsigned int n;
4751
4752		r = -EFAULT;
4753		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4754			goto out;
4755		n = msr_list.nmsrs;
4756		msr_list.nmsrs = num_msr_based_features;
4757		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4758			goto out;
4759		r = -E2BIG;
4760		if (n < msr_list.nmsrs)
4761			goto out;
4762		r = -EFAULT;
4763		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4764				 num_msr_based_features * sizeof(u32)))
4765			goto out;
4766		r = 0;
4767		break;
4768	}
4769	case KVM_GET_MSRS:
4770		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4771		break;
4772	case KVM_GET_SUPPORTED_HV_CPUID:
4773		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4774		break;
4775	case KVM_GET_DEVICE_ATTR: {
4776		struct kvm_device_attr attr;
4777		r = -EFAULT;
4778		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4779			break;
4780		r = kvm_x86_dev_get_attr(&attr);
4781		break;
4782	}
4783	case KVM_HAS_DEVICE_ATTR: {
4784		struct kvm_device_attr attr;
4785		r = -EFAULT;
4786		if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4787			break;
4788		r = kvm_x86_dev_has_attr(&attr);
4789		break;
4790	}
4791	default:
4792		r = -EINVAL;
4793		break;
4794	}
4795out:
4796	return r;
4797}
4798
4799static void wbinvd_ipi(void *garbage)
4800{
4801	wbinvd();
4802}
4803
4804static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4805{
4806	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4807}
4808
4809void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4810{
4811	/* Address WBINVD may be executed by guest */
4812	if (need_emulate_wbinvd(vcpu)) {
4813		if (static_call(kvm_x86_has_wbinvd_exit)())
4814			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4815		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4816			smp_call_function_single(vcpu->cpu,
4817					wbinvd_ipi, NULL, 1);
4818	}
4819
4820	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4821
4822	/* Save host pkru register if supported */
4823	vcpu->arch.host_pkru = read_pkru();
4824
4825	/* Apply any externally detected TSC adjustments (due to suspend) */
4826	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4827		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4828		vcpu->arch.tsc_offset_adjustment = 0;
4829		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4830	}
4831
4832	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4833		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4834				rdtsc() - vcpu->arch.last_host_tsc;
4835		if (tsc_delta < 0)
4836			mark_tsc_unstable("KVM discovered backwards TSC");
4837
4838		if (kvm_check_tsc_unstable()) {
4839			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4840						vcpu->arch.last_guest_tsc);
4841			kvm_vcpu_write_tsc_offset(vcpu, offset);
4842			vcpu->arch.tsc_catchup = 1;
4843		}
4844
4845		if (kvm_lapic_hv_timer_in_use(vcpu))
4846			kvm_lapic_restart_hv_timer(vcpu);
4847
4848		/*
4849		 * On a host with synchronized TSC, there is no need to update
4850		 * kvmclock on vcpu->cpu migration
4851		 */
4852		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4853			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4854		if (vcpu->cpu != cpu)
4855			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4856		vcpu->cpu = cpu;
4857	}
4858
4859	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4860}
4861
4862static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4863{
4864	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4865	struct kvm_steal_time __user *st;
4866	struct kvm_memslots *slots;
4867	static const u8 preempted = KVM_VCPU_PREEMPTED;
4868	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4869
4870	/*
4871	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4872	 * an instruction boundary and will not trigger guest emulation of any
4873	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4874	 * when this is true, for example allowing the vCPU to be marked
4875	 * preempted if and only if the VM-Exit was due to a host interrupt.
4876	 */
4877	if (!vcpu->arch.at_instruction_boundary) {
4878		vcpu->stat.preemption_other++;
4879		return;
4880	}
4881
4882	vcpu->stat.preemption_reported++;
4883	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4884		return;
4885
4886	if (vcpu->arch.st.preempted)
4887		return;
4888
4889	/* This happens on process exit */
4890	if (unlikely(current->mm != vcpu->kvm->mm))
4891		return;
4892
4893	slots = kvm_memslots(vcpu->kvm);
4894
4895	if (unlikely(slots->generation != ghc->generation ||
4896		     gpa != ghc->gpa ||
4897		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4898		return;
4899
4900	st = (struct kvm_steal_time __user *)ghc->hva;
4901	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4902
4903	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4904		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4905
4906	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4907}
4908
4909void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4910{
4911	int idx;
4912
4913	if (vcpu->preempted) {
4914		if (!vcpu->arch.guest_state_protected)
4915			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4916
4917		/*
4918		 * Take the srcu lock as memslots will be accessed to check the gfn
4919		 * cache generation against the memslots generation.
4920		 */
4921		idx = srcu_read_lock(&vcpu->kvm->srcu);
4922		if (kvm_xen_msr_enabled(vcpu->kvm))
4923			kvm_xen_runstate_set_preempted(vcpu);
4924		else
4925			kvm_steal_time_set_preempted(vcpu);
4926		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4927	}
4928
4929	static_call(kvm_x86_vcpu_put)(vcpu);
4930	vcpu->arch.last_host_tsc = rdtsc();
4931}
4932
4933static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4934				    struct kvm_lapic_state *s)
4935{
4936	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4937
4938	return kvm_apic_get_state(vcpu, s);
4939}
4940
4941static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4942				    struct kvm_lapic_state *s)
4943{
4944	int r;
4945
4946	r = kvm_apic_set_state(vcpu, s);
4947	if (r)
4948		return r;
4949	update_cr8_intercept(vcpu);
4950
4951	return 0;
4952}
4953
4954static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4955{
4956	/*
4957	 * We can accept userspace's request for interrupt injection
4958	 * as long as we have a place to store the interrupt number.
4959	 * The actual injection will happen when the CPU is able to
4960	 * deliver the interrupt.
4961	 */
4962	if (kvm_cpu_has_extint(vcpu))
4963		return false;
4964
4965	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4966	return (!lapic_in_kernel(vcpu) ||
4967		kvm_apic_accept_pic_intr(vcpu));
4968}
4969
4970static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4971{
4972	/*
4973	 * Do not cause an interrupt window exit if an exception
4974	 * is pending or an event needs reinjection; userspace
4975	 * might want to inject the interrupt manually using KVM_SET_REGS
4976	 * or KVM_SET_SREGS.  For that to work, we must be at an
4977	 * instruction boundary and with no events half-injected.
4978	 */
4979	return (kvm_arch_interrupt_allowed(vcpu) &&
4980		kvm_cpu_accept_dm_intr(vcpu) &&
4981		!kvm_event_needs_reinjection(vcpu) &&
4982		!kvm_is_exception_pending(vcpu));
4983}
4984
4985static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4986				    struct kvm_interrupt *irq)
4987{
4988	if (irq->irq >= KVM_NR_INTERRUPTS)
4989		return -EINVAL;
4990
4991	if (!irqchip_in_kernel(vcpu->kvm)) {
4992		kvm_queue_interrupt(vcpu, irq->irq, false);
4993		kvm_make_request(KVM_REQ_EVENT, vcpu);
4994		return 0;
4995	}
4996
4997	/*
4998	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4999	 * fail for in-kernel 8259.
5000	 */
5001	if (pic_in_kernel(vcpu->kvm))
5002		return -ENXIO;
5003
5004	if (vcpu->arch.pending_external_vector != -1)
5005		return -EEXIST;
5006
5007	vcpu->arch.pending_external_vector = irq->irq;
5008	kvm_make_request(KVM_REQ_EVENT, vcpu);
5009	return 0;
5010}
5011
5012static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5013{
5014	kvm_inject_nmi(vcpu);
5015
5016	return 0;
5017}
5018
5019static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5020					   struct kvm_tpr_access_ctl *tac)
5021{
5022	if (tac->flags)
5023		return -EINVAL;
5024	vcpu->arch.tpr_access_reporting = !!tac->enabled;
5025	return 0;
5026}
5027
5028static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5029					u64 mcg_cap)
5030{
5031	int r;
5032	unsigned bank_num = mcg_cap & 0xff, bank;
5033
5034	r = -EINVAL;
5035	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
5036		goto out;
5037	if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
5038		goto out;
5039	r = 0;
5040	vcpu->arch.mcg_cap = mcg_cap;
5041	/* Init IA32_MCG_CTL to all 1s */
5042	if (mcg_cap & MCG_CTL_P)
5043		vcpu->arch.mcg_ctl = ~(u64)0;
5044	/* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5045	for (bank = 0; bank < bank_num; bank++) {
5046		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
5047		if (mcg_cap & MCG_CMCI_P)
5048			vcpu->arch.mci_ctl2_banks[bank] = 0;
5049	}
5050
5051	kvm_apic_after_set_mcg_cap(vcpu);
5052
5053	static_call(kvm_x86_setup_mce)(vcpu);
5054out:
5055	return r;
5056}
5057
5058/*
5059 * Validate this is an UCNA (uncorrectable no action) error by checking the
5060 * MCG_STATUS and MCi_STATUS registers:
5061 * - none of the bits for Machine Check Exceptions are set
5062 * - both the VAL (valid) and UC (uncorrectable) bits are set
5063 * MCI_STATUS_PCC - Processor Context Corrupted
5064 * MCI_STATUS_S - Signaled as a Machine Check Exception
5065 * MCI_STATUS_AR - Software recoverable Action Required
5066 */
5067static bool is_ucna(struct kvm_x86_mce *mce)
5068{
5069	return	!mce->mcg_status &&
5070		!(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5071		(mce->status & MCI_STATUS_VAL) &&
5072		(mce->status & MCI_STATUS_UC);
5073}
5074
5075static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5076{
5077	u64 mcg_cap = vcpu->arch.mcg_cap;
5078
5079	banks[1] = mce->status;
5080	banks[2] = mce->addr;
5081	banks[3] = mce->misc;
5082	vcpu->arch.mcg_status = mce->mcg_status;
5083
5084	if (!(mcg_cap & MCG_CMCI_P) ||
5085	    !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5086		return 0;
5087
5088	if (lapic_in_kernel(vcpu))
5089		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5090
5091	return 0;
5092}
5093
5094static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5095				      struct kvm_x86_mce *mce)
5096{
5097	u64 mcg_cap = vcpu->arch.mcg_cap;
5098	unsigned bank_num = mcg_cap & 0xff;
5099	u64 *banks = vcpu->arch.mce_banks;
5100
5101	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5102		return -EINVAL;
5103
5104	banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5105
5106	if (is_ucna(mce))
5107		return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5108
5109	/*
5110	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5111	 * reporting is disabled
5112	 */
5113	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5114	    vcpu->arch.mcg_ctl != ~(u64)0)
5115		return 0;
5116	/*
5117	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5118	 * reporting is disabled for the bank
5119	 */
5120	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5121		return 0;
5122	if (mce->status & MCI_STATUS_UC) {
5123		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5124		    !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
5125			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5126			return 0;
5127		}
5128		if (banks[1] & MCI_STATUS_VAL)
5129			mce->status |= MCI_STATUS_OVER;
5130		banks[2] = mce->addr;
5131		banks[3] = mce->misc;
5132		vcpu->arch.mcg_status = mce->mcg_status;
5133		banks[1] = mce->status;
5134		kvm_queue_exception(vcpu, MC_VECTOR);
5135	} else if (!(banks[1] & MCI_STATUS_VAL)
5136		   || !(banks[1] & MCI_STATUS_UC)) {
5137		if (banks[1] & MCI_STATUS_VAL)
5138			mce->status |= MCI_STATUS_OVER;
5139		banks[2] = mce->addr;
5140		banks[3] = mce->misc;
5141		banks[1] = mce->status;
5142	} else
5143		banks[1] |= MCI_STATUS_OVER;
5144	return 0;
5145}
5146
5147static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5148					       struct kvm_vcpu_events *events)
5149{
5150	struct kvm_queued_exception *ex;
5151
5152	process_nmi(vcpu);
5153
5154#ifdef CONFIG_KVM_SMM
5155	if (kvm_check_request(KVM_REQ_SMI, vcpu))
5156		process_smi(vcpu);
5157#endif
5158
5159	/*
5160	 * KVM's ABI only allows for one exception to be migrated.  Luckily,
5161	 * the only time there can be two queued exceptions is if there's a
5162	 * non-exiting _injected_ exception, and a pending exiting exception.
5163	 * In that case, ignore the VM-Exiting exception as it's an extension
5164	 * of the injected exception.
5165	 */
5166	if (vcpu->arch.exception_vmexit.pending &&
5167	    !vcpu->arch.exception.pending &&
5168	    !vcpu->arch.exception.injected)
5169		ex = &vcpu->arch.exception_vmexit;
5170	else
5171		ex = &vcpu->arch.exception;
5172
5173	/*
5174	 * In guest mode, payload delivery should be deferred if the exception
5175	 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5176	 * intercepts #PF, ditto for DR6 and #DBs.  If the per-VM capability,
5177	 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5178	 * propagate the payload and so it cannot be safely deferred.  Deliver
5179	 * the payload if the capability hasn't been requested.
5180	 */
5181	if (!vcpu->kvm->arch.exception_payload_enabled &&
5182	    ex->pending && ex->has_payload)
5183		kvm_deliver_exception_payload(vcpu, ex);
5184
5185	memset(events, 0, sizeof(*events));
5186
5187	/*
5188	 * The API doesn't provide the instruction length for software
5189	 * exceptions, so don't report them. As long as the guest RIP
5190	 * isn't advanced, we should expect to encounter the exception
5191	 * again.
5192	 */
5193	if (!kvm_exception_is_soft(ex->vector)) {
5194		events->exception.injected = ex->injected;
5195		events->exception.pending = ex->pending;
5196		/*
5197		 * For ABI compatibility, deliberately conflate
5198		 * pending and injected exceptions when
5199		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5200		 */
5201		if (!vcpu->kvm->arch.exception_payload_enabled)
5202			events->exception.injected |= ex->pending;
5203	}
5204	events->exception.nr = ex->vector;
5205	events->exception.has_error_code = ex->has_error_code;
5206	events->exception.error_code = ex->error_code;
5207	events->exception_has_payload = ex->has_payload;
5208	events->exception_payload = ex->payload;
5209
5210	events->interrupt.injected =
5211		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5212	events->interrupt.nr = vcpu->arch.interrupt.nr;
5213	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5214
5215	events->nmi.injected = vcpu->arch.nmi_injected;
5216	events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
5217	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5218
5219	/* events->sipi_vector is never valid when reporting to user space */
5220
5221#ifdef CONFIG_KVM_SMM
5222	events->smi.smm = is_smm(vcpu);
5223	events->smi.pending = vcpu->arch.smi_pending;
5224	events->smi.smm_inside_nmi =
5225		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5226#endif
5227	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5228
5229	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5230			 | KVM_VCPUEVENT_VALID_SHADOW
5231			 | KVM_VCPUEVENT_VALID_SMM);
5232	if (vcpu->kvm->arch.exception_payload_enabled)
5233		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5234	if (vcpu->kvm->arch.triple_fault_event) {
5235		events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5236		events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5237	}
5238}
5239
5240static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5241					      struct kvm_vcpu_events *events)
5242{
5243	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5244			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5245			      | KVM_VCPUEVENT_VALID_SHADOW
5246			      | KVM_VCPUEVENT_VALID_SMM
5247			      | KVM_VCPUEVENT_VALID_PAYLOAD
5248			      | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5249		return -EINVAL;
5250
5251	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5252		if (!vcpu->kvm->arch.exception_payload_enabled)
5253			return -EINVAL;
5254		if (events->exception.pending)
5255			events->exception.injected = 0;
5256		else
5257			events->exception_has_payload = 0;
5258	} else {
5259		events->exception.pending = 0;
5260		events->exception_has_payload = 0;
5261	}
5262
5263	if ((events->exception.injected || events->exception.pending) &&
5264	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5265		return -EINVAL;
5266
5267	/* INITs are latched while in SMM */
5268	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5269	    (events->smi.smm || events->smi.pending) &&
5270	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5271		return -EINVAL;
5272
5273	process_nmi(vcpu);
5274
5275	/*
5276	 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5277	 * morph the exception to a VM-Exit if appropriate.  Do this only for
5278	 * pending exceptions, already-injected exceptions are not subject to
5279	 * intercpetion.  Note, userspace that conflates pending and injected
5280	 * is hosed, and will incorrectly convert an injected exception into a
5281	 * pending exception, which in turn may cause a spurious VM-Exit.
5282	 */
5283	vcpu->arch.exception_from_userspace = events->exception.pending;
5284
5285	vcpu->arch.exception_vmexit.pending = false;
5286
5287	vcpu->arch.exception.injected = events->exception.injected;
5288	vcpu->arch.exception.pending = events->exception.pending;
5289	vcpu->arch.exception.vector = events->exception.nr;
5290	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5291	vcpu->arch.exception.error_code = events->exception.error_code;
5292	vcpu->arch.exception.has_payload = events->exception_has_payload;
5293	vcpu->arch.exception.payload = events->exception_payload;
5294
5295	vcpu->arch.interrupt.injected = events->interrupt.injected;
5296	vcpu->arch.interrupt.nr = events->interrupt.nr;
5297	vcpu->arch.interrupt.soft = events->interrupt.soft;
5298	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5299		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5300						events->interrupt.shadow);
5301
5302	vcpu->arch.nmi_injected = events->nmi.injected;
5303	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
5304		vcpu->arch.nmi_pending = 0;
5305		atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5306		if (events->nmi.pending)
5307			kvm_make_request(KVM_REQ_NMI, vcpu);
5308	}
5309	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5310
5311	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5312	    lapic_in_kernel(vcpu))
5313		vcpu->arch.apic->sipi_vector = events->sipi_vector;
5314
5315	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5316#ifdef CONFIG_KVM_SMM
5317		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5318			kvm_leave_nested(vcpu);
5319			kvm_smm_changed(vcpu, events->smi.smm);
5320		}
5321
5322		vcpu->arch.smi_pending = events->smi.pending;
5323
5324		if (events->smi.smm) {
5325			if (events->smi.smm_inside_nmi)
5326				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5327			else
5328				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5329		}
5330
5331#else
5332		if (events->smi.smm || events->smi.pending ||
5333		    events->smi.smm_inside_nmi)
5334			return -EINVAL;
5335#endif
5336
5337		if (lapic_in_kernel(vcpu)) {
5338			if (events->smi.latched_init)
5339				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5340			else
5341				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5342		}
5343	}
5344
5345	if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5346		if (!vcpu->kvm->arch.triple_fault_event)
5347			return -EINVAL;
5348		if (events->triple_fault.pending)
5349			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5350		else
5351			kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5352	}
5353
5354	kvm_make_request(KVM_REQ_EVENT, vcpu);
5355
5356	return 0;
5357}
5358
5359static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5360					     struct kvm_debugregs *dbgregs)
5361{
5362	unsigned long val;
5363
5364	memset(dbgregs, 0, sizeof(*dbgregs));
5365	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5366	kvm_get_dr(vcpu, 6, &val);
5367	dbgregs->dr6 = val;
5368	dbgregs->dr7 = vcpu->arch.dr7;
5369}
5370
5371static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5372					    struct kvm_debugregs *dbgregs)
5373{
5374	if (dbgregs->flags)
5375		return -EINVAL;
5376
5377	if (!kvm_dr6_valid(dbgregs->dr6))
5378		return -EINVAL;
5379	if (!kvm_dr7_valid(dbgregs->dr7))
5380		return -EINVAL;
5381
5382	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5383	kvm_update_dr0123(vcpu);
5384	vcpu->arch.dr6 = dbgregs->dr6;
5385	vcpu->arch.dr7 = dbgregs->dr7;
5386	kvm_update_dr7(vcpu);
5387
5388	return 0;
5389}
5390
5391
5392static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5393					  u8 *state, unsigned int size)
5394{
5395	/*
5396	 * Only copy state for features that are enabled for the guest.  The
5397	 * state itself isn't problematic, but setting bits in the header for
5398	 * features that are supported in *this* host but not exposed to the
5399	 * guest can result in KVM_SET_XSAVE failing when live migrating to a
5400	 * compatible host without the features that are NOT exposed to the
5401	 * guest.
5402	 *
5403	 * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if
5404	 * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't
5405	 * supported by the host.
5406	 */
5407	u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 |
5408			     XFEATURE_MASK_FPSSE;
5409
5410	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5411		return;
5412
5413	fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size,
5414				       supported_xcr0, vcpu->arch.pkru);
5415}
5416
5417static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5418					 struct kvm_xsave *guest_xsave)
5419{
5420	return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region,
5421					     sizeof(guest_xsave->region));
5422}
5423
5424static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5425					struct kvm_xsave *guest_xsave)
5426{
5427	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5428		return 0;
5429
5430	return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5431					      guest_xsave->region,
5432					      kvm_caps.supported_xcr0,
5433					      &vcpu->arch.pkru);
5434}
5435
5436static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5437					struct kvm_xcrs *guest_xcrs)
5438{
5439	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5440		guest_xcrs->nr_xcrs = 0;
5441		return;
5442	}
5443
5444	guest_xcrs->nr_xcrs = 1;
5445	guest_xcrs->flags = 0;
5446	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5447	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5448}
5449
5450static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5451				       struct kvm_xcrs *guest_xcrs)
5452{
5453	int i, r = 0;
5454
5455	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5456		return -EINVAL;
5457
5458	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5459		return -EINVAL;
5460
5461	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5462		/* Only support XCR0 currently */
5463		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5464			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5465				guest_xcrs->xcrs[i].value);
5466			break;
5467		}
5468	if (r)
5469		r = -EINVAL;
5470	return r;
5471}
5472
5473/*
5474 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5475 * stopped by the hypervisor.  This function will be called from the host only.
5476 * EINVAL is returned when the host attempts to set the flag for a guest that
5477 * does not support pv clocks.
5478 */
5479static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5480{
5481	if (!vcpu->arch.pv_time.active)
5482		return -EINVAL;
5483	vcpu->arch.pvclock_set_guest_stopped_request = true;
5484	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5485	return 0;
5486}
5487
5488static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5489				 struct kvm_device_attr *attr)
5490{
5491	int r;
5492
5493	switch (attr->attr) {
5494	case KVM_VCPU_TSC_OFFSET:
5495		r = 0;
5496		break;
5497	default:
5498		r = -ENXIO;
5499	}
5500
5501	return r;
5502}
5503
5504static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5505				 struct kvm_device_attr *attr)
5506{
5507	u64 __user *uaddr = kvm_get_attr_addr(attr);
5508	int r;
5509
5510	if (IS_ERR(uaddr))
5511		return PTR_ERR(uaddr);
5512
5513	switch (attr->attr) {
5514	case KVM_VCPU_TSC_OFFSET:
5515		r = -EFAULT;
5516		if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5517			break;
5518		r = 0;
5519		break;
5520	default:
5521		r = -ENXIO;
5522	}
5523
5524	return r;
5525}
5526
5527static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5528				 struct kvm_device_attr *attr)
5529{
5530	u64 __user *uaddr = kvm_get_attr_addr(attr);
5531	struct kvm *kvm = vcpu->kvm;
5532	int r;
5533
5534	if (IS_ERR(uaddr))
5535		return PTR_ERR(uaddr);
5536
5537	switch (attr->attr) {
5538	case KVM_VCPU_TSC_OFFSET: {
5539		u64 offset, tsc, ns;
5540		unsigned long flags;
5541		bool matched;
5542
5543		r = -EFAULT;
5544		if (get_user(offset, uaddr))
5545			break;
5546
5547		raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5548
5549		matched = (vcpu->arch.virtual_tsc_khz &&
5550			   kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5551			   kvm->arch.last_tsc_offset == offset);
5552
5553		tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5554		ns = get_kvmclock_base_ns();
5555
5556		__kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5557		raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5558
5559		r = 0;
5560		break;
5561	}
5562	default:
5563		r = -ENXIO;
5564	}
5565
5566	return r;
5567}
5568
5569static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5570				      unsigned int ioctl,
5571				      void __user *argp)
5572{
5573	struct kvm_device_attr attr;
5574	int r;
5575
5576	if (copy_from_user(&attr, argp, sizeof(attr)))
5577		return -EFAULT;
5578
5579	if (attr.group != KVM_VCPU_TSC_CTRL)
5580		return -ENXIO;
5581
5582	switch (ioctl) {
5583	case KVM_HAS_DEVICE_ATTR:
5584		r = kvm_arch_tsc_has_attr(vcpu, &attr);
5585		break;
5586	case KVM_GET_DEVICE_ATTR:
5587		r = kvm_arch_tsc_get_attr(vcpu, &attr);
5588		break;
5589	case KVM_SET_DEVICE_ATTR:
5590		r = kvm_arch_tsc_set_attr(vcpu, &attr);
5591		break;
5592	}
5593
5594	return r;
5595}
5596
5597static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5598				     struct kvm_enable_cap *cap)
5599{
5600	int r;
5601	uint16_t vmcs_version;
5602	void __user *user_ptr;
5603
5604	if (cap->flags)
5605		return -EINVAL;
5606
5607	switch (cap->cap) {
5608	case KVM_CAP_HYPERV_SYNIC2:
5609		if (cap->args[0])
5610			return -EINVAL;
5611		fallthrough;
5612
5613	case KVM_CAP_HYPERV_SYNIC:
5614		if (!irqchip_in_kernel(vcpu->kvm))
5615			return -EINVAL;
5616		return kvm_hv_activate_synic(vcpu, cap->cap ==
5617					     KVM_CAP_HYPERV_SYNIC2);
5618	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5619		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5620			return -ENOTTY;
5621		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5622		if (!r) {
5623			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5624			if (copy_to_user(user_ptr, &vmcs_version,
5625					 sizeof(vmcs_version)))
5626				r = -EFAULT;
5627		}
5628		return r;
5629	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5630		if (!kvm_x86_ops.enable_l2_tlb_flush)
5631			return -ENOTTY;
5632
5633		return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
5634
5635	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5636		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5637
5638	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5639		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5640		if (vcpu->arch.pv_cpuid.enforce)
5641			kvm_update_pv_runtime(vcpu);
5642
5643		return 0;
5644	default:
5645		return -EINVAL;
5646	}
5647}
5648
5649long kvm_arch_vcpu_ioctl(struct file *filp,
5650			 unsigned int ioctl, unsigned long arg)
5651{
5652	struct kvm_vcpu *vcpu = filp->private_data;
5653	void __user *argp = (void __user *)arg;
5654	int r;
5655	union {
5656		struct kvm_sregs2 *sregs2;
5657		struct kvm_lapic_state *lapic;
5658		struct kvm_xsave *xsave;
5659		struct kvm_xcrs *xcrs;
5660		void *buffer;
5661	} u;
5662
5663	vcpu_load(vcpu);
5664
5665	u.buffer = NULL;
5666	switch (ioctl) {
5667	case KVM_GET_LAPIC: {
5668		r = -EINVAL;
5669		if (!lapic_in_kernel(vcpu))
5670			goto out;
5671		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5672				GFP_KERNEL_ACCOUNT);
5673
5674		r = -ENOMEM;
5675		if (!u.lapic)
5676			goto out;
5677		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5678		if (r)
5679			goto out;
5680		r = -EFAULT;
5681		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5682			goto out;
5683		r = 0;
5684		break;
5685	}
5686	case KVM_SET_LAPIC: {
5687		r = -EINVAL;
5688		if (!lapic_in_kernel(vcpu))
5689			goto out;
5690		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5691		if (IS_ERR(u.lapic)) {
5692			r = PTR_ERR(u.lapic);
5693			goto out_nofree;
5694		}
5695
5696		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5697		break;
5698	}
5699	case KVM_INTERRUPT: {
5700		struct kvm_interrupt irq;
5701
5702		r = -EFAULT;
5703		if (copy_from_user(&irq, argp, sizeof(irq)))
5704			goto out;
5705		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5706		break;
5707	}
5708	case KVM_NMI: {
5709		r = kvm_vcpu_ioctl_nmi(vcpu);
5710		break;
5711	}
5712	case KVM_SMI: {
5713		r = kvm_inject_smi(vcpu);
5714		break;
5715	}
5716	case KVM_SET_CPUID: {
5717		struct kvm_cpuid __user *cpuid_arg = argp;
5718		struct kvm_cpuid cpuid;
5719
5720		r = -EFAULT;
5721		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5722			goto out;
5723		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5724		break;
5725	}
5726	case KVM_SET_CPUID2: {
5727		struct kvm_cpuid2 __user *cpuid_arg = argp;
5728		struct kvm_cpuid2 cpuid;
5729
5730		r = -EFAULT;
5731		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5732			goto out;
5733		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5734					      cpuid_arg->entries);
5735		break;
5736	}
5737	case KVM_GET_CPUID2: {
5738		struct kvm_cpuid2 __user *cpuid_arg = argp;
5739		struct kvm_cpuid2 cpuid;
5740
5741		r = -EFAULT;
5742		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5743			goto out;
5744		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5745					      cpuid_arg->entries);
5746		if (r)
5747			goto out;
5748		r = -EFAULT;
5749		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5750			goto out;
5751		r = 0;
5752		break;
5753	}
5754	case KVM_GET_MSRS: {
5755		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5756		r = msr_io(vcpu, argp, do_get_msr, 1);
5757		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5758		break;
5759	}
5760	case KVM_SET_MSRS: {
5761		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5762		r = msr_io(vcpu, argp, do_set_msr, 0);
5763		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5764		break;
5765	}
5766	case KVM_TPR_ACCESS_REPORTING: {
5767		struct kvm_tpr_access_ctl tac;
5768
5769		r = -EFAULT;
5770		if (copy_from_user(&tac, argp, sizeof(tac)))
5771			goto out;
5772		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5773		if (r)
5774			goto out;
5775		r = -EFAULT;
5776		if (copy_to_user(argp, &tac, sizeof(tac)))
5777			goto out;
5778		r = 0;
5779		break;
5780	};
5781	case KVM_SET_VAPIC_ADDR: {
5782		struct kvm_vapic_addr va;
5783		int idx;
5784
5785		r = -EINVAL;
5786		if (!lapic_in_kernel(vcpu))
5787			goto out;
5788		r = -EFAULT;
5789		if (copy_from_user(&va, argp, sizeof(va)))
5790			goto out;
5791		idx = srcu_read_lock(&vcpu->kvm->srcu);
5792		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5793		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5794		break;
5795	}
5796	case KVM_X86_SETUP_MCE: {
5797		u64 mcg_cap;
5798
5799		r = -EFAULT;
5800		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5801			goto out;
5802		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5803		break;
5804	}
5805	case KVM_X86_SET_MCE: {
5806		struct kvm_x86_mce mce;
5807
5808		r = -EFAULT;
5809		if (copy_from_user(&mce, argp, sizeof(mce)))
5810			goto out;
5811		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5812		break;
5813	}
5814	case KVM_GET_VCPU_EVENTS: {
5815		struct kvm_vcpu_events events;
5816
5817		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5818
5819		r = -EFAULT;
5820		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5821			break;
5822		r = 0;
5823		break;
5824	}
5825	case KVM_SET_VCPU_EVENTS: {
5826		struct kvm_vcpu_events events;
5827
5828		r = -EFAULT;
5829		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5830			break;
5831
5832		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5833		break;
5834	}
5835	case KVM_GET_DEBUGREGS: {
5836		struct kvm_debugregs dbgregs;
5837
5838		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5839
5840		r = -EFAULT;
5841		if (copy_to_user(argp, &dbgregs,
5842				 sizeof(struct kvm_debugregs)))
5843			break;
5844		r = 0;
5845		break;
5846	}
5847	case KVM_SET_DEBUGREGS: {
5848		struct kvm_debugregs dbgregs;
5849
5850		r = -EFAULT;
5851		if (copy_from_user(&dbgregs, argp,
5852				   sizeof(struct kvm_debugregs)))
5853			break;
5854
5855		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5856		break;
5857	}
5858	case KVM_GET_XSAVE: {
5859		r = -EINVAL;
5860		if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5861			break;
5862
5863		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5864		r = -ENOMEM;
5865		if (!u.xsave)
5866			break;
5867
5868		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5869
5870		r = -EFAULT;
5871		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5872			break;
5873		r = 0;
5874		break;
5875	}
5876	case KVM_SET_XSAVE: {
