xref: /kernel/linux/linux-6.6/arch/x86/kvm/svm/svm.c (revision 62306a36)
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/kvm_host.h>
4
5#include "irq.h"
6#include "mmu.h"
7#include "kvm_cache_regs.h"
8#include "x86.h"
9#include "smm.h"
10#include "cpuid.h"
11#include "pmu.h"
12
13#include <linux/module.h>
14#include <linux/mod_devicetable.h>
15#include <linux/kernel.h>
16#include <linux/vmalloc.h>
17#include <linux/highmem.h>
18#include <linux/amd-iommu.h>
19#include <linux/sched.h>
20#include <linux/trace_events.h>
21#include <linux/slab.h>
22#include <linux/hashtable.h>
23#include <linux/objtool.h>
24#include <linux/psp-sev.h>
25#include <linux/file.h>
26#include <linux/pagemap.h>
27#include <linux/swap.h>
28#include <linux/rwsem.h>
29#include <linux/cc_platform.h>
30#include <linux/smp.h>
31
32#include <asm/apic.h>
33#include <asm/perf_event.h>
34#include <asm/tlbflush.h>
35#include <asm/desc.h>
36#include <asm/debugreg.h>
37#include <asm/kvm_para.h>
38#include <asm/irq_remapping.h>
39#include <asm/spec-ctrl.h>
40#include <asm/cpu_device_id.h>
41#include <asm/traps.h>
42#include <asm/reboot.h>
43#include <asm/fpu/api.h>
44
45#include <trace/events/ipi.h>
46
47#include "trace.h"
48
49#include "svm.h"
50#include "svm_ops.h"
51
52#include "kvm_onhyperv.h"
53#include "svm_onhyperv.h"
54
55MODULE_AUTHOR("Qumranet");
56MODULE_LICENSE("GPL");
57
58#ifdef MODULE
59static const struct x86_cpu_id svm_cpu_id[] = {
60	X86_MATCH_FEATURE(X86_FEATURE_SVM, NULL),
61	{}
62};
63MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
64#endif
65
66#define SEG_TYPE_LDT 2
67#define SEG_TYPE_BUSY_TSS16 3
68
69static bool erratum_383_found __read_mostly;
70
71u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
72
73/*
74 * Set osvw_len to higher value when updated Revision Guides
75 * are published and we know what the new status bits are
76 */
77static uint64_t osvw_len = 4, osvw_status;
78
79static DEFINE_PER_CPU(u64, current_tsc_ratio);
80
81#define X2APIC_MSR(x)	(APIC_BASE_MSR + (x >> 4))
82
83static const struct svm_direct_access_msrs {
84	u32 index;   /* Index of the MSR */
85	bool always; /* True if intercept is initially cleared */
86} direct_access_msrs[MAX_DIRECT_ACCESS_MSRS] = {
87	{ .index = MSR_STAR,				.always = true  },
88	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  },
89	{ .index = MSR_IA32_SYSENTER_EIP,		.always = false },
90	{ .index = MSR_IA32_SYSENTER_ESP,		.always = false },
91#ifdef CONFIG_X86_64
92	{ .index = MSR_GS_BASE,				.always = true  },
93	{ .index = MSR_FS_BASE,				.always = true  },
94	{ .index = MSR_KERNEL_GS_BASE,			.always = true  },
95	{ .index = MSR_LSTAR,				.always = true  },
96	{ .index = MSR_CSTAR,				.always = true  },
97	{ .index = MSR_SYSCALL_MASK,			.always = true  },
98#endif
99	{ .index = MSR_IA32_SPEC_CTRL,			.always = false },
100	{ .index = MSR_IA32_PRED_CMD,			.always = false },
101	{ .index = MSR_IA32_FLUSH_CMD,			.always = false },
102	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false },
103	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false },
104	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false },
105	{ .index = MSR_IA32_LASTINTTOIP,		.always = false },
106	{ .index = MSR_EFER,				.always = false },
107	{ .index = MSR_IA32_CR_PAT,			.always = false },
108	{ .index = MSR_AMD64_SEV_ES_GHCB,		.always = true  },
109	{ .index = MSR_TSC_AUX,				.always = false },
110	{ .index = X2APIC_MSR(APIC_ID),			.always = false },
111	{ .index = X2APIC_MSR(APIC_LVR),		.always = false },
112	{ .index = X2APIC_MSR(APIC_TASKPRI),		.always = false },
113	{ .index = X2APIC_MSR(APIC_ARBPRI),		.always = false },
114	{ .index = X2APIC_MSR(APIC_PROCPRI),		.always = false },
115	{ .index = X2APIC_MSR(APIC_EOI),		.always = false },
116	{ .index = X2APIC_MSR(APIC_RRR),		.always = false },
117	{ .index = X2APIC_MSR(APIC_LDR),		.always = false },
118	{ .index = X2APIC_MSR(APIC_DFR),		.always = false },
119	{ .index = X2APIC_MSR(APIC_SPIV),		.always = false },
120	{ .index = X2APIC_MSR(APIC_ISR),		.always = false },
121	{ .index = X2APIC_MSR(APIC_TMR),		.always = false },
122	{ .index = X2APIC_MSR(APIC_IRR),		.always = false },
123	{ .index = X2APIC_MSR(APIC_ESR),		.always = false },
124	{ .index = X2APIC_MSR(APIC_ICR),		.always = false },
125	{ .index = X2APIC_MSR(APIC_ICR2),		.always = false },
126
127	/*
128	 * Note:
129	 * AMD does not virtualize APIC TSC-deadline timer mode, but it is
130	 * emulated by KVM. When setting APIC LVTT (0x832) register bit 18,
131	 * the AVIC hardware would generate GP fault. Therefore, always
132	 * intercept the MSR 0x832, and do not setup direct_access_msr.
133	 */
134	{ .index = X2APIC_MSR(APIC_LVTTHMR),		.always = false },
135	{ .index = X2APIC_MSR(APIC_LVTPC),		.always = false },
136	{ .index = X2APIC_MSR(APIC_LVT0),		.always = false },
137	{ .index = X2APIC_MSR(APIC_LVT1),		.always = false },
138	{ .index = X2APIC_MSR(APIC_LVTERR),		.always = false },
139	{ .index = X2APIC_MSR(APIC_TMICT),		.always = false },
140	{ .index = X2APIC_MSR(APIC_TMCCT),		.always = false },
141	{ .index = X2APIC_MSR(APIC_TDCR),		.always = false },
142	{ .index = MSR_INVALID,				.always = false },
143};
144
145/*
146 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
147 * pause_filter_count: On processors that support Pause filtering(indicated
148 *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter
149 *	count value. On VMRUN this value is loaded into an internal counter.
150 *	Each time a pause instruction is executed, this counter is decremented
151 *	until it reaches zero at which time a #VMEXIT is generated if pause
152 *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause
153 *	Intercept Filtering for more details.
154 *	This also indicate if ple logic enabled.
155 *
156 * pause_filter_thresh: In addition, some processor families support advanced
157 *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on
158 *	the amount of time a guest is allowed to execute in a pause loop.
159 *	In this mode, a 16-bit pause filter threshold field is added in the
160 *	VMCB. The threshold value is a cycle count that is used to reset the
161 *	pause counter. As with simple pause filtering, VMRUN loads the pause
162 *	count value from VMCB into an internal counter. Then, on each pause
163 *	instruction the hardware checks the elapsed number of cycles since
164 *	the most recent pause instruction against the pause filter threshold.
165 *	If the elapsed cycle count is greater than the pause filter threshold,
166 *	then the internal pause count is reloaded from the VMCB and execution
167 *	continues. If the elapsed cycle count is less than the pause filter
168 *	threshold, then the internal pause count is decremented. If the count
169 *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is
170 *	triggered. If advanced pause filtering is supported and pause filter
171 *	threshold field is set to zero, the filter will operate in the simpler,
172 *	count only mode.
173 */
174
175static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP;
176module_param(pause_filter_thresh, ushort, 0444);
177
178static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW;
179module_param(pause_filter_count, ushort, 0444);
180
181/* Default doubles per-vcpu window every exit. */
182static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
183module_param(pause_filter_count_grow, ushort, 0444);
184
185/* Default resets per-vcpu window every exit to pause_filter_count. */
186static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
187module_param(pause_filter_count_shrink, ushort, 0444);
188
189/* Default is to compute the maximum so we can never overflow. */
190static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX;
191module_param(pause_filter_count_max, ushort, 0444);
192
193/*
194 * Use nested page tables by default.  Note, NPT may get forced off by
195 * svm_hardware_setup() if it's unsupported by hardware or the host kernel.
196 */
197bool npt_enabled = true;
198module_param_named(npt, npt_enabled, bool, 0444);
199
200/* allow nested virtualization in KVM/SVM */
201static int nested = true;
202module_param(nested, int, S_IRUGO);
203
204/* enable/disable Next RIP Save */
205int nrips = true;
206module_param(nrips, int, 0444);
207
208/* enable/disable Virtual VMLOAD VMSAVE */
209static int vls = true;
210module_param(vls, int, 0444);
211
212/* enable/disable Virtual GIF */
213int vgif = true;
214module_param(vgif, int, 0444);
215
216/* enable/disable LBR virtualization */
217static int lbrv = true;
218module_param(lbrv, int, 0444);
219
220static int tsc_scaling = true;
221module_param(tsc_scaling, int, 0444);
222
223/*
224 * enable / disable AVIC.  Because the defaults differ for APICv
225 * support between VMX and SVM we cannot use module_param_named.
226 */
227static bool avic;
228module_param(avic, bool, 0444);
229
230bool __read_mostly dump_invalid_vmcb;
231module_param(dump_invalid_vmcb, bool, 0644);
232
233
234bool intercept_smi = true;
235module_param(intercept_smi, bool, 0444);
236
237bool vnmi = true;
238module_param(vnmi, bool, 0444);
239
240static bool svm_gp_erratum_intercept = true;
241
242static u8 rsm_ins_bytes[] = "\x0f\xaa";
243
244static unsigned long iopm_base;
245
246DEFINE_PER_CPU(struct svm_cpu_data, svm_data);
247
248/*
249 * Only MSR_TSC_AUX is switched via the user return hook.  EFER is switched via
250 * the VMCB, and the SYSCALL/SYSENTER MSRs are handled by VMLOAD/VMSAVE.
251 *
252 * RDTSCP and RDPID are not used in the kernel, specifically to allow KVM to
253 * defer the restoration of TSC_AUX until the CPU returns to userspace.
254 */
255static int tsc_aux_uret_slot __read_mostly = -1;
256
257static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
258
259#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
260#define MSRS_RANGE_SIZE 2048
261#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
262
263u32 svm_msrpm_offset(u32 msr)
264{
265	u32 offset;
266	int i;
267
268	for (i = 0; i < NUM_MSR_MAPS; i++) {
269		if (msr < msrpm_ranges[i] ||
270		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
271			continue;
272
273		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
274		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
275
276		/* Now we have the u8 offset - but need the u32 offset */
277		return offset / 4;
278	}
279
280	/* MSR not in any range */
281	return MSR_INVALID;
282}
283
284static void svm_flush_tlb_current(struct kvm_vcpu *vcpu);
285
286static int get_npt_level(void)
287{
288#ifdef CONFIG_X86_64
289	return pgtable_l5_enabled() ? PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
290#else
291	return PT32E_ROOT_LEVEL;
292#endif
293}
294
295int svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
296{
297	struct vcpu_svm *svm = to_svm(vcpu);
298	u64 old_efer = vcpu->arch.efer;
299	vcpu->arch.efer = efer;
300
301	if (!npt_enabled) {
302		/* Shadow paging assumes NX to be available.  */
303		efer |= EFER_NX;
304
305		if (!(efer & EFER_LMA))
306			efer &= ~EFER_LME;
307	}
308
309	if ((old_efer & EFER_SVME) != (efer & EFER_SVME)) {
310		if (!(efer & EFER_SVME)) {
311			svm_leave_nested(vcpu);
312			svm_set_gif(svm, true);
313			/* #GP intercept is still needed for vmware backdoor */
314			if (!enable_vmware_backdoor)
315				clr_exception_intercept(svm, GP_VECTOR);
316
317			/*
318			 * Free the nested guest state, unless we are in SMM.
319			 * In this case we will return to the nested guest
320			 * as soon as we leave SMM.