5877		int size = vcpu->arch.guest_fpu.uabi_size;
5878
5879		u.xsave = memdup_user(argp, size);
5880		if (IS_ERR(u.xsave)) {
5881			r = PTR_ERR(u.xsave);
5882			goto out_nofree;
5883		}
5884
5885		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5886		break;
5887	}
5888
5889	case KVM_GET_XSAVE2: {
5890		int size = vcpu->arch.guest_fpu.uabi_size;
5891
5892		u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5893		r = -ENOMEM;
5894		if (!u.xsave)
5895			break;
5896
5897		kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5898
5899		r = -EFAULT;
5900		if (copy_to_user(argp, u.xsave, size))
5901			break;
5902
5903		r = 0;
5904		break;
5905	}
5906
5907	case KVM_GET_XCRS: {
5908		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5909		r = -ENOMEM;
5910		if (!u.xcrs)
5911			break;
5912
5913		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5914
5915		r = -EFAULT;
5916		if (copy_to_user(argp, u.xcrs,
5917				 sizeof(struct kvm_xcrs)))
5918			break;
5919		r = 0;
5920		break;
5921	}
5922	case KVM_SET_XCRS: {
5923		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5924		if (IS_ERR(u.xcrs)) {
5925			r = PTR_ERR(u.xcrs);
5926			goto out_nofree;
5927		}
5928
5929		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5930		break;
5931	}
5932	case KVM_SET_TSC_KHZ: {
5933		u32 user_tsc_khz;
5934
5935		r = -EINVAL;
5936		user_tsc_khz = (u32)arg;
5937
5938		if (kvm_caps.has_tsc_control &&
5939		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5940			goto out;
5941
5942		if (user_tsc_khz == 0)
5943			user_tsc_khz = tsc_khz;
5944
5945		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5946			r = 0;
5947
5948		goto out;
5949	}
5950	case KVM_GET_TSC_KHZ: {
5951		r = vcpu->arch.virtual_tsc_khz;
5952		goto out;
5953	}
5954	case KVM_KVMCLOCK_CTRL: {
5955		r = kvm_set_guest_paused(vcpu);
5956		goto out;
5957	}
5958	case KVM_ENABLE_CAP: {
5959		struct kvm_enable_cap cap;
5960
5961		r = -EFAULT;
5962		if (copy_from_user(&cap, argp, sizeof(cap)))
5963			goto out;
5964		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5965		break;
5966	}
5967	case KVM_GET_NESTED_STATE: {
5968		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5969		u32 user_data_size;
5970
5971		r = -EINVAL;
5972		if (!kvm_x86_ops.nested_ops->get_state)
5973			break;
5974
5975		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5976		r = -EFAULT;
5977		if (get_user(user_data_size, &user_kvm_nested_state->size))
5978			break;
5979
5980		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5981						     user_data_size);
5982		if (r < 0)
5983			break;
5984
5985		if (r > user_data_size) {
5986			if (put_user(r, &user_kvm_nested_state->size))
5987				r = -EFAULT;
5988			else
5989				r = -E2BIG;
5990			break;
5991		}
5992
5993		r = 0;
5994		break;
5995	}
5996	case KVM_SET_NESTED_STATE: {
5997		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5998		struct kvm_nested_state kvm_state;
5999		int idx;
6000
6001		r = -EINVAL;
6002		if (!kvm_x86_ops.nested_ops->set_state)
6003			break;
6004
6005		r = -EFAULT;
6006		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
6007			break;
6008
6009		r = -EINVAL;
6010		if (kvm_state.size < sizeof(kvm_state))
6011			break;
6012
6013		if (kvm_state.flags &
6014		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
6015		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6016		      | KVM_STATE_NESTED_GIF_SET))
6017			break;
6018
6019		/* nested_run_pending implies guest_mode.  */
6020		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6021		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
6022			break;
6023
6024		idx = srcu_read_lock(&vcpu->kvm->srcu);
6025		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
6026		srcu_read_unlock(&vcpu->kvm->srcu, idx);
6027		break;
6028	}
6029	case KVM_GET_SUPPORTED_HV_CPUID:
6030		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
6031		break;
6032#ifdef CONFIG_KVM_XEN
6033	case KVM_XEN_VCPU_GET_ATTR: {
6034		struct kvm_xen_vcpu_attr xva;
6035
6036		r = -EFAULT;
6037		if (copy_from_user(&xva, argp, sizeof(xva)))
6038			goto out;
6039		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6040		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6041			r = -EFAULT;
6042		break;
6043	}
6044	case KVM_XEN_VCPU_SET_ATTR: {
6045		struct kvm_xen_vcpu_attr xva;
6046
6047		r = -EFAULT;
6048		if (copy_from_user(&xva, argp, sizeof(xva)))
6049			goto out;
6050		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6051		break;
6052	}
6053#endif
6054	case KVM_GET_SREGS2: {
6055		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6056		r = -ENOMEM;
6057		if (!u.sregs2)
6058			goto out;
6059		__get_sregs2(vcpu, u.sregs2);
6060		r = -EFAULT;
6061		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6062			goto out;
6063		r = 0;
6064		break;
6065	}
6066	case KVM_SET_SREGS2: {
6067		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6068		if (IS_ERR(u.sregs2)) {
6069			r = PTR_ERR(u.sregs2);
6070			u.sregs2 = NULL;
6071			goto out;
6072		}
6073		r = __set_sregs2(vcpu, u.sregs2);
6074		break;
6075	}
6076	case KVM_HAS_DEVICE_ATTR:
6077	case KVM_GET_DEVICE_ATTR:
6078	case KVM_SET_DEVICE_ATTR:
6079		r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6080		break;
6081	default:
6082		r = -EINVAL;
6083	}
6084out:
6085	kfree(u.buffer);
6086out_nofree:
6087	vcpu_put(vcpu);
6088	return r;
6089}
6090
6091vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
6092{
6093	return VM_FAULT_SIGBUS;
6094}
6095
6096static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6097{
6098	int ret;
6099
6100	if (addr > (unsigned int)(-3 * PAGE_SIZE))
6101		return -EINVAL;
6102	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
6103	return ret;
6104}
6105
6106static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6107					      u64 ident_addr)
6108{
6109	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
6110}
6111
6112static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
6113					 unsigned long kvm_nr_mmu_pages)
6114{
6115	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6116		return -EINVAL;
6117
6118	mutex_lock(&kvm->slots_lock);
6119
6120	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
6121	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
6122
6123	mutex_unlock(&kvm->slots_lock);
6124	return 0;
6125}
6126
6127static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6128{
6129	struct kvm_pic *pic = kvm->arch.vpic;
6130	int r;
6131
6132	r = 0;
6133	switch (chip->chip_id) {
6134	case KVM_IRQCHIP_PIC_MASTER:
6135		memcpy(&chip->chip.pic, &pic->pics[0],
6136			sizeof(struct kvm_pic_state));
6137		break;
6138	case KVM_IRQCHIP_PIC_SLAVE:
6139		memcpy(&chip->chip.pic, &pic->pics[1],
6140			sizeof(struct kvm_pic_state));
6141		break;
6142	case KVM_IRQCHIP_IOAPIC:
6143		kvm_get_ioapic(kvm, &chip->chip.ioapic);
6144		break;
6145	default:
6146		r = -EINVAL;
6147		break;
6148	}
6149	return r;
6150}
6151
6152static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6153{
6154	struct kvm_pic *pic = kvm->arch.vpic;
6155	int r;
6156
6157	r = 0;
6158	switch (chip->chip_id) {
6159	case KVM_IRQCHIP_PIC_MASTER:
6160		spin_lock(&pic->lock);
6161		memcpy(&pic->pics[0], &chip->chip.pic,
6162			sizeof(struct kvm_pic_state));
6163		spin_unlock(&pic->lock);
6164		break;
6165	case KVM_IRQCHIP_PIC_SLAVE:
6166		spin_lock(&pic->lock);
6167		memcpy(&pic->pics[1], &chip->chip.pic,
6168			sizeof(struct kvm_pic_state));
6169		spin_unlock(&pic->lock);
6170		break;
6171	case KVM_IRQCHIP_IOAPIC:
6172		kvm_set_ioapic(kvm, &chip->chip.ioapic);
6173		break;
6174	default:
6175		r = -EINVAL;
6176		break;
6177	}
6178	kvm_pic_update_irq(pic);
6179	return r;
6180}
6181
6182static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6183{
6184	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6185
6186	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6187
6188	mutex_lock(&kps->lock);
6189	memcpy(ps, &kps->channels, sizeof(*ps));
6190	mutex_unlock(&kps->lock);
6191	return 0;
6192}
6193
6194static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6195{
6196	int i;
6197	struct kvm_pit *pit = kvm->arch.vpit;
6198
6199	mutex_lock(&pit->pit_state.lock);
6200	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6201	for (i = 0; i < 3; i++)
6202		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6203	mutex_unlock(&pit->pit_state.lock);
6204	return 0;
6205}
6206
6207static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6208{
6209	mutex_lock(&kvm->arch.vpit->pit_state.lock);
6210	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6211		sizeof(ps->channels));
6212	ps->flags = kvm->arch.vpit->pit_state.flags;
6213	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6214	memset(&ps->reserved, 0, sizeof(ps->reserved));
6215	return 0;
6216}
6217
6218static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6219{
6220	int start = 0;
6221	int i;
6222	u32 prev_legacy, cur_legacy;
6223	struct kvm_pit *pit = kvm->arch.vpit;
6224
6225	mutex_lock(&pit->pit_state.lock);
6226	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6227	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6228	if (!prev_legacy && cur_legacy)
6229		start = 1;
6230	memcpy(&pit->pit_state.channels, &ps->channels,
6231	       sizeof(pit->pit_state.channels));
6232	pit->pit_state.flags = ps->flags;
6233	for (i = 0; i < 3; i++)
6234		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6235				   start && i == 0);
6236	mutex_unlock(&pit->pit_state.lock);
6237	return 0;
6238}
6239
6240static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6241				 struct kvm_reinject_control *control)
6242{
6243	struct kvm_pit *pit = kvm->arch.vpit;
6244
6245	/* pit->pit_state.lock was overloaded to prevent userspace from getting
6246	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6247	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
6248	 */
6249	mutex_lock(&pit->pit_state.lock);
6250	kvm_pit_set_reinject(pit, control->pit_reinject);
6251	mutex_unlock(&pit->pit_state.lock);
6252
6253	return 0;
6254}
6255
6256void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6257{
6258
6259	/*
6260	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
6261	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
6262	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6263	 * VM-Exit.
6264	 */
6265	struct kvm_vcpu *vcpu;
6266	unsigned long i;
6267
6268	kvm_for_each_vcpu(i, vcpu, kvm)
6269		kvm_vcpu_kick(vcpu);
6270}
6271
6272int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6273			bool line_status)
6274{
6275	if (!irqchip_in_kernel(kvm))
6276		return -ENXIO;
6277
6278	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6279					irq_event->irq, irq_event->level,
6280					line_status);
6281	return 0;
6282}
6283
6284int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6285			    struct kvm_enable_cap *cap)
6286{
6287	int r;
6288
6289	if (cap->flags)
6290		return -EINVAL;
6291
6292	switch (cap->cap) {
6293	case KVM_CAP_DISABLE_QUIRKS2:
6294		r = -EINVAL;
6295		if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6296			break;
6297		fallthrough;
6298	case KVM_CAP_DISABLE_QUIRKS:
6299		kvm->arch.disabled_quirks = cap->args[0];
6300		r = 0;
6301		break;
6302	case KVM_CAP_SPLIT_IRQCHIP: {
6303		mutex_lock(&kvm->lock);
6304		r = -EINVAL;
6305		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6306			goto split_irqchip_unlock;
6307		r = -EEXIST;
6308		if (irqchip_in_kernel(kvm))
6309			goto split_irqchip_unlock;
6310		if (kvm->created_vcpus)
6311			goto split_irqchip_unlock;
6312		r = kvm_setup_empty_irq_routing(kvm);
6313		if (r)
6314			goto split_irqchip_unlock;
6315		/* Pairs with irqchip_in_kernel. */
6316		smp_wmb();
6317		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6318		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6319		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6320		r = 0;
6321split_irqchip_unlock:
6322		mutex_unlock(&kvm->lock);
6323		break;
6324	}
6325	case KVM_CAP_X2APIC_API:
6326		r = -EINVAL;
6327		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6328			break;
6329
6330		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6331			kvm->arch.x2apic_format = true;
6332		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6333			kvm->arch.x2apic_broadcast_quirk_disabled = true;
6334
6335		r = 0;
6336		break;
6337	case KVM_CAP_X86_DISABLE_EXITS:
6338		r = -EINVAL;
6339		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6340			break;
6341
6342		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6343			kvm->arch.pause_in_guest = true;
6344
6345#define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6346		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6347
6348		if (!mitigate_smt_rsb) {
6349			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6350			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6351				pr_warn_once(SMT_RSB_MSG);
6352
6353			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6354			    kvm_can_mwait_in_guest())
6355				kvm->arch.mwait_in_guest = true;
6356			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6357				kvm->arch.hlt_in_guest = true;
6358			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6359				kvm->arch.cstate_in_guest = true;
6360		}
6361
6362		r = 0;
6363		break;
6364	case KVM_CAP_MSR_PLATFORM_INFO:
6365		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6366		r = 0;
6367		break;
6368	case KVM_CAP_EXCEPTION_PAYLOAD:
6369		kvm->arch.exception_payload_enabled = cap->args[0];
6370		r = 0;
6371		break;
6372	case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6373		kvm->arch.triple_fault_event = cap->args[0];
6374		r = 0;
6375		break;
6376	case KVM_CAP_X86_USER_SPACE_MSR:
6377		r = -EINVAL;
6378		if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
6379			break;
6380		kvm->arch.user_space_msr_mask = cap->args[0];
6381		r = 0;
6382		break;
6383	case KVM_CAP_X86_BUS_LOCK_EXIT:
6384		r = -EINVAL;
6385		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6386			break;
6387
6388		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6389		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6390			break;
6391
6392		if (kvm_caps.has_bus_lock_exit &&
6393		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6394			kvm->arch.bus_lock_detection_enabled = true;
6395		r = 0;
6396		break;
6397#ifdef CONFIG_X86_SGX_KVM
6398	case KVM_CAP_SGX_ATTRIBUTE: {
6399		unsigned long allowed_attributes = 0;
6400
6401		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6402		if (r)
6403			break;
6404
6405		/* KVM only supports the PROVISIONKEY privileged attribute. */
6406		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6407		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6408			kvm->arch.sgx_provisioning_allowed = true;
6409		else
6410			r = -EINVAL;
6411		break;
6412	}
6413#endif
6414	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6415		r = -EINVAL;
6416		if (!kvm_x86_ops.vm_copy_enc_context_from)
6417			break;
6418
6419		r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6420		break;
6421	case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6422		r = -EINVAL;
6423		if (!kvm_x86_ops.vm_move_enc_context_from)
6424			break;
6425
6426		r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6427		break;
6428	case KVM_CAP_EXIT_HYPERCALL:
6429		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6430			r = -EINVAL;
6431			break;
6432		}
6433		kvm->arch.hypercall_exit_enabled = cap->args[0];
6434		r = 0;
6435		break;
6436	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6437		r = -EINVAL;
6438		if (cap->args[0] & ~1)
6439			break;
6440		kvm->arch.exit_on_emulation_error = cap->args[0];
6441		r = 0;
6442		break;
6443	case KVM_CAP_PMU_CAPABILITY:
6444		r = -EINVAL;
6445		if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6446			break;
6447
6448		mutex_lock(&kvm->lock);
6449		if (!kvm->created_vcpus) {
6450			kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6451			r = 0;
6452		}
6453		mutex_unlock(&kvm->lock);
6454		break;
6455	case KVM_CAP_MAX_VCPU_ID:
6456		r = -EINVAL;
6457		if (cap->args[0] > KVM_MAX_VCPU_IDS)
6458			break;
6459
6460		mutex_lock(&kvm->lock);
6461		if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6462			r = 0;
6463		} else if (!kvm->arch.max_vcpu_ids) {
6464			kvm->arch.max_vcpu_ids = cap->args[0];
6465			r = 0;
6466		}
6467		mutex_unlock(&kvm->lock);
6468		break;
6469	case KVM_CAP_X86_NOTIFY_VMEXIT:
6470		r = -EINVAL;
6471		if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6472			break;
6473		if (!kvm_caps.has_notify_vmexit)
6474			break;
6475		if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6476			break;
6477		mutex_lock(&kvm->lock);
6478		if (!kvm->created_vcpus) {
6479			kvm->arch.notify_window = cap->args[0] >> 32;
6480			kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6481			r = 0;
6482		}
6483		mutex_unlock(&kvm->lock);
6484		break;
6485	case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6486		r = -EINVAL;
6487
6488		/*
6489		 * Since the risk of disabling NX hugepages is a guest crashing
6490		 * the system, ensure the userspace process has permission to
6491		 * reboot the system.
6492		 *
6493		 * Note that unlike the reboot() syscall, the process must have
6494		 * this capability in the root namespace because exposing
6495		 * /dev/kvm into a container does not limit the scope of the
6496		 * iTLB multihit bug to that container. In other words,
6497		 * this must use capable(), not ns_capable().
6498		 */
6499		if (!capable(CAP_SYS_BOOT)) {
6500			r = -EPERM;
6501			break;
6502		}
6503
6504		if (cap->args[0])
6505			break;
6506
6507		mutex_lock(&kvm->lock);
6508		if (!kvm->created_vcpus) {
6509			kvm->arch.disable_nx_huge_pages = true;
6510			r = 0;
6511		}
6512		mutex_unlock(&kvm->lock);
6513		break;
6514	default:
6515		r = -EINVAL;
6516		break;
6517	}
6518	return r;
6519}
6520
6521static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6522{
6523	struct kvm_x86_msr_filter *msr_filter;
6524
6525	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6526	if (!msr_filter)
6527		return NULL;
6528
6529	msr_filter->default_allow = default_allow;
6530	return msr_filter;
6531}
6532
6533static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6534{
6535	u32 i;
6536
6537	if (!msr_filter)
6538		return;
6539
6540	for (i = 0; i < msr_filter->count; i++)
6541		kfree(msr_filter->ranges[i].bitmap);
6542
6543	kfree(msr_filter);
6544}
6545
6546static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6547			      struct kvm_msr_filter_range *user_range)
6548{
6549	unsigned long *bitmap;
6550	size_t bitmap_size;
6551
6552	if (!user_range->nmsrs)
6553		return 0;
6554
6555	if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
6556		return -EINVAL;
6557
6558	if (!user_range->flags)
6559		return -EINVAL;
6560
6561	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6562	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6563		return -EINVAL;
6564
6565	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6566	if (IS_ERR(bitmap))
6567		return PTR_ERR(bitmap);
6568
6569	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6570		.flags = user_range->flags,
6571		.base = user_range->base,
6572		.nmsrs = user_range->nmsrs,
6573		.bitmap = bitmap,
6574	};
6575
6576	msr_filter->count++;
6577	return 0;
6578}
6579
6580static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6581				       struct kvm_msr_filter *filter)
6582{
6583	struct kvm_x86_msr_filter *new_filter, *old_filter;
6584	bool default_allow;
6585	bool empty = true;
6586	int r;
6587	u32 i;
6588
6589	if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
6590		return -EINVAL;
6591
6592	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6593		empty &= !filter->ranges[i].nmsrs;
6594
6595	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6596	if (empty && !default_allow)
6597		return -EINVAL;
6598
6599	new_filter = kvm_alloc_msr_filter(default_allow);
6600	if (!new_filter)
6601		return -ENOMEM;
6602
6603	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6604		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6605		if (r) {
6606			kvm_free_msr_filter(new_filter);
6607			return r;
6608		}
6609	}
6610
6611	mutex_lock(&kvm->lock);
6612	old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6613					 mutex_is_locked(&kvm->lock));
6614	mutex_unlock(&kvm->lock);
6615	synchronize_srcu(&kvm->srcu);
6616
6617	kvm_free_msr_filter(old_filter);
6618
6619	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6620
6621	return 0;
6622}
6623
6624#ifdef CONFIG_KVM_COMPAT
6625/* for KVM_X86_SET_MSR_FILTER */
6626struct kvm_msr_filter_range_compat {
6627	__u32 flags;
6628	__u32 nmsrs;
6629	__u32 base;
6630	__u32 bitmap;
6631};
6632
6633struct kvm_msr_filter_compat {
6634	__u32 flags;
6635	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6636};
6637
6638#define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6639
6640long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6641			      unsigned long arg)
6642{
6643	void __user *argp = (void __user *)arg;
6644	struct kvm *kvm = filp->private_data;
6645	long r = -ENOTTY;
6646
6647	switch (ioctl) {
6648	case KVM_X86_SET_MSR_FILTER_COMPAT: {
6649		struct kvm_msr_filter __user *user_msr_filter = argp;
6650		struct kvm_msr_filter_compat filter_compat;
6651		struct kvm_msr_filter filter;
6652		int i;
6653
6654		if (copy_from_user(&filter_compat, user_msr_filter,
6655				   sizeof(filter_compat)))
6656			return -EFAULT;
6657
6658		filter.flags = filter_compat.flags;
6659		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6660			struct kvm_msr_filter_range_compat *cr;
6661
6662			cr = &filter_compat.ranges[i];
6663			filter.ranges[i] = (struct kvm_msr_filter_range) {
6664				.flags = cr->flags,
6665				.nmsrs = cr->nmsrs,
6666				.base = cr->base,
6667				.bitmap = (__u8 *)(ulong)cr->bitmap,
6668			};
6669		}
6670
6671		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6672		break;
6673	}
6674	}
6675
6676	return r;
6677}
6678#endif
6679
6680#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6681static int kvm_arch_suspend_notifier(struct kvm *kvm)
6682{
6683	struct kvm_vcpu *vcpu;
6684	unsigned long i;
6685	int ret = 0;
6686
6687	mutex_lock(&kvm->lock);
6688	kvm_for_each_vcpu(i, vcpu, kvm) {
6689		if (!vcpu->arch.pv_time.active)
6690			continue;
6691
6692		ret = kvm_set_guest_paused(vcpu);
6693		if (ret) {
6694			kvm_err("Failed to pause guest VCPU%d: %d\n",
6695				vcpu->vcpu_id, ret);
6696			break;
6697		}
6698	}
6699	mutex_unlock(&kvm->lock);
6700
6701	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6702}
6703
6704int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6705{
6706	switch (state) {
6707	case PM_HIBERNATION_PREPARE:
6708	case PM_SUSPEND_PREPARE:
6709		return kvm_arch_suspend_notifier(kvm);
6710	}
6711
6712	return NOTIFY_DONE;
6713}
6714#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6715
6716static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6717{
6718	struct kvm_clock_data data = { 0 };
6719
6720	get_kvmclock(kvm, &data);
6721	if (copy_to_user(argp, &data, sizeof(data)))
6722		return -EFAULT;
6723
6724	return 0;
6725}
6726
6727static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6728{
6729	struct kvm_arch *ka = &kvm->arch;
6730	struct kvm_clock_data data;
6731	u64 now_raw_ns;
6732
6733	if (copy_from_user(&data, argp, sizeof(data)))
6734		return -EFAULT;
6735
6736	/*
6737	 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6738	 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6739	 */
6740	if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6741		return -EINVAL;
6742
6743	kvm_hv_request_tsc_page_update(kvm);
6744	kvm_start_pvclock_update(kvm);
6745	pvclock_update_vm_gtod_copy(kvm);
6746
6747	/*
6748	 * This pairs with kvm_guest_time_update(): when masterclock is
6749	 * in use, we use master_kernel_ns + kvmclock_offset to set
6750	 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6751	 * is slightly ahead) here we risk going negative on unsigned
6752	 * 'system_time' when 'data.clock' is very small.
6753	 */
6754	if (data.flags & KVM_CLOCK_REALTIME) {
6755		u64 now_real_ns = ktime_get_real_ns();
6756
6757		/*
6758		 * Avoid stepping the kvmclock backwards.
6759		 */
6760		if (now_real_ns > data.realtime)
6761			data.clock += now_real_ns - data.realtime;
6762	}
6763
6764	if (ka->use_master_clock)
6765		now_raw_ns = ka->master_kernel_ns;
6766	else
6767		now_raw_ns = get_kvmclock_base_ns();
6768	ka->kvmclock_offset = data.clock - now_raw_ns;
6769	kvm_end_pvclock_update(kvm);
6770	return 0;
6771}
6772
6773int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
6774{
6775	struct kvm *kvm = filp->private_data;
6776	void __user *argp = (void __user *)arg;
6777	int r = -ENOTTY;
6778	/*
6779	 * This union makes it completely explicit to gcc-3.x
6780	 * that these two variables' stack usage should be
6781	 * combined, not added together.
6782	 */
6783	union {
6784		struct kvm_pit_state ps;
6785		struct kvm_pit_state2 ps2;
6786		struct kvm_pit_config pit_config;
6787	} u;
6788
6789	switch (ioctl) {
6790	case KVM_SET_TSS_ADDR:
6791		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6792		break;
6793	case KVM_SET_IDENTITY_MAP_ADDR: {
6794		u64 ident_addr;
6795
6796		mutex_lock(&kvm->lock);
6797		r = -EINVAL;
6798		if (kvm->created_vcpus)
6799			goto set_identity_unlock;
6800		r = -EFAULT;
6801		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6802			goto set_identity_unlock;
6803		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6804set_identity_unlock:
6805		mutex_unlock(&kvm->lock);
6806		break;
6807	}
6808	case KVM_SET_NR_MMU_PAGES:
6809		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6810		break;
6811	case KVM_CREATE_IRQCHIP: {
6812		mutex_lock(&kvm->lock);
6813
6814		r = -EEXIST;
6815		if (irqchip_in_kernel(kvm))
6816			goto create_irqchip_unlock;
6817
6818		r = -EINVAL;
6819		if (kvm->created_vcpus)
6820			goto create_irqchip_unlock;
6821
6822		r = kvm_pic_init(kvm);
6823		if (r)
6824			goto create_irqchip_unlock;
6825
6826		r = kvm_ioapic_init(kvm);
6827		if (r) {
6828			kvm_pic_destroy(kvm);
6829			goto create_irqchip_unlock;
6830		}
6831
6832		r = kvm_setup_default_irq_routing(kvm);
6833		if (r) {
6834			kvm_ioapic_destroy(kvm);
6835			kvm_pic_destroy(kvm);
6836			goto create_irqchip_unlock;
6837		}
6838		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6839		smp_wmb();
6840		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6841		kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6842	create_irqchip_unlock:
6843		mutex_unlock(&kvm->lock);
6844		break;
6845	}
6846	case KVM_CREATE_PIT:
6847		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6848		goto create_pit;
6849	case KVM_CREATE_PIT2:
6850		r = -EFAULT;
6851		if (copy_from_user(&u.pit_config, argp,
6852				   sizeof(struct kvm_pit_config)))
6853			goto out;
6854	create_pit:
6855		mutex_lock(&kvm->lock);
6856		r = -EEXIST;
6857		if (kvm->arch.vpit)
6858			goto create_pit_unlock;
6859		r = -ENOMEM;
6860		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6861		if (kvm->arch.vpit)
6862			r = 0;
6863	create_pit_unlock:
6864		mutex_unlock(&kvm->lock);
6865		break;
6866	case KVM_GET_IRQCHIP: {
6867		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6868		struct kvm_irqchip *chip;
6869
6870		chip = memdup_user(argp, sizeof(*chip));
6871		if (IS_ERR(chip)) {
6872			r = PTR_ERR(chip);
6873			goto out;
6874		}
6875
6876		r = -ENXIO;
6877		if (!irqchip_kernel(kvm))
6878			goto get_irqchip_out;
6879		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6880		if (r)
6881			goto get_irqchip_out;
6882		r = -EFAULT;
6883		if (copy_to_user(argp, chip, sizeof(*chip)))
6884			goto get_irqchip_out;
6885		r = 0;
6886	get_irqchip_out:
6887		kfree(chip);
6888		break;
6889	}
6890	case KVM_SET_IRQCHIP: {
6891		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6892		struct kvm_irqchip *chip;
6893
6894		chip = memdup_user(argp, sizeof(*chip));
6895		if (IS_ERR(chip)) {
6896			r = PTR_ERR(chip);
6897			goto out;
6898		}
6899
6900		r = -ENXIO;
6901		if (!irqchip_kernel(kvm))
6902			goto set_irqchip_out;
6903		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6904	set_irqchip_out:
6905		kfree(chip);
6906		break;
6907	}
6908	case KVM_GET_PIT: {
6909		r = -EFAULT;
6910		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6911			goto out;
6912		r = -ENXIO;
6913		if (!kvm->arch.vpit)
6914			goto out;
6915		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6916		if (r)
6917			goto out;
6918		r = -EFAULT;
6919		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6920			goto out;
6921		r = 0;
6922		break;
6923	}
6924	case KVM_SET_PIT: {
6925		r = -EFAULT;
6926		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6927			goto out;
6928		mutex_lock(&kvm->lock);
6929		r = -ENXIO;
6930		if (!kvm->arch.vpit)
6931			goto set_pit_out;
6932		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6933set_pit_out:
6934		mutex_unlock(&kvm->lock);
6935		break;
6936	}
6937	case KVM_GET_PIT2: {
6938		r = -ENXIO;
6939		if (!kvm->arch.vpit)
6940			goto out;
6941		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6942		if (r)
6943			goto out;
6944		r = -EFAULT;
6945		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6946			goto out;
6947		r = 0;
6948		break;
6949	}
6950	case KVM_SET_PIT2: {
6951		r = -EFAULT;
6952		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6953			goto out;
6954		mutex_lock(&kvm->lock);
6955		r = -ENXIO;
6956		if (!kvm->arch.vpit)
6957			goto set_pit2_out;
6958		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6959set_pit2_out:
6960		mutex_unlock(&kvm->lock);
6961		break;
6962	}
6963	case KVM_REINJECT_CONTROL: {
6964		struct kvm_reinject_control control;
6965		r =  -EFAULT;
6966		if (copy_from_user(&control, argp, sizeof(control)))
6967			goto out;
6968		r = -ENXIO;
6969		if (!kvm->arch.vpit)
6970			goto out;
6971		r = kvm_vm_ioctl_reinject(kvm, &control);
6972		break;
6973	}
6974	case KVM_SET_BOOT_CPU_ID:
6975		r = 0;
6976		mutex_lock(&kvm->lock);
6977		if (kvm->created_vcpus)
6978			r = -EBUSY;
6979		else
6980			kvm->arch.bsp_vcpu_id = arg;
6981		mutex_unlock(&kvm->lock);
6982		break;
6983#ifdef CONFIG_KVM_XEN
6984	case KVM_XEN_HVM_CONFIG: {
6985		struct kvm_xen_hvm_config xhc;
6986		r = -EFAULT;
6987		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6988			goto out;
6989		r = kvm_xen_hvm_config(kvm, &xhc);
6990		break;
6991	}
6992	case KVM_XEN_HVM_GET_ATTR: {
6993		struct kvm_xen_hvm_attr xha;
6994
6995		r = -EFAULT;
6996		if (copy_from_user(&xha, argp, sizeof(xha)))
6997			goto out;
6998		r = kvm_xen_hvm_get_attr(kvm, &xha);
6999		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
7000			r = -EFAULT;
7001		break;
7002	}
7003	case KVM_XEN_HVM_SET_ATTR: {
7004		struct kvm_xen_hvm_attr xha;
7005
7006		r = -EFAULT;
7007		if (copy_from_user(&xha, argp, sizeof(xha)))
7008			goto out;
7009		r = kvm_xen_hvm_set_attr(kvm, &xha);
7010		break;
7011	}
7012	case KVM_XEN_HVM_EVTCHN_SEND: {
7013		struct kvm_irq_routing_xen_evtchn uxe;
7014
7015		r = -EFAULT;
7016		if (copy_from_user(&uxe, argp, sizeof(uxe)))
7017			goto out;
7018		r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7019		break;
7020	}
7021#endif
7022	case KVM_SET_CLOCK:
7023		r = kvm_vm_ioctl_set_clock(kvm, argp);
7024		break;
7025	case KVM_GET_CLOCK:
7026		r = kvm_vm_ioctl_get_clock(kvm, argp);
7027		break;
7028	case KVM_SET_TSC_KHZ: {
7029		u32 user_tsc_khz;
7030
7031		r = -EINVAL;
7032		user_tsc_khz = (u32)arg;
7033
7034		if (kvm_caps.has_tsc_control &&
7035		    user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
7036			goto out;
7037
7038		if (user_tsc_khz == 0)
7039			user_tsc_khz = tsc_khz;
7040
7041		WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7042		r = 0;
7043
7044		goto out;
7045	}
7046	case KVM_GET_TSC_KHZ: {
7047		r = READ_ONCE(kvm->arch.default_tsc_khz);
7048		goto out;
7049	}
7050	case KVM_MEMORY_ENCRYPT_OP: {
7051		r = -ENOTTY;
7052		if (!kvm_x86_ops.mem_enc_ioctl)
7053			goto out;
7054
7055		r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
7056		break;
7057	}
7058	case KVM_MEMORY_ENCRYPT_REG_REGION: {
7059		struct kvm_enc_region region;
7060
7061		r = -EFAULT;
7062		if (copy_from_user(&region, argp, sizeof(region)))
7063			goto out;
7064
7065		r = -ENOTTY;
7066		if (!kvm_x86_ops.mem_enc_register_region)
7067			goto out;
7068
7069		r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
7070		break;
7071	}
7072	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7073		struct kvm_enc_region region;
7074
7075		r = -EFAULT;
7076		if (copy_from_user(&region, argp, sizeof(region)))
7077			goto out;
7078
7079		r = -ENOTTY;
7080		if (!kvm_x86_ops.mem_enc_unregister_region)
7081			goto out;
7082
7083		r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
7084		break;
7085	}
7086	case KVM_HYPERV_EVENTFD: {
7087		struct kvm_hyperv_eventfd hvevfd;
7088
7089		r = -EFAULT;
7090		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7091			goto out;
7092		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7093		break;
7094	}
7095	case KVM_SET_PMU_EVENT_FILTER:
7096		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7097		break;
7098	case KVM_X86_SET_MSR_FILTER: {
7099		struct kvm_msr_filter __user *user_msr_filter = argp;
7100		struct kvm_msr_filter filter;
7101
7102		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7103			return -EFAULT;
7104
7105		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
7106		break;
7107	}
7108	default:
7109		r = -ENOTTY;
7110	}
7111out:
7112	return r;
7113}
7114
7115static void kvm_probe_feature_msr(u32 msr_index)
7116{
7117	struct kvm_msr_entry msr = {
7118		.index = msr_index,
7119	};
7120
7121	if (kvm_get_msr_feature(&msr))
7122		return;
7123
7124	msr_based_features[num_msr_based_features++] = msr_index;
7125}
7126
7127static void kvm_probe_msr_to_save(u32 msr_index)
7128{
7129	u32 dummy[2];
7130
7131	if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7132		return;
7133
7134	/*
7135	 * Even MSRs that are valid in the host may not be exposed to guests in
7136	 * some cases.
7137	 */
7138	switch (msr_index) {
7139	case MSR_IA32_BNDCFGS:
7140		if (!kvm_mpx_supported())
7141			return;
7142		break;
7143	case MSR_TSC_AUX:
7144		if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7145		    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7146			return;
7147		break;
7148	case MSR_IA32_UMWAIT_CONTROL:
7149		if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7150			return;
7151		break;
7152	case MSR_IA32_RTIT_CTL:
7153	case MSR_IA32_RTIT_STATUS:
7154		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7155			return;
7156		break;
7157	case MSR_IA32_RTIT_CR3_MATCH:
7158		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7159		    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7160			return;
7161		break;
7162	case MSR_IA32_RTIT_OUTPUT_BASE:
7163	case MSR_IA32_RTIT_OUTPUT_MASK:
7164		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7165		    (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7166		     !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7167			return;
7168		break;
7169	case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7170		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7171		    (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7172		     intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7173			return;
7174		break;
7175	case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7176		if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7177		    kvm_pmu_cap.num_counters_gp)
7178			return;
7179		break;
7180	case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7181		if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7182		    kvm_pmu_cap.num_counters_gp)
7183			return;
7184		break;
7185	case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7186		if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7187		    kvm_pmu_cap.num_counters_fixed)
7188			return;
7189		break;
7190	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7191	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7192	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7193		if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7194			return;
7195		break;
7196	case MSR_IA32_XFD:
7197	case MSR_IA32_XFD_ERR:
7198		if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7199			return;
7200		break;
7201	case MSR_IA32_TSX_CTRL:
7202		if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7203			return;
7204		break;
7205	default:
7206		break;
7207	}
7208
7209	msrs_to_save[num_msrs_to_save++] = msr_index;
7210}
7211
7212static void kvm_init_msr_lists(void)
7213{
7214	unsigned i;
7215
7216	BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
7217			 "Please update the fixed PMCs in msrs_to_save_pmu[]");
7218
7219	num_msrs_to_save = 0;
7220	num_emulated_msrs = 0;
7221	num_msr_based_features = 0;
7222
7223	for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7224		kvm_probe_msr_to_save(msrs_to_save_base[i]);
7225
7226	if (enable_pmu) {
7227		for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7228			kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
7229	}
7230
7231	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7232		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7233			continue;
7234
7235		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7236	}
7237
7238	for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7239		kvm_probe_feature_msr(i);
7240
7241	for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7242		kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
7243}
7244
7245static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7246			   const void *v)
7247{
7248	int handled = 0;
7249	int n;
7250
7251	do {
7252		n = min(len, 8);
7253		if (!(lapic_in_kernel(vcpu) &&
7254		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7255		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7256			break;
7257		handled += n;
7258		addr += n;
7259		len -= n;
7260		v += n;
7261	} while (len);
7262
7263	return handled;
7264}
7265
7266static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7267{
7268	int handled = 0;
7269	int n;
7270
7271	do {
7272		n = min(len, 8);
7273		if (!(lapic_in_kernel(vcpu) &&
7274		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7275					 addr, n, v))
7276		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7277			break;
7278		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7279		handled += n;
7280		addr += n;
7281		len -= n;
7282		v += n;
7283	} while (len);
7284
7285	return handled;
7286}
7287
7288void kvm_set_segment(struct kvm_vcpu *vcpu,
7289		     struct kvm_segment *var, int seg)
7290{
7291	static_call(kvm_x86_set_segment)(vcpu, var, seg);
7292}
7293
7294void kvm_get_segment(struct kvm_vcpu *vcpu,
7295		     struct kvm_segment *var, int seg)
7296{
7297	static_call(kvm_x86_get_segment)(vcpu, var, seg);
7298}
7299
7300gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7301			   struct x86_exception *exception)
7302{
7303	struct kvm_mmu *mmu = vcpu->arch.mmu;
7304	gpa_t t_gpa;
7305
7306	BUG_ON(!mmu_is_nested(vcpu));
7307
7308	/* NPT walks are always user-walks */
7309	access |= PFERR_USER_MASK;
7310	t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7311
7312	return t_gpa;
7313}
7314
7315gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7316			      struct x86_exception *exception)
7317{
7318	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7319
7320	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7321	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7322}
7323EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7324
7325gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7326			       struct x86_exception *exception)
7327{
7328	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7329
7330	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7331	access |= PFERR_WRITE_MASK;
7332	return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7333}
7334EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7335
7336/* uses this to access any guest's mapped memory without checking CPL */
7337gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7338				struct x86_exception *exception)
7339{
7340	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7341
7342	return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7343}
7344
7345static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7346				      struct kvm_vcpu *vcpu, u64 access,
7347				      struct x86_exception *exception)
7348{
7349	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7350	void *data = val;
7351	int r = X86EMUL_CONTINUE;
7352
7353	while (bytes) {
7354		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7355		unsigned offset = addr & (PAGE_SIZE-1);
7356		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7357		int ret;
7358
7359		if (gpa == INVALID_GPA)
7360			return X86EMUL_PROPAGATE_FAULT;
7361		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7362					       offset, toread);
7363		if (ret < 0) {
7364			r = X86EMUL_IO_NEEDED;
7365			goto out;
7366		}
7367
7368		bytes -= toread;
7369		data += toread;
7370		addr += toread;
7371	}
7372out:
7373	return r;
7374}
7375
7376/* used for instruction fetching */
7377static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7378				gva_t addr, void *val, unsigned int bytes,
7379				struct x86_exception *exception)
7380{
7381	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7382	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7383	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7384	unsigned offset;
7385	int ret;
7386
7387	/* Inline kvm_read_guest_virt_helper for speed.  */
7388	gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7389				    exception);
7390	if (unlikely(gpa == INVALID_GPA))
7391		return X86EMUL_PROPAGATE_FAULT;
7392
7393	offset = addr & (PAGE_SIZE-1);
7394	if (WARN_ON(offset + bytes > PAGE_SIZE))
7395		bytes = (unsigned)PAGE_SIZE - offset;
7396	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7397				       offset, bytes);
7398	if (unlikely(ret < 0))
7399		return X86EMUL_IO_NEEDED;
7400
7401	return X86EMUL_CONTINUE;
7402}
7403
7404int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7405			       gva_t addr, void *val, unsigned int bytes,
7406			       struct x86_exception *exception)
7407{
7408	u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7409
7410	/*
7411	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7412	 * is returned, but our callers are not ready for that and they blindly
7413	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
7414	 * uninitialized kernel stack memory into cr2 and error code.
7415	 */
7416	memset(exception, 0, sizeof(*exception));
7417	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7418					  exception);
7419}
7420EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7421
7422static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7423			     gva_t addr, void *val, unsigned int bytes,
7424			     struct x86_exception *exception, bool system)
7425{
7426	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7427	u64 access = 0;
7428
7429	if (system)
7430		access |= PFERR_IMPLICIT_ACCESS;
7431	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7432		access |= PFERR_USER_MASK;
7433
7434	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7435}
7436
7437static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7438				      struct kvm_vcpu *vcpu, u64 access,
7439				      struct x86_exception *exception)
7440{
7441	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7442	void *data = val;
7443	int r = X86EMUL_CONTINUE;
7444
7445	while (bytes) {
7446		gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7447		unsigned offset = addr & (PAGE_SIZE-1);
7448		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7449		int ret;
7450
7451		if (gpa == INVALID_GPA)
7452			return X86EMUL_PROPAGATE_FAULT;
7453		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7454		if (ret < 0) {
7455			r = X86EMUL_IO_NEEDED;
7456			goto out;
7457		}
7458
7459		bytes -= towrite;
7460		data += towrite;
7461		addr += towrite;
7462	}
7463out:
7464	return r;
7465}
7466
7467static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7468			      unsigned int bytes, struct x86_exception *exception,
7469			      bool system)
7470{
7471	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7472	u64 access = PFERR_WRITE_MASK;
7473
7474	if (system)
7475		access |= PFERR_IMPLICIT_ACCESS;
7476	else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7477		access |= PFERR_USER_MASK;
7478
7479	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7480					   access, exception);
7481}
7482
7483int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7484				unsigned int bytes, struct x86_exception *exception)
7485{
7486	/* kvm_write_guest_virt_system can pull in tons of pages. */
7487	vcpu->arch.l1tf_flush_l1d = true;
7488
7489	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7490					   PFERR_WRITE_MASK, exception);
7491}
7492EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7493
7494static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7495				void *insn, int insn_len)
7496{
7497	return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7498							    insn, insn_len);
7499}
7500
7501int handle_ud(struct kvm_vcpu *vcpu)
7502{
7503	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7504	int fep_flags = READ_ONCE(force_emulation_prefix);
7505	int emul_type = EMULTYPE_TRAP_UD;
7506	char sig[5]; /* ud2; .ascii "kvm" */
7507	struct x86_exception e;
7508
7509	if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7510		return 1;
7511
7512	if (fep_flags &&
7513	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7514				sig, sizeof(sig), &e) == 0 &&
7515	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7516		if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7517			kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7518		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7519		emul_type = EMULTYPE_TRAP_UD_FORCED;
7520	}
7521
7522	return kvm_emulate_instruction(vcpu, emul_type);
7523}
7524EXPORT_SYMBOL_GPL(handle_ud);
7525
7526static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7527			    gpa_t gpa, bool write)
7528{
7529	/* For APIC access vmexit */
7530	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7531		return 1;
7532
7533	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7534		trace_vcpu_match_mmio(gva, gpa, write, true);
7535		return 1;
7536	}
7537
7538	return 0;
7539}
7540
7541static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7542				gpa_t *gpa, struct x86_exception *exception,
7543				bool write)
7544{
7545	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7546	u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7547		| (write ? PFERR_WRITE_MASK : 0);
7548
7549	/*
7550	 * currently PKRU is only applied to ept enabled guest so
7551	 * there is no pkey in EPT page table for L1 guest or EPT
7552	 * shadow page table for L2 guest.
7553	 */
7554	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7555	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
7556			      vcpu->arch.mmio_access, 0, access))) {
7557		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7558					(gva & (PAGE_SIZE - 1));
7559		trace_vcpu_match_mmio(gva, *gpa, write, false);
7560		return 1;
7561	}
7562
7563	*gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7564
7565	if (*gpa == INVALID_GPA)
7566		return -1;
7567
7568	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7569}
7570
7571int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7572			const void *val, int bytes)
7573{
7574	int ret;
7575
7576	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7577	if (ret < 0)
7578		return 0;
7579	kvm_page_track_write(vcpu, gpa, val, bytes);
7580	return 1;
7581}
7582
7583struct read_write_emulator_ops {
7584	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7585				  int bytes);
7586	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7587				  void *val, int bytes);
7588	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7589			       int bytes, void *val);
7590	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7591				    void *val, int bytes);
7592	bool write;
7593};
7594
7595static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7596{
7597	if (vcpu->mmio_read_completed) {
7598		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7599			       vcpu->mmio_fragments[0].gpa, val);
7600		vcpu->mmio_read_completed = 0;
7601		return 1;
7602	}
7603
7604	return 0;
7605}
7606
7607static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7608			void *val, int bytes)
7609{
7610	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7611}
7612
7613static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7614			 void *val, int bytes)
7615{
7616	return emulator_write_phys(vcpu, gpa, val, bytes);
7617}
7618
7619static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7620{
7621	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7622	return vcpu_mmio_write(vcpu, gpa, bytes, val);
7623}
7624
7625static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7626			  void *val, int bytes)
7627{
7628	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7629	return X86EMUL_IO_NEEDED;
7630}
7631
7632static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7633			   void *val, int bytes)
7634{
7635	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7636
7637	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7638	return X86EMUL_CONTINUE;
7639}
7640
7641static const struct read_write_emulator_ops read_emultor = {
7642	.read_write_prepare = read_prepare,
7643	.read_write_emulate = read_emulate,
7644	.read_write_mmio = vcpu_mmio_read,
7645	.read_write_exit_mmio = read_exit_mmio,
7646};
7647
7648static const struct read_write_emulator_ops write_emultor = {
7649	.read_write_emulate = write_emulate,
7650	.read_write_mmio = write_mmio,
7651	.read_write_exit_mmio = write_exit_mmio,
7652	.write = true,
7653};
7654
7655static int emulator_read_write_onepage(unsigned long addr, void *val,
7656				       unsigned int bytes,
7657				       struct x86_exception *exception,
7658				       struct kvm_vcpu *vcpu,
7659				       const struct read_write_emulator_ops *ops)
7660{
7661	gpa_t gpa;
7662	int handled, ret;
7663	bool write = ops->write;
7664	struct kvm_mmio_fragment *frag;
7665	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7666
7667	/*
7668	 * If the exit was due to a NPF we may already have a GPA.
7669	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7670	 * Note, this cannot be used on string operations since string
7671	 * operation using rep will only have the initial GPA from the NPF
7672	 * occurred.
7673	 */
7674	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7675	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7676		gpa = ctxt->gpa_val;
7677		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7678	} else {
7679		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7680		if (ret < 0)
7681			return X86EMUL_PROPAGATE_FAULT;
7682	}
7683
7684	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7685		return X86EMUL_CONTINUE;
7686
7687	/*
7688	 * Is this MMIO handled locally?
7689	 */
7690	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7691	if (handled == bytes)
7692		return X86EMUL_CONTINUE;
7693
7694	gpa += handled;
7695	bytes -= handled;
7696	val += handled;
7697
7698	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7699	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7700	frag->gpa = gpa;
7701	frag->data = val;
7702	frag->len = bytes;
7703	return X86EMUL_CONTINUE;
7704}
7705
7706static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7707			unsigned long addr,
7708			void *val, unsigned int bytes,
7709			struct x86_exception *exception,
7710			const struct read_write_emulator_ops *ops)
7711{
7712	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7713	gpa_t gpa;
7714	int rc;
7715
7716	if (ops->read_write_prepare &&
7717		  ops->read_write_prepare(vcpu, val, bytes))
7718		return X86EMUL_CONTINUE;
7719
7720	vcpu->mmio_nr_fragments = 0;
7721
7722	/* Crossing a page boundary? */
7723	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7724		int now;
7725
7726		now = -addr & ~PAGE_MASK;
7727		rc = emulator_read_write_onepage(addr, val, now, exception,
7728						 vcpu, ops);
7729
7730		if (rc != X86EMUL_CONTINUE)
7731			return rc;
7732		addr += now;
7733		if (ctxt->mode != X86EMUL_MODE_PROT64)
7734			addr = (u32)addr;
7735		val += now;
7736		bytes -= now;
7737	}
7738
7739	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7740					 vcpu, ops);
7741	if (rc != X86EMUL_CONTINUE)
7742		return rc;
7743
7744	if (!vcpu->mmio_nr_fragments)
7745		return rc;
7746
7747	gpa = vcpu->mmio_fragments[0].gpa;
7748
7749	vcpu->mmio_needed = 1;
7750	vcpu->mmio_cur_fragment = 0;
7751
7752	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7753	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7754	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7755	vcpu->run->mmio.phys_addr = gpa;
7756
7757	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7758}
7759
7760static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7761				  unsigned long addr,
7762				  void *val,
7763				  unsigned int bytes,
7764				  struct x86_exception *exception)
7765{
7766	return emulator_read_write(ctxt, addr, val, bytes,
7767				   exception, &read_emultor);
7768}
7769
7770static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7771			    unsigned long addr,
7772			    const void *val,
7773			    unsigned int bytes,
7774			    struct x86_exception *exception)
7775{
7776	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7777				   exception, &write_emultor);
7778}
7779
7780#define emulator_try_cmpxchg_user(t, ptr, old, new) \
7781	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7782
7783static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7784				     unsigned long addr,
7785				     const void *old,
7786				     const void *new,
7787				     unsigned int bytes,
7788				     struct x86_exception *exception)
7789{
7790	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7791	u64 page_line_mask;
7792	unsigned long hva;
7793	gpa_t gpa;
7794	int r;
7795
7796	/* guests cmpxchg8b have to be emulated atomically */
7797	if (bytes > 8 || (bytes & (bytes - 1)))
7798		goto emul_write;
7799
7800	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7801
7802	if (gpa == INVALID_GPA ||
7803	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7804		goto emul_write;
7805
7806	/*
7807	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7808	 * enabled in the host and the access splits a cache line.
7809	 */
7810	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7811		page_line_mask = ~(cache_line_size() - 1);
7812	else
7813		page_line_mask = PAGE_MASK;
7814
7815	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7816		goto emul_write;
7817
7818	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7819	if (kvm_is_error_hva(hva))
7820		goto emul_write;
7821
7822	hva += offset_in_page(gpa);
7823
7824	switch (bytes) {
7825	case 1:
7826		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7827		break;
7828	case 2:
7829		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7830		break;
7831	case 4:
7832		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7833		break;
7834	case 8:
7835		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7836		break;
7837	default:
7838		BUG();
7839	}
7840
7841	if (r < 0)
7842		return X86EMUL_UNHANDLEABLE;
7843	if (r)
7844		return X86EMUL_CMPXCHG_FAILED;
7845
7846	kvm_page_track_write(vcpu, gpa, new, bytes);
7847
7848	return X86EMUL_CONTINUE;
7849
7850emul_write:
7851	pr_warn_once("emulating exchange as write\n");
7852
7853	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7854}
7855
7856static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7857			       unsigned short port, void *data,
7858			       unsigned int count, bool in)
7859{
7860	unsigned i;
7861	int r;
7862
7863	WARN_ON_ONCE(vcpu->arch.pio.count);
7864	for (i = 0; i < count; i++) {
7865		if (in)
7866			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7867		else
7868			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7869
7870		if (r) {
7871			if (i == 0)
7872				goto userspace_io;
7873
7874			/*
7875			 * Userspace must have unregistered the device while PIO
7876			 * was running.  Drop writes / read as 0.
7877			 */
7878			if (in)
7879				memset(data, 0, size * (count - i));
7880			break;
7881		}
7882
7883		data += size;
7884	}
7885	return 1;
7886
7887userspace_io:
7888	vcpu->arch.pio.port = port;
7889	vcpu->arch.pio.in = in;
7890	vcpu->arch.pio.count = count;
7891	vcpu->arch.pio.size = size;
7892
7893	if (in)
7894		memset(vcpu->arch.pio_data, 0, size * count);
7895	else
7896		memcpy(vcpu->arch.pio_data, data, size * count);
7897
7898	vcpu->run->exit_reason = KVM_EXIT_IO;
7899	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7900	vcpu->run->io.size = size;
7901	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7902	vcpu->run->io.count = count;
7903	vcpu->run->io.port = port;
7904	return 0;
7905}
7906
7907static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7908      			   unsigned short port, void *val, unsigned int count)
7909{
7910	int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7911	if (r)
7912		trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7913
7914	return r;
7915}
7916
7917static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7918{
7919	int size = vcpu->arch.pio.size;
7920	unsigned int count = vcpu->arch.pio.count;
7921	memcpy(val, vcpu->arch.pio_data, size * count);
7922	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7923	vcpu->arch.pio.count = 0;
7924}
7925
7926static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7927				    int size, unsigned short port, void *val,
7928				    unsigned int count)
7929{
7930	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7931	if (vcpu->arch.pio.count) {
7932		/*
7933		 * Complete a previous iteration that required userspace I/O.
7934		 * Note, @count isn't guaranteed to match pio.count as userspace
7935		 * can modify ECX before rerunning the vCPU.  Ignore any such
7936		 * shenanigans as KVM doesn't support modifying the rep count,
7937		 * and the emulator ensures @count doesn't overflow the buffer.
7938		 */
7939		complete_emulator_pio_in(vcpu, val);
7940		return 1;
7941	}
7942
7943	return emulator_pio_in(vcpu, size, port, val, count);
7944}
7945
7946static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7947			    unsigned short port, const void *val,
7948			    unsigned int count)
7949{
7950	trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7951	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7952}
7953
7954static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7955				     int size, unsigned short port,
7956				     const void *val, unsigned int count)
7957{
7958	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7959}
7960
7961static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7962{
7963	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7964}
7965
7966static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7967{
7968	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7969}
7970
7971static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7972{
7973	if (!need_emulate_wbinvd(vcpu))
7974		return X86EMUL_CONTINUE;
7975
7976	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7977		int cpu = get_cpu();
7978
7979		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7980		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7981				wbinvd_ipi, NULL, 1);
7982		put_cpu();
7983		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7984	} else
7985		wbinvd();
7986	return X86EMUL_CONTINUE;
7987}
7988
7989int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7990{
7991	kvm_emulate_wbinvd_noskip(vcpu);
7992	return kvm_skip_emulated_instruction(vcpu);
7993}
7994EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7995
7996
7997
7998static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7999{
8000	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
8001}
8002
8003static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
8004			    unsigned long *dest)
8005{
8006	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
8007}
8008
8009static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
8010			   unsigned long value)
8011{
8012
8013	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
8014}
8015
8016static u64 mk_cr_64(u64 curr_cr, u32 new_val)
8017{
8018	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
8019}
8020
8021static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
8022{
8023	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8024	unsigned long value;
8025
8026	switch (cr) {
8027	case 0:
8028		value = kvm_read_cr0(vcpu);
8029		break;
8030	case 2:
8031		value = vcpu->arch.cr2;
8032		break;
8033	case 3:
8034		value = kvm_read_cr3(vcpu);
8035		break;
8036	case 4:
8037		value = kvm_read_cr4(vcpu);
8038		break;
8039	case 8:
8040		value = kvm_get_cr8(vcpu);
8041		break;
8042	default:
8043		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8044		return 0;
8045	}
8046
8047	return value;
8048}
8049
8050static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
8051{
8052	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8053	int res = 0;
8054
8055	switch (cr) {
8056	case 0:
8057		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
8058		break;
8059	case 2:
8060		vcpu->arch.cr2 = val;
8061		break;
8062	case 3:
8063		res = kvm_set_cr3(vcpu, val);
8064		break;
8065	case 4:
8066		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
8067		break;
8068	case 8:
8069		res = kvm_set_cr8(vcpu, val);
8070		break;
8071	default:
8072		kvm_err("%s: unexpected cr %u\n", __func__, cr);
8073		res = -1;
8074	}
8075
8076	return res;
8077}
8078
8079static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
8080{
8081	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
8082}
8083
8084static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8085{
8086	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
8087}
8088
8089static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8090{
8091	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
8092}
8093
8094static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8095{
8096	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
8097}
8098
8099static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8100{
8101	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
8102}
8103
8104static unsigned long emulator_get_cached_segment_base(
8105	struct x86_emulate_ctxt *ctxt, int seg)
8106{
8107	return get_segment_base(emul_to_vcpu(ctxt), seg);
8108}
8109
8110static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8111				 struct desc_struct *desc, u32 *base3,
8112				 int seg)
8113{
8114	struct kvm_segment var;
8115
8116	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
8117	*selector = var.selector;
8118
8119	if (var.unusable) {
8120		memset(desc, 0, sizeof(*desc));
8121		if (base3)
8122			*base3 = 0;
8123		return false;
8124	}
8125
8126	if (var.g)
8127		var.limit >>= 12;
8128	set_desc_limit(desc, var.limit);
8129	set_desc_base(desc, (unsigned long)var.base);
8130#ifdef CONFIG_X86_64
8131	if (base3)
8132		*base3 = var.base >> 32;
8133#endif
8134	desc->type = var.type;
8135	desc->s = var.s;
8136	desc->dpl = var.dpl;
8137	desc->p = var.present;
8138	desc->avl = var.avl;
8139	desc->l = var.l;
8140	desc->d = var.db;
8141	desc->g = var.g;
8142
8143	return true;
8144}
8145
8146static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8147				 struct desc_struct *desc, u32 base3,
8148				 int seg)
8149{
8150	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8151	struct kvm_segment var;
8152
8153	var.selector = selector;
8154	var.base = get_desc_base(desc);
8155#ifdef CONFIG_X86_64
8156	var.base |= ((u64)base3) << 32;
8157#endif
8158	var.limit = get_desc_limit(desc);
8159	if (desc->g)
8160		var.limit = (var.limit << 12) | 0xfff;
8161	var.type = desc->type;
8162	var.dpl = desc->dpl;
8163	var.db = desc->d;
8164	var.s = desc->s;
8165	var.l = desc->l;
8166	var.g = desc->g;
8167	var.avl = desc->avl;
8168	var.present = desc->p;
8169	var.unusable = !var.present;
8170	var.padding = 0;
8171
8172	kvm_set_segment(vcpu, &var, seg);
8173	return;
8174}
8175
8176static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8177					u32 msr_index, u64 *pdata)
8178{
8179	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8180	int r;
8181
8182	r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8183	if (r < 0)
8184		return X86EMUL_UNHANDLEABLE;
8185
8186	if (r) {
8187		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8188				       complete_emulated_rdmsr, r))
8189			return X86EMUL_IO_NEEDED;
8190
8191		trace_kvm_msr_read_ex(msr_index);
8192		return X86EMUL_PROPAGATE_FAULT;
8193	}
8194
8195	trace_kvm_msr_read(msr_index, *pdata);
8196	return X86EMUL_CONTINUE;
8197}
8198
8199static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8200					u32 msr_index, u64 data)
8201{
8202	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8203	int r;
8204
8205	r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8206	if (r < 0)
8207		return X86EMUL_UNHANDLEABLE;
8208
8209	if (r) {
8210		if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8211				       complete_emulated_msr_access, r))
8212			return X86EMUL_IO_NEEDED;
8213
8214		trace_kvm_msr_write_ex(msr_index, data);
8215		return X86EMUL_PROPAGATE_FAULT;
8216	}
8217
8218	trace_kvm_msr_write(msr_index, data);
8219	return X86EMUL_CONTINUE;
8220}
8221
8222static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8223			    u32 msr_index, u64 *pdata)
8224{
8225	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8226}
8227
8228static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8229			      u32 pmc)
8230{
8231	if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8232		return 0;
8233	return -EINVAL;
8234}
8235
8236static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8237			     u32 pmc, u64 *pdata)
8238{
8239	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8240}
8241
8242static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8243{
8244	emul_to_vcpu(ctxt)->arch.halt_request = 1;
8245}
8246
8247static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8248			      struct x86_instruction_info *info,
8249			      enum x86_intercept_stage stage)
8250{
8251	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8252					    &ctxt->exception);
8253}
8254
8255static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8256			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8257			      bool exact_only)
8258{
8259	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8260}
8261
8262static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8263{
8264	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8265}
8266
8267static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8268{
8269	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8270}
8271
8272static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8273{
8274	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8275}
8276
8277static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8278{
8279	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8280}
8281
8282static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8283{
8284	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8285}
8286
8287static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8288{
8289	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8290}
8291
8292static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
8293{
8294	return is_smm(emul_to_vcpu(ctxt));
8295}
8296
8297static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
8298{
8299	return is_guest_mode(emul_to_vcpu(ctxt));
8300}
8301
8302#ifndef CONFIG_KVM_SMM
8303static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
8304{
8305	WARN_ON_ONCE(1);
8306	return X86EMUL_UNHANDLEABLE;
8307}
8308#endif
8309
8310static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8311{
8312	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8313}
8314
8315static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8316{
8317	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8318}
8319
8320static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8321{
8322	struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8323
8324	if (!kvm->vm_bugged)
8325		kvm_vm_bugged(kvm);
8326}
8327
8328static const struct x86_emulate_ops emulate_ops = {
8329	.vm_bugged           = emulator_vm_bugged,
8330	.read_gpr            = emulator_read_gpr,
8331	.write_gpr           = emulator_write_gpr,
8332	.read_std            = emulator_read_std,
8333	.write_std           = emulator_write_std,
8334	.fetch               = kvm_fetch_guest_virt,
8335	.read_emulated       = emulator_read_emulated,
8336	.write_emulated      = emulator_write_emulated,
8337	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
8338	.invlpg              = emulator_invlpg,
8339	.pio_in_emulated     = emulator_pio_in_emulated,
8340	.pio_out_emulated    = emulator_pio_out_emulated,
8341	.get_segment         = emulator_get_segment,
8342	.set_segment         = emulator_set_segment,
8343	.get_cached_segment_base = emulator_get_cached_segment_base,
8344	.get_gdt             = emulator_get_gdt,
8345	.get_idt	     = emulator_get_idt,
8346	.set_gdt             = emulator_set_gdt,
8347	.set_idt	     = emulator_set_idt,
8348	.get_cr              = emulator_get_cr,
8349	.set_cr              = emulator_set_cr,
8350	.cpl                 = emulator_get_cpl,
8351	.get_dr              = emulator_get_dr,
8352	.set_dr              = emulator_set_dr,
8353	.set_msr_with_filter = emulator_set_msr_with_filter,
8354	.get_msr_with_filter = emulator_get_msr_with_filter,
8355	.get_msr             = emulator_get_msr,
8356	.check_pmc	     = emulator_check_pmc,
8357	.read_pmc            = emulator_read_pmc,
8358	.halt                = emulator_halt,
8359	.wbinvd              = emulator_wbinvd,
8360	.fix_hypercall       = emulator_fix_hypercall,
8361	.intercept           = emulator_intercept,
8362	.get_cpuid           = emulator_get_cpuid,
8363	.guest_has_movbe     = emulator_guest_has_movbe,
8364	.guest_has_fxsr      = emulator_guest_has_fxsr,
8365	.guest_has_rdpid     = emulator_guest_has_rdpid,
8366	.set_nmi_mask        = emulator_set_nmi_mask,
8367	.is_smm              = emulator_is_smm,
8368	.is_guest_mode       = emulator_is_guest_mode,
8369	.leave_smm           = emulator_leave_smm,
8370	.triple_fault        = emulator_triple_fault,
8371	.set_xcr             = emulator_set_xcr,
8372};
8373
8374static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8375{
8376	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8377	/*
8378	 * an sti; sti; sequence only disable interrupts for the first
8379	 * instruction. So, if the last instruction, be it emulated or
8380	 * not, left the system with the INT_STI flag enabled, it
8381	 * means that the last instruction is an sti. We should not
8382	 * leave the flag on in this case. The same goes for mov ss
8383	 */
8384	if (int_shadow & mask)
8385		mask = 0;
8386	if (unlikely(int_shadow || mask)) {
8387		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8388		if (!mask)
8389			kvm_make_request(KVM_REQ_EVENT, vcpu);
8390	}
8391}
8392
8393static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8394{
8395	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8396
8397	if (ctxt->exception.vector == PF_VECTOR)
8398		kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8399	else if (ctxt->exception.error_code_valid)
8400		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8401				      ctxt->exception.error_code);
8402	else
8403		kvm_queue_exception(vcpu, ctxt->exception.vector);
8404}
8405
8406static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8407{
8408	struct x86_emulate_ctxt *ctxt;
8409
8410	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8411	if (!ctxt) {
8412		pr_err("failed to allocate vcpu's emulator\n");
8413		return NULL;
8414	}
8415
8416	ctxt->vcpu = vcpu;
8417	ctxt->ops = &emulate_ops;
8418	vcpu->arch.emulate_ctxt = ctxt;
8419
8420	return ctxt;
8421}
8422
8423static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8424{
8425	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8426	int cs_db, cs_l;
8427
8428	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8429
8430	ctxt->gpa_available = false;
8431	ctxt->eflags = kvm_get_rflags(vcpu);
8432	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8433
8434	ctxt->eip = kvm_rip_read(vcpu);
8435	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
8436		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
8437		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
8438		     cs_db				? X86EMUL_MODE_PROT32 :
8439							  X86EMUL_MODE_PROT16;
8440	ctxt->interruptibility = 0;
8441	ctxt->have_exception = false;
8442	ctxt->exception.vector = -1;
8443	ctxt->perm_ok = false;
8444
8445	init_decode_cache(ctxt);
8446	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8447}
8448
8449void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8450{
8451	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8452	int ret;
8453
8454	init_emulate_ctxt(vcpu);
8455
8456	ctxt->op_bytes = 2;
8457	ctxt->ad_bytes = 2;
8458	ctxt->_eip = ctxt->eip + inc_eip;
8459	ret = emulate_int_real(ctxt, irq);
8460
8461	if (ret != X86EMUL_CONTINUE) {
8462		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8463	} else {
8464		ctxt->eip = ctxt->_eip;
8465		kvm_rip_write(vcpu, ctxt->eip);
8466		kvm_set_rflags(vcpu, ctxt->eflags);
8467	}
8468}
8469EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8470
8471static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8472					   u8 ndata, u8 *insn_bytes, u8 insn_size)
8473{
8474	struct kvm_run *run = vcpu->run;
8475	u64 info[5];
8476	u8 info_start;
8477
8478	/*
8479	 * Zero the whole array used to retrieve the exit info, as casting to
8480	 * u32 for select entries will leave some chunks uninitialized.