321			 */
322			if (!is_smm(vcpu))
323				svm_free_nested(svm);
324
325		} else {
326			int ret = svm_allocate_nested(svm);
327
328			if (ret) {
329				vcpu->arch.efer = old_efer;
330				return ret;
331			}
332
333			/*
334			 * Never intercept #GP for SEV guests, KVM can't
335			 * decrypt guest memory to workaround the erratum.
336			 */
337			if (svm_gp_erratum_intercept && !sev_guest(vcpu->kvm))
338				set_exception_intercept(svm, GP_VECTOR);
339		}
340	}
341
342	svm->vmcb->save.efer = efer | EFER_SVME;
343	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
344	return 0;
345}
346
347static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
348{
349	struct vcpu_svm *svm = to_svm(vcpu);
350	u32 ret = 0;
351
352	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
353		ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
354	return ret;
355}
356
357static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
358{
359	struct vcpu_svm *svm = to_svm(vcpu);
360
361	if (mask == 0)
362		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
363	else
364		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
365
366}
367static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
368					void *insn, int insn_len);
369
370static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu,
371					   bool commit_side_effects)
372{
373	struct vcpu_svm *svm = to_svm(vcpu);
374	unsigned long old_rflags;
375
376	/*
377	 * SEV-ES does not expose the next RIP. The RIP update is controlled by
378	 * the type of exit and the #VC handler in the guest.
379	 */
380	if (sev_es_guest(vcpu->kvm))
381		goto done;
382
383	if (nrips && svm->vmcb->control.next_rip != 0) {
384		WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS));
385		svm->next_rip = svm->vmcb->control.next_rip;
386	}
387
388	if (!svm->next_rip) {
389		/*
390		 * FIXME: Drop this when kvm_emulate_instruction() does the
391		 * right thing and treats "can't emulate" as outright failure
392		 * for EMULTYPE_SKIP.
393		 */
394		if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0))
395			return 0;
396
397		if (unlikely(!commit_side_effects))
398			old_rflags = svm->vmcb->save.rflags;
399
400		if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
401			return 0;
402
403		if (unlikely(!commit_side_effects))
404			svm->vmcb->save.rflags = old_rflags;
405	} else {
406		kvm_rip_write(vcpu, svm->next_rip);
407	}
408
409done:
410	if (likely(commit_side_effects))
411		svm_set_interrupt_shadow(vcpu, 0);
412
413	return 1;
414}
415
416static int svm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
417{
418	return __svm_skip_emulated_instruction(vcpu, true);
419}
420
421static int svm_update_soft_interrupt_rip(struct kvm_vcpu *vcpu)
422{
423	unsigned long rip, old_rip = kvm_rip_read(vcpu);
424	struct vcpu_svm *svm = to_svm(vcpu);
425
426	/*
427	 * Due to architectural shortcomings, the CPU doesn't always provide
428	 * NextRIP, e.g. if KVM intercepted an exception that occurred while
429	 * the CPU was vectoring an INTO/INT3 in the guest.  Temporarily skip
430	 * the instruction even if NextRIP is supported to acquire the next
431	 * RIP so that it can be shoved into the NextRIP field, otherwise
432	 * hardware will fail to advance guest RIP during event injection.
433	 * Drop the exception/interrupt if emulation fails and effectively
434	 * retry the instruction, it's the least awful option.  If NRIPS is
435	 * in use, the skip must not commit any side effects such as clearing
436	 * the interrupt shadow or RFLAGS.RF.
437	 */
438	if (!__svm_skip_emulated_instruction(vcpu, !nrips))
439		return -EIO;
440
441	rip = kvm_rip_read(vcpu);
442
443	/*
444	 * Save the injection information, even when using next_rip, as the
445	 * VMCB's next_rip will be lost (cleared on VM-Exit) if the injection
446	 * doesn't complete due to a VM-Exit occurring while the CPU is
447	 * vectoring the event.   Decoding the instruction isn't guaranteed to
448	 * work as there may be no backing instruction, e.g. if the event is
449	 * being injected by L1 for L2, or if the guest is patching INT3 into
450	 * a different instruction.
451	 */
452	svm->soft_int_injected = true;
453	svm->soft_int_csbase = svm->vmcb->save.cs.base;
454	svm->soft_int_old_rip = old_rip;
455	svm->soft_int_next_rip = rip;
456
457	if (nrips)
458		kvm_rip_write(vcpu, old_rip);
459
460	if (static_cpu_has(X86_FEATURE_NRIPS))
461		svm->vmcb->control.next_rip = rip;
462
463	return 0;
464}
465
466static void svm_inject_exception(struct kvm_vcpu *vcpu)
467{
468	struct kvm_queued_exception *ex = &vcpu->arch.exception;
469	struct vcpu_svm *svm = to_svm(vcpu);
470
471	kvm_deliver_exception_payload(vcpu, ex);
472
473	if (kvm_exception_is_soft(ex->vector) &&
474	    svm_update_soft_interrupt_rip(vcpu))
475		return;
476
477	svm->vmcb->control.event_inj = ex->vector
478		| SVM_EVTINJ_VALID
479		| (ex->has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
480		| SVM_EVTINJ_TYPE_EXEPT;
481	svm->vmcb->control.event_inj_err = ex->error_code;
482}
483
484static void svm_init_erratum_383(void)
485{
486	u32 low, high;
487	int err;
488	u64 val;
489
490	if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
491		return;
492
493	/* Use _safe variants to not break nested virtualization */
494	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
495	if (err)
496		return;
497
498	val |= (1ULL << 47);
499
500	low  = lower_32_bits(val);
501	high = upper_32_bits(val);
502
503	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
504
505	erratum_383_found = true;
506}
507
508static void svm_init_osvw(struct kvm_vcpu *vcpu)
509{
510	/*
511	 * Guests should see errata 400 and 415 as fixed (assuming that
512	 * HLT and IO instructions are intercepted).
513	 */
514	vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
515	vcpu->arch.osvw.status = osvw_status & ~(6ULL);
516
517	/*
518	 * By increasing VCPU's osvw.length to 3 we are telling the guest that
519	 * all osvw.status bits inside that length, including bit 0 (which is
520	 * reserved for erratum 298), are valid. However, if host processor's
521	 * osvw_len is 0 then osvw_status[0] carries no information. We need to
522	 * be conservative here and therefore we tell the guest that erratum 298
523	 * is present (because we really don't know).
524	 */
525	if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
526		vcpu->arch.osvw.status |= 1;
527}
528
529static bool __kvm_is_svm_supported(void)
530{
531	int cpu = smp_processor_id();
532	struct cpuinfo_x86 *c = &cpu_data(cpu);
533
534	u64 vm_cr;
535
536	if (c->x86_vendor != X86_VENDOR_AMD &&
537	    c->x86_vendor != X86_VENDOR_HYGON) {
538		pr_err("CPU %d isn't AMD or Hygon\n", cpu);
539		return false;
540	}
541
542	if (!cpu_has(c, X86_FEATURE_SVM)) {
543		pr_err("SVM not supported by CPU %d\n", cpu);
544		return false;
545	}
546
547	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
548		pr_info("KVM is unsupported when running as an SEV guest\n");
549		return false;
550	}
551
552	rdmsrl(MSR_VM_CR, vm_cr);
553	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) {
554		pr_err("SVM disabled (by BIOS) in MSR_VM_CR on CPU %d\n", cpu);
555		return false;
556	}
557
558	return true;
559}
560
561static bool kvm_is_svm_supported(void)
562{
563	bool supported;
564
565	migrate_disable();
566	supported = __kvm_is_svm_supported();
567	migrate_enable();
568
569	return supported;
570}
571
572static int svm_check_processor_compat(void)
573{
574	if (!__kvm_is_svm_supported())
575		return -EIO;
576
577	return 0;
578}
579
580static void __svm_write_tsc_multiplier(u64 multiplier)
581{
582	if (multiplier == __this_cpu_read(current_tsc_ratio))
583		return;
584
585	wrmsrl(MSR_AMD64_TSC_RATIO, multiplier);
586	__this_cpu_write(current_tsc_ratio, multiplier);
587}
588
589static inline void kvm_cpu_svm_disable(void)
590{
591	uint64_t efer;
592
593	wrmsrl(MSR_VM_HSAVE_PA, 0);
594	rdmsrl(MSR_EFER, efer);
595	if (efer & EFER_SVME) {
596		/*
597		 * Force GIF=1 prior to disabling SVM, e.g. to ensure INIT and
598		 * NMI aren't blocked.
599		 */
600		stgi();
601		wrmsrl(MSR_EFER, efer & ~EFER_SVME);
602	}
603}
604
605static void svm_emergency_disable(void)
606{
607	kvm_rebooting = true;
608
609	kvm_cpu_svm_disable();
610}
611
612static void svm_hardware_disable(void)
613{
614	/* Make sure we clean up behind us */
615	if (tsc_scaling)
616		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
617
618	kvm_cpu_svm_disable();
619
620	amd_pmu_disable_virt();
621}
622
623static int svm_hardware_enable(void)
624{
625
626	struct svm_cpu_data *sd;
627	uint64_t efer;
628	int me = raw_smp_processor_id();
629
630	rdmsrl(MSR_EFER, efer);
631	if (efer & EFER_SVME)
632		return -EBUSY;
633
634	sd = per_cpu_ptr(&svm_data, me);
635	sd->asid_generation = 1;
636	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
637	sd->next_asid = sd->max_asid + 1;
638	sd->min_asid = max_sev_asid + 1;
639
640	wrmsrl(MSR_EFER, efer | EFER_SVME);
641
642	wrmsrl(MSR_VM_HSAVE_PA, sd->save_area_pa);
643
644	if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
645		/*
646		 * Set the default value, even if we don't use TSC scaling
647		 * to avoid having stale value in the msr
648		 */
649		__svm_write_tsc_multiplier(SVM_TSC_RATIO_DEFAULT);
650	}
651
652
653	/*
654	 * Get OSVW bits.
655	 *
656	 * Note that it is possible to have a system with mixed processor
657	 * revisions and therefore different OSVW bits. If bits are not the same
658	 * on different processors then choose the worst case (i.e. if erratum
659	 * is present on one processor and not on another then assume that the
660	 * erratum is present everywhere).
661	 */
662	if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
663		uint64_t len, status = 0;
664		int err;
665
666		len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
667		if (!err)
668			status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
669						      &err);
670
671		if (err)
672			osvw_status = osvw_len = 0;
673		else {
674			if (len < osvw_len)
675				osvw_len = len;
676			osvw_status |= status;
677			osvw_status &= (1ULL << osvw_len) - 1;
678		}
679	} else
680		osvw_status = osvw_len = 0;
681
682	svm_init_erratum_383();
683
684	amd_pmu_enable_virt();
685
686	/*
687	 * If TSC_AUX virtualization is supported, TSC_AUX becomes a swap type
688	 * "B" field (see sev_es_prepare_switch_to_guest()) for SEV-ES guests.
689	 * Since Linux does not change the value of TSC_AUX once set, prime the
690	 * TSC_AUX field now to avoid a RDMSR on every vCPU run.
691	 */
692	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
693		struct sev_es_save_area *hostsa;
694		u32 __maybe_unused msr_hi;
695
696		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
697
698		rdmsr(MSR_TSC_AUX, hostsa->tsc_aux, msr_hi);
699	}
700
701	return 0;
702}
703
704static void svm_cpu_uninit(int cpu)
705{
706	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
707
708	if (!sd->save_area)
709		return;
710
711	kfree(sd->sev_vmcbs);
712	__free_page(sd->save_area);
713	sd->save_area_pa = 0;
714	sd->save_area = NULL;
715}
716
717static int svm_cpu_init(int cpu)
718{
719	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
720	int ret = -ENOMEM;
721
722	memset(sd, 0, sizeof(struct svm_cpu_data));
723	sd->save_area = alloc_page(GFP_KERNEL | __GFP_ZERO);
724	if (!sd->save_area)
725		return ret;
726
727	ret = sev_cpu_init(sd);
728	if (ret)
729		goto free_save_area;
730
731	sd->save_area_pa = __sme_page_pa(sd->save_area);
732	return 0;
733
734free_save_area:
735	__free_page(sd->save_area);
736	sd->save_area = NULL;
737	return ret;
738
739}
740
741static void set_dr_intercepts(struct vcpu_svm *svm)
742{
743	struct vmcb *vmcb = svm->vmcb01.ptr;
744
745	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_READ);
746	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_READ);
747	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_READ);
748	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_READ);
749	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_READ);
750	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_READ);
751	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_READ);
752	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR0_WRITE);
753	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR1_WRITE);
754	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR2_WRITE);
755	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR3_WRITE);
756	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR4_WRITE);
757	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR5_WRITE);
758	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR6_WRITE);
759	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
760	vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
761
762	recalc_intercepts(svm);
763}
764
765static void clr_dr_intercepts(struct vcpu_svm *svm)
766{
767	struct vmcb *vmcb = svm->vmcb01.ptr;
768
769	vmcb->control.intercepts[INTERCEPT_DR] = 0;
770
771	recalc_intercepts(svm);
772}
773
774static int direct_access_msr_slot(u32 msr)
775{
776	u32 i;
777
778	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
779		if (direct_access_msrs[i].index == msr)
780			return i;
781
782	return -ENOENT;
783}
784
785static void set_shadow_msr_intercept(struct kvm_vcpu *vcpu, u32 msr, int read,
786				     int write)
787{
788	struct vcpu_svm *svm = to_svm(vcpu);
789	int slot = direct_access_msr_slot(msr);
790
791	if (slot == -ENOENT)
792		return;
793
794	/* Set the shadow bitmaps to the desired intercept states */
795	if (read)
796		set_bit(slot, svm->shadow_msr_intercept.read);
797	else
798		clear_bit(slot, svm->shadow_msr_intercept.read);
799
800	if (write)
801		set_bit(slot, svm->shadow_msr_intercept.write);
802	else
803		clear_bit(slot, svm->shadow_msr_intercept.write);
804}
805
806static bool valid_msr_intercept(u32 index)
807{
808	return direct_access_msr_slot(index) != -ENOENT;
809}
810
811static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
812{
813	u8 bit_write;
814	unsigned long tmp;
815	u32 offset;
816	u32 *msrpm;
817
818	/*
819	 * For non-nested case:
820	 * If the L01 MSR bitmap does not intercept the MSR, then we need to
821	 * save it.
822	 *
823	 * For nested case:
824	 * If the L02 MSR bitmap does not intercept the MSR, then we need to
825	 * save it.
826	 */
827	msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm:
828				      to_svm(vcpu)->msrpm;
829
830	offset    = svm_msrpm_offset(msr);
831	bit_write = 2 * (msr & 0x0f) + 1;
832	tmp       = msrpm[offset];
833
834	BUG_ON(offset == MSR_INVALID);
835
836	return test_bit(bit_write, &tmp);
837}
838
839static void set_msr_interception_bitmap(struct kvm_vcpu *vcpu, u32 *msrpm,
840					u32 msr, int read, int write)
841{
842	struct vcpu_svm *svm = to_svm(vcpu);
843	u8 bit_read, bit_write;
844	unsigned long tmp;
845	u32 offset;
846
847	/*
848	 * If this warning triggers extend the direct_access_msrs list at the
849	 * beginning of the file
850	 */
851	WARN_ON(!valid_msr_intercept(msr));
852
853	/* Enforce non allowed MSRs to trap */
854	if (read && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ))
855		read = 0;
856
857	if (write && !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE))
858		write = 0;
859
860	offset    = svm_msrpm_offset(msr);
861	bit_read  = 2 * (msr & 0x0f);
862	bit_write = 2 * (msr & 0x0f) + 1;
863	tmp       = msrpm[offset];
864
865	BUG_ON(offset == MSR_INVALID);
866
867	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
868	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
869
870	msrpm[offset] = tmp;
871
872	svm_hv_vmcb_dirty_nested_enlightenments(vcpu);
873	svm->nested.force_msr_bitmap_recalc = true;
874}
875
876void set_msr_interception(struct kvm_vcpu *vcpu, u32 *msrpm, u32 msr,
877			  int read, int write)
878{
879	set_shadow_msr_intercept(vcpu, msr, read, write);
880	set_msr_interception_bitmap(vcpu, msrpm, msr, read, write);
881}
882
883u32 *svm_vcpu_alloc_msrpm(void)
884{
885	unsigned int order = get_order(MSRPM_SIZE);
886	struct page *pages = alloc_pages(GFP_KERNEL_ACCOUNT, order);
887	u32 *msrpm;
888
889	if (!pages)
890		return NULL;
891
892	msrpm = page_address(pages);
893	memset(msrpm, 0xff, PAGE_SIZE * (1 << order));
894
895	return msrpm;
896}
897
898void svm_vcpu_init_msrpm(struct kvm_vcpu *vcpu, u32 *msrpm)
899{
900	int i;
901
902	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
903		if (!direct_access_msrs[i].always)
904			continue;
905		set_msr_interception(vcpu, msrpm, direct_access_msrs[i].index, 1, 1);
906	}
907}
908
909void svm_set_x2apic_msr_interception(struct vcpu_svm *svm, bool intercept)
910{
911	int i;
912
913	if (intercept == svm->x2avic_msrs_intercepted)
914		return;
915
916	if (!x2avic_enabled)
917		return;
918
919	for (i = 0; i < MAX_DIRECT_ACCESS_MSRS; i++) {
920		int index = direct_access_msrs[i].index;
921
922		if ((index < APIC_BASE_MSR) ||
923		    (index > APIC_BASE_MSR + 0xff))
924			continue;
925		set_msr_interception(&svm->vcpu, svm->msrpm, index,
926				     !intercept, !intercept);
927	}
928
929	svm->x2avic_msrs_intercepted = intercept;
930}
931
932void svm_vcpu_free_msrpm(u32 *msrpm)
933{
934	__free_pages(virt_to_page(msrpm), get_order(MSRPM_SIZE));
935}
936
937static void svm_msr_filter_changed(struct kvm_vcpu *vcpu)
938{
939	struct vcpu_svm *svm = to_svm(vcpu);
940	u32 i;
941
942	/*
943	 * Set intercept permissions for all direct access MSRs again. They
944	 * will automatically get filtered through the MSR filter, so we are
945	 * back in sync after this.
946	 */
947	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
948		u32 msr = direct_access_msrs[i].index;
949		u32 read = test_bit(i, svm->shadow_msr_intercept.read);
950		u32 write = test_bit(i, svm->shadow_msr_intercept.write);
951
952		set_msr_interception_bitmap(vcpu, svm->msrpm, msr, read, write);
953	}
954}
955
956static void add_msr_offset(u32 offset)
957{
958	int i;
959
960	for (i = 0; i < MSRPM_OFFSETS; ++i) {
961
962		/* Offset already in list? */
963		if (msrpm_offsets[i] == offset)
964			return;
965
966		/* Slot used by another offset? */
967		if (msrpm_offsets[i] != MSR_INVALID)
968			continue;
969
970		/* Add offset to list */
971		msrpm_offsets[i] = offset;
972
973		return;
974	}
975
976	/*
977	 * If this BUG triggers the msrpm_offsets table has an overflow. Just
978	 * increase MSRPM_OFFSETS in this case.
979	 */
980	BUG();
981}
982
983static void init_msrpm_offsets(void)
984{
985	int i;
986
987	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
988
989	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
990		u32 offset;
991
992		offset = svm_msrpm_offset(direct_access_msrs[i].index);
993		BUG_ON(offset == MSR_INVALID);
994
995		add_msr_offset(offset);
996	}
997}
998
999void svm_copy_lbrs(struct vmcb *to_vmcb, struct vmcb *from_vmcb)
1000{
1001	to_vmcb->save.dbgctl		= from_vmcb->save.dbgctl;
1002	to_vmcb->save.br_from		= from_vmcb->save.br_from;
1003	to_vmcb->save.br_to		= from_vmcb->save.br_to;
1004	to_vmcb->save.last_excp_from	= from_vmcb->save.last_excp_from;
1005	to_vmcb->save.last_excp_to	= from_vmcb->save.last_excp_to;
1006
1007	vmcb_mark_dirty(to_vmcb, VMCB_LBR);
1008}
1009
1010static void svm_enable_lbrv(struct kvm_vcpu *vcpu)
1011{
1012	struct vcpu_svm *svm = to_svm(vcpu);
1013
1014	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
1015	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
1016	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
1017	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
1018	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
1019
1020	/* Move the LBR msrs to the vmcb02 so that the guest can see them. */
1021	if (is_guest_mode(vcpu))
1022		svm_copy_lbrs(svm->vmcb, svm->vmcb01.ptr);
1023}
1024
1025static void svm_disable_lbrv(struct kvm_vcpu *vcpu)
1026{
1027	struct vcpu_svm *svm = to_svm(vcpu);
1028
1029	svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK;
1030	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
1031	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
1032	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
1033	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
1034
1035	/*
1036	 * Move the LBR msrs back to the vmcb01 to avoid copying them
1037	 * on nested guest entries.
1038	 */
1039	if (is_guest_mode(vcpu))
1040		svm_copy_lbrs(svm->vmcb01.ptr, svm->vmcb);
1041}
1042
1043static struct vmcb *svm_get_lbr_vmcb(struct vcpu_svm *svm)
1044{
1045	/*
1046	 * If LBR virtualization is disabled, the LBR MSRs are always kept in
1047	 * vmcb01.  If LBR virtualization is enabled and L1 is running VMs of
1048	 * its own, the MSRs are moved between vmcb01 and vmcb02 as needed.
1049	 */
1050	return svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK ? svm->vmcb :
1051								   svm->vmcb01.ptr;
1052}
1053
1054void svm_update_lbrv(struct kvm_vcpu *vcpu)
1055{
1056	struct vcpu_svm *svm = to_svm(vcpu);
1057	bool current_enable_lbrv = svm->vmcb->control.virt_ext & LBR_CTL_ENABLE_MASK;
1058	bool enable_lbrv = (svm_get_lbr_vmcb(svm)->save.dbgctl & DEBUGCTLMSR_LBR) ||
1059			    (is_guest_mode(vcpu) && guest_can_use(vcpu, X86_FEATURE_LBRV) &&
1060			    (svm->nested.ctl.virt_ext & LBR_CTL_ENABLE_MASK));
1061
1062	if (enable_lbrv == current_enable_lbrv)
1063		return;
1064
1065	if (enable_lbrv)
1066		svm_enable_lbrv(vcpu);
1067	else
1068		svm_disable_lbrv(vcpu);
1069}
1070
1071void disable_nmi_singlestep(struct vcpu_svm *svm)
1072{
1073	svm->nmi_singlestep = false;
1074
1075	if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) {
1076		/* Clear our flags if they were not set by the guest */
1077		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1078			svm->vmcb->save.rflags &= ~X86_EFLAGS_TF;
1079		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1080			svm->vmcb->save.rflags &= ~X86_EFLAGS_RF;
1081	}
1082}
1083
1084static void grow_ple_window(struct kvm_vcpu *vcpu)
1085{
1086	struct vcpu_svm *svm = to_svm(vcpu);
1087	struct vmcb_control_area *control = &svm->vmcb->control;
1088	int old = control->pause_filter_count;
1089
1090	if (kvm_pause_in_guest(vcpu->kvm))
1091		return;
1092
1093	control->pause_filter_count = __grow_ple_window(old,
1094							pause_filter_count,
1095							pause_filter_count_grow,
1096							pause_filter_count_max);
1097
1098	if (control->pause_filter_count != old) {
1099		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1100		trace_kvm_ple_window_update(vcpu->vcpu_id,
1101					    control->pause_filter_count, old);
1102	}
1103}
1104
1105static void shrink_ple_window(struct kvm_vcpu *vcpu)
1106{
1107	struct vcpu_svm *svm = to_svm(vcpu);
1108	struct vmcb_control_area *control = &svm->vmcb->control;
1109	int old = control->pause_filter_count;
1110
1111	if (kvm_pause_in_guest(vcpu->kvm))
1112		return;
1113
1114	control->pause_filter_count =
1115				__shrink_ple_window(old,
1116						    pause_filter_count,
1117						    pause_filter_count_shrink,
1118						    pause_filter_count);
1119	if (control->pause_filter_count != old) {
1120		vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1121		trace_kvm_ple_window_update(vcpu->vcpu_id,
1122					    control->pause_filter_count, old);
1123	}
1124}
1125
1126static void svm_hardware_unsetup(void)
1127{
1128	int cpu;
1129
1130	sev_hardware_unsetup();
1131
1132	for_each_possible_cpu(cpu)
1133		svm_cpu_uninit(cpu);
1134
1135	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT),
1136	get_order(IOPM_SIZE));
1137	iopm_base = 0;
1138}
1139
1140static void init_seg(struct vmcb_seg *seg)
1141{
1142	seg->selector = 0;
1143	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
1144		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
1145	seg->limit = 0xffff;
1146	seg->base = 0;
1147}
1148
1149static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
1150{
1151	seg->selector = 0;
1152	seg->attrib = SVM_SELECTOR_P_MASK | type;
1153	seg->limit = 0xffff;
1154	seg->base = 0;
1155}
1156
1157static u64 svm_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1158{
1159	struct vcpu_svm *svm = to_svm(vcpu);
1160
1161	return svm->nested.ctl.tsc_offset;
1162}
1163
1164static u64 svm_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1165{
1166	struct vcpu_svm *svm = to_svm(vcpu);
1167
1168	return svm->tsc_ratio_msr;
1169}
1170
1171static void svm_write_tsc_offset(struct kvm_vcpu *vcpu)
1172{
1173	struct vcpu_svm *svm = to_svm(vcpu);
1174
1175	svm->vmcb01.ptr->control.tsc_offset = vcpu->arch.l1_tsc_offset;
1176	svm->vmcb->control.tsc_offset = vcpu->arch.tsc_offset;
1177	vmcb_mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1178}
1179
1180void svm_write_tsc_multiplier(struct kvm_vcpu *vcpu)
1181{
1182	preempt_disable();
1183	if (to_svm(vcpu)->guest_state_loaded)
1184		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1185	preempt_enable();
1186}
1187
1188/* Evaluate instruction intercepts that depend on guest CPUID features. */
1189static void svm_recalc_instruction_intercepts(struct kvm_vcpu *vcpu,
1190					      struct vcpu_svm *svm)
1191{
1192	/*
1193	 * Intercept INVPCID if shadow paging is enabled to sync/free shadow
1194	 * roots, or if INVPCID is disabled in the guest to inject #UD.