8481	 */
8482	memset(&info, 0, sizeof(info));
8483
8484	static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8485					   &info[2], (u32 *)&info[3],
8486					   (u32 *)&info[4]);
8487
8488	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8489	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8490
8491	/*
8492	 * There's currently space for 13 entries, but 5 are used for the exit
8493	 * reason and info.  Restrict to 4 to reduce the maintenance burden
8494	 * when expanding kvm_run.emulation_failure in the future.
8495	 */
8496	if (WARN_ON_ONCE(ndata > 4))
8497		ndata = 4;
8498
8499	/* Always include the flags as a 'data' entry. */
8500	info_start = 1;
8501	run->emulation_failure.flags = 0;
8502
8503	if (insn_size) {
8504		BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8505			      sizeof(run->emulation_failure.insn_bytes) != 16));
8506		info_start += 2;
8507		run->emulation_failure.flags |=
8508			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8509		run->emulation_failure.insn_size = insn_size;
8510		memset(run->emulation_failure.insn_bytes, 0x90,
8511		       sizeof(run->emulation_failure.insn_bytes));
8512		memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8513	}
8514
8515	memcpy(&run->internal.data[info_start], info, sizeof(info));
8516	memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8517	       ndata * sizeof(data[0]));
8518
8519	run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8520}
8521
8522static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8523{
8524	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8525
8526	prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8527				       ctxt->fetch.end - ctxt->fetch.data);
8528}
8529
8530void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8531					  u8 ndata)
8532{
8533	prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8534}
8535EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8536
8537void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8538{
8539	__kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8540}
8541EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8542
8543static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8544{
8545	struct kvm *kvm = vcpu->kvm;
8546
8547	++vcpu->stat.insn_emulation_fail;
8548	trace_kvm_emulate_insn_failed(vcpu);
8549
8550	if (emulation_type & EMULTYPE_VMWARE_GP) {
8551		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8552		return 1;
8553	}
8554
8555	if (kvm->arch.exit_on_emulation_error ||
8556	    (emulation_type & EMULTYPE_SKIP)) {
8557		prepare_emulation_ctxt_failure_exit(vcpu);
8558		return 0;
8559	}
8560
8561	kvm_queue_exception(vcpu, UD_VECTOR);
8562
8563	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8564		prepare_emulation_ctxt_failure_exit(vcpu);
8565		return 0;
8566	}
8567
8568	return 1;
8569}
8570
8571static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8572				  int emulation_type)
8573{
8574	gpa_t gpa = cr2_or_gpa;
8575	kvm_pfn_t pfn;
8576
8577	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8578		return false;
8579
8580	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8581	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8582		return false;
8583
8584	if (!vcpu->arch.mmu->root_role.direct) {
8585		/*
8586		 * Write permission should be allowed since only
8587		 * write access need to be emulated.
8588		 */
8589		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8590
8591		/*
8592		 * If the mapping is invalid in guest, let cpu retry
8593		 * it to generate fault.
8594		 */
8595		if (gpa == INVALID_GPA)
8596			return true;
8597	}
8598
8599	/*
8600	 * Do not retry the unhandleable instruction if it faults on the
8601	 * readonly host memory, otherwise it will goto a infinite loop:
8602	 * retry instruction -> write #PF -> emulation fail -> retry
8603	 * instruction -> ...
8604	 */
8605	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8606
8607	/*
8608	 * If the instruction failed on the error pfn, it can not be fixed,
8609	 * report the error to userspace.
8610	 */
8611	if (is_error_noslot_pfn(pfn))
8612		return false;
8613
8614	kvm_release_pfn_clean(pfn);
8615
8616	/* The instructions are well-emulated on direct mmu. */
8617	if (vcpu->arch.mmu->root_role.direct) {
8618		unsigned int indirect_shadow_pages;
8619
8620		write_lock(&vcpu->kvm->mmu_lock);
8621		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8622		write_unlock(&vcpu->kvm->mmu_lock);
8623
8624		if (indirect_shadow_pages)
8625			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8626
8627		return true;
8628	}
8629
8630	/*
8631	 * if emulation was due to access to shadowed page table
8632	 * and it failed try to unshadow page and re-enter the
8633	 * guest to let CPU execute the instruction.
8634	 */
8635	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8636
8637	/*
8638	 * If the access faults on its page table, it can not
8639	 * be fixed by unprotecting shadow page and it should
8640	 * be reported to userspace.
8641	 */
8642	return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
8643}
8644
8645static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8646			      gpa_t cr2_or_gpa,  int emulation_type)
8647{
8648	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8649	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8650
8651	last_retry_eip = vcpu->arch.last_retry_eip;
8652	last_retry_addr = vcpu->arch.last_retry_addr;
8653
8654	/*
8655	 * If the emulation is caused by #PF and it is non-page_table
8656	 * writing instruction, it means the VM-EXIT is caused by shadow
8657	 * page protected, we can zap the shadow page and retry this
8658	 * instruction directly.
8659	 *
8660	 * Note: if the guest uses a non-page-table modifying instruction
8661	 * on the PDE that points to the instruction, then we will unmap
8662	 * the instruction and go to an infinite loop. So, we cache the
8663	 * last retried eip and the last fault address, if we meet the eip
8664	 * and the address again, we can break out of the potential infinite
8665	 * loop.
8666	 */
8667	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8668
8669	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8670		return false;
8671
8672	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8673	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8674		return false;
8675
8676	if (x86_page_table_writing_insn(ctxt))
8677		return false;
8678
8679	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8680		return false;
8681
8682	vcpu->arch.last_retry_eip = ctxt->eip;
8683	vcpu->arch.last_retry_addr = cr2_or_gpa;
8684
8685	if (!vcpu->arch.mmu->root_role.direct)
8686		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8687
8688	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8689
8690	return true;
8691}
8692
8693static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8694static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8695
8696static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8697				unsigned long *db)
8698{
8699	u32 dr6 = 0;
8700	int i;
8701	u32 enable, rwlen;
8702
8703	enable = dr7;
8704	rwlen = dr7 >> 16;
8705	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8706		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8707			dr6 |= (1 << i);
8708	return dr6;
8709}
8710
8711static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8712{
8713	struct kvm_run *kvm_run = vcpu->run;
8714
8715	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8716		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8717		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8718		kvm_run->debug.arch.exception = DB_VECTOR;
8719		kvm_run->exit_reason = KVM_EXIT_DEBUG;
8720		return 0;
8721	}
8722	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8723	return 1;
8724}
8725
8726int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8727{
8728	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8729	int r;
8730
8731	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8732	if (unlikely(!r))
8733		return 0;
8734
8735	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8736
8737	/*
8738	 * rflags is the old, "raw" value of the flags.  The new value has
8739	 * not been saved yet.
8740	 *
8741	 * This is correct even for TF set by the guest, because "the
8742	 * processor will not generate this exception after the instruction
8743	 * that sets the TF flag".
8744	 */
8745	if (unlikely(rflags & X86_EFLAGS_TF))
8746		r = kvm_vcpu_do_singlestep(vcpu);
8747	return r;
8748}
8749EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8750
8751static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8752{
8753	u32 shadow;
8754
8755	if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8756		return true;
8757
8758	/*
8759	 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8760	 * but AMD CPUs do not.  MOV/POP SS blocking is rare, check that first
8761	 * to avoid the relatively expensive CPUID lookup.
8762	 */
8763	shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8764	return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8765	       guest_cpuid_is_intel(vcpu);
8766}
8767
8768static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8769					   int emulation_type, int *r)
8770{
8771	WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8772
8773	/*
8774	 * Do not check for code breakpoints if hardware has already done the
8775	 * checks, as inferred from the emulation type.  On NO_DECODE and SKIP,
8776	 * the instruction has passed all exception checks, and all intercepted
8777	 * exceptions that trigger emulation have lower priority than code
8778	 * breakpoints, i.e. the fact that the intercepted exception occurred
8779	 * means any code breakpoints have already been serviced.
8780	 *
8781	 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8782	 * hardware has checked the RIP of the magic prefix, but not the RIP of
8783	 * the instruction being emulated.  The intent of forced emulation is
8784	 * to behave as if KVM intercepted the instruction without an exception
8785	 * and without a prefix.
8786	 */
8787	if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8788			      EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8789		return false;
8790
8791	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8792	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8793		struct kvm_run *kvm_run = vcpu->run;
8794		unsigned long eip = kvm_get_linear_rip(vcpu);
8795		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8796					   vcpu->arch.guest_debug_dr7,
8797					   vcpu->arch.eff_db);
8798
8799		if (dr6 != 0) {
8800			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8801			kvm_run->debug.arch.pc = eip;
8802			kvm_run->debug.arch.exception = DB_VECTOR;
8803			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8804			*r = 0;
8805			return true;
8806		}
8807	}
8808
8809	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8810	    !kvm_is_code_breakpoint_inhibited(vcpu)) {
8811		unsigned long eip = kvm_get_linear_rip(vcpu);
8812		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8813					   vcpu->arch.dr7,
8814					   vcpu->arch.db);
8815
8816		if (dr6 != 0) {
8817			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8818			*r = 1;
8819			return true;
8820		}
8821	}
8822
8823	return false;
8824}
8825
8826static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8827{
8828	switch (ctxt->opcode_len) {
8829	case 1:
8830		switch (ctxt->b) {
8831		case 0xe4:	/* IN */
8832		case 0xe5:
8833		case 0xec:
8834		case 0xed:
8835		case 0xe6:	/* OUT */
8836		case 0xe7:
8837		case 0xee:
8838		case 0xef:
8839		case 0x6c:	/* INS */
8840		case 0x6d:
8841		case 0x6e:	/* OUTS */
8842		case 0x6f:
8843			return true;
8844		}
8845		break;
8846	case 2:
8847		switch (ctxt->b) {
8848		case 0x33:	/* RDPMC */
8849			return true;
8850		}
8851		break;
8852	}
8853
8854	return false;
8855}
8856
8857/*
8858 * Decode an instruction for emulation.  The caller is responsible for handling
8859 * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8860 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8861 * code breakpoints have higher priority and thus have already been done by
8862 * hardware.
8863 *
8864 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8865 *     response to a machine check.
8866 */
8867int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8868				    void *insn, int insn_len)
8869{
8870	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8871	int r;
8872
8873	init_emulate_ctxt(vcpu);
8874
8875	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8876
8877	trace_kvm_emulate_insn_start(vcpu);
8878	++vcpu->stat.insn_emulation;
8879
8880	return r;
8881}
8882EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8883
8884int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8885			    int emulation_type, void *insn, int insn_len)
8886{
8887	int r;
8888	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8889	bool writeback = true;
8890
8891	if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8892		return 1;
8893
8894	vcpu->arch.l1tf_flush_l1d = true;
8895
8896	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8897		kvm_clear_exception_queue(vcpu);
8898
8899		/*
8900		 * Return immediately if RIP hits a code breakpoint, such #DBs
8901		 * are fault-like and are higher priority than any faults on
8902		 * the code fetch itself.
8903		 */
8904		if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8905			return r;
8906
8907		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8908						    insn, insn_len);
8909		if (r != EMULATION_OK)  {
8910			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8911			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8912				kvm_queue_exception(vcpu, UD_VECTOR);
8913				return 1;
8914			}
8915			if (reexecute_instruction(vcpu, cr2_or_gpa,
8916						  emulation_type))
8917				return 1;
8918
8919			if (ctxt->have_exception &&
8920			    !(emulation_type & EMULTYPE_SKIP)) {
8921				/*
8922				 * #UD should result in just EMULATION_FAILED, and trap-like
8923				 * exception should not be encountered during decode.
8924				 */
8925				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8926					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8927				inject_emulated_exception(vcpu);
8928				return 1;
8929			}
8930			return handle_emulation_failure(vcpu, emulation_type);
8931		}
8932	}
8933
8934	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8935	    !is_vmware_backdoor_opcode(ctxt)) {
8936		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8937		return 1;
8938	}
8939
8940	/*
8941	 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8942	 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8943	 * The caller is responsible for updating interruptibility state and
8944	 * injecting single-step #DBs.
8945	 */
8946	if (emulation_type & EMULTYPE_SKIP) {
8947		if (ctxt->mode != X86EMUL_MODE_PROT64)
8948			ctxt->eip = (u32)ctxt->_eip;
8949		else
8950			ctxt->eip = ctxt->_eip;
8951
8952		if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8953			r = 1;
8954			goto writeback;
8955		}
8956
8957		kvm_rip_write(vcpu, ctxt->eip);
8958		if (ctxt->eflags & X86_EFLAGS_RF)
8959			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8960		return 1;
8961	}
8962
8963	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8964		return 1;
8965
8966	/* this is needed for vmware backdoor interface to work since it
8967	   changes registers values  during IO operation */
8968	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8969		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8970		emulator_invalidate_register_cache(ctxt);
8971	}
8972
8973restart:
8974	if (emulation_type & EMULTYPE_PF) {
8975		/* Save the faulting GPA (cr2) in the address field */
8976		ctxt->exception.address = cr2_or_gpa;
8977
8978		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8979		if (vcpu->arch.mmu->root_role.direct) {
8980			ctxt->gpa_available = true;
8981			ctxt->gpa_val = cr2_or_gpa;
8982		}
8983	} else {
8984		/* Sanitize the address out of an abundance of paranoia. */
8985		ctxt->exception.address = 0;
8986	}
8987
8988	r = x86_emulate_insn(ctxt);
8989
8990	if (r == EMULATION_INTERCEPTED)
8991		return 1;
8992
8993	if (r == EMULATION_FAILED) {
8994		if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
8995			return 1;
8996
8997		return handle_emulation_failure(vcpu, emulation_type);
8998	}
8999
9000	if (ctxt->have_exception) {
9001		WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
9002		vcpu->mmio_needed = false;
9003		r = 1;
9004		inject_emulated_exception(vcpu);
9005	} else if (vcpu->arch.pio.count) {
9006		if (!vcpu->arch.pio.in) {
9007			/* FIXME: return into emulator if single-stepping.  */
9008			vcpu->arch.pio.count = 0;
9009		} else {
9010			writeback = false;
9011			vcpu->arch.complete_userspace_io = complete_emulated_pio;
9012		}
9013		r = 0;
9014	} else if (vcpu->mmio_needed) {
9015		++vcpu->stat.mmio_exits;
9016
9017		if (!vcpu->mmio_is_write)
9018			writeback = false;
9019		r = 0;
9020		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9021	} else if (vcpu->arch.complete_userspace_io) {
9022		writeback = false;
9023		r = 0;
9024	} else if (r == EMULATION_RESTART)
9025		goto restart;
9026	else
9027		r = 1;
9028
9029writeback:
9030	if (writeback) {
9031		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9032		toggle_interruptibility(vcpu, ctxt->interruptibility);
9033		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9034
9035		/*
9036		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9037		 * only supports code breakpoints and general detect #DB, both
9038		 * of which are fault-like.
9039		 */
9040		if (!ctxt->have_exception ||
9041		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9042			kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
9043			if (ctxt->is_branch)
9044				kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
9045			kvm_rip_write(vcpu, ctxt->eip);
9046			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
9047				r = kvm_vcpu_do_singlestep(vcpu);
9048			static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
9049			__kvm_set_rflags(vcpu, ctxt->eflags);
9050		}
9051
9052		/*
9053		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9054		 * do nothing, and it will be requested again as soon as
9055		 * the shadow expires.  But we still need to check here,
9056		 * because POPF has no interrupt shadow.
9057		 */
9058		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9059			kvm_make_request(KVM_REQ_EVENT, vcpu);
9060	} else
9061		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
9062
9063	return r;
9064}
9065
9066int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9067{
9068	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9069}
9070EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9071
9072int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9073					void *insn, int insn_len)
9074{
9075	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9076}
9077EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9078
9079static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9080{
9081	vcpu->arch.pio.count = 0;
9082	return 1;
9083}
9084
9085static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9086{
9087	vcpu->arch.pio.count = 0;
9088
9089	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9090		return 1;
9091
9092	return kvm_skip_emulated_instruction(vcpu);
9093}
9094
9095static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9096			    unsigned short port)
9097{
9098	unsigned long val = kvm_rax_read(vcpu);
9099	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9100
9101	if (ret)
9102		return ret;
9103
9104	/*
9105	 * Workaround userspace that relies on old KVM behavior of %rip being
9106	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9107	 */
9108	if (port == 0x7e &&
9109	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9110		vcpu->arch.complete_userspace_io =
9111			complete_fast_pio_out_port_0x7e;
9112		kvm_skip_emulated_instruction(vcpu);
9113	} else {
9114		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9115		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9116	}
9117	return 0;
9118}
9119
9120static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9121{
9122	unsigned long val;
9123
9124	/* We should only ever be called with arch.pio.count equal to 1 */
9125	BUG_ON(vcpu->arch.pio.count != 1);
9126
9127	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9128		vcpu->arch.pio.count = 0;
9129		return 1;
9130	}
9131
9132	/* For size less than 4 we merge, else we zero extend */
9133	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9134
9135	complete_emulator_pio_in(vcpu, &val);
9136	kvm_rax_write(vcpu, val);
9137
9138	return kvm_skip_emulated_instruction(vcpu);
9139}
9140
9141static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9142			   unsigned short port)
9143{
9144	unsigned long val;
9145	int ret;
9146
9147	/* For size less than 4 we merge, else we zero extend */
9148	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9149
9150	ret = emulator_pio_in(vcpu, size, port, &val, 1);
9151	if (ret) {
9152		kvm_rax_write(vcpu, val);
9153		return ret;
9154	}
9155
9156	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9157	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9158
9159	return 0;
9160}
9161
9162int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9163{
9164	int ret;
9165
9166	if (in)
9167		ret = kvm_fast_pio_in(vcpu, size, port);
9168	else
9169		ret = kvm_fast_pio_out(vcpu, size, port);
9170	return ret && kvm_skip_emulated_instruction(vcpu);
9171}
9172EXPORT_SYMBOL_GPL(kvm_fast_pio);
9173
9174static int kvmclock_cpu_down_prep(unsigned int cpu)
9175{
9176	__this_cpu_write(cpu_tsc_khz, 0);
9177	return 0;
9178}
9179
9180static void tsc_khz_changed(void *data)
9181{
9182	struct cpufreq_freqs *freq = data;
9183	unsigned long khz;
9184
9185	WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9186
9187	if (data)
9188		khz = freq->new;
9189	else
9190		khz = cpufreq_quick_get(raw_smp_processor_id());
9191	if (!khz)
9192		khz = tsc_khz;
9193	__this_cpu_write(cpu_tsc_khz, khz);
9194}
9195
9196#ifdef CONFIG_X86_64
9197static void kvm_hyperv_tsc_notifier(void)
9198{
9199	struct kvm *kvm;
9200	int cpu;
9201
9202	mutex_lock(&kvm_lock);
9203	list_for_each_entry(kvm, &vm_list, vm_list)
9204		kvm_make_mclock_inprogress_request(kvm);
9205
9206	/* no guest entries from this point */
9207	hyperv_stop_tsc_emulation();
9208
9209	/* TSC frequency always matches when on Hyper-V */
9210	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9211		for_each_present_cpu(cpu)
9212			per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9213	}
9214	kvm_caps.max_guest_tsc_khz = tsc_khz;
9215
9216	list_for_each_entry(kvm, &vm_list, vm_list) {
9217		__kvm_start_pvclock_update(kvm);
9218		pvclock_update_vm_gtod_copy(kvm);
9219		kvm_end_pvclock_update(kvm);
9220	}
9221
9222	mutex_unlock(&kvm_lock);
9223}
9224#endif
9225
9226static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9227{
9228	struct kvm *kvm;
9229	struct kvm_vcpu *vcpu;
9230	int send_ipi = 0;
9231	unsigned long i;
9232
9233	/*
9234	 * We allow guests to temporarily run on slowing clocks,
9235	 * provided we notify them after, or to run on accelerating
9236	 * clocks, provided we notify them before.  Thus time never
9237	 * goes backwards.
9238	 *
9239	 * However, we have a problem.  We can't atomically update
9240	 * the frequency of a given CPU from this function; it is
9241	 * merely a notifier, which can be called from any CPU.
9242	 * Changing the TSC frequency at arbitrary points in time
9243	 * requires a recomputation of local variables related to
9244	 * the TSC for each VCPU.  We must flag these local variables
9245	 * to be updated and be sure the update takes place with the
9246	 * new frequency before any guests proceed.
9247	 *
9248	 * Unfortunately, the combination of hotplug CPU and frequency
9249	 * change creates an intractable locking scenario; the order
9250	 * of when these callouts happen is undefined with respect to
9251	 * CPU hotplug, and they can race with each other.  As such,
9252	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9253	 * undefined; you can actually have a CPU frequency change take
9254	 * place in between the computation of X and the setting of the
9255	 * variable.  To protect against this problem, all updates of
9256	 * the per_cpu tsc_khz variable are done in an interrupt
9257	 * protected IPI, and all callers wishing to update the value
9258	 * must wait for a synchronous IPI to complete (which is trivial
9259	 * if the caller is on the CPU already).  This establishes the
9260	 * necessary total order on variable updates.
9261	 *
9262	 * Note that because a guest time update may take place
9263	 * anytime after the setting of the VCPU's request bit, the
9264	 * correct TSC value must be set before the request.  However,
9265	 * to ensure the update actually makes it to any guest which
9266	 * starts running in hardware virtualization between the set
9267	 * and the acquisition of the spinlock, we must also ping the
9268	 * CPU after setting the request bit.
9269	 *
9270	 */
9271
9272	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9273
9274	mutex_lock(&kvm_lock);
9275	list_for_each_entry(kvm, &vm_list, vm_list) {
9276		kvm_for_each_vcpu(i, vcpu, kvm) {
9277			if (vcpu->cpu != cpu)
9278				continue;
9279			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9280			if (vcpu->cpu != raw_smp_processor_id())
9281				send_ipi = 1;
9282		}
9283	}
9284	mutex_unlock(&kvm_lock);
9285
9286	if (freq->old < freq->new && send_ipi) {
9287		/*
9288		 * We upscale the frequency.  Must make the guest
9289		 * doesn't see old kvmclock values while running with
9290		 * the new frequency, otherwise we risk the guest sees
9291		 * time go backwards.
9292		 *
9293		 * In case we update the frequency for another cpu
9294		 * (which might be in guest context) send an interrupt
9295		 * to kick the cpu out of guest context.  Next time
9296		 * guest context is entered kvmclock will be updated,
9297		 * so the guest will not see stale values.
9298		 */
9299		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9300	}
9301}
9302
9303static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9304				     void *data)
9305{
9306	struct cpufreq_freqs *freq = data;
9307	int cpu;
9308
9309	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9310		return 0;
9311	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9312		return 0;
9313
9314	for_each_cpu(cpu, freq->policy->cpus)
9315		__kvmclock_cpufreq_notifier(freq, cpu);
9316
9317	return 0;
9318}
9319
9320static struct notifier_block kvmclock_cpufreq_notifier_block = {
9321	.notifier_call  = kvmclock_cpufreq_notifier
9322};
9323
9324static int kvmclock_cpu_online(unsigned int cpu)
9325{
9326	tsc_khz_changed(NULL);
9327	return 0;
9328}
9329
9330static void kvm_timer_init(void)
9331{
9332	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9333		max_tsc_khz = tsc_khz;
9334
9335		if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9336			struct cpufreq_policy *policy;
9337			int cpu;
9338
9339			cpu = get_cpu();
9340			policy = cpufreq_cpu_get(cpu);
9341			if (policy) {
9342				if (policy->cpuinfo.max_freq)
9343					max_tsc_khz = policy->cpuinfo.max_freq;
9344				cpufreq_cpu_put(policy);
9345			}
9346			put_cpu();
9347		}
9348		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9349					  CPUFREQ_TRANSITION_NOTIFIER);
9350
9351		cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9352				  kvmclock_cpu_online, kvmclock_cpu_down_prep);
9353	}
9354}
9355
9356#ifdef CONFIG_X86_64
9357static void pvclock_gtod_update_fn(struct work_struct *work)
9358{
9359	struct kvm *kvm;
9360	struct kvm_vcpu *vcpu;
9361	unsigned long i;
9362
9363	mutex_lock(&kvm_lock);
9364	list_for_each_entry(kvm, &vm_list, vm_list)
9365		kvm_for_each_vcpu(i, vcpu, kvm)
9366			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9367	atomic_set(&kvm_guest_has_master_clock, 0);
9368	mutex_unlock(&kvm_lock);
9369}
9370
9371static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9372
9373/*
9374 * Indirection to move queue_work() out of the tk_core.seq write held
9375 * region to prevent possible deadlocks against time accessors which
9376 * are invoked with work related locks held.
9377 */
9378static void pvclock_irq_work_fn(struct irq_work *w)
9379{
9380	queue_work(system_long_wq, &pvclock_gtod_work);
9381}
9382
9383static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9384
9385/*
9386 * Notification about pvclock gtod data update.
9387 */
9388static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9389			       void *priv)
9390{
9391	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9392	struct timekeeper *tk = priv;
9393
9394	update_pvclock_gtod(tk);
9395
9396	/*
9397	 * Disable master clock if host does not trust, or does not use,
9398	 * TSC based clocksource. Delegate queue_work() to irq_work as
9399	 * this is invoked with tk_core.seq write held.