1195	 */
1196	if (kvm_cpu_cap_has(X86_FEATURE_INVPCID)) {
1197		if (!npt_enabled ||
1198		    !guest_cpuid_has(&svm->vcpu, X86_FEATURE_INVPCID))
1199			svm_set_intercept(svm, INTERCEPT_INVPCID);
1200		else
1201			svm_clr_intercept(svm, INTERCEPT_INVPCID);
1202	}
1203
1204	if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP)) {
1205		if (guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
1206			svm_clr_intercept(svm, INTERCEPT_RDTSCP);
1207		else
1208			svm_set_intercept(svm, INTERCEPT_RDTSCP);
1209	}
1210}
1211
1212static inline void init_vmcb_after_set_cpuid(struct kvm_vcpu *vcpu)
1213{
1214	struct vcpu_svm *svm = to_svm(vcpu);
1215
1216	if (guest_cpuid_is_intel(vcpu)) {
1217		/*
1218		 * We must intercept SYSENTER_EIP and SYSENTER_ESP
1219		 * accesses because the processor only stores 32 bits.
1220		 * For the same reason we cannot use virtual VMLOAD/VMSAVE.
1221		 */
1222		svm_set_intercept(svm, INTERCEPT_VMLOAD);
1223		svm_set_intercept(svm, INTERCEPT_VMSAVE);
1224		svm->vmcb->control.virt_ext &= ~VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1225
1226		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 0, 0);
1227		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 0, 0);
1228	} else {
1229		/*
1230		 * If hardware supports Virtual VMLOAD VMSAVE then enable it
1231		 * in VMCB and clear intercepts to avoid #VMEXIT.
1232		 */
1233		if (vls) {
1234			svm_clr_intercept(svm, INTERCEPT_VMLOAD);
1235			svm_clr_intercept(svm, INTERCEPT_VMSAVE);
1236			svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK;
1237		}
1238		/* No need to intercept these MSRs */
1239		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_EIP, 1, 1);
1240		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SYSENTER_ESP, 1, 1);
1241	}
1242}
1243
1244static void init_vmcb(struct kvm_vcpu *vcpu)
1245{
1246	struct vcpu_svm *svm = to_svm(vcpu);
1247	struct vmcb *vmcb = svm->vmcb01.ptr;
1248	struct vmcb_control_area *control = &vmcb->control;
1249	struct vmcb_save_area *save = &vmcb->save;
1250
1251	svm_set_intercept(svm, INTERCEPT_CR0_READ);
1252	svm_set_intercept(svm, INTERCEPT_CR3_READ);
1253	svm_set_intercept(svm, INTERCEPT_CR4_READ);
1254	svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1255	svm_set_intercept(svm, INTERCEPT_CR3_WRITE);
1256	svm_set_intercept(svm, INTERCEPT_CR4_WRITE);
1257	if (!kvm_vcpu_apicv_active(vcpu))
1258		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
1259
1260	set_dr_intercepts(svm);
1261
1262	set_exception_intercept(svm, PF_VECTOR);
1263	set_exception_intercept(svm, UD_VECTOR);
1264	set_exception_intercept(svm, MC_VECTOR);
1265	set_exception_intercept(svm, AC_VECTOR);
1266	set_exception_intercept(svm, DB_VECTOR);
1267	/*
1268	 * Guest access to VMware backdoor ports could legitimately
1269	 * trigger #GP because of TSS I/O permission bitmap.
1270	 * We intercept those #GP and allow access to them anyway
1271	 * as VMware does.
1272	 */
1273	if (enable_vmware_backdoor)
1274		set_exception_intercept(svm, GP_VECTOR);
1275
1276	svm_set_intercept(svm, INTERCEPT_INTR);
1277	svm_set_intercept(svm, INTERCEPT_NMI);
1278
1279	if (intercept_smi)
1280		svm_set_intercept(svm, INTERCEPT_SMI);
1281
1282	svm_set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1283	svm_set_intercept(svm, INTERCEPT_RDPMC);
1284	svm_set_intercept(svm, INTERCEPT_CPUID);
1285	svm_set_intercept(svm, INTERCEPT_INVD);
1286	svm_set_intercept(svm, INTERCEPT_INVLPG);
1287	svm_set_intercept(svm, INTERCEPT_INVLPGA);
1288	svm_set_intercept(svm, INTERCEPT_IOIO_PROT);
1289	svm_set_intercept(svm, INTERCEPT_MSR_PROT);
1290	svm_set_intercept(svm, INTERCEPT_TASK_SWITCH);
1291	svm_set_intercept(svm, INTERCEPT_SHUTDOWN);
1292	svm_set_intercept(svm, INTERCEPT_VMRUN);
1293	svm_set_intercept(svm, INTERCEPT_VMMCALL);
1294	svm_set_intercept(svm, INTERCEPT_VMLOAD);
1295	svm_set_intercept(svm, INTERCEPT_VMSAVE);
1296	svm_set_intercept(svm, INTERCEPT_STGI);
1297	svm_set_intercept(svm, INTERCEPT_CLGI);
1298	svm_set_intercept(svm, INTERCEPT_SKINIT);
1299	svm_set_intercept(svm, INTERCEPT_WBINVD);
1300	svm_set_intercept(svm, INTERCEPT_XSETBV);
1301	svm_set_intercept(svm, INTERCEPT_RDPRU);
1302	svm_set_intercept(svm, INTERCEPT_RSM);
1303
1304	if (!kvm_mwait_in_guest(vcpu->kvm)) {
1305		svm_set_intercept(svm, INTERCEPT_MONITOR);
1306		svm_set_intercept(svm, INTERCEPT_MWAIT);
1307	}
1308
1309	if (!kvm_hlt_in_guest(vcpu->kvm))
1310		svm_set_intercept(svm, INTERCEPT_HLT);
1311
1312	control->iopm_base_pa = __sme_set(iopm_base);
1313	control->msrpm_base_pa = __sme_set(__pa(svm->msrpm));
1314	control->int_ctl = V_INTR_MASKING_MASK;
1315
1316	init_seg(&save->es);
1317	init_seg(&save->ss);
1318	init_seg(&save->ds);
1319	init_seg(&save->fs);
1320	init_seg(&save->gs);
1321
1322	save->cs.selector = 0xf000;
1323	save->cs.base = 0xffff0000;
1324	/* Executable/Readable Code Segment */
1325	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1326		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1327	save->cs.limit = 0xffff;
1328
1329	save->gdtr.base = 0;
1330	save->gdtr.limit = 0xffff;
1331	save->idtr.base = 0;
1332	save->idtr.limit = 0xffff;
1333
1334	init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1335	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1336
1337	if (npt_enabled) {
1338		/* Setup VMCB for Nested Paging */
1339		control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE;
1340		svm_clr_intercept(svm, INTERCEPT_INVLPG);
1341		clr_exception_intercept(svm, PF_VECTOR);
1342		svm_clr_intercept(svm, INTERCEPT_CR3_READ);
1343		svm_clr_intercept(svm, INTERCEPT_CR3_WRITE);
1344		save->g_pat = vcpu->arch.pat;
1345		save->cr3 = 0;
1346	}
1347	svm->current_vmcb->asid_generation = 0;
1348	svm->asid = 0;
1349
1350	svm->nested.vmcb12_gpa = INVALID_GPA;
1351	svm->nested.last_vmcb12_gpa = INVALID_GPA;
1352
1353	if (!kvm_pause_in_guest(vcpu->kvm)) {
1354		control->pause_filter_count = pause_filter_count;
1355		if (pause_filter_thresh)
1356			control->pause_filter_thresh = pause_filter_thresh;
1357		svm_set_intercept(svm, INTERCEPT_PAUSE);
1358	} else {
1359		svm_clr_intercept(svm, INTERCEPT_PAUSE);
1360	}
1361
1362	svm_recalc_instruction_intercepts(vcpu, svm);
1363
1364	/*
1365	 * If the host supports V_SPEC_CTRL then disable the interception
1366	 * of MSR_IA32_SPEC_CTRL.
1367	 */
1368	if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
1369		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
1370
1371	if (kvm_vcpu_apicv_active(vcpu))
1372		avic_init_vmcb(svm, vmcb);
1373
1374	if (vnmi)
1375		svm->vmcb->control.int_ctl |= V_NMI_ENABLE_MASK;
1376
1377	if (vgif) {
1378		svm_clr_intercept(svm, INTERCEPT_STGI);
1379		svm_clr_intercept(svm, INTERCEPT_CLGI);
1380		svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK;
1381	}
1382
1383	if (sev_guest(vcpu->kvm))
1384		sev_init_vmcb(svm);
1385
1386	svm_hv_init_vmcb(vmcb);
1387	init_vmcb_after_set_cpuid(vcpu);
1388
1389	vmcb_mark_all_dirty(vmcb);
1390
1391	enable_gif(svm);
1392}
1393
1394static void __svm_vcpu_reset(struct kvm_vcpu *vcpu)
1395{
1396	struct vcpu_svm *svm = to_svm(vcpu);
1397
1398	svm_vcpu_init_msrpm(vcpu, svm->msrpm);
1399
1400	svm_init_osvw(vcpu);
1401	vcpu->arch.microcode_version = 0x01000065;
1402	svm->tsc_ratio_msr = kvm_caps.default_tsc_scaling_ratio;
1403
1404	svm->nmi_masked = false;
1405	svm->awaiting_iret_completion = false;
1406
1407	if (sev_es_guest(vcpu->kvm))
1408		sev_es_vcpu_reset(svm);
1409}
1410
1411static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
1412{
1413	struct vcpu_svm *svm = to_svm(vcpu);
1414
1415	svm->spec_ctrl = 0;
1416	svm->virt_spec_ctrl = 0;
1417
1418	init_vmcb(vcpu);
1419
1420	if (!init_event)
1421		__svm_vcpu_reset(vcpu);
1422}
1423
1424void svm_switch_vmcb(struct vcpu_svm *svm, struct kvm_vmcb_info *target_vmcb)
1425{
1426	svm->current_vmcb = target_vmcb;
1427	svm->vmcb = target_vmcb->ptr;
1428}
1429
1430static int svm_vcpu_create(struct kvm_vcpu *vcpu)
1431{
1432	struct vcpu_svm *svm;
1433	struct page *vmcb01_page;
1434	struct page *vmsa_page = NULL;
1435	int err;
1436
1437	BUILD_BUG_ON(offsetof(struct vcpu_svm, vcpu) != 0);
1438	svm = to_svm(vcpu);
1439
1440	err = -ENOMEM;
1441	vmcb01_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1442	if (!vmcb01_page)
1443		goto out;
1444
1445	if (sev_es_guest(vcpu->kvm)) {
1446		/*
1447		 * SEV-ES guests require a separate VMSA page used to contain
1448		 * the encrypted register state of the guest.