9400	 */
9401	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9402	    atomic_read(&kvm_guest_has_master_clock) != 0)
9403		irq_work_queue(&pvclock_irq_work);
9404	return 0;
9405}
9406
9407static struct notifier_block pvclock_gtod_notifier = {
9408	.notifier_call = pvclock_gtod_notify,
9409};
9410#endif
9411
9412static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9413{
9414	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9415
9416#define __KVM_X86_OP(func) \
9417	static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9418#define KVM_X86_OP(func) \
9419	WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9420#define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9421#define KVM_X86_OP_OPTIONAL_RET0(func) \
9422	static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9423					   (void *)__static_call_return0);
9424#include <asm/kvm-x86-ops.h>
9425#undef __KVM_X86_OP
9426
9427	kvm_pmu_ops_update(ops->pmu_ops);
9428}
9429
9430static int kvm_x86_check_processor_compatibility(void)
9431{
9432	int cpu = smp_processor_id();
9433	struct cpuinfo_x86 *c = &cpu_data(cpu);
9434
9435	/*
9436	 * Compatibility checks are done when loading KVM and when enabling
9437	 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9438	 * compatible, i.e. KVM should never perform a compatibility check on
9439	 * an offline CPU.
9440	 */
9441	WARN_ON(!cpu_online(cpu));
9442
9443	if (__cr4_reserved_bits(cpu_has, c) !=
9444	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9445		return -EIO;
9446
9447	return static_call(kvm_x86_check_processor_compatibility)();
9448}
9449
9450static void kvm_x86_check_cpu_compat(void *ret)
9451{
9452	*(int *)ret = kvm_x86_check_processor_compatibility();
9453}
9454
9455static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9456{
9457	u64 host_pat;
9458	int r, cpu;
9459
9460	if (kvm_x86_ops.hardware_enable) {
9461		pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
9462		return -EEXIST;
9463	}
9464
9465	/*
9466	 * KVM explicitly assumes that the guest has an FPU and
9467	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9468	 * vCPU's FPU state as a fxregs_state struct.
9469	 */
9470	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9471		pr_err("inadequate fpu\n");
9472		return -EOPNOTSUPP;
9473	}
9474
9475	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9476		pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9477		return -EOPNOTSUPP;
9478	}
9479
9480	/*
9481	 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9482	 * the PAT bits in SPTEs.  Bail if PAT[0] is programmed to something
9483	 * other than WB.  Note, EPT doesn't utilize the PAT, but don't bother
9484	 * with an exception.  PAT[0] is set to WB on RESET and also by the
9485	 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9486	 */
9487	if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9488	    (host_pat & GENMASK(2, 0)) != 6) {
9489		pr_err("host PAT[0] is not WB\n");
9490		return -EIO;
9491	}
9492
9493	x86_emulator_cache = kvm_alloc_emulator_cache();
9494	if (!x86_emulator_cache) {
9495		pr_err("failed to allocate cache for x86 emulator\n");
9496		return -ENOMEM;
9497	}
9498
9499	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9500	if (!user_return_msrs) {
9501		pr_err("failed to allocate percpu kvm_user_return_msrs\n");
9502		r = -ENOMEM;
9503		goto out_free_x86_emulator_cache;
9504	}
9505	kvm_nr_uret_msrs = 0;
9506
9507	r = kvm_mmu_vendor_module_init();
9508	if (r)
9509		goto out_free_percpu;
9510
9511	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9512		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9513		kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9514	}
9515
9516	rdmsrl_safe(MSR_EFER, &host_efer);
9517
9518	if (boot_cpu_has(X86_FEATURE_XSAVES))
9519		rdmsrl(MSR_IA32_XSS, host_xss);
9520
9521	kvm_init_pmu_capability(ops->pmu_ops);
9522
9523	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
9524		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, host_arch_capabilities);
9525
9526	r = ops->hardware_setup();
9527	if (r != 0)
9528		goto out_mmu_exit;
9529
9530	kvm_ops_update(ops);
9531
9532	for_each_online_cpu(cpu) {
9533		smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
9534		if (r < 0)
9535			goto out_unwind_ops;
9536	}
9537
9538	/*
9539	 * Point of no return!  DO NOT add error paths below this point unless
9540	 * absolutely necessary, as most operations from this point forward
9541	 * require unwinding.
9542	 */
9543	kvm_timer_init();
9544
9545	if (pi_inject_timer == -1)
9546		pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9547#ifdef CONFIG_X86_64
9548	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9549
9550	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9551		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9552#endif
9553
9554	kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9555
9556	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9557		kvm_caps.supported_xss = 0;
9558
9559#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9560	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9561#undef __kvm_cpu_cap_has
9562
9563	if (kvm_caps.has_tsc_control) {
9564		/*
9565		 * Make sure the user can only configure tsc_khz values that
9566		 * fit into a signed integer.
9567		 * A min value is not calculated because it will always
9568		 * be 1 on all machines.
9569		 */
9570		u64 max = min(0x7fffffffULL,
9571			      __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9572		kvm_caps.max_guest_tsc_khz = max;
9573	}
9574	kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
9575	kvm_init_msr_lists();
9576	return 0;
9577
9578out_unwind_ops:
9579	kvm_x86_ops.hardware_enable = NULL;
9580	static_call(kvm_x86_hardware_unsetup)();
9581out_mmu_exit:
9582	kvm_mmu_vendor_module_exit();
9583out_free_percpu:
9584	free_percpu(user_return_msrs);
9585out_free_x86_emulator_cache:
9586	kmem_cache_destroy(x86_emulator_cache);
9587	return r;
9588}
9589
9590int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9591{
9592	int r;
9593
9594	mutex_lock(&vendor_module_lock);
9595	r = __kvm_x86_vendor_init(ops);
9596	mutex_unlock(&vendor_module_lock);
9597
9598	return r;
9599}
9600EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
9601
9602void kvm_x86_vendor_exit(void)
9603{
9604	kvm_unregister_perf_callbacks();
9605
9606#ifdef CONFIG_X86_64
9607	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9608		clear_hv_tscchange_cb();
9609#endif
9610	kvm_lapic_exit();
9611
9612	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9613		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9614					    CPUFREQ_TRANSITION_NOTIFIER);
9615		cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9616	}
9617#ifdef CONFIG_X86_64
9618	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9619	irq_work_sync(&pvclock_irq_work);
9620	cancel_work_sync(&pvclock_gtod_work);
9621#endif
9622	static_call(kvm_x86_hardware_unsetup)();
9623	kvm_mmu_vendor_module_exit();
9624	free_percpu(user_return_msrs);
9625	kmem_cache_destroy(x86_emulator_cache);
9626#ifdef CONFIG_KVM_XEN
9627	static_key_deferred_flush(&kvm_xen_enabled);
9628	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9629#endif
9630	mutex_lock(&vendor_module_lock);
9631	kvm_x86_ops.hardware_enable = NULL;
9632	mutex_unlock(&vendor_module_lock);
9633}
9634EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
9635
9636static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9637{
9638	/*
9639	 * The vCPU has halted, e.g. executed HLT.  Update the run state if the
9640	 * local APIC is in-kernel, the run loop will detect the non-runnable
9641	 * state and halt the vCPU.  Exit to userspace if the local APIC is
9642	 * managed by userspace, in which case userspace is responsible for
9643	 * handling wake events.
9644	 */
9645	++vcpu->stat.halt_exits;
9646	if (lapic_in_kernel(vcpu)) {
9647		vcpu->arch.mp_state = state;
9648		return 1;
9649	} else {
9650		vcpu->run->exit_reason = reason;
9651		return 0;
9652	}
9653}
9654
9655int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9656{
9657	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9658}
9659EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9660
9661int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9662{
9663	int ret = kvm_skip_emulated_instruction(vcpu);
9664	/*
9665	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9666	 * KVM_EXIT_DEBUG here.
9667	 */
9668	return kvm_emulate_halt_noskip(vcpu) && ret;
9669}
9670EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9671
9672int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9673{
9674	int ret = kvm_skip_emulated_instruction(vcpu);
9675
9676	return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9677					KVM_EXIT_AP_RESET_HOLD) && ret;
9678}
9679EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9680
9681#ifdef CONFIG_X86_64
9682static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9683			        unsigned long clock_type)
9684{
9685	struct kvm_clock_pairing clock_pairing;
9686	struct timespec64 ts;
9687	u64 cycle;
9688	int ret;
9689
9690	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9691		return -KVM_EOPNOTSUPP;
9692
9693	/*
9694	 * When tsc is in permanent catchup mode guests won't be able to use
9695	 * pvclock_read_retry loop to get consistent view of pvclock
9696	 */
9697	if (vcpu->arch.tsc_always_catchup)
9698		return -KVM_EOPNOTSUPP;
9699
9700	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9701		return -KVM_EOPNOTSUPP;
9702
9703	clock_pairing.sec = ts.tv_sec;
9704	clock_pairing.nsec = ts.tv_nsec;
9705	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9706	clock_pairing.flags = 0;
9707	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9708
9709	ret = 0;
9710	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9711			    sizeof(struct kvm_clock_pairing)))
9712		ret = -KVM_EFAULT;
9713
9714	return ret;
9715}
9716#endif
9717
9718/*
9719 * kvm_pv_kick_cpu_op:  Kick a vcpu.
9720 *
9721 * @apicid - apicid of vcpu to be kicked.
9722 */
9723static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9724{
9725	/*
9726	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9727	 * common code, e.g. for tracing. Defer initialization to the compiler.
9728	 */
9729	struct kvm_lapic_irq lapic_irq = {
9730		.delivery_mode = APIC_DM_REMRD,
9731		.dest_mode = APIC_DEST_PHYSICAL,
9732		.shorthand = APIC_DEST_NOSHORT,
9733		.dest_id = apicid,
9734	};
9735
9736	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9737}
9738
9739bool kvm_apicv_activated(struct kvm *kvm)
9740{
9741	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9742}
9743EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9744
9745bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9746{
9747	ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9748	ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9749
9750	return (vm_reasons | vcpu_reasons) == 0;
9751}
9752EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9753
9754static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9755				       enum kvm_apicv_inhibit reason, bool set)
9756{
9757	if (set)
9758		__set_bit(reason, inhibits);
9759	else
9760		__clear_bit(reason, inhibits);
9761
9762	trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9763}
9764
9765static void kvm_apicv_init(struct kvm *kvm)
9766{
9767	unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9768
9769	init_rwsem(&kvm->arch.apicv_update_lock);
9770
9771	set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9772
9773	if (!enable_apicv)
9774		set_or_clear_apicv_inhibit(inhibits,
9775					   APICV_INHIBIT_REASON_DISABLE, true);
9776}
9777
9778static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9779{
9780	struct kvm_vcpu *target = NULL;
9781	struct kvm_apic_map *map;
9782
9783	vcpu->stat.directed_yield_attempted++;
9784
9785	if (single_task_running())
9786		goto no_yield;
9787
9788	rcu_read_lock();
9789	map = rcu_dereference(vcpu->kvm->arch.apic_map);
9790
9791	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9792		target = map->phys_map[dest_id]->vcpu;
9793
9794	rcu_read_unlock();
9795
9796	if (!target || !READ_ONCE(target->ready))
9797		goto no_yield;
9798
9799	/* Ignore requests to yield to self */
9800	if (vcpu == target)
9801		goto no_yield;
9802
9803	if (kvm_vcpu_yield_to(target) <= 0)
9804		goto no_yield;
9805
9806	vcpu->stat.directed_yield_successful++;
9807
9808no_yield:
9809	return;
9810}
9811
9812static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9813{
9814	u64 ret = vcpu->run->hypercall.ret;
9815
9816	if (!is_64_bit_mode(vcpu))
9817		ret = (u32)ret;
9818	kvm_rax_write(vcpu, ret);
9819	++vcpu->stat.hypercalls;
9820	return kvm_skip_emulated_instruction(vcpu);
9821}
9822
9823int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9824{
9825	unsigned long nr, a0, a1, a2, a3, ret;
9826	int op_64_bit;
9827
9828	if (kvm_xen_hypercall_enabled(vcpu->kvm))
9829		return kvm_xen_hypercall(vcpu);
9830
9831	if (kvm_hv_hypercall_enabled(vcpu))
9832		return kvm_hv_hypercall(vcpu);
9833
9834	nr = kvm_rax_read(vcpu);
9835	a0 = kvm_rbx_read(vcpu);
9836	a1 = kvm_rcx_read(vcpu);
9837	a2 = kvm_rdx_read(vcpu);
9838	a3 = kvm_rsi_read(vcpu);
9839
9840	trace_kvm_hypercall(nr, a0, a1, a2, a3);
9841
9842	op_64_bit = is_64_bit_hypercall(vcpu);
9843	if (!op_64_bit) {
9844		nr &= 0xFFFFFFFF;
9845		a0 &= 0xFFFFFFFF;
9846		a1 &= 0xFFFFFFFF;
9847		a2 &= 0xFFFFFFFF;
9848		a3 &= 0xFFFFFFFF;
9849	}
9850
9851	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9852		ret = -KVM_EPERM;
9853		goto out;
9854	}
9855
9856	ret = -KVM_ENOSYS;
9857
9858	switch (nr) {
9859	case KVM_HC_VAPIC_POLL_IRQ:
9860		ret = 0;
9861		break;
9862	case KVM_HC_KICK_CPU:
9863		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9864			break;
9865
9866		kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9867		kvm_sched_yield(vcpu, a1);
9868		ret = 0;
9869		break;
9870#ifdef CONFIG_X86_64
9871	case KVM_HC_CLOCK_PAIRING:
9872		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9873		break;
9874#endif
9875	case KVM_HC_SEND_IPI:
9876		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9877			break;
9878
9879		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9880		break;
9881	case KVM_HC_SCHED_YIELD:
9882		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9883			break;
9884
9885		kvm_sched_yield(vcpu, a0);
9886		ret = 0;
9887		break;
9888	case KVM_HC_MAP_GPA_RANGE: {
9889		u64 gpa = a0, npages = a1, attrs = a2;
9890
9891		ret = -KVM_ENOSYS;
9892		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9893			break;
9894
9895		if (!PAGE_ALIGNED(gpa) || !npages ||
9896		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9897			ret = -KVM_EINVAL;
9898			break;
9899		}
9900
9901		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9902		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9903		vcpu->run->hypercall.args[0]  = gpa;
9904		vcpu->run->hypercall.args[1]  = npages;
9905		vcpu->run->hypercall.args[2]  = attrs;
9906		vcpu->run->hypercall.flags    = 0;
9907		if (op_64_bit)
9908			vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9909
9910		WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
9911		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9912		return 0;
9913	}
9914	default:
9915		ret = -KVM_ENOSYS;
9916		break;
9917	}
9918out:
9919	if (!op_64_bit)
9920		ret = (u32)ret;
9921	kvm_rax_write(vcpu, ret);
9922
9923	++vcpu->stat.hypercalls;
9924	return kvm_skip_emulated_instruction(vcpu);
9925}
9926EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9927
9928static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9929{
9930	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9931	char instruction[3];
9932	unsigned long rip = kvm_rip_read(vcpu);
9933
9934	/*
9935	 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9936	 * the pieces.
9937	 */
9938	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9939		ctxt->exception.error_code_valid = false;
9940		ctxt->exception.vector = UD_VECTOR;
9941		ctxt->have_exception = true;
9942		return X86EMUL_PROPAGATE_FAULT;
9943	}
9944
9945	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9946
9947	return emulator_write_emulated(ctxt, rip, instruction, 3,
9948		&ctxt->exception);
9949}
9950
9951static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9952{
9953	return vcpu->run->request_interrupt_window &&
9954		likely(!pic_in_kernel(vcpu->kvm));
9955}
9956
9957/* Called within kvm->srcu read side.  */
9958static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9959{
9960	struct kvm_run *kvm_run = vcpu->run;
9961
9962	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9963	kvm_run->cr8 = kvm_get_cr8(vcpu);
9964	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9965
9966	kvm_run->ready_for_interrupt_injection =
9967		pic_in_kernel(vcpu->kvm) ||
9968		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9969
9970	if (is_smm(vcpu))
9971		kvm_run->flags |= KVM_RUN_X86_SMM;
9972}
9973
9974static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9975{
9976	int max_irr, tpr;
9977
9978	if (!kvm_x86_ops.update_cr8_intercept)
9979		return;
9980
9981	if (!lapic_in_kernel(vcpu))
9982		return;
9983
9984	if (vcpu->arch.apic->apicv_active)
9985		return;
9986
9987	if (!vcpu->arch.apic->vapic_addr)
9988		max_irr = kvm_lapic_find_highest_irr(vcpu);
9989	else
9990		max_irr = -1;
9991
9992	if (max_irr != -1)
9993		max_irr >>= 4;
9994
9995	tpr = kvm_lapic_get_cr8(vcpu);
9996
9997	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9998}
9999
10000
10001int kvm_check_nested_events(struct kvm_vcpu *vcpu)
10002{
10003	if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10004		kvm_x86_ops.nested_ops->triple_fault(vcpu);
10005		return 1;
10006	}
10007
10008	return kvm_x86_ops.nested_ops->check_events(vcpu);
10009}
10010
10011static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10012{
10013	/*
10014	 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10015	 * exceptions don't report error codes.  The presence of an error code
10016	 * is carried with the exception and only stripped when the exception
10017	 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10018	 * report an error code despite the CPU being in Real Mode.
10019	 */
10020	vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10021
10022	trace_kvm_inj_exception(vcpu->arch.exception.vector,
10023				vcpu->arch.exception.has_error_code,
10024				vcpu->arch.exception.error_code,
10025				vcpu->arch.exception.injected);
10026
10027	static_call(kvm_x86_inject_exception)(vcpu);
10028}
10029
10030/*
10031 * Check for any event (interrupt or exception) that is ready to be injected,
10032 * and if there is at least one event, inject the event with the highest
10033 * priority.  This handles both "pending" events, i.e. events that have never
10034 * been injected into the guest, and "injected" events, i.e. events that were
10035 * injected as part of a previous VM-Enter, but weren't successfully delivered
10036 * and need to be re-injected.
10037 *
10038 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10039 * i.e. doesn't guarantee that there's an event window in the guest.  KVM must
10040 * be able to inject exceptions in the "middle" of an instruction, and so must
10041 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10042 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10043 * boundaries is necessary and correct.
10044 *
10045 * For simplicity, KVM uses a single path to inject all events (except events
10046 * that are injected directly from L1 to L2) and doesn't explicitly track
10047 * instruction boundaries for asynchronous events.  However, because VM-Exits
10048 * that can occur during instruction execution typically result in KVM skipping
10049 * the instruction or injecting an exception, e.g. instruction and exception
10050 * intercepts, and because pending exceptions have higher priority than pending
10051 * interrupts, KVM still honors instruction boundaries in most scenarios.
10052 *
10053 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10054 * the instruction or inject an exception, then KVM can incorrecty inject a new
10055 * asynchrounous event if the event became pending after the CPU fetched the
10056 * instruction (in the guest).  E.g. if a page fault (#PF, #NPF, EPT violation)
10057 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10058 * injected on the restarted instruction instead of being deferred until the
10059 * instruction completes.
10060 *
10061 * In practice, this virtualization hole is unlikely to be observed by the
10062 * guest, and even less likely to cause functional problems.  To detect the
10063 * hole, the guest would have to trigger an event on a side effect of an early
10064 * phase of instruction execution, e.g. on the instruction fetch from memory.
10065 * And for it to be a functional problem, the guest would need to depend on the
10066 * ordering between that side effect, the instruction completing, _and_ the
10067 * delivery of the asynchronous event.
10068 */
10069static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10070				       bool *req_immediate_exit)
10071{
10072	bool can_inject;
10073	int r;
10074
10075	/*
10076	 * Process nested events first, as nested VM-Exit supercedes event
10077	 * re-injection.  If there's an event queued for re-injection, it will
10078	 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10079	 */
10080	if (is_guest_mode(vcpu))
10081		r = kvm_check_nested_events(vcpu);
10082	else
10083		r = 0;
10084
10085	/*
10086	 * Re-inject exceptions and events *especially* if immediate entry+exit
10087	 * to/from L2 is needed, as any event that has already been injected
10088	 * into L2 needs to complete its lifecycle before injecting a new event.
10089	 *
10090	 * Don't re-inject an NMI or interrupt if there is a pending exception.
10091	 * This collision arises if an exception occurred while vectoring the
10092	 * injected event, KVM intercepted said exception, and KVM ultimately
10093	 * determined the fault belongs to the guest and queues the exception
10094	 * for injection back into the guest.
10095	 *
10096	 * "Injected" interrupts can also collide with pending exceptions if
10097	 * userspace ignores the "ready for injection" flag and blindly queues
10098	 * an interrupt.  In that case, prioritizing the exception is correct,
10099	 * as the exception "occurred" before the exit to userspace.  Trap-like
10100	 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10101	 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10102	 * priority, they're only generated (pended) during instruction
10103	 * execution, and interrupts are recognized at instruction boundaries.
10104	 * Thus a pending fault-like exception means the fault occurred on the
10105	 * *previous* instruction and must be serviced prior to recognizing any
10106	 * new events in order to fully complete the previous instruction.
10107	 */
10108	if (vcpu->arch.exception.injected)
10109		kvm_inject_exception(vcpu);
10110	else if (kvm_is_exception_pending(vcpu))
10111		; /* see above */
10112	else if (vcpu->arch.nmi_injected)
10113		static_call(kvm_x86_inject_nmi)(vcpu);
10114	else if (vcpu->arch.interrupt.injected)
10115		static_call(kvm_x86_inject_irq)(vcpu, true);
10116
10117	/*
10118	 * Exceptions that morph to VM-Exits are handled above, and pending
10119	 * exceptions on top of injected exceptions that do not VM-Exit should
10120	 * either morph to #DF or, sadly, override the injected exception.
10121	 */
10122	WARN_ON_ONCE(vcpu->arch.exception.injected &&
10123		     vcpu->arch.exception.pending);
10124
10125	/*
10126	 * Bail if immediate entry+exit to/from the guest is needed to complete
10127	 * nested VM-Enter or event re-injection so that a different pending
10128	 * event can be serviced (or if KVM needs to exit to userspace).
10129	 *
10130	 * Otherwise, continue processing events even if VM-Exit occurred.  The
10131	 * VM-Exit will have cleared exceptions that were meant for L2, but
10132	 * there may now be events that can be injected into L1.
10133	 */
10134	if (r < 0)
10135		goto out;
10136
10137	/*
10138	 * A pending exception VM-Exit should either result in nested VM-Exit
10139	 * or force an immediate re-entry and exit to/from L2, and exception
10140	 * VM-Exits cannot be injected (flag should _never_ be set).
10141	 */
10142	WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10143		     vcpu->arch.exception_vmexit.pending);
10144
10145	/*
10146	 * New events, other than exceptions, cannot be injected if KVM needs
10147	 * to re-inject a previous event.  See above comments on re-injecting
10148	 * for why pending exceptions get priority.
10149	 */
10150	can_inject = !kvm_event_needs_reinjection(vcpu);
10151
10152	if (vcpu->arch.exception.pending) {
10153		/*
10154		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10155		 * value pushed on the stack.  Trap-like exception and all #DBs
10156		 * leave RF as-is (KVM follows Intel's behavior in this regard;
10157		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10158		 *
10159		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10160		 * describe the behavior of General Detect #DBs, which are
10161		 * fault-like.  They do _not_ set RF, a la code breakpoints.
10162		 */
10163		if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
10164			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10165					     X86_EFLAGS_RF);
10166
10167		if (vcpu->arch.exception.vector == DB_VECTOR) {
10168			kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
10169			if (vcpu->arch.dr7 & DR7_GD) {
10170				vcpu->arch.dr7 &= ~DR7_GD;
10171				kvm_update_dr7(vcpu);
10172			}
10173		}
10174
10175		kvm_inject_exception(vcpu);
10176
10177		vcpu->arch.exception.pending = false;
10178		vcpu->arch.exception.injected = true;
10179
10180		can_inject = false;
10181	}
10182
10183	/* Don't inject interrupts if the user asked to avoid doing so */
10184	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10185		return 0;
10186
10187	/*
10188	 * Finally, inject interrupt events.  If an event cannot be injected
10189	 * due to architectural conditions (e.g. IF=0) a window-open exit
10190	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
10191	 * and can architecturally be injected, but we cannot do it right now:
10192	 * an interrupt could have arrived just now and we have to inject it
10193	 * as a vmexit, or there could already an event in the queue, which is
10194	 * indicated by can_inject.  In that case we request an immediate exit
10195	 * in order to make progress and get back here for another iteration.
10196	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10197	 */
10198#ifdef CONFIG_KVM_SMM
10199	if (vcpu->arch.smi_pending) {
10200		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10201		if (r < 0)
10202			goto out;
10203		if (r) {
10204			vcpu->arch.smi_pending = false;
10205			++vcpu->arch.smi_count;
10206			enter_smm(vcpu);
10207			can_inject = false;
10208		} else
10209			static_call(kvm_x86_enable_smi_window)(vcpu);
10210	}
10211#endif
10212
10213	if (vcpu->arch.nmi_pending) {
10214		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10215		if (r < 0)
10216			goto out;
10217		if (r) {
10218			--vcpu->arch.nmi_pending;
10219			vcpu->arch.nmi_injected = true;
10220			static_call(kvm_x86_inject_nmi)(vcpu);
10221			can_inject = false;
10222			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10223		}
10224		if (vcpu->arch.nmi_pending)
10225			static_call(kvm_x86_enable_nmi_window)(vcpu);
10226	}
10227
10228	if (kvm_cpu_has_injectable_intr(vcpu)) {
10229		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10230		if (r < 0)
10231			goto out;
10232		if (r) {
10233			int irq = kvm_cpu_get_interrupt(vcpu);
10234
10235			if (!WARN_ON_ONCE(irq == -1)) {
10236				kvm_queue_interrupt(vcpu, irq, false);
10237				static_call(kvm_x86_inject_irq)(vcpu, false);
10238				WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10239			}
10240		}
10241		if (kvm_cpu_has_injectable_intr(vcpu))
10242			static_call(kvm_x86_enable_irq_window)(vcpu);
10243	}
10244
10245	if (is_guest_mode(vcpu) &&
10246	    kvm_x86_ops.nested_ops->has_events &&
10247	    kvm_x86_ops.nested_ops->has_events(vcpu))
10248		*req_immediate_exit = true;
10249
10250	/*
10251	 * KVM must never queue a new exception while injecting an event; KVM
10252	 * is done emulating and should only propagate the to-be-injected event
10253	 * to the VMCS/VMCB.  Queueing a new exception can put the vCPU into an
10254	 * infinite loop as KVM will bail from VM-Enter to inject the pending
10255	 * exception and start the cycle all over.
10256	 *
10257	 * Exempt triple faults as they have special handling and won't put the
10258	 * vCPU into an infinite loop.  Triple fault can be queued when running
10259	 * VMX without unrestricted guest, as that requires KVM to emulate Real
10260	 * Mode events (see kvm_inject_realmode_interrupt()).
10261	 */
10262	WARN_ON_ONCE(vcpu->arch.exception.pending ||
10263		     vcpu->arch.exception_vmexit.pending);
10264	return 0;
10265
10266out:
10267	if (r == -EBUSY) {
10268		*req_immediate_exit = true;
10269		r = 0;
10270	}
10271	return r;
10272}
10273
10274static void process_nmi(struct kvm_vcpu *vcpu)
10275{
10276	unsigned int limit;
10277
10278	/*
10279	 * x86 is limited to one NMI pending, but because KVM can't react to
10280	 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10281	 * scheduled out, KVM needs to play nice with two queued NMIs showing
10282	 * up at the same time.  To handle this scenario, allow two NMIs to be
10283	 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10284	 * waiting for a previous NMI injection to complete (which effectively
10285	 * blocks NMIs).  KVM will immediately inject one of the two NMIs, and
10286	 * will request an NMI window to handle the second NMI.
10287	 */
10288	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10289		limit = 1;
10290	else
10291		limit = 2;
10292
10293	/*
10294	 * Adjust the limit to account for pending virtual NMIs, which aren't
10295	 * tracked in vcpu->arch.nmi_pending.
10296	 */
10297	if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10298		limit--;
10299
10300	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10301	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10302
10303	if (vcpu->arch.nmi_pending &&
10304	    (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10305		vcpu->arch.nmi_pending--;
10306
10307	if (vcpu->arch.nmi_pending)
10308		kvm_make_request(KVM_REQ_EVENT, vcpu);
10309}
10310
10311/* Return total number of NMIs pending injection to the VM */
10312int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10313{
10314	return vcpu->arch.nmi_pending +
10315	       static_call(kvm_x86_is_vnmi_pending)(vcpu);
10316}
10317
10318void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10319				       unsigned long *vcpu_bitmap)
10320{
10321	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10322}
10323
10324void kvm_make_scan_ioapic_request(struct kvm *kvm)
10325{
10326	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10327}
10328
10329void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10330{
10331	struct kvm_lapic *apic = vcpu->arch.apic;
10332	bool activate;
10333
10334	if (!lapic_in_kernel(vcpu))
10335		return;
10336
10337	down_read(&vcpu->kvm->arch.apicv_update_lock);
10338	preempt_disable();
10339
10340	/* Do not activate APICV when APIC is disabled */
10341	activate = kvm_vcpu_apicv_activated(vcpu) &&
10342		   (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10343
10344	if (apic->apicv_active == activate)
10345		goto out;
10346
10347	apic->apicv_active = activate;
10348	kvm_apic_update_apicv(vcpu);
10349	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10350
10351	/*
10352	 * When APICv gets disabled, we may still have injected interrupts
10353	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10354	 * still active when the interrupt got accepted. Make sure
10355	 * kvm_check_and_inject_events() is called to check for that.
10356	 */
10357	if (!apic->apicv_active)
10358		kvm_make_request(KVM_REQ_EVENT, vcpu);
10359
10360out:
10361	preempt_enable();
10362	up_read(&vcpu->kvm->arch.apicv_update_lock);
10363}
10364EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10365
10366static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10367{
10368	if (!lapic_in_kernel(vcpu))
10369		return;
10370
10371	/*
10372	 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10373	 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10374	 * and hardware doesn't support x2APIC virtualization.  E.g. some AMD
10375	 * CPUs support AVIC but not x2APIC.  KVM still allows enabling AVIC in
10376	 * this case so that KVM can the AVIC doorbell to inject interrupts to
10377	 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10378	 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10379	 * despite being in x2APIC mode.  For simplicity, inhibiting the APIC
10380	 * access page is sticky.
10381	 */
10382	if (apic_x2apic_mode(vcpu->arch.apic) &&
10383	    kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10384		kvm_inhibit_apic_access_page(vcpu);
10385
10386	__kvm_vcpu_update_apicv(vcpu);
10387}
10388
10389void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10390				      enum kvm_apicv_inhibit reason, bool set)
10391{
10392	unsigned long old, new;
10393
10394	lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10395
10396	if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
10397		return;
10398
10399	old = new = kvm->arch.apicv_inhibit_reasons;
10400
10401	set_or_clear_apicv_inhibit(&new, reason, set);
10402
10403	if (!!old != !!new) {
10404		/*
10405		 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10406		 * false positives in the sanity check WARN in svm_vcpu_run().
10407		 * This task will wait for all vCPUs to ack the kick IRQ before
10408		 * updating apicv_inhibit_reasons, and all other vCPUs will
10409		 * block on acquiring apicv_update_lock so that vCPUs can't
10410		 * redo svm_vcpu_run() without seeing the new inhibit state.
10411		 *
10412		 * Note, holding apicv_update_lock and taking it in the read
10413		 * side (handling the request) also prevents other vCPUs from
10414		 * servicing the request with a stale apicv_inhibit_reasons.
10415		 */
10416		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10417		kvm->arch.apicv_inhibit_reasons = new;
10418		if (new) {
10419			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10420			int idx = srcu_read_lock(&kvm->srcu);
10421
10422			kvm_zap_gfn_range(kvm, gfn, gfn+1);
10423			srcu_read_unlock(&kvm->srcu, idx);
10424		}
10425	} else {
10426		kvm->arch.apicv_inhibit_reasons = new;
10427	}
10428}
10429
10430void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10431				    enum kvm_apicv_inhibit reason, bool set)
10432{
10433	if (!enable_apicv)
10434		return;
10435
10436	down_write(&kvm->arch.apicv_update_lock);
10437	__kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10438	up_write(&kvm->arch.apicv_update_lock);
10439}
10440EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10441
10442static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10443{
10444	if (!kvm_apic_present(vcpu))
10445		return;
10446
10447	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10448
10449	if (irqchip_split(vcpu->kvm))
10450		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10451	else {
10452		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10453		if (ioapic_in_kernel(vcpu->kvm))
10454			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10455	}
10456
10457	if (is_guest_mode(vcpu))
10458		vcpu->arch.load_eoi_exitmap_pending = true;
10459	else
10460		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10461}
10462
10463static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10464{
10465	u64 eoi_exit_bitmap[4];
10466
10467	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10468		return;
10469
10470	if (to_hv_vcpu(vcpu)) {
10471		bitmap_or((ulong *)eoi_exit_bitmap,
10472			  vcpu->arch.ioapic_handled_vectors,
10473			  to_hv_synic(vcpu)->vec_bitmap, 256);
10474		static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10475		return;
10476	}
10477
10478	static_call_cond(kvm_x86_load_eoi_exitmap)(
10479		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10480}
10481
10482void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10483{
10484	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10485}
10486
10487static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10488{
10489	if (!lapic_in_kernel(vcpu))
10490		return;
10491
10492	static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10493}
10494
10495void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10496{
10497	smp_send_reschedule(vcpu->cpu);
10498}
10499EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10500
10501/*
10502 * Called within kvm->srcu read side.
10503 * Returns 1 to let vcpu_run() continue the guest execution loop without
10504 * exiting to the userspace.  Otherwise, the value will be returned to the
10505 * userspace.
10506 */
10507static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10508{
10509	int r;
10510	bool req_int_win =
10511		dm_request_for_irq_injection(vcpu) &&
10512		kvm_cpu_accept_dm_intr(vcpu);
10513	fastpath_t exit_fastpath;
10514
10515	bool req_immediate_exit = false;
10516
10517	if (kvm_request_pending(vcpu)) {
10518		if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10519			r = -EIO;
10520			goto out;
10521		}
10522
10523		if (kvm_dirty_ring_check_request(vcpu)) {
10524			r = 0;
10525			goto out;
10526		}
10527
10528		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10529			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10530				r = 0;
10531				goto out;
10532			}
10533		}
10534		if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10535			kvm_mmu_free_obsolete_roots(vcpu);
10536		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10537			__kvm_migrate_timers(vcpu);
10538		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10539			kvm_update_masterclock(vcpu->kvm);
10540		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10541			kvm_gen_kvmclock_update(vcpu);
10542		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10543			r = kvm_guest_time_update(vcpu);
10544			if (unlikely(r))
10545				goto out;
10546		}
10547		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10548			kvm_mmu_sync_roots(vcpu);
10549		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10550			kvm_mmu_load_pgd(vcpu);
10551
10552		/*
10553		 * Note, the order matters here, as flushing "all" TLB entries
10554		 * also flushes the "current" TLB entries, i.e. servicing the
10555		 * flush "all" will clear any request to flush "current".
10556		 */
10557		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
10558			kvm_vcpu_flush_tlb_all(vcpu);
10559
10560		kvm_service_local_tlb_flush_requests(vcpu);
10561
10562		/*
10563		 * Fall back to a "full" guest flush if Hyper-V's precise
10564		 * flushing fails.  Note, Hyper-V's flushing is per-vCPU, but
10565		 * the flushes are considered "remote" and not "local" because
10566		 * the requests can be initiated from other vCPUs.
10567		 */
10568		if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10569		    kvm_hv_vcpu_flush_tlb(vcpu))
10570			kvm_vcpu_flush_tlb_guest(vcpu);
10571
10572		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10573			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10574			r = 0;
10575			goto out;
10576		}
10577		if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10578			if (is_guest_mode(vcpu))
10579				kvm_x86_ops.nested_ops->triple_fault(vcpu);
10580
10581			if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10582				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10583				vcpu->mmio_needed = 0;
10584				r = 0;
10585				goto out;
10586			}
10587		}
10588		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10589			/* Page is swapped out. Do synthetic halt */
10590			vcpu->arch.apf.halted = true;
10591			r = 1;
10592			goto out;
10593		}
10594		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10595			record_steal_time(vcpu);
10596#ifdef CONFIG_KVM_SMM
10597		if (kvm_check_request(KVM_REQ_SMI, vcpu))
10598			process_smi(vcpu);
10599#endif
10600		if (kvm_check_request(KVM_REQ_NMI, vcpu))
10601			process_nmi(vcpu);
10602		if (kvm_check_request(KVM_REQ_PMU, vcpu))
10603			kvm_pmu_handle_event(vcpu);
10604		if (kvm_check_request(KVM_REQ_PMI, vcpu))
10605			kvm_pmu_deliver_pmi(vcpu);
10606		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10607			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10608			if (test_bit(vcpu->arch.pending_ioapic_eoi,
10609				     vcpu->arch.ioapic_handled_vectors)) {
10610				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10611				vcpu->run->eoi.vector =
10612						vcpu->arch.pending_ioapic_eoi;
10613				r = 0;
10614				goto out;
10615			}
10616		}
10617		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10618			vcpu_scan_ioapic(vcpu);
10619		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10620			vcpu_load_eoi_exitmap(vcpu);
10621		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10622			kvm_vcpu_reload_apic_access_page(vcpu);
10623		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10624			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10625			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10626			vcpu->run->system_event.ndata = 0;
10627			r = 0;
10628			goto out;
10629		}
10630		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10631			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10632			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10633			vcpu->run->system_event.ndata = 0;
10634			r = 0;
10635			goto out;
10636		}
10637		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10638			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10639
10640			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10641			vcpu->run->hyperv = hv_vcpu->exit;
10642			r = 0;
10643			goto out;
10644		}
10645
10646		/*
10647		 * KVM_REQ_HV_STIMER has to be processed after
10648		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10649		 * depend on the guest clock being up-to-date
10650		 */
10651		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10652			kvm_hv_process_stimers(vcpu);
10653		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10654			kvm_vcpu_update_apicv(vcpu);
10655		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10656			kvm_check_async_pf_completion(vcpu);
10657		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10658			static_call(kvm_x86_msr_filter_changed)(vcpu);
10659
10660		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10661			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10662	}
10663
10664	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10665	    kvm_xen_has_interrupt(vcpu)) {
10666		++vcpu->stat.req_event;
10667		r = kvm_apic_accept_events(vcpu);
10668		if (r < 0) {
10669			r = 0;
10670			goto out;
10671		}
10672		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10673			r = 1;
10674			goto out;
10675		}
10676
10677		r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10678		if (r < 0) {
10679			r = 0;
10680			goto out;
10681		}
10682		if (req_int_win)
10683			static_call(kvm_x86_enable_irq_window)(vcpu);
10684
10685		if (kvm_lapic_enabled(vcpu)) {
10686			update_cr8_intercept(vcpu);
10687			kvm_lapic_sync_to_vapic(vcpu);
10688		}
10689	}
10690
10691	r = kvm_mmu_reload(vcpu);
10692	if (unlikely(r)) {
10693		goto cancel_injection;
10694	}
10695
10696	preempt_disable();
10697
10698	static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10699
10700	/*
10701	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10702	 * IPI are then delayed after guest entry, which ensures that they
10703	 * result in virtual interrupt delivery.
10704	 */
10705	local_irq_disable();
10706
10707	/* Store vcpu->apicv_active before vcpu->mode.  */
10708	smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10709
10710	kvm_vcpu_srcu_read_unlock(vcpu);
10711
10712	/*
10713	 * 1) We should set ->mode before checking ->requests.  Please see
10714	 * the comment in kvm_vcpu_exiting_guest_mode().
10715	 *
10716	 * 2) For APICv, we should set ->mode before checking PID.ON. This
10717	 * pairs with the memory barrier implicit in pi_test_and_set_on
10718	 * (see vmx_deliver_posted_interrupt).
10719	 *
10720	 * 3) This also orders the write to mode from any reads to the page
10721	 * tables done while the VCPU is running.  Please see the comment
10722	 * in kvm_flush_remote_tlbs.
10723	 */
10724	smp_mb__after_srcu_read_unlock();
10725
10726	/*
10727	 * Process pending posted interrupts to handle the case where the
10728	 * notification IRQ arrived in the host, or was never sent (because the
10729	 * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10730	 * status, KVM doesn't update assigned devices when APICv is inhibited,
10731	 * i.e. they can post interrupts even if APICv is temporarily disabled.
10732	 */
10733	if (kvm_lapic_enabled(vcpu))
10734		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10735
10736	if (kvm_vcpu_exit_request(vcpu)) {
10737		vcpu->mode = OUTSIDE_GUEST_MODE;
10738		smp_wmb();
10739		local_irq_enable();
10740		preempt_enable();
10741		kvm_vcpu_srcu_read_lock(vcpu);
10742		r = 1;
10743		goto cancel_injection;
10744	}
10745
10746	if (req_immediate_exit) {
10747		kvm_make_request(KVM_REQ_EVENT, vcpu);
10748		static_call(kvm_x86_request_immediate_exit)(vcpu);
10749	}
10750
10751	fpregs_assert_state_consistent();
10752	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10753		switch_fpu_return();
10754
10755	if (vcpu->arch.guest_fpu.xfd_err)
10756		wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10757
10758	if (unlikely(vcpu->arch.switch_db_regs)) {
10759		set_debugreg(0, 7);
10760		set_debugreg(vcpu->arch.eff_db[0], 0);
10761		set_debugreg(vcpu->arch.eff_db[1], 1);
10762		set_debugreg(vcpu->arch.eff_db[2], 2);
10763		set_debugreg(vcpu->arch.eff_db[3], 3);
10764	} else if (unlikely(hw_breakpoint_active())) {
10765		set_debugreg(0, 7);
10766	}
10767
10768	guest_timing_enter_irqoff();
10769
10770	for (;;) {
10771		/*
10772		 * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10773		 * update must kick and wait for all vCPUs before toggling the
10774		 * per-VM state, and responsing vCPUs must wait for the update
10775		 * to complete before servicing KVM_REQ_APICV_UPDATE.
10776		 */
10777		WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10778			     (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10779
10780		exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10781		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10782			break;
10783
10784		if (kvm_lapic_enabled(vcpu))
10785			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10786
10787		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10788			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10789			break;
10790		}
10791
10792		/* Note, VM-Exits that go down the "slow" path are accounted below. */
10793		++vcpu->stat.exits;
10794	}
10795
10796	/*
10797	 * Do this here before restoring debug registers on the host.  And
10798	 * since we do this before handling the vmexit, a DR access vmexit
10799	 * can (a) read the correct value of the debug registers, (b) set
10800	 * KVM_DEBUGREG_WONT_EXIT again.
10801	 */
10802	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10803		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10804		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10805		kvm_update_dr0123(vcpu);
10806		kvm_update_dr7(vcpu);
10807	}
10808
10809	/*
10810	 * If the guest has used debug registers, at least dr7
10811	 * will be disabled while returning to the host.
10812	 * If we don't have active breakpoints in the host, we don't
10813	 * care about the messed up debug address registers. But if
10814	 * we have some of them active, restore the old state.
10815	 */
10816	if (hw_breakpoint_active())
10817		hw_breakpoint_restore();
10818
10819	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10820	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10821
10822	vcpu->mode = OUTSIDE_GUEST_MODE;
10823	smp_wmb();
10824
10825	/*
10826	 * Sync xfd before calling handle_exit_irqoff() which may
10827	 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10828	 * in #NM irqoff handler).
10829	 */
10830	if (vcpu->arch.xfd_no_write_intercept)
10831		fpu_sync_guest_vmexit_xfd_state();
10832
10833	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10834
10835	if (vcpu->arch.guest_fpu.xfd_err)
10836		wrmsrl(MSR_IA32_XFD_ERR, 0);
10837
10838	/*
10839	 * Consume any pending interrupts, including the possible source of
10840	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10841	 * An instruction is required after local_irq_enable() to fully unblock
10842	 * interrupts on processors that implement an interrupt shadow, the
10843	 * stat.exits increment will do nicely.
10844	 */
10845	kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10846	local_irq_enable();
10847	++vcpu->stat.exits;
10848	local_irq_disable();
10849	kvm_after_interrupt(vcpu);
10850
10851	/*
10852	 * Wait until after servicing IRQs to account guest time so that any
10853	 * ticks that occurred while running the guest are properly accounted
10854	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10855	 * of accounting via context tracking, but the loss of accuracy is
10856	 * acceptable for all known use cases.
10857	 */
10858	guest_timing_exit_irqoff();
10859
10860	local_irq_enable();
10861	preempt_enable();
10862
10863	kvm_vcpu_srcu_read_lock(vcpu);
10864
10865	/*
10866	 * Profile KVM exit RIPs:
10867	 */
10868	if (unlikely(prof_on == KVM_PROFILING)) {
10869		unsigned long rip = kvm_rip_read(vcpu);
10870		profile_hit(KVM_PROFILING, (void *)rip);
10871	}
10872
10873	if (unlikely(vcpu->arch.tsc_always_catchup))
10874		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10875
10876	if (vcpu->arch.apic_attention)
10877		kvm_lapic_sync_from_vapic(vcpu);
10878
10879	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10880	return r;
10881
10882cancel_injection:
10883	if (req_immediate_exit)
10884		kvm_make_request(KVM_REQ_EVENT, vcpu);
10885	static_call(kvm_x86_cancel_injection)(vcpu);
10886	if (unlikely(vcpu->arch.apic_attention))
10887		kvm_lapic_sync_from_vapic(vcpu);
10888out:
10889	return r;
10890}
10891
10892/* Called within kvm->srcu read side.  */
10893static inline int vcpu_block(struct kvm_vcpu *vcpu)
10894{
10895	bool hv_timer;
10896
10897	if (!kvm_arch_vcpu_runnable(vcpu)) {
10898		/*
10899		 * Switch to the software timer before halt-polling/blocking as
10900		 * the guest's timer may be a break event for the vCPU, and the
10901		 * hypervisor timer runs only when the CPU is in guest mode.
10902		 * Switch before halt-polling so that KVM recognizes an expired
10903		 * timer before blocking.
10904		 */
10905		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10906		if (hv_timer)
10907			kvm_lapic_switch_to_sw_timer(vcpu);
10908
10909		kvm_vcpu_srcu_read_unlock(vcpu);
10910		if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10911			kvm_vcpu_halt(vcpu);
10912		else
10913			kvm_vcpu_block(vcpu);
10914		kvm_vcpu_srcu_read_lock(vcpu);
10915
10916		if (hv_timer)
10917			kvm_lapic_switch_to_hv_timer(vcpu);
10918
10919		/*
10920		 * If the vCPU is not runnable, a signal or another host event
10921		 * of some kind is pending; service it without changing the
10922		 * vCPU's activity state.
10923		 */
10924		if (!kvm_arch_vcpu_runnable(vcpu))
10925			return 1;
10926	}
10927
10928	/*
10929	 * Evaluate nested events before exiting the halted state.  This allows
10930	 * the halt state to be recorded properly in the VMCS12's activity
10931	 * state field (AMD does not have a similar field and a VM-Exit always
10932	 * causes a spurious wakeup from HLT).
10933	 */
10934	if (is_guest_mode(vcpu)) {
10935		if (kvm_check_nested_events(vcpu) < 0)
10936			return 0;
10937	}
10938
10939	if (kvm_apic_accept_events(vcpu) < 0)
10940		return 0;
10941	switch(vcpu->arch.mp_state) {
10942	case KVM_MP_STATE_HALTED:
10943	case KVM_MP_STATE_AP_RESET_HOLD:
10944		vcpu->arch.pv.pv_unhalted = false;
10945		vcpu->arch.mp_state =
10946			KVM_MP_STATE_RUNNABLE;
10947		fallthrough;
10948	case KVM_MP_STATE_RUNNABLE:
10949		vcpu->arch.apf.halted = false;
10950		break;
10951	case KVM_MP_STATE_INIT_RECEIVED:
10952		break;
10953	default:
10954		WARN_ON_ONCE(1);
10955		break;
10956	}
10957	return 1;
10958}
10959
10960static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10961{
10962	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10963		!vcpu->arch.apf.halted);
10964}
10965
10966/* Called within kvm->srcu read side.  */
10967static int vcpu_run(struct kvm_vcpu *vcpu)
10968{
10969	int r;
10970
10971	vcpu->arch.l1tf_flush_l1d = true;
10972
10973	for (;;) {
10974		/*
10975		 * If another guest vCPU requests a PV TLB flush in the middle
10976		 * of instruction emulation, the rest of the emulation could
10977		 * use a stale page translation. Assume that any code after
10978		 * this point can start executing an instruction.
10979		 */
10980		vcpu->arch.at_instruction_boundary = false;
10981		if (kvm_vcpu_running(vcpu)) {
10982			r = vcpu_enter_guest(vcpu);
10983		} else {
10984			r = vcpu_block(vcpu);
10985		}
10986
10987		if (r <= 0)
10988			break;
10989
10990		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10991		if (kvm_xen_has_pending_events(vcpu))
10992			kvm_xen_inject_pending_events(vcpu);
10993
10994		if (kvm_cpu_has_pending_timer(vcpu))
10995			kvm_inject_pending_timer_irqs(vcpu);
10996
10997		if (dm_request_for_irq_injection(vcpu) &&
10998			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10999			r = 0;
11000			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
11001			++vcpu->stat.request_irq_exits;
11002			break;
11003		}
11004
11005		if (__xfer_to_guest_mode_work_pending()) {
11006			kvm_vcpu_srcu_read_unlock(vcpu);
11007			r = xfer_to_guest_mode_handle_work(vcpu);
11008			kvm_vcpu_srcu_read_lock(vcpu);
11009			if (r)
11010				return r;
11011		}
11012	}
11013
11014	return r;
11015}
11016
11017static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11018{
11019	return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11020}
11021
11022static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11023{
11024	BUG_ON(!vcpu->arch.pio.count);
11025
11026	return complete_emulated_io(vcpu);
11027}
11028
11029/*
11030 * Implements the following, as a state machine:
11031 *
11032 * read:
11033 *   for each fragment
11034 *     for each mmio piece in the fragment
11035 *       write gpa, len
11036 *       exit
11037 *       copy data
11038 *   execute insn
11039 *
11040 * write:
11041 *   for each fragment
11042 *     for each mmio piece in the fragment
11043 *       write gpa, len
11044 *       copy data
11045 *       exit
11046 */
11047static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11048{
11049	struct kvm_run *run = vcpu->run;
11050	struct kvm_mmio_fragment *frag;
11051	unsigned len;
11052
11053	BUG_ON(!vcpu->mmio_needed);
11054
11055	/* Complete previous fragment */
11056	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11057	len = min(8u, frag->len);
11058	if (!vcpu->mmio_is_write)
11059		memcpy(frag->data, run->mmio.data, len);
11060
11061	if (frag->len <= 8) {
11062		/* Switch to the next fragment. */
11063		frag++;
11064		vcpu->mmio_cur_fragment++;
11065	} else {
11066		/* Go forward to the next mmio piece. */
11067		frag->data += len;
11068		frag->gpa += len;
11069		frag->len -= len;
11070	}
11071
11072	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11073		vcpu->mmio_needed = 0;
11074
11075		/* FIXME: return into emulator if single-stepping.  */
11076		if (vcpu->mmio_is_write)
11077			return 1;
11078		vcpu->mmio_read_completed = 1;
11079		return complete_emulated_io(vcpu);
11080	}
11081
11082	run->exit_reason = KVM_EXIT_MMIO;
11083	run->mmio.phys_addr = frag->gpa;
11084	if (vcpu->mmio_is_write)
11085		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11086	run->mmio.len = min(8u, frag->len);
11087	run->mmio.is_write = vcpu->mmio_is_write;
11088	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11089	return 0;
11090}
11091
11092/* Swap (qemu) user FPU context for the guest FPU context. */
11093static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11094{
11095	/* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11096	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11097	trace_kvm_fpu(1);
11098}
11099
11100/* When vcpu_run ends, restore user space FPU context. */
11101static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11102{
11103	fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11104	++vcpu->stat.fpu_reload;
11105	trace_kvm_fpu(0);
11106}
11107
11108int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11109{
11110	struct kvm_queued_exception *ex = &vcpu->arch.exception;
11111	struct kvm_run *kvm_run = vcpu->run;
11112	int r;
11113
11114	vcpu_load(vcpu);
11115	kvm_sigset_activate(vcpu);
11116	kvm_run->flags = 0;
11117	kvm_load_guest_fpu(vcpu);
11118
11119	kvm_vcpu_srcu_read_lock(vcpu);
11120	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11121		if (kvm_run->immediate_exit) {
11122			r = -EINTR;
11123			goto out;
11124		}
11125
11126		/*
11127		 * Don't bother switching APIC timer emulation from the
11128		 * hypervisor timer to the software timer, the only way for the
11129		 * APIC timer to be active is if userspace stuffed vCPU state,
11130		 * i.e. put the vCPU into a nonsensical state.  Only an INIT
11131		 * will transition the vCPU out of UNINITIALIZED (without more
11132		 * state stuffing from userspace), which will reset the local
11133		 * APIC and thus cancel the timer or drop the IRQ (if the timer
11134		 * already expired).
11135		 */
11136		kvm_vcpu_srcu_read_unlock(vcpu);
11137		kvm_vcpu_block(vcpu);
11138		kvm_vcpu_srcu_read_lock(vcpu);
11139
11140		if (kvm_apic_accept_events(vcpu) < 0) {
11141			r = 0;
11142			goto out;
11143		}
11144		r = -EAGAIN;
11145		if (signal_pending(current)) {
11146			r = -EINTR;
11147			kvm_run->exit_reason = KVM_EXIT_INTR;
11148			++vcpu->stat.signal_exits;
11149		}
11150		goto out;
11151	}
11152
11153	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11154	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11155		r = -EINVAL;
11156		goto out;
11157	}
11158
11159	if (kvm_run->kvm_dirty_regs) {
11160		r = sync_regs(vcpu);
11161		if (r != 0)
11162			goto out;
11163	}
11164
11165	/* re-sync apic's tpr */
11166	if (!lapic_in_kernel(vcpu)) {
11167		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11168			r = -EINVAL;
11169			goto out;
11170		}
11171	}
11172
11173	/*
11174	 * If userspace set a pending exception and L2 is active, convert it to
11175	 * a pending VM-Exit if L1 wants to intercept the exception.
11176	 */
11177	if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11178	    kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11179							ex->error_code)) {
11180		kvm_queue_exception_vmexit(vcpu, ex->vector,
11181					   ex->has_error_code, ex->error_code,
11182					   ex->has_payload, ex->payload);
11183		ex->injected = false;
11184		ex->pending = false;
11185	}
11186	vcpu->arch.exception_from_userspace = false;
11187
11188	if (unlikely(vcpu->arch.complete_userspace_io)) {
11189		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11190		vcpu->arch.complete_userspace_io = NULL;
11191		r = cui(vcpu);
11192		if (r <= 0)
11193			goto out;
11194	} else {
11195		WARN_ON_ONCE(vcpu->arch.pio.count);
11196		WARN_ON_ONCE(vcpu->mmio_needed);
11197	}
11198
11199	if (kvm_run->immediate_exit) {
11200		r = -EINTR;
11201		goto out;
11202	}
11203
11204	r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11205	if (r <= 0)
11206		goto out;
11207
11208	r = vcpu_run(vcpu);
11209
11210out:
11211	kvm_put_guest_fpu(vcpu);
11212	if (kvm_run->kvm_valid_regs)
11213		store_regs(vcpu);
11214	post_kvm_run_save(vcpu);
11215	kvm_vcpu_srcu_read_unlock(vcpu);
11216
11217	kvm_sigset_deactivate(vcpu);
11218	vcpu_put(vcpu);
11219	return r;
11220}
11221
11222static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11223{
11224	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11225		/*
11226		 * We are here if userspace calls get_regs() in the middle of
11227		 * instruction emulation. Registers state needs to be copied
11228		 * back from emulation context to vcpu. Userspace shouldn't do
11229		 * that usually, but some bad designed PV devices (vmware
11230		 * backdoor interface) need this to work
11231		 */
11232		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11233		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11234	}
11235	regs->rax = kvm_rax_read(vcpu);
11236	regs->rbx = kvm_rbx_read(vcpu);
11237	regs->rcx = kvm_rcx_read(vcpu);
11238	regs->rdx = kvm_rdx_read(vcpu);
11239	regs->rsi = kvm_rsi_read(vcpu);
11240	regs->rdi = kvm_rdi_read(vcpu);
11241	regs->rsp = kvm_rsp_read(vcpu);
11242	regs->rbp = kvm_rbp_read(vcpu);
11243#ifdef CONFIG_X86_64
11244	regs->r8 = kvm_r8_read(vcpu);
11245	regs->r9 = kvm_r9_read(vcpu);
11246	regs->r10 = kvm_r10_read(vcpu);
11247	regs->r11 = kvm_r11_read(vcpu);
11248	regs->r12 = kvm_r12_read(vcpu);
11249	regs->r13 = kvm_r13_read(vcpu);
11250	regs->r14 = kvm_r14_read(vcpu);
11251	regs->r15 = kvm_r15_read(vcpu);
11252#endif
11253
11254	regs->rip = kvm_rip_read(vcpu);
11255	regs->rflags = kvm_get_rflags(vcpu);
11256}
11257
11258int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11259{
11260	vcpu_load(vcpu);
11261	__get_regs(vcpu, regs);
11262	vcpu_put(vcpu);
11263	return 0;
11264}
11265
11266static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11267{
11268	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11269	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11270
11271	kvm_rax_write(vcpu, regs->rax);
11272	kvm_rbx_write(vcpu, regs->rbx);
11273	kvm_rcx_write(vcpu, regs->rcx);
11274	kvm_rdx_write(vcpu, regs->rdx);
11275	kvm_rsi_write(vcpu, regs->rsi);
11276	kvm_rdi_write(vcpu, regs->rdi);
11277	kvm_rsp_write(vcpu, regs->rsp);
11278	kvm_rbp_write(vcpu, regs->rbp);
11279#ifdef CONFIG_X86_64
11280	kvm_r8_write(vcpu, regs->r8);
11281	kvm_r9_write(vcpu, regs->r9);
11282	kvm_r10_write(vcpu, regs->r10);
11283	kvm_r11_write(vcpu, regs->r11);
11284	kvm_r12_write(vcpu, regs->r12);
11285	kvm_r13_write(vcpu, regs->r13);
11286	kvm_r14_write(vcpu, regs->r14);
11287	kvm_r15_write(vcpu, regs->r15);
11288#endif
11289
11290	kvm_rip_write(vcpu, regs->rip);
11291	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11292
11293	vcpu->arch.exception.pending = false;
11294	vcpu->arch.exception_vmexit.pending = false;
11295
11296	kvm_make_request(KVM_REQ_EVENT, vcpu);
11297}
11298
11299int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11300{
11301	vcpu_load(vcpu);
11302	__set_regs(vcpu, regs);
11303	vcpu_put(vcpu);
11304	return 0;
11305}
11306
11307static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11308{
11309	struct desc_ptr dt;
11310
11311	if (vcpu->arch.guest_state_protected)
11312		goto skip_protected_regs;
11313
11314	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11315	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11316	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11317	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11318	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11319	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11320
11321	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11322	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11323
11324	static_call(kvm_x86_get_idt)(vcpu, &dt);
11325	sregs->idt.limit = dt.size;
11326	sregs->idt.base = dt.address;
11327	static_call(kvm_x86_get_gdt)(vcpu, &dt);
11328	sregs->gdt.limit = dt.size;
11329	sregs->gdt.base = dt.address;
11330
11331	sregs->cr2 = vcpu->arch.cr2;
11332	sregs->cr3 = kvm_read_cr3(vcpu);
11333
11334skip_protected_regs:
11335	sregs->cr0 = kvm_read_cr0(vcpu);
11336	sregs->cr4 = kvm_read_cr4(vcpu);
11337	sregs->cr8 = kvm_get_cr8(vcpu);
11338	sregs->efer = vcpu->arch.efer;
11339	sregs->apic_base = kvm_get_apic_base(vcpu);
11340}
11341
11342static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11343{
11344	__get_sregs_common(vcpu, sregs);
11345
11346	if (vcpu->arch.guest_state_protected)
11347		return;
11348
11349	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11350		set_bit(vcpu->arch.interrupt.nr,
11351			(unsigned long *)sregs->interrupt_bitmap);
11352}
11353
11354static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11355{
11356	int i;
11357
11358	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11359
11360	if (vcpu->arch.guest_state_protected)
11361		return;
11362
11363	if (is_pae_paging(vcpu)) {
11364		for (i = 0 ; i < 4 ; i++)
11365			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11366		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11367	}
11368}
11369
11370int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11371				  struct kvm_sregs *sregs)
11372{
11373	vcpu_load(vcpu);
11374	__get_sregs(vcpu, sregs);
11375	vcpu_put(vcpu);
11376	return 0;
11377}
11378
11379int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11380				    struct kvm_mp_state *mp_state)
11381{
11382	int r;
11383
11384	vcpu_load(vcpu);
11385	if (kvm_mpx_supported())
11386		kvm_load_guest_fpu(vcpu);
11387
11388	r = kvm_apic_accept_events(vcpu);
11389	if (r < 0)
11390		goto out;
11391	r = 0;
11392
11393	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11394	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11395	    vcpu->arch.pv.pv_unhalted)
11396		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11397	else
11398		mp_state->mp_state = vcpu->arch.mp_state;
11399
11400out:
11401	if (kvm_mpx_supported())
11402		kvm_put_guest_fpu(vcpu);
11403	vcpu_put(vcpu);
11404	return r;
11405}
11406
11407int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11408				    struct kvm_mp_state *mp_state)
11409{
11410	int ret = -EINVAL;
11411
11412	vcpu_load(vcpu);
11413
11414	switch (mp_state->mp_state) {
11415	case KVM_MP_STATE_UNINITIALIZED:
11416	case KVM_MP_STATE_HALTED:
11417	case KVM_MP_STATE_AP_RESET_HOLD:
11418	case KVM_MP_STATE_INIT_RECEIVED:
11419	case KVM_MP_STATE_SIPI_RECEIVED:
11420		if (!lapic_in_kernel(vcpu))
11421			goto out;
11422		break;
11423
11424	case KVM_MP_STATE_RUNNABLE:
11425		break;
11426
11427	default:
11428		goto out;
11429	}
11430
11431	/*
11432	 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11433	 * forcing the guest into INIT/SIPI if those events are supposed to be
11434	 * blocked.  KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11435	 * if an SMI is pending as well.