1449		 */
1450		vmsa_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1451		if (!vmsa_page)
1452			goto error_free_vmcb_page;
1453
1454		/*
1455		 * SEV-ES guests maintain an encrypted version of their FPU
1456		 * state which is restored and saved on VMRUN and VMEXIT.
1457		 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
1458		 * do xsave/xrstor on it.
1459		 */
1460		fpstate_set_confidential(&vcpu->arch.guest_fpu);
1461	}
1462
1463	err = avic_init_vcpu(svm);
1464	if (err)
1465		goto error_free_vmsa_page;
1466
1467	svm->msrpm = svm_vcpu_alloc_msrpm();
1468	if (!svm->msrpm) {
1469		err = -ENOMEM;
1470		goto error_free_vmsa_page;
1471	}
1472
1473	svm->x2avic_msrs_intercepted = true;
1474
1475	svm->vmcb01.ptr = page_address(vmcb01_page);
1476	svm->vmcb01.pa = __sme_set(page_to_pfn(vmcb01_page) << PAGE_SHIFT);
1477	svm_switch_vmcb(svm, &svm->vmcb01);
1478
1479	if (vmsa_page)
1480		svm->sev_es.vmsa = page_address(vmsa_page);
1481
1482	svm->guest_state_loaded = false;
1483
1484	return 0;
1485
1486error_free_vmsa_page:
1487	if (vmsa_page)
1488		__free_page(vmsa_page);
1489error_free_vmcb_page:
1490	__free_page(vmcb01_page);
1491out:
1492	return err;
1493}
1494
1495static void svm_clear_current_vmcb(struct vmcb *vmcb)
1496{
1497	int i;
1498
1499	for_each_online_cpu(i)
1500		cmpxchg(per_cpu_ptr(&svm_data.current_vmcb, i), vmcb, NULL);
1501}
1502
1503static void svm_vcpu_free(struct kvm_vcpu *vcpu)
1504{
1505	struct vcpu_svm *svm = to_svm(vcpu);
1506
1507	/*
1508	 * The vmcb page can be recycled, causing a false negative in
1509	 * svm_vcpu_load(). So, ensure that no logical CPU has this
1510	 * vmcb page recorded as its current vmcb.
1511	 */
1512	svm_clear_current_vmcb(svm->vmcb);
1513
1514	svm_leave_nested(vcpu);
1515	svm_free_nested(svm);
1516
1517	sev_free_vcpu(vcpu);
1518
1519	__free_page(pfn_to_page(__sme_clr(svm->vmcb01.pa) >> PAGE_SHIFT));
1520	__free_pages(virt_to_page(svm->msrpm), get_order(MSRPM_SIZE));
1521}
1522
1523static void svm_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1524{
1525	struct vcpu_svm *svm = to_svm(vcpu);
1526	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
1527
1528	if (sev_es_guest(vcpu->kvm))
1529		sev_es_unmap_ghcb(svm);
1530
1531	if (svm->guest_state_loaded)
1532		return;
1533
1534	/*
1535	 * Save additional host state that will be restored on VMEXIT (sev-es)
1536	 * or subsequent vmload of host save area.
1537	 */
1538	vmsave(sd->save_area_pa);
1539	if (sev_es_guest(vcpu->kvm)) {
1540		struct sev_es_save_area *hostsa;
1541		hostsa = (struct sev_es_save_area *)(page_address(sd->save_area) + 0x400);
1542
1543		sev_es_prepare_switch_to_guest(hostsa);
1544	}
1545
1546	if (tsc_scaling)
1547		__svm_write_tsc_multiplier(vcpu->arch.tsc_scaling_ratio);
1548
1549	/*
1550	 * TSC_AUX is always virtualized for SEV-ES guests when the feature is
1551	 * available. The user return MSR support is not required in this case
1552	 * because TSC_AUX is restored on #VMEXIT from the host save area
1553	 * (which has been initialized in svm_hardware_enable()).
1554	 */
1555	if (likely(tsc_aux_uret_slot >= 0) &&
1556	    (!boot_cpu_has(X86_FEATURE_V_TSC_AUX) || !sev_es_guest(vcpu->kvm)))
1557		kvm_set_user_return_msr(tsc_aux_uret_slot, svm->tsc_aux, -1ull);
1558
1559	svm->guest_state_loaded = true;
1560}
1561
1562static void svm_prepare_host_switch(struct kvm_vcpu *vcpu)
1563{
1564	to_svm(vcpu)->guest_state_loaded = false;
1565}
1566
1567static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1568{
1569	struct vcpu_svm *svm = to_svm(vcpu);
1570	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
1571
1572	if (sd->current_vmcb != svm->vmcb) {
1573		sd->current_vmcb = svm->vmcb;
1574
1575		if (!cpu_feature_enabled(X86_FEATURE_IBPB_ON_VMEXIT))
1576			indirect_branch_prediction_barrier();
1577	}
1578	if (kvm_vcpu_apicv_active(vcpu))
1579		avic_vcpu_load(vcpu, cpu);
1580}
1581
1582static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1583{
1584	if (kvm_vcpu_apicv_active(vcpu))
1585		avic_vcpu_put(vcpu);
1586
1587	svm_prepare_host_switch(vcpu);
1588
1589	++vcpu->stat.host_state_reload;
1590}
1591
1592static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1593{
1594	struct vcpu_svm *svm = to_svm(vcpu);
1595	unsigned long rflags = svm->vmcb->save.rflags;
1596
1597	if (svm->nmi_singlestep) {
1598		/* Hide our flags if they were not set by the guest */
1599		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF))
1600			rflags &= ~X86_EFLAGS_TF;
1601		if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF))
1602			rflags &= ~X86_EFLAGS_RF;
1603	}
1604	return rflags;
1605}
1606
1607static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1608{
1609	if (to_svm(vcpu)->nmi_singlestep)
1610		rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
1611
1612       /*
1613        * Any change of EFLAGS.VM is accompanied by a reload of SS
1614        * (caused by either a task switch or an inter-privilege IRET),
1615        * so we do not need to update the CPL here.
1616        */
1617	to_svm(vcpu)->vmcb->save.rflags = rflags;
1618}
1619
1620static bool svm_get_if_flag(struct kvm_vcpu *vcpu)
1621{
1622	struct vmcb *vmcb = to_svm(vcpu)->vmcb;
1623
1624	return sev_es_guest(vcpu->kvm)
1625		? vmcb->control.int_state & SVM_GUEST_INTERRUPT_MASK
1626		: kvm_get_rflags(vcpu) & X86_EFLAGS_IF;
1627}
1628
1629static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1630{
1631	kvm_register_mark_available(vcpu, reg);
1632
1633	switch (reg) {
1634	case VCPU_EXREG_PDPTR:
1635		/*
1636		 * When !npt_enabled, mmu->pdptrs[] is already available since
1637		 * it is always updated per SDM when moving to CRs.
1638		 */
1639		if (npt_enabled)
1640			load_pdptrs(vcpu, kvm_read_cr3(vcpu));
1641		break;
1642	default:
1643		KVM_BUG_ON(1, vcpu->kvm);
1644	}
1645}
1646
1647static void svm_set_vintr(struct vcpu_svm *svm)
1648{
1649	struct vmcb_control_area *control;
1650
1651	/*
1652	 * The following fields are ignored when AVIC is enabled
1653	 */
1654	WARN_ON(kvm_vcpu_apicv_activated(&svm->vcpu));
1655
1656	svm_set_intercept(svm, INTERCEPT_VINTR);
1657
1658	/*
1659	 * Recalculating intercepts may have cleared the VINTR intercept.  If
1660	 * V_INTR_MASKING is enabled in vmcb12, then the effective RFLAGS.IF
1661	 * for L1 physical interrupts is L1's RFLAGS.IF at the time of VMRUN.
1662	 * Requesting an interrupt window if save.RFLAGS.IF=0 is pointless as
1663	 * interrupts will never be unblocked while L2 is running.
1664	 */
1665	if (!svm_is_intercept(svm, INTERCEPT_VINTR))
1666		return;
1667
1668	/*
1669	 * This is just a dummy VINTR to actually cause a vmexit to happen.
1670	 * Actual injection of virtual interrupts happens through EVENTINJ.
1671	 */
1672	control = &svm->vmcb->control;
1673	control->int_vector = 0x0;
1674	control->int_ctl &= ~V_INTR_PRIO_MASK;
1675	control->int_ctl |= V_IRQ_MASK |
1676		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
1677	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1678}
1679
1680static void svm_clear_vintr(struct vcpu_svm *svm)
1681{
1682	svm_clr_intercept(svm, INTERCEPT_VINTR);
1683
1684	/* Drop int_ctl fields related to VINTR injection.  */
1685	svm->vmcb->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1686	if (is_guest_mode(&svm->vcpu)) {
1687		svm->vmcb01.ptr->control.int_ctl &= ~V_IRQ_INJECTION_BITS_MASK;
1688
1689		WARN_ON((svm->vmcb->control.int_ctl & V_TPR_MASK) !=
1690			(svm->nested.ctl.int_ctl & V_TPR_MASK));
1691
1692		svm->vmcb->control.int_ctl |= svm->nested.ctl.int_ctl &
1693			V_IRQ_INJECTION_BITS_MASK;
1694
1695		svm->vmcb->control.int_vector = svm->nested.ctl.int_vector;
1696	}
1697
1698	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
1699}
1700
1701static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1702{
1703	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1704	struct vmcb_save_area *save01 = &to_svm(vcpu)->vmcb01.ptr->save;
1705
1706	switch (seg) {
1707	case VCPU_SREG_CS: return &save->cs;
1708	case VCPU_SREG_DS: return &save->ds;
1709	case VCPU_SREG_ES: return &save->es;
1710	case VCPU_SREG_FS: return &save01->fs;
1711	case VCPU_SREG_GS: return &save01->gs;
1712	case VCPU_SREG_SS: return &save->ss;
1713	case VCPU_SREG_TR: return &save01->tr;
1714	case VCPU_SREG_LDTR: return &save01->ldtr;
1715	}
1716	BUG();
1717	return NULL;
1718}
1719
1720static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1721{
1722	struct vmcb_seg *s = svm_seg(vcpu, seg);
1723
1724	return s->base;
1725}
1726
1727static void svm_get_segment(struct kvm_vcpu *vcpu,
1728			    struct kvm_segment *var, int seg)
1729{
1730	struct vmcb_seg *s = svm_seg(vcpu, seg);
1731
1732	var->base = s->base;
1733	var->limit = s->limit;
1734	var->selector = s->selector;
1735	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1736	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1737	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1738	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1739	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1740	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1741	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1742
1743	/*
1744	 * AMD CPUs circa 2014 track the G bit for all segments except CS.
1745	 * However, the SVM spec states that the G bit is not observed by the
1746	 * CPU, and some VMware virtual CPUs drop the G bit for all segments.
1747	 * So let's synthesize a legal G bit for all segments, this helps
1748	 * running KVM nested. It also helps cross-vendor migration, because
1749	 * Intel's vmentry has a check on the 'G' bit.
1750	 */
1751	var->g = s->limit > 0xfffff;
1752
1753	/*
1754	 * AMD's VMCB does not have an explicit unusable field, so emulate it
1755	 * for cross vendor migration purposes by "not present"
1756	 */
1757	var->unusable = !var->present;
1758
1759	switch (seg) {
1760	case VCPU_SREG_TR:
1761		/*
1762		 * Work around a bug where the busy flag in the tr selector
1763		 * isn't exposed
1764		 */
1765		var->type |= 0x2;
1766		break;
1767	case VCPU_SREG_DS:
1768	case VCPU_SREG_ES:
1769	case VCPU_SREG_FS:
1770	case VCPU_SREG_GS:
1771		/*
1772		 * The accessed bit must always be set in the segment
1773		 * descriptor cache, although it can be cleared in the
1774		 * descriptor, the cached bit always remains at 1. Since
1775		 * Intel has a check on this, set it here to support
1776		 * cross-vendor migration.