11436	 */
11437	if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11438	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11439	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11440		goto out;
11441
11442	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11443		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11444		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11445	} else
11446		vcpu->arch.mp_state = mp_state->mp_state;
11447	kvm_make_request(KVM_REQ_EVENT, vcpu);
11448
11449	ret = 0;
11450out:
11451	vcpu_put(vcpu);
11452	return ret;
11453}
11454
11455int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11456		    int reason, bool has_error_code, u32 error_code)
11457{
11458	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11459	int ret;
11460
11461	init_emulate_ctxt(vcpu);
11462
11463	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11464				   has_error_code, error_code);
11465	if (ret) {
11466		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11467		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11468		vcpu->run->internal.ndata = 0;
11469		return 0;
11470	}
11471
11472	kvm_rip_write(vcpu, ctxt->eip);
11473	kvm_set_rflags(vcpu, ctxt->eflags);
11474	return 1;
11475}
11476EXPORT_SYMBOL_GPL(kvm_task_switch);
11477
11478static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11479{
11480	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11481		/*
11482		 * When EFER.LME and CR0.PG are set, the processor is in
11483		 * 64-bit mode (though maybe in a 32-bit code segment).
11484		 * CR4.PAE and EFER.LMA must be set.
11485		 */
11486		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11487			return false;
11488		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11489			return false;
11490	} else {
11491		/*
11492		 * Not in 64-bit mode: EFER.LMA is clear and the code
11493		 * segment cannot be 64-bit.
11494		 */
11495		if (sregs->efer & EFER_LMA || sregs->cs.l)
11496			return false;
11497	}
11498
11499	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11500	       kvm_is_valid_cr0(vcpu, sregs->cr0);
11501}
11502
11503static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11504		int *mmu_reset_needed, bool update_pdptrs)
11505{
11506	struct msr_data apic_base_msr;
11507	int idx;
11508	struct desc_ptr dt;
11509
11510	if (!kvm_is_valid_sregs(vcpu, sregs))
11511		return -EINVAL;
11512
11513	apic_base_msr.data = sregs->apic_base;
11514	apic_base_msr.host_initiated = true;
11515	if (kvm_set_apic_base(vcpu, &apic_base_msr))
11516		return -EINVAL;
11517
11518	if (vcpu->arch.guest_state_protected)
11519		return 0;
11520
11521	dt.size = sregs->idt.limit;
11522	dt.address = sregs->idt.base;
11523	static_call(kvm_x86_set_idt)(vcpu, &dt);
11524	dt.size = sregs->gdt.limit;
11525	dt.address = sregs->gdt.base;
11526	static_call(kvm_x86_set_gdt)(vcpu, &dt);
11527
11528	vcpu->arch.cr2 = sregs->cr2;
11529	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11530	vcpu->arch.cr3 = sregs->cr3;
11531	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11532	static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11533
11534	kvm_set_cr8(vcpu, sregs->cr8);
11535
11536	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11537	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11538
11539	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11540	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11541	vcpu->arch.cr0 = sregs->cr0;
11542
11543	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11544	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11545
11546	if (update_pdptrs) {
11547		idx = srcu_read_lock(&vcpu->kvm->srcu);
11548		if (is_pae_paging(vcpu)) {
11549			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11550			*mmu_reset_needed = 1;
11551		}
11552		srcu_read_unlock(&vcpu->kvm->srcu, idx);
11553	}
11554
11555	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11556	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11557	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11558	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11559	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11560	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11561
11562	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11563	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11564
11565	update_cr8_intercept(vcpu);
11566
11567	/* Older userspace won't unhalt the vcpu on reset. */
11568	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11569	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11570	    !is_protmode(vcpu))
11571		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11572
11573	return 0;
11574}
11575
11576static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11577{
11578	int pending_vec, max_bits;
11579	int mmu_reset_needed = 0;
11580	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11581
11582	if (ret)
11583		return ret;
11584
11585	if (mmu_reset_needed)
11586		kvm_mmu_reset_context(vcpu);
11587
11588	max_bits = KVM_NR_INTERRUPTS;
11589	pending_vec = find_first_bit(
11590		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
11591
11592	if (pending_vec < max_bits) {
11593		kvm_queue_interrupt(vcpu, pending_vec, false);
11594		pr_debug("Set back pending irq %d\n", pending_vec);
11595		kvm_make_request(KVM_REQ_EVENT, vcpu);
11596	}
11597	return 0;
11598}
11599
11600static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11601{
11602	int mmu_reset_needed = 0;
11603	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11604	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11605		!(sregs2->efer & EFER_LMA);
11606	int i, ret;
11607
11608	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11609		return -EINVAL;
11610
11611	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11612		return -EINVAL;
11613
11614	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11615				 &mmu_reset_needed, !valid_pdptrs);
11616	if (ret)
11617		return ret;
11618
11619	if (valid_pdptrs) {
11620		for (i = 0; i < 4 ; i++)
11621			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11622
11623		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11624		mmu_reset_needed = 1;
11625		vcpu->arch.pdptrs_from_userspace = true;
11626	}
11627	if (mmu_reset_needed)
11628		kvm_mmu_reset_context(vcpu);
11629	return 0;
11630}
11631
11632int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11633				  struct kvm_sregs *sregs)
11634{
11635	int ret;
11636
11637	vcpu_load(vcpu);
11638	ret = __set_sregs(vcpu, sregs);
11639	vcpu_put(vcpu);
11640	return ret;
11641}
11642
11643static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11644{
11645	bool set = false;
11646	struct kvm_vcpu *vcpu;
11647	unsigned long i;
11648
11649	if (!enable_apicv)
11650		return;
11651
11652	down_write(&kvm->arch.apicv_update_lock);
11653
11654	kvm_for_each_vcpu(i, vcpu, kvm) {
11655		if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11656			set = true;
11657			break;
11658		}
11659	}
11660	__kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11661	up_write(&kvm->arch.apicv_update_lock);
11662}
11663
11664int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11665					struct kvm_guest_debug *dbg)
11666{
11667	unsigned long rflags;
11668	int i, r;
11669
11670	if (vcpu->arch.guest_state_protected)
11671		return -EINVAL;
11672
11673	vcpu_load(vcpu);
11674
11675	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11676		r = -EBUSY;
11677		if (kvm_is_exception_pending(vcpu))
11678			goto out;
11679		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11680			kvm_queue_exception(vcpu, DB_VECTOR);
11681		else
11682			kvm_queue_exception(vcpu, BP_VECTOR);
11683	}
11684
11685	/*
11686	 * Read rflags as long as potentially injected trace flags are still
11687	 * filtered out.
11688	 */
11689	rflags = kvm_get_rflags(vcpu);
11690
11691	vcpu->guest_debug = dbg->control;
11692	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11693		vcpu->guest_debug = 0;
11694
11695	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11696		for (i = 0; i < KVM_NR_DB_REGS; ++i)
11697			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11698		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11699	} else {
11700		for (i = 0; i < KVM_NR_DB_REGS; i++)
11701			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11702	}
11703	kvm_update_dr7(vcpu);
11704
11705	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11706		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11707
11708	/*
11709	 * Trigger an rflags update that will inject or remove the trace
11710	 * flags.
11711	 */
11712	kvm_set_rflags(vcpu, rflags);
11713
11714	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11715
11716	kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11717
11718	r = 0;
11719
11720out:
11721	vcpu_put(vcpu);
11722	return r;
11723}
11724
11725/*
11726 * Translate a guest virtual address to a guest physical address.
11727 */
11728int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11729				    struct kvm_translation *tr)
11730{
11731	unsigned long vaddr = tr->linear_address;
11732	gpa_t gpa;
11733	int idx;
11734
11735	vcpu_load(vcpu);
11736
11737	idx = srcu_read_lock(&vcpu->kvm->srcu);
11738	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11739	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11740	tr->physical_address = gpa;
11741	tr->valid = gpa != INVALID_GPA;
11742	tr->writeable = 1;
11743	tr->usermode = 0;
11744
11745	vcpu_put(vcpu);
11746	return 0;
11747}
11748
11749int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11750{
11751	struct fxregs_state *fxsave;
11752
11753	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11754		return 0;
11755
11756	vcpu_load(vcpu);
11757
11758	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11759	memcpy(fpu->fpr, fxsave->st_space, 128);
11760	fpu->fcw = fxsave->cwd;
11761	fpu->fsw = fxsave->swd;
11762	fpu->ftwx = fxsave->twd;
11763	fpu->last_opcode = fxsave->fop;
11764	fpu->last_ip = fxsave->rip;
11765	fpu->last_dp = fxsave->rdp;
11766	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11767
11768	vcpu_put(vcpu);
11769	return 0;
11770}
11771
11772int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11773{
11774	struct fxregs_state *fxsave;
11775
11776	if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11777		return 0;
11778
11779	vcpu_load(vcpu);
11780
11781	fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11782
11783	memcpy(fxsave->st_space, fpu->fpr, 128);
11784	fxsave->cwd = fpu->fcw;
11785	fxsave->swd = fpu->fsw;
11786	fxsave->twd = fpu->ftwx;
11787	fxsave->fop = fpu->last_opcode;
11788	fxsave->rip = fpu->last_ip;
11789	fxsave->rdp = fpu->last_dp;
11790	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11791
11792	vcpu_put(vcpu);
11793	return 0;
11794}
11795
11796static void store_regs(struct kvm_vcpu *vcpu)
11797{
11798	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11799
11800	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11801		__get_regs(vcpu, &vcpu->run->s.regs.regs);
11802
11803	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11804		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11805
11806	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11807		kvm_vcpu_ioctl_x86_get_vcpu_events(
11808				vcpu, &vcpu->run->s.regs.events);
11809}
11810
11811static int sync_regs(struct kvm_vcpu *vcpu)
11812{
11813	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11814		__set_regs(vcpu, &vcpu->run->s.regs.regs);
11815		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11816	}
11817
11818	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11819		struct kvm_sregs sregs = vcpu->run->s.regs.sregs;
11820
11821		if (__set_sregs(vcpu, &sregs))
11822			return -EINVAL;
11823
11824		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11825	}
11826
11827	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11828		struct kvm_vcpu_events events = vcpu->run->s.regs.events;
11829
11830		if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events))
11831			return -EINVAL;
11832
11833		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11834	}
11835
11836	return 0;
11837}
11838
11839int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11840{
11841	if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11842		pr_warn_once("SMP vm created on host with unstable TSC; "
11843			     "guest TSC will not be reliable\n");
11844
11845	if (!kvm->arch.max_vcpu_ids)
11846		kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11847
11848	if (id >= kvm->arch.max_vcpu_ids)
11849		return -EINVAL;
11850
11851	return static_call(kvm_x86_vcpu_precreate)(kvm);
11852}
11853
11854int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11855{
11856	struct page *page;
11857	int r;
11858
11859	vcpu->arch.last_vmentry_cpu = -1;
11860	vcpu->arch.regs_avail = ~0;
11861	vcpu->arch.regs_dirty = ~0;
11862
11863	kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
11864
11865	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11866		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11867	else
11868		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11869
11870	r = kvm_mmu_create(vcpu);
11871	if (r < 0)
11872		return r;
11873
11874	if (irqchip_in_kernel(vcpu->kvm)) {
11875		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11876		if (r < 0)
11877			goto fail_mmu_destroy;
11878
11879		/*
11880		 * Defer evaluating inhibits until the vCPU is first run, as
11881		 * this vCPU will not get notified of any changes until this
11882		 * vCPU is visible to other vCPUs (marked online and added to
11883		 * the set of vCPUs).  Opportunistically mark APICv active as
11884		 * VMX in particularly is highly unlikely to have inhibits.
11885		 * Ignore the current per-VM APICv state so that vCPU creation
11886		 * is guaranteed to run with a deterministic value, the request
11887		 * will ensure the vCPU gets the correct state before VM-Entry.
11888		 */
11889		if (enable_apicv) {
11890			vcpu->arch.apic->apicv_active = true;
11891			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11892		}
11893	} else
11894		static_branch_inc(&kvm_has_noapic_vcpu);
11895
11896	r = -ENOMEM;
11897
11898	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11899	if (!page)
11900		goto fail_free_lapic;
11901	vcpu->arch.pio_data = page_address(page);
11902
11903	vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11904				       GFP_KERNEL_ACCOUNT);
11905	vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11906					    GFP_KERNEL_ACCOUNT);
11907	if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11908		goto fail_free_mce_banks;
11909	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11910
11911	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11912				GFP_KERNEL_ACCOUNT))
11913		goto fail_free_mce_banks;
11914
11915	if (!alloc_emulate_ctxt(vcpu))
11916		goto free_wbinvd_dirty_mask;
11917
11918	if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11919		pr_err("failed to allocate vcpu's fpu\n");
11920		goto free_emulate_ctxt;
11921	}
11922
11923	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11924	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11925
11926	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11927
11928	kvm_async_pf_hash_reset(vcpu);
11929
11930	vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
11931	kvm_pmu_init(vcpu);
11932
11933	vcpu->arch.pending_external_vector = -1;
11934	vcpu->arch.preempted_in_kernel = false;
11935
11936#if IS_ENABLED(CONFIG_HYPERV)
11937	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11938#endif
11939
11940	r = static_call(kvm_x86_vcpu_create)(vcpu);
11941	if (r)
11942		goto free_guest_fpu;
11943
11944	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11945	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11946	kvm_xen_init_vcpu(vcpu);
11947	kvm_vcpu_mtrr_init(vcpu);
11948	vcpu_load(vcpu);
11949	kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11950	kvm_vcpu_reset(vcpu, false);
11951	kvm_init_mmu(vcpu);
11952	vcpu_put(vcpu);
11953	return 0;
11954
11955free_guest_fpu:
11956	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11957free_emulate_ctxt:
11958	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11959free_wbinvd_dirty_mask:
11960	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11961fail_free_mce_banks:
11962	kfree(vcpu->arch.mce_banks);
11963	kfree(vcpu->arch.mci_ctl2_banks);
11964	free_page((unsigned long)vcpu->arch.pio_data);
11965fail_free_lapic:
11966	kvm_free_lapic(vcpu);
11967fail_mmu_destroy:
11968	kvm_mmu_destroy(vcpu);
11969	return r;
11970}
11971
11972void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11973{
11974	struct kvm *kvm = vcpu->kvm;
11975
11976	if (mutex_lock_killable(&vcpu->mutex))
11977		return;
11978	vcpu_load(vcpu);
11979	kvm_synchronize_tsc(vcpu, 0);
11980	vcpu_put(vcpu);
11981
11982	/* poll control enabled by default */
11983	vcpu->arch.msr_kvm_poll_control = 1;
11984
11985	mutex_unlock(&vcpu->mutex);
11986
11987	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11988		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11989						KVMCLOCK_SYNC_PERIOD);
11990}
11991
11992void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11993{
11994	int idx;
11995
11996	kvmclock_reset(vcpu);
11997
11998	static_call(kvm_x86_vcpu_free)(vcpu);
11999
12000	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
12001	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
12002	fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
12003
12004	kvm_xen_destroy_vcpu(vcpu);
12005	kvm_hv_vcpu_uninit(vcpu);
12006	kvm_pmu_destroy(vcpu);
12007	kfree(vcpu->arch.mce_banks);
12008	kfree(vcpu->arch.mci_ctl2_banks);
12009	kvm_free_lapic(vcpu);
12010	idx = srcu_read_lock(&vcpu->kvm->srcu);
12011	kvm_mmu_destroy(vcpu);
12012	srcu_read_unlock(&vcpu->kvm->srcu, idx);
12013	free_page((unsigned long)vcpu->arch.pio_data);
12014	kvfree(vcpu->arch.cpuid_entries);
12015	if (!lapic_in_kernel(vcpu))
12016		static_branch_dec(&kvm_has_noapic_vcpu);
12017}
12018
12019void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
12020{
12021	struct kvm_cpuid_entry2 *cpuid_0x1;
12022	unsigned long old_cr0 = kvm_read_cr0(vcpu);
12023	unsigned long new_cr0;
12024
12025	/*
12026	 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12027	 * to handle side effects.  RESET emulation hits those flows and relies
12028	 * on emulated/virtualized registers, including those that are loaded
12029	 * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
12030	 * to detect improper or missing initialization.
12031	 */
12032	WARN_ON_ONCE(!init_event &&
12033		     (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12034
12035	/*
12036	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12037	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
12038	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12039	 * bits), i.e. virtualization is disabled.
12040	 */
12041	if (is_guest_mode(vcpu))
12042		kvm_leave_nested(vcpu);
12043
12044	kvm_lapic_reset(vcpu, init_event);
12045
12046	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12047	vcpu->arch.hflags = 0;
12048
12049	vcpu->arch.smi_pending = 0;
12050	vcpu->arch.smi_count = 0;
12051	atomic_set(&vcpu->arch.nmi_queued, 0);
12052	vcpu->arch.nmi_pending = 0;
12053	vcpu->arch.nmi_injected = false;
12054	kvm_clear_interrupt_queue(vcpu);
12055	kvm_clear_exception_queue(vcpu);
12056
12057	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12058	kvm_update_dr0123(vcpu);
12059	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12060	vcpu->arch.dr7 = DR7_FIXED_1;
12061	kvm_update_dr7(vcpu);
12062
12063	vcpu->arch.cr2 = 0;
12064
12065	kvm_make_request(KVM_REQ_EVENT, vcpu);
12066	vcpu->arch.apf.msr_en_val = 0;
12067	vcpu->arch.apf.msr_int_val = 0;
12068	vcpu->arch.st.msr_val = 0;
12069
12070	kvmclock_reset(vcpu);
12071
12072	kvm_clear_async_pf_completion_queue(vcpu);
12073	kvm_async_pf_hash_reset(vcpu);
12074	vcpu->arch.apf.halted = false;
12075
12076	if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12077		struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12078
12079		/*
12080		 * All paths that lead to INIT are required to load the guest's
12081		 * FPU state (because most paths are buried in KVM_RUN).
12082		 */
12083		if (init_event)
12084			kvm_put_guest_fpu(vcpu);
12085
12086		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12087		fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12088
12089		if (init_event)
12090			kvm_load_guest_fpu(vcpu);
12091	}
12092
12093	if (!init_event) {
12094		kvm_pmu_reset(vcpu);
12095		vcpu->arch.smbase = 0x30000;
12096
12097		vcpu->arch.msr_misc_features_enables = 0;
12098		vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12099						  MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12100
12101		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12102		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12103	}
12104
12105	/* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12106	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12107	kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12108
12109	/*
12110	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12111	 * if no CPUID match is found.  Note, it's impossible to get a match at
12112	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12113	 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12114	 * on RESET.  But, go through the motions in case that's ever remedied.
12115	 */
12116	cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12117	kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12118
12119	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12120
12121	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12122	kvm_rip_write(vcpu, 0xfff0);
12123
12124	vcpu->arch.cr3 = 0;
12125	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12126
12127	/*
12128	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
12129	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12130	 * (or qualify) that with a footnote stating that CD/NW are preserved.
12131	 */
12132	new_cr0 = X86_CR0_ET;
12133	if (init_event)
12134		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12135	else
12136		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12137
12138	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12139	static_call(kvm_x86_set_cr4)(vcpu, 0);
12140	static_call(kvm_x86_set_efer)(vcpu, 0);
12141	static_call(kvm_x86_update_exception_bitmap)(vcpu);
12142
12143	/*
12144	 * On the standard CR0/CR4/EFER modification paths, there are several
12145	 * complex conditions determining whether the MMU has to be reset and/or
12146	 * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
12147	 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12148	 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12149	 * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
12150	 */
12151	if (old_cr0 & X86_CR0_PG) {
12152		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12153		kvm_mmu_reset_context(vcpu);
12154	}
12155
12156	/*
12157	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
12158	 * APM states the TLBs are untouched by INIT, but it also states that
12159	 * the TLBs are flushed on "External initialization of the processor."
12160	 * Flush the guest TLB regardless of vendor, there is no meaningful
12161	 * benefit in relying on the guest to flush the TLB immediately after
12162	 * INIT.  A spurious TLB flush is benign and likely negligible from a
12163	 * performance perspective.
12164	 */
12165	if (init_event)
12166		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12167}
12168EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12169
12170void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12171{
12172	struct kvm_segment cs;
12173
12174	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12175	cs.selector = vector << 8;
12176	cs.base = vector << 12;
12177	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12178	kvm_rip_write(vcpu, 0);
12179}
12180EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12181
12182int kvm_arch_hardware_enable(void)
12183{
12184	struct kvm *kvm;
12185	struct kvm_vcpu *vcpu;
12186	unsigned long i;
12187	int ret;
12188	u64 local_tsc;
12189	u64 max_tsc = 0;
12190	bool stable, backwards_tsc = false;
12191
12192	kvm_user_return_msr_cpu_online();
12193
12194	ret = kvm_x86_check_processor_compatibility();
12195	if (ret)
12196		return ret;
12197
12198	ret = static_call(kvm_x86_hardware_enable)();
12199	if (ret != 0)
12200		return ret;
12201
12202	local_tsc = rdtsc();
12203	stable = !kvm_check_tsc_unstable();
12204	list_for_each_entry(kvm, &vm_list, vm_list) {
12205		kvm_for_each_vcpu(i, vcpu, kvm) {
12206			if (!stable && vcpu->cpu == smp_processor_id())
12207				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12208			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12209				backwards_tsc = true;
12210				if (vcpu->arch.last_host_tsc > max_tsc)
12211					max_tsc = vcpu->arch.last_host_tsc;
12212			}
12213		}
12214	}
12215
12216	/*
12217	 * Sometimes, even reliable TSCs go backwards.  This happens on
12218	 * platforms that reset TSC during suspend or hibernate actions, but
12219	 * maintain synchronization.  We must compensate.  Fortunately, we can
12220	 * detect that condition here, which happens early in CPU bringup,
12221	 * before any KVM threads can be running.  Unfortunately, we can't
12222	 * bring the TSCs fully up to date with real time, as we aren't yet far
12223	 * enough into CPU bringup that we know how much real time has actually
12224	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12225	 * variables that haven't been updated yet.
12226	 *
12227	 * So we simply find the maximum observed TSC above, then record the
12228	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
12229	 * the adjustment will be applied.  Note that we accumulate
12230	 * adjustments, in case multiple suspend cycles happen before some VCPU
12231	 * gets a chance to run again.  In the event that no KVM threads get a
12232	 * chance to run, we will miss the entire elapsed period, as we'll have
12233	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12234	 * loose cycle time.  This isn't too big a deal, since the loss will be
12235	 * uniform across all VCPUs (not to mention the scenario is extremely
12236	 * unlikely). It is possible that a second hibernate recovery happens
12237	 * much faster than a first, causing the observed TSC here to be
12238	 * smaller; this would require additional padding adjustment, which is
12239	 * why we set last_host_tsc to the local tsc observed here.
12240	 *
12241	 * N.B. - this code below runs only on platforms with reliable TSC,
12242	 * as that is the only way backwards_tsc is set above.  Also note
12243	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12244	 * have the same delta_cyc adjustment applied if backwards_tsc
12245	 * is detected.  Note further, this adjustment is only done once,
12246	 * as we reset last_host_tsc on all VCPUs to stop this from being
12247	 * called multiple times (one for each physical CPU bringup).
12248	 *
12249	 * Platforms with unreliable TSCs don't have to deal with this, they
12250	 * will be compensated by the logic in vcpu_load, which sets the TSC to
12251	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
12252	 * guarantee that they stay in perfect synchronization.
12253	 */
12254	if (backwards_tsc) {
12255		u64 delta_cyc = max_tsc - local_tsc;
12256		list_for_each_entry(kvm, &vm_list, vm_list) {
12257			kvm->arch.backwards_tsc_observed = true;
12258			kvm_for_each_vcpu(i, vcpu, kvm) {
12259				vcpu->arch.tsc_offset_adjustment += delta_cyc;
12260				vcpu->arch.last_host_tsc = local_tsc;
12261				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12262			}
12263
12264			/*
12265			 * We have to disable TSC offset matching.. if you were
12266			 * booting a VM while issuing an S4 host suspend....
12267			 * you may have some problem.  Solving this issue is
12268			 * left as an exercise to the reader.
12269			 */
12270			kvm->arch.last_tsc_nsec = 0;
12271			kvm->arch.last_tsc_write = 0;
12272		}
12273
12274	}
12275	return 0;
12276}
12277
12278void kvm_arch_hardware_disable(void)
12279{
12280	static_call(kvm_x86_hardware_disable)();
12281	drop_user_return_notifiers();
12282}
12283
12284bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12285{
12286	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12287}
12288
12289bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12290{
12291	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12292}
12293
12294__read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12295EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12296
12297void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12298{
12299	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12300
12301	vcpu->arch.l1tf_flush_l1d = true;
12302	if (pmu->version && unlikely(pmu->event_count)) {
12303		pmu->need_cleanup = true;
12304		kvm_make_request(KVM_REQ_PMU, vcpu);
12305	}
12306	static_call(kvm_x86_sched_in)(vcpu, cpu);
12307}
12308
12309void kvm_arch_free_vm(struct kvm *kvm)
12310{
12311	kfree(to_kvm_hv(kvm)->hv_pa_pg);
12312	__kvm_arch_free_vm(kvm);
12313}
12314
12315
12316int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12317{
12318	int ret;
12319	unsigned long flags;
12320
12321	if (type)
12322		return -EINVAL;
12323
12324	ret = kvm_page_track_init(kvm);
12325	if (ret)
12326		goto out;
12327
12328	kvm_mmu_init_vm(kvm);
12329
12330	ret = static_call(kvm_x86_vm_init)(kvm);
12331	if (ret)
12332		goto out_uninit_mmu;
12333
12334	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12335	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12336	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12337
12338	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12339	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12340	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12341	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12342		&kvm->arch.irq_sources_bitmap);
12343
12344	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12345	mutex_init(&kvm->arch.apic_map_lock);
12346	seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12347	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12348
12349	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12350	pvclock_update_vm_gtod_copy(kvm);
12351	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12352
12353	kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12354	kvm->arch.guest_can_read_msr_platform_info = true;
12355	kvm->arch.enable_pmu = enable_pmu;
12356
12357#if IS_ENABLED(CONFIG_HYPERV)
12358	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12359	kvm->arch.hv_root_tdp = INVALID_PAGE;
12360#endif
12361
12362	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12363	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12364
12365	kvm_apicv_init(kvm);
12366	kvm_hv_init_vm(kvm);
12367	kvm_xen_init_vm(kvm);
12368
12369	return 0;
12370
12371out_uninit_mmu:
12372	kvm_mmu_uninit_vm(kvm);
12373	kvm_page_track_cleanup(kvm);
12374out:
12375	return ret;
12376}
12377
12378int kvm_arch_post_init_vm(struct kvm *kvm)
12379{
12380	return kvm_mmu_post_init_vm(kvm);
12381}
12382
12383static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12384{
12385	vcpu_load(vcpu);
12386	kvm_mmu_unload(vcpu);
12387	vcpu_put(vcpu);
12388}
12389
12390static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12391{
12392	unsigned long i;
12393	struct kvm_vcpu *vcpu;
12394
12395	kvm_for_each_vcpu(i, vcpu, kvm) {
12396		kvm_clear_async_pf_completion_queue(vcpu);
12397		kvm_unload_vcpu_mmu(vcpu);
12398	}
12399}
12400
12401void kvm_arch_sync_events(struct kvm *kvm)
12402{
12403	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12404	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12405	kvm_free_pit(kvm);
12406}
12407
12408/**
12409 * __x86_set_memory_region: Setup KVM internal memory slot
12410 *
12411 * @kvm: the kvm pointer to the VM.
12412 * @id: the slot ID to setup.
12413 * @gpa: the GPA to install the slot (unused when @size == 0).
12414 * @size: the size of the slot. Set to zero to uninstall a slot.
12415 *
12416 * This function helps to setup a KVM internal memory slot.  Specify
12417 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12418 * slot.  The return code can be one of the following:
12419 *
12420 *   HVA:           on success (uninstall will return a bogus HVA)
12421 *   -errno:        on error
12422 *
12423 * The caller should always use IS_ERR() to check the return value
12424 * before use.  Note, the KVM internal memory slots are guaranteed to
12425 * remain valid and unchanged until the VM is destroyed, i.e., the
12426 * GPA->HVA translation will not change.  However, the HVA is a user
12427 * address, i.e. its accessibility is not guaranteed, and must be
12428 * accessed via __copy_{to,from}_user().
12429 */
12430void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12431				      u32 size)
12432{
12433	int i, r;
12434	unsigned long hva, old_npages;
12435	struct kvm_memslots *slots = kvm_memslots(kvm);
12436	struct kvm_memory_slot *slot;
12437
12438	/* Called with kvm->slots_lock held.  */
12439	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12440		return ERR_PTR_USR(-EINVAL);
12441
12442	slot = id_to_memslot(slots, id);
12443	if (size) {
12444		if (slot && slot->npages)
12445			return ERR_PTR_USR(-EEXIST);
12446
12447		/*
12448		 * MAP_SHARED to prevent internal slot pages from being moved
12449		 * by fork()/COW.
12450		 */
12451		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12452			      MAP_SHARED | MAP_ANONYMOUS, 0);
12453		if (IS_ERR_VALUE(hva))
12454			return (void __user *)hva;
12455	} else {
12456		if (!slot || !slot->npages)
12457			return NULL;
12458
12459		old_npages = slot->npages;
12460		hva = slot->userspace_addr;
12461	}
12462
12463	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12464		struct kvm_userspace_memory_region m;
12465
12466		m.slot = id | (i << 16);
12467		m.flags = 0;
12468		m.guest_phys_addr = gpa;
12469		m.userspace_addr = hva;
12470		m.memory_size = size;
12471		r = __kvm_set_memory_region(kvm, &m);
12472		if (r < 0)
12473			return ERR_PTR_USR(r);
12474	}
12475
12476	if (!size)
12477		vm_munmap(hva, old_npages * PAGE_SIZE);
12478
12479	return (void __user *)hva;
12480}
12481EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12482
12483void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12484{
12485	kvm_mmu_pre_destroy_vm(kvm);
12486}
12487
12488void kvm_arch_destroy_vm(struct kvm *kvm)
12489{
12490	if (current->mm == kvm->mm) {
12491		/*
12492		 * Free memory regions allocated on behalf of userspace,
12493		 * unless the memory map has changed due to process exit
12494		 * or fd copying.