1777		 */
1778		if (!var->unusable)
1779			var->type |= 0x1;
1780		break;
1781	case VCPU_SREG_SS:
1782		/*
1783		 * On AMD CPUs sometimes the DB bit in the segment
1784		 * descriptor is left as 1, although the whole segment has
1785		 * been made unusable. Clear it here to pass an Intel VMX
1786		 * entry check when cross vendor migrating.
1787		 */
1788		if (var->unusable)
1789			var->db = 0;
1790		/* This is symmetric with svm_set_segment() */
1791		var->dpl = to_svm(vcpu)->vmcb->save.cpl;
1792		break;
1793	}
1794}
1795
1796static int svm_get_cpl(struct kvm_vcpu *vcpu)
1797{
1798	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1799
1800	return save->cpl;
1801}
1802
1803static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1804{
1805	struct kvm_segment cs;
1806
1807	svm_get_segment(vcpu, &cs, VCPU_SREG_CS);
1808	*db = cs.db;
1809	*l = cs.l;
1810}
1811
1812static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1813{
1814	struct vcpu_svm *svm = to_svm(vcpu);
1815
1816	dt->size = svm->vmcb->save.idtr.limit;
1817	dt->address = svm->vmcb->save.idtr.base;
1818}
1819
1820static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1821{
1822	struct vcpu_svm *svm = to_svm(vcpu);
1823
1824	svm->vmcb->save.idtr.limit = dt->size;
1825	svm->vmcb->save.idtr.base = dt->address ;
1826	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1827}
1828
1829static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1830{
1831	struct vcpu_svm *svm = to_svm(vcpu);
1832
1833	dt->size = svm->vmcb->save.gdtr.limit;
1834	dt->address = svm->vmcb->save.gdtr.base;
1835}
1836
1837static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1838{
1839	struct vcpu_svm *svm = to_svm(vcpu);
1840
1841	svm->vmcb->save.gdtr.limit = dt->size;
1842	svm->vmcb->save.gdtr.base = dt->address ;
1843	vmcb_mark_dirty(svm->vmcb, VMCB_DT);
1844}
1845
1846static void sev_post_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1847{
1848	struct vcpu_svm *svm = to_svm(vcpu);
1849
1850	/*
1851	 * For guests that don't set guest_state_protected, the cr3 update is
1852	 * handled via kvm_mmu_load() while entering the guest. For guests
1853	 * that do (SEV-ES/SEV-SNP), the cr3 update needs to be written to
1854	 * VMCB save area now, since the save area will become the initial
1855	 * contents of the VMSA, and future VMCB save area updates won't be
1856	 * seen.
1857	 */
1858	if (sev_es_guest(vcpu->kvm)) {
1859		svm->vmcb->save.cr3 = cr3;
1860		vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1861	}
1862}
1863
1864static bool svm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1865{
1866	return true;
1867}
1868
1869void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1870{
1871	struct vcpu_svm *svm = to_svm(vcpu);
1872	u64 hcr0 = cr0;
1873	bool old_paging = is_paging(vcpu);
1874
1875#ifdef CONFIG_X86_64
1876	if (vcpu->arch.efer & EFER_LME) {
1877		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1878			vcpu->arch.efer |= EFER_LMA;
1879			if (!vcpu->arch.guest_state_protected)
1880				svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1881		}
1882
1883		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1884			vcpu->arch.efer &= ~EFER_LMA;
1885			if (!vcpu->arch.guest_state_protected)
1886				svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1887		}
1888	}
1889#endif
1890	vcpu->arch.cr0 = cr0;
1891
1892	if (!npt_enabled) {
1893		hcr0 |= X86_CR0_PG | X86_CR0_WP;
1894		if (old_paging != is_paging(vcpu))
1895			svm_set_cr4(vcpu, kvm_read_cr4(vcpu));
1896	}
1897
1898	/*
1899	 * re-enable caching here because the QEMU bios
1900	 * does not do it - this results in some delay at
1901	 * reboot
1902	 */
1903	if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
1904		hcr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1905
1906	svm->vmcb->save.cr0 = hcr0;
1907	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
1908
1909	/*
1910	 * SEV-ES guests must always keep the CR intercepts cleared. CR
1911	 * tracking is done using the CR write traps.
1912	 */
1913	if (sev_es_guest(vcpu->kvm))
1914		return;
1915
1916	if (hcr0 == cr0) {
1917		/* Selective CR0 write remains on.  */
1918		svm_clr_intercept(svm, INTERCEPT_CR0_READ);
1919		svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
1920	} else {
1921		svm_set_intercept(svm, INTERCEPT_CR0_READ);
1922		svm_set_intercept(svm, INTERCEPT_CR0_WRITE);
1923	}
1924}
1925
1926static bool svm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1927{
1928	return true;
1929}
1930
1931void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1932{
1933	unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE;
1934	unsigned long old_cr4 = vcpu->arch.cr4;
1935
1936	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1937		svm_flush_tlb_current(vcpu);
1938
1939	vcpu->arch.cr4 = cr4;
1940	if (!npt_enabled) {
1941		cr4 |= X86_CR4_PAE;
1942
1943		if (!is_paging(vcpu))
1944			cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
1945	}
1946	cr4 |= host_cr4_mce;
1947	to_svm(vcpu)->vmcb->save.cr4 = cr4;
1948	vmcb_mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1949
1950	if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
1951		kvm_update_cpuid_runtime(vcpu);
1952}
1953
1954static void svm_set_segment(struct kvm_vcpu *vcpu,
1955			    struct kvm_segment *var, int seg)
1956{
1957	struct vcpu_svm *svm = to_svm(vcpu);
1958	struct vmcb_seg *s = svm_seg(vcpu, seg);
1959
1960	s->base = var->base;
1961	s->limit = var->limit;
1962	s->selector = var->selector;
1963	s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1964	s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1965	s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1966	s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT;
1967	s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1968	s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1969	s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1970	s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1971
1972	/*
1973	 * This is always accurate, except if SYSRET returned to a segment
1974	 * with SS.DPL != 3.  Intel does not have this quirk, and always
1975	 * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
1976	 * would entail passing the CPL to userspace and back.
1977	 */
1978	if (seg == VCPU_SREG_SS)
1979		/* This is symmetric with svm_get_segment() */
1980		svm->vmcb->save.cpl = (var->dpl & 3);
1981
1982	vmcb_mark_dirty(svm->vmcb, VMCB_SEG);
1983}
1984
1985static void svm_update_exception_bitmap(struct kvm_vcpu *vcpu)
1986{
1987	struct vcpu_svm *svm = to_svm(vcpu);
1988
1989	clr_exception_intercept(svm, BP_VECTOR);
1990
1991	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1992		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1993			set_exception_intercept(svm, BP_VECTOR);
1994	}
1995}
1996
1997static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1998{
1999	if (sd->next_asid > sd->max_asid) {
2000		++sd->asid_generation;
2001		sd->next_asid = sd->min_asid;
2002		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
2003		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2004	}
2005
2006	svm->current_vmcb->asid_generation = sd->asid_generation;
2007	svm->asid = sd->next_asid++;
2008}
2009
2010static void svm_set_dr6(struct vcpu_svm *svm, unsigned long value)
2011{
2012	struct vmcb *vmcb = svm->vmcb;
2013
2014	if (svm->vcpu.arch.guest_state_protected)
2015		return;
2016
2017	if (unlikely(value != vmcb->save.dr6)) {
2018		vmcb->save.dr6 = value;
2019		vmcb_mark_dirty(vmcb, VMCB_DR);
2020	}
2021}
2022
2023static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
2024{
2025	struct vcpu_svm *svm = to_svm(vcpu);
2026
2027	if (WARN_ON_ONCE(sev_es_guest(vcpu->kvm)))
2028		return;
2029
2030	get_debugreg(vcpu->arch.db[0], 0);
2031	get_debugreg(vcpu->arch.db[1], 1);
2032	get_debugreg(vcpu->arch.db[2], 2);
2033	get_debugreg(vcpu->arch.db[3], 3);
2034	/*
2035	 * We cannot reset svm->vmcb->save.dr6 to DR6_ACTIVE_LOW here,
2036	 * because db_interception might need it.  We can do it before vmentry.
2037	 */
2038	vcpu->arch.dr6 = svm->vmcb->save.dr6;
2039	vcpu->arch.dr7 = svm->vmcb->save.dr7;
2040	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
2041	set_dr_intercepts(svm);
2042}
2043
2044static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
2045{
2046	struct vcpu_svm *svm = to_svm(vcpu);
2047
2048	if (vcpu->arch.guest_state_protected)
2049		return;
2050
2051	svm->vmcb->save.dr7 = value;
2052	vmcb_mark_dirty(svm->vmcb, VMCB_DR);
2053}
2054
2055static int pf_interception(struct kvm_vcpu *vcpu)
2056{
2057	struct vcpu_svm *svm = to_svm(vcpu);
2058
2059	u64 fault_address = svm->vmcb->control.exit_info_2;
2060	u64 error_code = svm->vmcb->control.exit_info_1;
2061
2062	return kvm_handle_page_fault(vcpu, error_code, fault_address,
2063			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2064			svm->vmcb->control.insn_bytes : NULL,
2065			svm->vmcb->control.insn_len);
2066}
2067
2068static int npf_interception(struct kvm_vcpu *vcpu)
2069{
2070	struct vcpu_svm *svm = to_svm(vcpu);
2071
2072	u64 fault_address = svm->vmcb->control.exit_info_2;
2073	u64 error_code = svm->vmcb->control.exit_info_1;
2074
2075	trace_kvm_page_fault(vcpu, fault_address, error_code);
2076	return kvm_mmu_page_fault(vcpu, fault_address, error_code,
2077			static_cpu_has(X86_FEATURE_DECODEASSISTS) ?
2078			svm->vmcb->control.insn_bytes : NULL,
2079			svm->vmcb->control.insn_len);
2080}
2081
2082static int db_interception(struct kvm_vcpu *vcpu)
2083{
2084	struct kvm_run *kvm_run = vcpu->run;
2085	struct vcpu_svm *svm = to_svm(vcpu);
2086
2087	if (!(vcpu->guest_debug &
2088	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
2089		!svm->nmi_singlestep) {
2090		u32 payload = svm->vmcb->save.dr6 ^ DR6_ACTIVE_LOW;
2091		kvm_queue_exception_p(vcpu, DB_VECTOR, payload);
2092		return 1;
2093	}
2094
2095	if (svm->nmi_singlestep) {
2096		disable_nmi_singlestep(svm);
2097		/* Make sure we check for pending NMIs upon entry */
2098		kvm_make_request(KVM_REQ_EVENT, vcpu);
2099	}
2100
2101	if (vcpu->guest_debug &
2102	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
2103		kvm_run->exit_reason = KVM_EXIT_DEBUG;
2104		kvm_run->debug.arch.dr6 = svm->vmcb->save.dr6;
2105		kvm_run->debug.arch.dr7 = svm->vmcb->save.dr7;
2106		kvm_run->debug.arch.pc =
2107			svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2108		kvm_run->debug.arch.exception = DB_VECTOR;
2109		return 0;
2110	}
2111
2112	return 1;
2113}
2114
2115static int bp_interception(struct kvm_vcpu *vcpu)
2116{
2117	struct vcpu_svm *svm = to_svm(vcpu);
2118	struct kvm_run *kvm_run = vcpu->run;
2119
2120	kvm_run->exit_reason = KVM_EXIT_DEBUG;
2121	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
2122	kvm_run->debug.arch.exception = BP_VECTOR;
2123	return 0;
2124}
2125
2126static int ud_interception(struct kvm_vcpu *vcpu)
2127{
2128	return handle_ud(vcpu);
2129}
2130
2131static int ac_interception(struct kvm_vcpu *vcpu)
2132{
2133	kvm_queue_exception_e(vcpu, AC_VECTOR, 0);
2134	return 1;
2135}
2136
2137static bool is_erratum_383(void)
2138{
2139	int err, i;
2140	u64 value;
2141
2142	if (!erratum_383_found)
2143		return false;
2144
2145	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
2146	if (err)
2147		return false;
2148
2149	/* Bit 62 may or may not be set for this mce */
2150	value &= ~(1ULL << 62);
2151
2152	if (value != 0xb600000000010015ULL)
2153		return false;
2154
2155	/* Clear MCi_STATUS registers */
2156	for (i = 0; i < 6; ++i)
2157		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
2158
2159	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
2160	if (!err) {
2161		u32 low, high;
2162
2163		value &= ~(1ULL << 2);
2164		low    = lower_32_bits(value);
2165		high   = upper_32_bits(value);
2166
2167		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
2168	}
2169
2170	/* Flush tlb to evict multi-match entries */
2171	__flush_tlb_all();
2172
2173	return true;
2174}
2175
2176static void svm_handle_mce(struct kvm_vcpu *vcpu)
2177{
2178	if (is_erratum_383()) {
2179		/*
2180		 * Erratum 383 triggered. Guest state is corrupt so kill the
2181		 * guest.