12495		 */
12496		mutex_lock(&kvm->slots_lock);
12497		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12498					0, 0);
12499		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12500					0, 0);
12501		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12502		mutex_unlock(&kvm->slots_lock);
12503	}
12504	kvm_unload_vcpu_mmus(kvm);
12505	static_call_cond(kvm_x86_vm_destroy)(kvm);
12506	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12507	kvm_pic_destroy(kvm);
12508	kvm_ioapic_destroy(kvm);
12509	kvm_destroy_vcpus(kvm);
12510	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12511	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12512	kvm_mmu_uninit_vm(kvm);
12513	kvm_page_track_cleanup(kvm);
12514	kvm_xen_destroy_vm(kvm);
12515	kvm_hv_destroy_vm(kvm);
12516}
12517
12518static void memslot_rmap_free(struct kvm_memory_slot *slot)
12519{
12520	int i;
12521
12522	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12523		kvfree(slot->arch.rmap[i]);
12524		slot->arch.rmap[i] = NULL;
12525	}
12526}
12527
12528void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12529{
12530	int i;
12531
12532	memslot_rmap_free(slot);
12533
12534	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12535		kvfree(slot->arch.lpage_info[i - 1]);
12536		slot->arch.lpage_info[i - 1] = NULL;
12537	}
12538
12539	kvm_page_track_free_memslot(slot);
12540}
12541
12542int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12543{
12544	const int sz = sizeof(*slot->arch.rmap[0]);
12545	int i;
12546
12547	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12548		int level = i + 1;
12549		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12550
12551		if (slot->arch.rmap[i])
12552			continue;
12553
12554		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12555		if (!slot->arch.rmap[i]) {
12556			memslot_rmap_free(slot);
12557			return -ENOMEM;
12558		}
12559	}
12560
12561	return 0;
12562}
12563
12564static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12565				      struct kvm_memory_slot *slot)
12566{
12567	unsigned long npages = slot->npages;
12568	int i, r;
12569
12570	/*
12571	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
12572	 * old arrays will be freed by __kvm_set_memory_region() if installing
12573	 * the new memslot is successful.
12574	 */
12575	memset(&slot->arch, 0, sizeof(slot->arch));
12576
12577	if (kvm_memslots_have_rmaps(kvm)) {
12578		r = memslot_rmap_alloc(slot, npages);
12579		if (r)
12580			return r;
12581	}
12582
12583	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12584		struct kvm_lpage_info *linfo;
12585		unsigned long ugfn;
12586		int lpages;
12587		int level = i + 1;
12588
12589		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12590
12591		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12592		if (!linfo)
12593			goto out_free;
12594
12595		slot->arch.lpage_info[i - 1] = linfo;
12596
12597		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12598			linfo[0].disallow_lpage = 1;
12599		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12600			linfo[lpages - 1].disallow_lpage = 1;
12601		ugfn = slot->userspace_addr >> PAGE_SHIFT;
12602		/*
12603		 * If the gfn and userspace address are not aligned wrt each
12604		 * other, disable large page support for this slot.
12605		 */
12606		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12607			unsigned long j;
12608
12609			for (j = 0; j < lpages; ++j)
12610				linfo[j].disallow_lpage = 1;
12611		}
12612	}
12613
12614	if (kvm_page_track_create_memslot(kvm, slot, npages))
12615		goto out_free;
12616
12617	return 0;
12618
12619out_free:
12620	memslot_rmap_free(slot);
12621
12622	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12623		kvfree(slot->arch.lpage_info[i - 1]);
12624		slot->arch.lpage_info[i - 1] = NULL;
12625	}
12626	return -ENOMEM;
12627}
12628
12629void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12630{
12631	struct kvm_vcpu *vcpu;
12632	unsigned long i;
12633
12634	/*
12635	 * memslots->generation has been incremented.
12636	 * mmio generation may have reached its maximum value.
12637	 */
12638	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12639
12640	/* Force re-initialization of steal_time cache */
12641	kvm_for_each_vcpu(i, vcpu, kvm)
12642		kvm_vcpu_kick(vcpu);
12643}
12644
12645int kvm_arch_prepare_memory_region(struct kvm *kvm,
12646				   const struct kvm_memory_slot *old,
12647				   struct kvm_memory_slot *new,
12648				   enum kvm_mr_change change)
12649{
12650	/*
12651	 * KVM doesn't support moving memslots when there are external page
12652	 * trackers attached to the VM, i.e. if KVMGT is in use.
12653	 */
12654	if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm))
12655		return -EINVAL;
12656
12657	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12658		if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12659			return -EINVAL;
12660
12661		return kvm_alloc_memslot_metadata(kvm, new);
12662	}
12663
12664	if (change == KVM_MR_FLAGS_ONLY)
12665		memcpy(&new->arch, &old->arch, sizeof(old->arch));
12666	else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12667		return -EIO;
12668
12669	return 0;
12670}
12671
12672
12673static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12674{
12675	int nr_slots;
12676
12677	if (!kvm_x86_ops.cpu_dirty_log_size)
12678		return;
12679
12680	nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12681	if ((enable && nr_slots == 1) || !nr_slots)
12682		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12683}
12684
12685static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12686				     struct kvm_memory_slot *old,
12687				     const struct kvm_memory_slot *new,
12688				     enum kvm_mr_change change)
12689{
12690	u32 old_flags = old ? old->flags : 0;
12691	u32 new_flags = new ? new->flags : 0;
12692	bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12693
12694	/*
12695	 * Update CPU dirty logging if dirty logging is being toggled.  This
12696	 * applies to all operations.
12697	 */
12698	if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12699		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12700
12701	/*
12702	 * Nothing more to do for RO slots (which can't be dirtied and can't be
12703	 * made writable) or CREATE/MOVE/DELETE of a slot.
12704	 *
12705	 * For a memslot with dirty logging disabled:
12706	 * CREATE:      No dirty mappings will already exist.
12707	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12708	 *		kvm_arch_flush_shadow_memslot()
12709	 *
12710	 * For a memslot with dirty logging enabled:
12711	 * CREATE:      No shadow pages exist, thus nothing to write-protect
12712	 *		and no dirty bits to clear.
12713	 * MOVE/DELETE: The old mappings will already have been cleaned up by
12714	 *		kvm_arch_flush_shadow_memslot().
12715	 */
12716	if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12717		return;
12718
12719	/*
12720	 * READONLY and non-flags changes were filtered out above, and the only
12721	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12722	 * logging isn't being toggled on or off.
12723	 */
12724	if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12725		return;
12726
12727	if (!log_dirty_pages) {
12728		/*
12729		 * Dirty logging tracks sptes in 4k granularity, meaning that
12730		 * large sptes have to be split.  If live migration succeeds,
12731		 * the guest in the source machine will be destroyed and large
12732		 * sptes will be created in the destination.  However, if the
12733		 * guest continues to run in the source machine (for example if
12734		 * live migration fails), small sptes will remain around and
12735		 * cause bad performance.
12736		 *
12737		 * Scan sptes if dirty logging has been stopped, dropping those
12738		 * which can be collapsed into a single large-page spte.  Later
12739		 * page faults will create the large-page sptes.
12740		 */
12741		kvm_mmu_zap_collapsible_sptes(kvm, new);
12742	} else {
12743		/*
12744		 * Initially-all-set does not require write protecting any page,
12745		 * because they're all assumed to be dirty.
12746		 */
12747		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12748			return;
12749
12750		if (READ_ONCE(eager_page_split))
12751			kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12752
12753		if (kvm_x86_ops.cpu_dirty_log_size) {
12754			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12755			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12756		} else {
12757			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12758		}
12759
12760		/*
12761		 * Unconditionally flush the TLBs after enabling dirty logging.
12762		 * A flush is almost always going to be necessary (see below),
12763		 * and unconditionally flushing allows the helpers to omit
12764		 * the subtly complex checks when removing write access.
12765		 *
12766		 * Do the flush outside of mmu_lock to reduce the amount of
12767		 * time mmu_lock is held.  Flushing after dropping mmu_lock is
12768		 * safe as KVM only needs to guarantee the slot is fully
12769		 * write-protected before returning to userspace, i.e. before
12770		 * userspace can consume the dirty status.
12771		 *
12772		 * Flushing outside of mmu_lock requires KVM to be careful when
12773		 * making decisions based on writable status of an SPTE, e.g. a
12774		 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12775		 *
12776		 * Specifically, KVM also write-protects guest page tables to
12777		 * monitor changes when using shadow paging, and must guarantee
12778		 * no CPUs can write to those page before mmu_lock is dropped.
12779		 * Because CPUs may have stale TLB entries at this point, a
12780		 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12781		 *
12782		 * KVM also allows making SPTES writable outside of mmu_lock,
12783		 * e.g. to allow dirty logging without taking mmu_lock.
12784		 *
12785		 * To handle these scenarios, KVM uses a separate software-only
12786		 * bit (MMU-writable) to track if a SPTE is !writable due to
12787		 * a guest page table being write-protected (KVM clears the
12788		 * MMU-writable flag when write-protecting for shadow paging).
12789		 *
12790		 * The use of MMU-writable is also the primary motivation for
12791		 * the unconditional flush.  Because KVM must guarantee that a
12792		 * CPU doesn't contain stale, writable TLB entries for a
12793		 * !MMU-writable SPTE, KVM must flush if it encounters any
12794		 * MMU-writable SPTE regardless of whether the actual hardware
12795		 * writable bit was set.  I.e. KVM is almost guaranteed to need
12796		 * to flush, while unconditionally flushing allows the "remove
12797		 * write access" helpers to ignore MMU-writable entirely.
12798		 *
12799		 * See is_writable_pte() for more details (the case involving
12800		 * access-tracked SPTEs is particularly relevant).
12801		 */
12802		kvm_flush_remote_tlbs_memslot(kvm, new);
12803	}
12804}
12805
12806void kvm_arch_commit_memory_region(struct kvm *kvm,
12807				struct kvm_memory_slot *old,
12808				const struct kvm_memory_slot *new,
12809				enum kvm_mr_change change)
12810{
12811	if (change == KVM_MR_DELETE)
12812		kvm_page_track_delete_slot(kvm, old);
12813
12814	if (!kvm->arch.n_requested_mmu_pages &&
12815	    (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12816		unsigned long nr_mmu_pages;
12817
12818		nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12819		nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12820		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12821	}
12822
12823	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12824
12825	/* Free the arrays associated with the old memslot. */
12826	if (change == KVM_MR_MOVE)
12827		kvm_arch_free_memslot(kvm, old);
12828}
12829
12830static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12831{
12832	return (is_guest_mode(vcpu) &&
12833		static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12834}
12835
12836static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12837{
12838	if (!list_empty_careful(&vcpu->async_pf.done))
12839		return true;
12840
12841	if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12842	    kvm_apic_init_sipi_allowed(vcpu))
12843		return true;
12844
12845	if (vcpu->arch.pv.pv_unhalted)
12846		return true;
12847
12848	if (kvm_is_exception_pending(vcpu))
12849		return true;
12850
12851	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12852	    (vcpu->arch.nmi_pending &&
12853	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12854		return true;
12855
12856#ifdef CONFIG_KVM_SMM
12857	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12858	    (vcpu->arch.smi_pending &&
12859	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12860		return true;
12861#endif
12862
12863	if (kvm_test_request(KVM_REQ_PMI, vcpu))
12864		return true;
12865
12866	if (kvm_arch_interrupt_allowed(vcpu) &&
12867	    (kvm_cpu_has_interrupt(vcpu) ||
12868	    kvm_guest_apic_has_interrupt(vcpu)))
12869		return true;
12870
12871	if (kvm_hv_has_stimer_pending(vcpu))
12872		return true;
12873
12874	if (is_guest_mode(vcpu) &&
12875	    kvm_x86_ops.nested_ops->has_events &&
12876	    kvm_x86_ops.nested_ops->has_events(vcpu))
12877		return true;
12878
12879	if (kvm_xen_has_pending_events(vcpu))
12880		return true;
12881
12882	return false;
12883}
12884
12885int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12886{
12887	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12888}
12889
12890bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12891{
12892	if (kvm_vcpu_apicv_active(vcpu) &&
12893	    static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12894		return true;
12895
12896	return false;
12897}
12898
12899bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12900{
12901	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12902		return true;
12903
12904	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12905#ifdef CONFIG_KVM_SMM
12906		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12907#endif
12908		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12909		return true;
12910
12911	return kvm_arch_dy_has_pending_interrupt(vcpu);
12912}
12913
12914bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12915{
12916	if (vcpu->arch.guest_state_protected)
12917		return true;
12918
12919	return vcpu->arch.preempted_in_kernel;
12920}
12921
12922unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12923{
12924	return kvm_rip_read(vcpu);
12925}
12926
12927int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12928{
12929	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12930}
12931
12932int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12933{
12934	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12935}
12936
12937unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12938{
12939	/* Can't read the RIP when guest state is protected, just return 0 */
12940	if (vcpu->arch.guest_state_protected)
12941		return 0;
12942
12943	if (is_64_bit_mode(vcpu))
12944		return kvm_rip_read(vcpu);
12945	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12946		     kvm_rip_read(vcpu));
12947}
12948EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12949
12950bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12951{
12952	return kvm_get_linear_rip(vcpu) == linear_rip;
12953}
12954EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12955
12956unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12957{
12958	unsigned long rflags;
12959
12960	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12961	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12962		rflags &= ~X86_EFLAGS_TF;
12963	return rflags;
12964}
12965EXPORT_SYMBOL_GPL(kvm_get_rflags);
12966
12967static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12968{
12969	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12970	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12971		rflags |= X86_EFLAGS_TF;
12972	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12973}
12974
12975void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12976{
12977	__kvm_set_rflags(vcpu, rflags);
12978	kvm_make_request(KVM_REQ_EVENT, vcpu);
12979}
12980EXPORT_SYMBOL_GPL(kvm_set_rflags);
12981
12982static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12983{
12984	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12985
12986	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12987}
12988
12989static inline u32 kvm_async_pf_next_probe(u32 key)
12990{
12991	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12992}
12993
12994static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12995{
12996	u32 key = kvm_async_pf_hash_fn(gfn);
12997
12998	while (vcpu->arch.apf.gfns[key] != ~0)
12999		key = kvm_async_pf_next_probe(key);
13000
13001	vcpu->arch.apf.gfns[key] = gfn;
13002}
13003
13004static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13005{
13006	int i;
13007	u32 key = kvm_async_pf_hash_fn(gfn);
13008
13009	for (i = 0; i < ASYNC_PF_PER_VCPU &&
13010		     (vcpu->arch.apf.gfns[key] != gfn &&
13011		      vcpu->arch.apf.gfns[key] != ~0); i++)
13012		key = kvm_async_pf_next_probe(key);
13013
13014	return key;
13015}
13016
13017bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13018{
13019	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13020}
13021
13022static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13023{
13024	u32 i, j, k;
13025
13026	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13027
13028	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13029		return;
13030
13031	while (true) {
13032		vcpu->arch.apf.gfns[i] = ~0;
13033		do {
13034			j = kvm_async_pf_next_probe(j);
13035			if (vcpu->arch.apf.gfns[j] == ~0)
13036				return;
13037			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13038			/*
13039			 * k lies cyclically in ]i,j]
13040			 * |    i.k.j |
13041			 * |....j i.k.| or  |.k..j i...|
13042			 */
13043		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13044		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13045		i = j;
13046	}
13047}
13048
13049static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13050{
13051	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13052
13053	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13054				      sizeof(reason));
13055}
13056
13057static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13058{
13059	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13060
13061	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13062					     &token, offset, sizeof(token));
13063}
13064
13065static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13066{
13067	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13068	u32 val;
13069
13070	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13071					 &val, offset, sizeof(val)))
13072		return false;
13073
13074	return !val;
13075}
13076
13077static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13078{
13079
13080	if (!kvm_pv_async_pf_enabled(vcpu))
13081		return false;
13082
13083	if (vcpu->arch.apf.send_user_only &&
13084	    static_call(kvm_x86_get_cpl)(vcpu) == 0)
13085		return false;
13086
13087	if (is_guest_mode(vcpu)) {
13088		/*
13089		 * L1 needs to opt into the special #PF vmexits that are
13090		 * used to deliver async page faults.
13091		 */
13092		return vcpu->arch.apf.delivery_as_pf_vmexit;
13093	} else {
13094		/*
13095		 * Play it safe in case the guest temporarily disables paging.
13096		 * The real mode IDT in particular is unlikely to have a #PF
13097		 * exception setup.
13098		 */
13099		return is_paging(vcpu);
13100	}
13101}
13102
13103bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13104{
13105	if (unlikely(!lapic_in_kernel(vcpu) ||
13106		     kvm_event_needs_reinjection(vcpu) ||
13107		     kvm_is_exception_pending(vcpu)))
13108		return false;
13109
13110	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13111		return false;
13112
13113	/*
13114	 * If interrupts are off we cannot even use an artificial
13115	 * halt state.
13116	 */
13117	return kvm_arch_interrupt_allowed(vcpu);
13118}
13119
13120bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13121				     struct kvm_async_pf *work)
13122{
13123	struct x86_exception fault;
13124
13125	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13126	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13127
13128	if (kvm_can_deliver_async_pf(vcpu) &&
13129	    !apf_put_user_notpresent(vcpu)) {
13130		fault.vector = PF_VECTOR;
13131		fault.error_code_valid = true;
13132		fault.error_code = 0;
13133		fault.nested_page_fault = false;
13134		fault.address = work->arch.token;
13135		fault.async_page_fault = true;
13136		kvm_inject_page_fault(vcpu, &fault);
13137		return true;
13138	} else {
13139		/*
13140		 * It is not possible to deliver a paravirtualized asynchronous
13141		 * page fault, but putting the guest in an artificial halt state
13142		 * can be beneficial nevertheless: if an interrupt arrives, we
13143		 * can deliver it timely and perhaps the guest will schedule
13144		 * another process.  When the instruction that triggered a page
13145		 * fault is retried, hopefully the page will be ready in the host.
13146		 */
13147		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13148		return false;
13149	}
13150}
13151
13152void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13153				 struct kvm_async_pf *work)
13154{
13155	struct kvm_lapic_irq irq = {
13156		.delivery_mode = APIC_DM_FIXED,
13157		.vector = vcpu->arch.apf.vec
13158	};
13159
13160	if (work->wakeup_all)
13161		work->arch.token = ~0; /* broadcast wakeup */
13162	else
13163		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13164	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13165
13166	if ((work->wakeup_all || work->notpresent_injected) &&
13167	    kvm_pv_async_pf_enabled(vcpu) &&
13168	    !apf_put_user_ready(vcpu, work->arch.token)) {
13169		vcpu->arch.apf.pageready_pending = true;
13170		kvm_apic_set_irq(vcpu, &irq, NULL);
13171	}
13172
13173	vcpu->arch.apf.halted = false;
13174	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13175}
13176
13177void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13178{
13179	kvm_make_request(KVM_REQ_APF_READY, vcpu);
13180	if (!vcpu->arch.apf.pageready_pending)
13181		kvm_vcpu_kick(vcpu);
13182}
13183
13184bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13185{
13186	if (!kvm_pv_async_pf_enabled(vcpu))
13187		return true;
13188	else
13189		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13190}
13191
13192void kvm_arch_start_assignment(struct kvm *kvm)
13193{
13194	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13195		static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13196}
13197EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13198
13199void kvm_arch_end_assignment(struct kvm *kvm)
13200{
13201	atomic_dec(&kvm->arch.assigned_device_count);
13202}
13203EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13204
13205bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13206{
13207	return raw_atomic_read(&kvm->arch.assigned_device_count);
13208}
13209EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13210
13211void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13212{
13213	atomic_inc(&kvm->arch.noncoherent_dma_count);
13214}
13215EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13216
13217void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13218{
13219	atomic_dec(&kvm->arch.noncoherent_dma_count);
13220}
13221EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13222
13223bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13224{
13225	return atomic_read(&kvm->arch.noncoherent_dma_count);
13226}
13227EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13228
13229bool kvm_arch_has_irq_bypass(void)
13230{
13231	return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
13232}
13233
13234int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13235				      struct irq_bypass_producer *prod)
13236{
13237	struct kvm_kernel_irqfd *irqfd =
13238		container_of(cons, struct kvm_kernel_irqfd, consumer);
13239	int ret;
13240
13241	irqfd->producer = prod;
13242	kvm_arch_start_assignment(irqfd->kvm);
13243	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13244					 prod->irq, irqfd->gsi, 1);
13245
13246	if (ret)
13247		kvm_arch_end_assignment(irqfd->kvm);
13248
13249	return ret;
13250}
13251
13252void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13253				      struct irq_bypass_producer *prod)
13254{
13255	int ret;
13256	struct kvm_kernel_irqfd *irqfd =
13257		container_of(cons, struct kvm_kernel_irqfd, consumer);
13258
13259	WARN_ON(irqfd->producer != prod);
13260	irqfd->producer = NULL;
13261
13262	/*
13263	 * When producer of consumer is unregistered, we change back to
13264	 * remapped mode, so we can re-use the current implementation
13265	 * when the irq is masked/disabled or the consumer side (KVM
13266	 * int this case doesn't want to receive the interrupts.
13267	*/
13268	ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13269	if (ret)
13270		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13271		       " fails: %d\n", irqfd->consumer.token, ret);
13272
13273	kvm_arch_end_assignment(irqfd->kvm);
13274}
13275
13276int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13277				   uint32_t guest_irq, bool set)
13278{
13279	return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13280}
13281
13282bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13283				  struct kvm_kernel_irq_routing_entry *new)
13284{
13285	if (new->type != KVM_IRQ_ROUTING_MSI)
13286		return true;
13287
13288	return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13289}
13290
13291bool kvm_vector_hashing_enabled(void)
13292{
13293	return vector_hashing;
13294}
13295
13296bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13297{
13298	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13299}
13300EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13301
13302
13303int kvm_spec_ctrl_test_value(u64 value)
13304{
13305	/*
13306	 * test that setting IA32_SPEC_CTRL to given value
13307	 * is allowed by the host processor
13308	 */
13309
13310	u64 saved_value;
13311	unsigned long flags;
13312	int ret = 0;
13313
13314	local_irq_save(flags);
13315
13316	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13317		ret = 1;
13318	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13319		ret = 1;
13320	else
13321		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13322
13323	local_irq_restore(flags);
13324
13325	return ret;
13326}
13327EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13328
13329void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13330{
13331	struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13332	struct x86_exception fault;
13333	u64 access = error_code &
13334		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13335
13336	if (!(error_code & PFERR_PRESENT_MASK) ||
13337	    mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13338		/*
13339		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13340		 * tables probably do not match the TLB.  Just proceed
13341		 * with the error code that the processor gave.
13342		 */
13343		fault.vector = PF_VECTOR;
13344		fault.error_code_valid = true;
13345		fault.error_code = error_code;
13346		fault.nested_page_fault = false;
13347		fault.address = gva;
13348		fault.async_page_fault = false;
13349	}
13350	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13351}
13352EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13353
13354/*
13355 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13356 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13357 * indicates whether exit to userspace is needed.
13358 */
13359int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13360			      struct x86_exception *e)
13361{
13362	if (r == X86EMUL_PROPAGATE_FAULT) {
13363		if (KVM_BUG_ON(!e, vcpu->kvm))
13364			return -EIO;
13365
13366		kvm_inject_emulated_page_fault(vcpu, e);
13367		return 1;
13368	}
13369
13370	/*
13371	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13372	 * while handling a VMX instruction KVM could've handled the request
13373	 * correctly by exiting to userspace and performing I/O but there
13374	 * doesn't seem to be a real use-case behind such requests, just return
13375	 * KVM_EXIT_INTERNAL_ERROR for now.
13376	 */
13377	kvm_prepare_emulation_failure_exit(vcpu);
13378
13379	return 0;
13380}
13381EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13382
13383int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13384{
13385	bool pcid_enabled;
13386	struct x86_exception e;
13387	struct {
13388		u64 pcid;
13389		u64 gla;
13390	} operand;
13391	int r;
13392
13393	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13394	if (r != X86EMUL_CONTINUE)
13395		return kvm_handle_memory_failure(vcpu, r, &e);
13396
13397	if (operand.pcid >> 12 != 0) {
13398		kvm_inject_gp(vcpu, 0);
13399		return 1;
13400	}
13401
13402	pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
13403
13404	switch (type) {
13405	case INVPCID_TYPE_INDIV_ADDR:
13406		if ((!pcid_enabled && (operand.pcid != 0)) ||
13407		    is_noncanonical_address(operand.gla, vcpu)) {
13408			kvm_inject_gp(vcpu, 0);
13409			return 1;
13410		}
13411		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13412		return kvm_skip_emulated_instruction(vcpu);
13413
13414	case INVPCID_TYPE_SINGLE_CTXT:
13415		if (!pcid_enabled && (operand.pcid != 0)) {
13416			kvm_inject_gp(vcpu, 0);
13417			return 1;
13418		}
13419
13420		kvm_invalidate_pcid(vcpu, operand.pcid);
13421		return kvm_skip_emulated_instruction(vcpu);
13422
13423	case INVPCID_TYPE_ALL_NON_GLOBAL:
13424		/*
13425		 * Currently, KVM doesn't mark global entries in the shadow
13426		 * page tables, so a non-global flush just degenerates to a
13427		 * global flush. If needed, we could optimize this later by
13428		 * keeping track of global entries in shadow page tables.
13429		 */
13430
13431		fallthrough;
13432	case INVPCID_TYPE_ALL_INCL_GLOBAL:
13433		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13434		return kvm_skip_emulated_instruction(vcpu);
13435
13436	default:
13437		kvm_inject_gp(vcpu, 0);
13438		return 1;
13439	}
13440}
13441EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13442
13443static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13444{
13445	struct kvm_run *run = vcpu->run;
13446	struct kvm_mmio_fragment *frag;
13447	unsigned int len;
13448
13449	BUG_ON(!vcpu->mmio_needed);
13450
13451	/* Complete previous fragment */
13452	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13453	len = min(8u, frag->len);
13454	if (!vcpu->mmio_is_write)
13455		memcpy(frag->data, run->mmio.data, len);
13456
13457	if (frag->len <= 8) {
13458		/* Switch to the next fragment. */
13459		frag++;
13460		vcpu->mmio_cur_fragment++;
13461	} else {
13462		/* Go forward to the next mmio piece. */
13463		frag->data += len;
13464		frag->gpa += len;
13465		frag->len -= len;
13466	}
13467
13468	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13469		vcpu->mmio_needed = 0;
13470
13471		// VMG change, at this point, we're always done
13472		// RIP has already been advanced
13473		return 1;
13474	}
13475
13476	// More MMIO is needed
13477	run->mmio.phys_addr = frag->gpa;
13478	run->mmio.len = min(8u, frag->len);
13479	run->mmio.is_write = vcpu->mmio_is_write;
13480	if (run->mmio.is_write)
13481		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13482	run->exit_reason = KVM_EXIT_MMIO;
13483
13484	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13485
13486	return 0;
13487}
13488
13489int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13490			  void *data)
13491{
13492	int handled;
13493	struct kvm_mmio_fragment *frag;
13494
13495	if (!data)
13496		return -EINVAL;
13497
13498	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13499	if (handled == bytes)
13500		return 1;
13501
13502	bytes -= handled;
13503	gpa += handled;
13504	data += handled;
13505
13506	/*TODO: Check if need to increment number of frags */
13507	frag = vcpu->mmio_fragments;
13508	vcpu->mmio_nr_fragments = 1;
13509	frag->len = bytes;
13510	frag->gpa = gpa;
13511	frag->data = data;
13512
13513	vcpu->mmio_needed = 1;
13514	vcpu->mmio_cur_fragment = 0;
13515
13516	vcpu->run->mmio.phys_addr = gpa;
13517	vcpu->run->mmio.len = min(8u, frag->len);
13518	vcpu->run->mmio.is_write = 1;
13519	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13520	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13521
13522	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13523
13524	return 0;
13525}
13526EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13527
13528int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13529			 void *data)
13530{
13531	int handled;
13532	struct kvm_mmio_fragment *frag;
13533
13534	if (!data)
13535		return -EINVAL;
13536
13537	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13538	if (handled == bytes)
13539		return 1;
13540
13541	bytes -= handled;
13542	gpa += handled;
13543	data += handled;
13544
13545	/*TODO: Check if need to increment number of frags */
13546	frag = vcpu->mmio_fragments;
13547	vcpu->mmio_nr_fragments = 1;
13548	frag->len = bytes;
13549	frag->gpa = gpa;
13550	frag->data = data;
13551
13552	vcpu->mmio_needed = 1;
13553	vcpu->mmio_cur_fragment = 0;
13554
13555	vcpu->run->mmio.phys_addr = gpa;
13556	vcpu->run->mmio.len = min(8u, frag->len);
13557	vcpu->run->mmio.is_write = 0;
13558	vcpu->run->exit_reason = KVM_EXIT_MMIO;
13559
13560	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13561
13562	return 0;
13563}
13564EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13565
13566static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13567{
13568	vcpu->arch.sev_pio_count -= count;
13569	vcpu->arch.sev_pio_data += count * size;
13570}
13571
13572static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13573			   unsigned int port);
13574
13575static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13576{
13577	int size = vcpu->arch.pio.size;
13578	int port = vcpu->arch.pio.port;
13579
13580	vcpu->arch.pio.count = 0;
13581	if (vcpu->arch.sev_pio_count)
13582		return kvm_sev_es_outs(vcpu, size, port);
13583	return 1;
13584}
13585
13586static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13587			   unsigned int port)
13588{
13589	for (;;) {
13590		unsigned int count =
13591			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13592		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13593
13594		/* memcpy done already by emulator_pio_out.  */
13595		advance_sev_es_emulated_pio(vcpu, count, size);
13596		if (!ret)
13597			break;
13598
13599		/* Emulation done by the kernel.  */
13600		if (!vcpu->arch.sev_pio_count)
13601			return 1;
13602	}
13603
13604	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13605	return 0;
13606}
13607
13608static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13609			  unsigned int port);
13610
13611static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13612{
13613	unsigned count = vcpu->arch.pio.count;
13614	int size = vcpu->arch.pio.size;
13615	int port = vcpu->arch.pio.port;
13616
13617	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13618	advance_sev_es_emulated_pio(vcpu, count, size);
13619	if (vcpu->arch.sev_pio_count)
13620		return kvm_sev_es_ins(vcpu, size, port);
13621	return 1;
13622}
13623
13624static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13625			  unsigned int port)
13626{
13627	for (;;) {
13628		unsigned int count =
13629			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13630		if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13631			break;
13632
13633		/* Emulation done by the kernel.  */
13634		advance_sev_es_emulated_pio(vcpu, count, size);
13635		if (!vcpu->arch.sev_pio_count)
13636			return 1;
13637	}
13638
13639	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13640	return 0;
13641}
13642
13643int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13644			 unsigned int port, void *data,  unsigned int count,
13645			 int in)
13646{
13647	vcpu->arch.sev_pio_data = data;
13648	vcpu->arch.sev_pio_count = count;
13649	return in ? kvm_sev_es_ins(vcpu, size, port)
13650		  : kvm_sev_es_outs(vcpu, size, port);
13651}
13652EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13653
13654EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13655EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13656EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13657EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13658EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13659EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13660EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13661EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13662EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13663EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13664EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13665EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13666EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13667EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13668EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13669EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13670EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13671EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13672EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13673EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13674EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13675EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13676EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13677EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13678EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13679EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13680EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13681EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13682EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13683
13684static int __init kvm_x86_init(void)
13685{
13686	kvm_mmu_x86_module_init();
13687	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
13688	return 0;
13689}
13690module_init(kvm_x86_init);
13691
13692static void __exit kvm_x86_exit(void)
13693{
13694	/*
13695	 * If module_init() is implemented, module_exit() must also be
13696	 * implemented to allow module unload.
13697	 */
13698}
13699module_exit(kvm_x86_exit);
13700