2182		 */
2183		pr_err("Guest triggered AMD Erratum 383\n");
2184
2185		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2186
2187		return;
2188	}
2189
2190	/*
2191	 * On an #MC intercept the MCE handler is not called automatically in
2192	 * the host. So do it by hand here.
2193	 */
2194	kvm_machine_check();
2195}
2196
2197static int mc_interception(struct kvm_vcpu *vcpu)
2198{
2199	return 1;
2200}
2201
2202static int shutdown_interception(struct kvm_vcpu *vcpu)
2203{
2204	struct kvm_run *kvm_run = vcpu->run;
2205	struct vcpu_svm *svm = to_svm(vcpu);
2206
2207	/*
2208	 * The VM save area has already been encrypted so it
2209	 * cannot be reinitialized - just terminate.
2210	 */
2211	if (sev_es_guest(vcpu->kvm))
2212		return -EINVAL;
2213
2214	/*
2215	 * VMCB is undefined after a SHUTDOWN intercept.  INIT the vCPU to put
2216	 * the VMCB in a known good state.  Unfortuately, KVM doesn't have
2217	 * KVM_MP_STATE_SHUTDOWN and can't add it without potentially breaking
2218	 * userspace.  At a platform view, INIT is acceptable behavior as
2219	 * there exist bare metal platforms that automatically INIT the CPU
2220	 * in response to shutdown.
2221	 */
2222	clear_page(svm->vmcb);
2223	kvm_vcpu_reset(vcpu, true);
2224
2225	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
2226	return 0;
2227}
2228
2229static int io_interception(struct kvm_vcpu *vcpu)
2230{
2231	struct vcpu_svm *svm = to_svm(vcpu);
2232	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
2233	int size, in, string;
2234	unsigned port;
2235
2236	++vcpu->stat.io_exits;
2237	string = (io_info & SVM_IOIO_STR_MASK) != 0;
2238	in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
2239	port = io_info >> 16;
2240	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
2241
2242	if (string) {
2243		if (sev_es_guest(vcpu->kvm))
2244			return sev_es_string_io(svm, size, port, in);
2245		else
2246			return kvm_emulate_instruction(vcpu, 0);
2247	}
2248
2249	svm->next_rip = svm->vmcb->control.exit_info_2;
2250
2251	return kvm_fast_pio(vcpu, size, port, in);
2252}
2253
2254static int nmi_interception(struct kvm_vcpu *vcpu)
2255{
2256	return 1;
2257}
2258
2259static int smi_interception(struct kvm_vcpu *vcpu)
2260{
2261	return 1;
2262}
2263
2264static int intr_interception(struct kvm_vcpu *vcpu)
2265{
2266	++vcpu->stat.irq_exits;
2267	return 1;
2268}
2269
2270static int vmload_vmsave_interception(struct kvm_vcpu *vcpu, bool vmload)
2271{
2272	struct vcpu_svm *svm = to_svm(vcpu);
2273	struct vmcb *vmcb12;
2274	struct kvm_host_map map;
2275	int ret;
2276
2277	if (nested_svm_check_permissions(vcpu))
2278		return 1;
2279
2280	ret = kvm_vcpu_map(vcpu, gpa_to_gfn(svm->vmcb->save.rax), &map);
2281	if (ret) {
2282		if (ret == -EINVAL)
2283			kvm_inject_gp(vcpu, 0);
2284		return 1;
2285	}
2286
2287	vmcb12 = map.hva;
2288
2289	ret = kvm_skip_emulated_instruction(vcpu);
2290
2291	if (vmload) {
2292		svm_copy_vmloadsave_state(svm->vmcb, vmcb12);
2293		svm->sysenter_eip_hi = 0;
2294		svm->sysenter_esp_hi = 0;
2295	} else {
2296		svm_copy_vmloadsave_state(vmcb12, svm->vmcb);
2297	}
2298
2299	kvm_vcpu_unmap(vcpu, &map, true);
2300
2301	return ret;
2302}
2303
2304static int vmload_interception(struct kvm_vcpu *vcpu)
2305{
2306	return vmload_vmsave_interception(vcpu, true);
2307}
2308
2309static int vmsave_interception(struct kvm_vcpu *vcpu)
2310{
2311	return vmload_vmsave_interception(vcpu, false);
2312}
2313
2314static int vmrun_interception(struct kvm_vcpu *vcpu)
2315{
2316	if (nested_svm_check_permissions(vcpu))
2317		return 1;
2318
2319	return nested_svm_vmrun(vcpu);
2320}
2321
2322enum {
2323	NONE_SVM_INSTR,
2324	SVM_INSTR_VMRUN,
2325	SVM_INSTR_VMLOAD,
2326	SVM_INSTR_VMSAVE,
2327};
2328
2329/* Return NONE_SVM_INSTR if not SVM instrs, otherwise return decode result */
2330static int svm_instr_opcode(struct kvm_vcpu *vcpu)
2331{
2332	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
2333
2334	if (ctxt->b != 0x1 || ctxt->opcode_len != 2)
2335		return NONE_SVM_INSTR;
2336
2337	switch (ctxt->modrm) {
2338	case 0xd8: /* VMRUN */
2339		return SVM_INSTR_VMRUN;
2340	case 0xda: /* VMLOAD */
2341		return SVM_INSTR_VMLOAD;
2342	case 0xdb: /* VMSAVE */
2343		return SVM_INSTR_VMSAVE;
2344	default:
2345		break;
2346	}
2347
2348	return NONE_SVM_INSTR;
2349}
2350
2351static int emulate_svm_instr(struct kvm_vcpu *vcpu, int opcode)
2352{
2353	const int guest_mode_exit_codes[] = {
2354		[SVM_INSTR_VMRUN] = SVM_EXIT_VMRUN,
2355		[SVM_INSTR_VMLOAD] = SVM_EXIT_VMLOAD,
2356		[SVM_INSTR_VMSAVE] = SVM_EXIT_VMSAVE,
2357	};
2358	int (*const svm_instr_handlers[])(struct kvm_vcpu *vcpu) = {
2359		[SVM_INSTR_VMRUN] = vmrun_interception,
2360		[SVM_INSTR_VMLOAD] = vmload_interception,
2361		[SVM_INSTR_VMSAVE] = vmsave_interception,
2362	};
2363	struct vcpu_svm *svm = to_svm(vcpu);
2364	int ret;
2365
2366	if (is_guest_mode(vcpu)) {
2367		/* Returns '1' or -errno on failure, '0' on success. */
2368		ret = nested_svm_simple_vmexit(svm, guest_mode_exit_codes[opcode]);
2369		if (ret)
2370			return ret;
2371		return 1;
2372	}
2373	return svm_instr_handlers[opcode](vcpu);
2374}
2375
2376/*
2377 * #GP handling code. Note that #GP can be triggered under the following two
2378 * cases:
2379 *   1) SVM VM-related instructions (VMRUN/VMSAVE/VMLOAD) that trigger #GP on
2380 *      some AMD CPUs when EAX of these instructions are in the reserved memory
2381 *      regions (e.g. SMM memory on host).
2382 *   2) VMware backdoor
2383 */
2384static int gp_interception(struct kvm_vcpu *vcpu)
2385{
2386	struct vcpu_svm *svm = to_svm(vcpu);
2387	u32 error_code = svm->vmcb->control.exit_info_1;
2388	int opcode;
2389
2390	/* Both #GP cases have zero error_code */
2391	if (error_code)
2392		goto reinject;
2393
2394	/* Decode the instruction for usage later */
2395	if (x86_decode_emulated_instruction(vcpu, 0, NULL, 0) != EMULATION_OK)
2396		goto reinject;
2397
2398	opcode = svm_instr_opcode(vcpu);
2399
2400	if (opcode == NONE_SVM_INSTR) {
2401		if (!enable_vmware_backdoor)
2402			goto reinject;
2403
2404		/*
2405		 * VMware backdoor emulation on #GP interception only handles
2406		 * IN{S}, OUT{S}, and RDPMC.
2407		 */
2408		if (!is_guest_mode(vcpu))
2409			return kvm_emulate_instruction(vcpu,
2410				EMULTYPE_VMWARE_GP | EMULTYPE_NO_DECODE);
2411	} else {
2412		/* All SVM instructions expect page aligned RAX */
2413		if (svm->vmcb->save.rax & ~PAGE_MASK)
2414			goto reinject;
2415
2416		return emulate_svm_instr(vcpu, opcode);
2417	}
2418
2419reinject:
2420	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2421	return 1;
2422}
2423
2424void svm_set_gif(struct vcpu_svm *svm, bool value)
2425{
2426	if (value) {
2427		/*
2428		 * If VGIF is enabled, the STGI intercept is only added to
2429		 * detect the opening of the SMI/NMI window; remove it now.
2430		 * Likewise, clear the VINTR intercept, we will set it
2431		 * again while processing KVM_REQ_EVENT if needed.
2432		 */
2433		if (vgif)
2434			svm_clr_intercept(svm, INTERCEPT_STGI);
2435		if (svm_is_intercept(svm, INTERCEPT_VINTR))
2436			svm_clear_vintr(svm);
2437
2438		enable_gif(svm);
2439		if (svm->vcpu.arch.smi_pending ||
2440		    svm->vcpu.arch.nmi_pending ||
2441		    kvm_cpu_has_injectable_intr(&svm->vcpu) ||
2442		    kvm_apic_has_pending_init_or_sipi(&svm->vcpu))
2443			kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2444	} else {
2445		disable_gif(svm);
2446
2447		/*
2448		 * After a CLGI no interrupts should come.  But if vGIF is
2449		 * in use, we still rely on the VINTR intercept (rather than
2450		 * STGI) to detect an open interrupt window.
2451		*/
2452		if (!vgif)
2453			svm_clear_vintr(svm);
2454	}
2455}
2456
2457static int stgi_interception(struct kvm_vcpu *vcpu)
2458{
2459	int ret;
2460
2461	if (nested_svm_check_permissions(vcpu))
2462		return 1;
2463
2464	ret = kvm_skip_emulated_instruction(vcpu);
2465	svm_set_gif(to_svm(vcpu), true);
2466	return ret;
2467}
2468
2469static int clgi_interception(struct kvm_vcpu *vcpu)
2470{
2471	int ret;
2472
2473	if (nested_svm_check_permissions(vcpu))
2474		return 1;
2475
2476	ret = kvm_skip_emulated_instruction(vcpu);
2477	svm_set_gif(to_svm(vcpu), false);
2478	return ret;
2479}
2480
2481static int invlpga_interception(struct kvm_vcpu *vcpu)
2482{
2483	gva_t gva = kvm_rax_read(vcpu);
2484	u32 asid = kvm_rcx_read(vcpu);
2485
2486	/* FIXME: Handle an address size prefix. */
2487	if (!is_long_mode(vcpu))
2488		gva = (u32)gva;
2489
2490	trace_kvm_invlpga(to_svm(vcpu)->vmcb->save.rip, asid, gva);
2491
2492	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2493	kvm_mmu_invlpg(vcpu, gva);
2494
2495	return kvm_skip_emulated_instruction(vcpu);
2496}
2497
2498static int skinit_interception(struct kvm_vcpu *vcpu)
2499{
2500	trace_kvm_skinit(to_svm(vcpu)->vmcb->save.rip, kvm_rax_read(vcpu));
2501
2502	kvm_queue_exception(vcpu, UD_VECTOR);
2503	return 1;
2504}
2505
2506static int task_switch_interception(struct kvm_vcpu *vcpu)
2507{
2508	struct vcpu_svm *svm = to_svm(vcpu);
2509	u16 tss_selector;
2510	int reason;
2511	int int_type = svm->vmcb->control.exit_int_info &
2512		SVM_EXITINTINFO_TYPE_MASK;
2513	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2514	uint32_t type =
2515		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2516	uint32_t idt_v =
2517		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2518	bool has_error_code = false;
2519	u32 error_code = 0;
2520
2521	tss_selector = (u16)svm->vmcb->control.exit_info_1;
2522
2523	if (svm->vmcb->control.exit_info_2 &
2524	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2525		reason = TASK_SWITCH_IRET;
2526	else if (svm->vmcb->control.exit_info_2 &
2527		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2528		reason = TASK_SWITCH_JMP;
2529	else if (idt_v)
2530		reason = TASK_SWITCH_GATE;
2531	else
2532		reason = TASK_SWITCH_CALL;
2533
2534	if (reason == TASK_SWITCH_GATE) {
2535		switch (type) {
2536		case SVM_EXITINTINFO_TYPE_NMI:
2537			vcpu->arch.nmi_injected = false;
2538			break;
2539		case SVM_EXITINTINFO_TYPE_EXEPT:
2540			if (svm->vmcb->control.exit_info_2 &
2541			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2542				has_error_code = true;
2543				error_code =
2544					(u32)svm->vmcb->control.exit_info_2;
2545			}
2546			kvm_clear_exception_queue(vcpu);
2547			break;
2548		case SVM_EXITINTINFO_TYPE_INTR:
2549		case SVM_EXITINTINFO_TYPE_SOFT:
2550			kvm_clear_interrupt_queue(vcpu);
2551			break;
2552		default:
2553			break;
2554		}
2555	}
2556
2557	if (reason != TASK_SWITCH_GATE ||
2558	    int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2559	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2560	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) {
2561		if (!svm_skip_emulated_instruction(vcpu))
2562			return 0;
2563	}
2564
2565	if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2566		int_vec = -1;
2567
2568	return kvm_task_switch(vcpu, tss_selector, int_vec, reason,
2569			       has_error_code, error_code);
2570}
2571
2572static void svm_clr_iret_intercept(struct vcpu_svm *svm)
2573{
2574	if (!sev_es_guest(svm->vcpu.kvm))
2575		svm_clr_intercept(svm, INTERCEPT_IRET);
2576}
2577
2578static void svm_set_iret_intercept(struct vcpu_svm *svm)
2579{
2580	if (!sev_es_guest(svm->vcpu.kvm))
2581		svm_set_intercept(svm, INTERCEPT_IRET);
2582}
2583
2584static int iret_interception(struct kvm_vcpu *vcpu)
2585{
2586	struct vcpu_svm *svm = to_svm(vcpu);
2587
2588	WARN_ON_ONCE(sev_es_guest(vcpu->kvm));
2589
2590	++vcpu->stat.nmi_window_exits;
2591	svm->awaiting_iret_completion = true;
2592
2593	svm_clr_iret_intercept(svm);
2594	svm->nmi_iret_rip = kvm_rip_read(vcpu);
2595
2596	kvm_make_request(KVM_REQ_EVENT, vcpu);
2597	return 1;
2598}
2599
2600static int invlpg_interception(struct kvm_vcpu *vcpu)
2601{
2602	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2603		return kvm_emulate_instruction(vcpu, 0);
2604
2605	kvm_mmu_invlpg(vcpu, to_svm(vcpu)->vmcb->control.exit_info_1);
2606	return kvm_skip_emulated_instruction(vcpu);
2607}
2608
2609static int emulate_on_interception(struct kvm_vcpu *vcpu)
2610{
2611	return kvm_emulate_instruction(vcpu, 0);
2612}
2613
2614static int rsm_interception(struct kvm_vcpu *vcpu)
2615{
2616	return kvm_emulate_instruction_from_buffer(vcpu, rsm_ins_bytes, 2);
2617}
2618
2619static bool check_selective_cr0_intercepted(struct kvm_vcpu *vcpu,
2620					    unsigned long val)
2621{
2622	struct vcpu_svm *svm = to_svm(vcpu);
2623	unsigned long cr0 = vcpu->arch.cr0;
2624	bool ret = false;
2625
2626	if (!is_guest_mode(vcpu) ||
2627	    (!(vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_SELECTIVE_CR0))))
2628		return false;
2629
2630	cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2631	val &= ~SVM_CR0_SELECTIVE_MASK;
2632
2633	if (cr0 ^ val) {
2634		svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2635		ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2636	}
2637
2638	return ret;
2639}
2640
2641#define CR_VALID (1ULL << 63)
2642
2643static int cr_interception(struct kvm_vcpu *vcpu)
2644{
2645	struct vcpu_svm *svm = to_svm(vcpu);
2646	int reg, cr;
2647	unsigned long val;
2648	int err;
2649
2650	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2651		return emulate_on_interception(vcpu);
2652
2653	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2654		return emulate_on_interception(vcpu);
2655
2656	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2657	if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE)
2658		cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0;
2659	else
2660		cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2661
2662	err = 0;
2663	if (cr >= 16) { /* mov to cr */
2664		cr -= 16;
2665		val = kvm_register_read(vcpu, reg);
2666		trace_kvm_cr_write(cr, val);
2667		switch (cr) {
2668		case 0:
2669			if (!check_selective_cr0_intercepted(vcpu, val))
2670				err = kvm_set_cr0(vcpu, val);
2671			else
2672				return 1;
2673
2674			break;
2675		case 3:
2676			err = kvm_set_cr3(vcpu, val);
2677			break;
2678		case 4:
2679			err = kvm_set_cr4(vcpu, val);
2680			break;
2681		case 8:
2682			err = kvm_set_cr8(vcpu, val);
2683			break;
2684		default:
2685			WARN(1, "unhandled write to CR%d", cr);
2686			kvm_queue_exception(vcpu, UD_VECTOR);
2687			return 1;
2688		}
2689	} else { /* mov from cr */
2690		switch (cr) {
2691		case 0:
2692			val = kvm_read_cr0(vcpu);
2693			break;
2694		case 2:
2695			val = vcpu->arch.cr2;
2696			break;
2697		case 3:
2698			val = kvm_read_cr3(vcpu);
2699			break;
2700		case 4:
2701			val = kvm_read_cr4(vcpu);
2702			break;
2703		case 8:
2704			val = kvm_get_cr8(vcpu);
2705			break;
2706		default:
2707			WARN(1, "unhandled read from CR%d", cr);
2708			kvm_queue_exception(vcpu, UD_VECTOR);
2709			return 1;
2710		}
2711		kvm_register_write(vcpu, reg, val);
2712		trace_kvm_cr_read(cr, val);
2713	}
2714	return kvm_complete_insn_gp(vcpu, err);
2715}
2716
2717static int cr_trap(struct kvm_vcpu *vcpu)
2718{
2719	struct vcpu_svm *svm = to_svm(vcpu);
2720	unsigned long old_value, new_value;
2721	unsigned int cr;
2722	int ret = 0;
2723
2724	new_value = (unsigned long)svm->vmcb->control.exit_info_1;
2725
2726	cr = svm->vmcb->control.exit_code - SVM_EXIT_CR0_WRITE_TRAP;
2727	switch (cr) {
2728	case 0:
2729		old_value = kvm_read_cr0(vcpu);
2730		svm_set_cr0(vcpu, new_value);
2731
2732		kvm_post_set_cr0(vcpu, old_value, new_value);
2733		break;
2734	case 4:
2735		old_value = kvm_read_cr4(vcpu);
2736		svm_set_cr4(vcpu, new_value);
2737
2738		kvm_post_set_cr4(vcpu, old_value, new_value);
2739		break;
2740	case 8:
2741		ret = kvm_set_cr8(vcpu, new_value);
2742		break;
2743	default:
2744		WARN(1, "unhandled CR%d write trap", cr);
2745		kvm_queue_exception(vcpu, UD_VECTOR);
2746		return 1;
2747	}
2748
2749	return kvm_complete_insn_gp(vcpu, ret);
2750}
2751
2752static int dr_interception(struct kvm_vcpu *vcpu)
2753{
2754	struct vcpu_svm *svm = to_svm(vcpu);
2755	int reg, dr;
2756	unsigned long val;
2757	int err = 0;
2758
2759	/*
2760	 * SEV-ES intercepts DR7 only to disable guest debugging and the guest issues a VMGEXIT
2761	 * for DR7 write only. KVM cannot change DR7 (always swapped as type 'A') so return early.
2762	 */
2763	if (sev_es_guest(vcpu->kvm))
2764		return 1;
2765
2766	if (vcpu->guest_debug == 0) {
2767		/*
2768		 * No more DR vmexits; force a reload of the debug registers
2769		 * and reenter on this instruction.  The next vmexit will
2770		 * retrieve the full state of the debug registers.
2771		 */
2772		clr_dr_intercepts(svm);
2773		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
2774		return 1;
2775	}
2776
2777	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2778		return emulate_on_interception(vcpu);
2779
2780	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2781	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2782	if (dr >= 16) { /* mov to DRn  */
2783		dr -= 16;
2784		val = kvm_register_read(vcpu, reg);
2785		err = kvm_set_dr(vcpu, dr, val);
2786	} else {
2787		kvm_get_dr(vcpu, dr, &val);
2788		kvm_register_write(vcpu, reg, val);
2789	}
2790
2791	return kvm_complete_insn_gp(vcpu, err);
2792}
2793
2794static int cr8_write_interception(struct kvm_vcpu *vcpu)
2795{
2796	int r;
2797
2798	u8 cr8_prev = kvm_get_cr8(vcpu);
2799	/* instruction emulation calls kvm_set_cr8() */
2800	r = cr_interception(vcpu);
2801	if (lapic_in_kernel(vcpu))
2802		return r;
2803	if (cr8_prev <= kvm_get_cr8(vcpu))
2804		return r;
2805	vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
2806	return 0;
2807}
2808
2809static int efer_trap(struct kvm_vcpu *vcpu)
2810{
2811	struct msr_data msr_info;
2812	int ret;
2813
2814	/*
2815	 * Clear the EFER_SVME bit from EFER. The SVM code always sets this
2816	 * bit in svm_set_efer(), but __kvm_valid_efer() checks it against
2817	 * whether the guest has X86_FEATURE_SVM - this avoids a failure if
2818	 * the guest doesn't have X86_FEATURE_SVM.
2819	 */
2820	msr_info.host_initiated = false;
2821	msr_info.index = MSR_EFER;
2822	msr_info.data = to_svm(vcpu)->vmcb->control.exit_info_1 & ~EFER_SVME;
2823	ret = kvm_set_msr_common(vcpu, &msr_info);
2824
2825	return kvm_complete_insn_gp(vcpu, ret);
2826}
2827
2828static int svm_get_msr_feature(struct kvm_msr_entry *msr)
2829{
2830	msr->data = 0;
2831
2832	switch (msr->index) {
2833	case MSR_AMD64_DE_CFG:
2834		if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
2835			msr->data |= MSR_AMD64_DE_CFG_LFENCE_SERIALIZE;
2836		break;
2837	default:
2838		return KVM_MSR_RET_INVALID;
2839	}
2840
2841	return 0;
2842}
2843
2844static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2845{
2846	struct vcpu_svm *svm = to_svm(vcpu);
2847
2848	switch (msr_info->index) {
2849	case MSR_AMD64_TSC_RATIO:
2850		if (!msr_info->host_initiated &&
2851		    !guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR))
2852			return 1;
2853		msr_info->data = svm->tsc_ratio_msr;
2854		break;
2855	case MSR_STAR:
2856		msr_info->data = svm->vmcb01.ptr->save.star;
2857		break;
2858#ifdef CONFIG_X86_64
2859	case MSR_LSTAR:
2860		msr_info->data = svm->vmcb01.ptr->save.lstar;
2861		break;
2862	case MSR_CSTAR:
2863		msr_info->data = svm->vmcb01.ptr->save.cstar;
2864		break;
2865	case MSR_KERNEL_GS_BASE:
2866		msr_info->data = svm->vmcb01.ptr->save.kernel_gs_base;
2867		break;
2868	case MSR_SYSCALL_MASK:
2869		msr_info->data = svm->vmcb01.ptr->save.sfmask;
2870		break;
2871#endif
2872	case MSR_IA32_SYSENTER_CS:
2873		msr_info->data = svm->vmcb01.ptr->save.sysenter_cs;
2874		break;
2875	case MSR_IA32_SYSENTER_EIP:
2876		msr_info->data = (u32)svm->vmcb01.ptr->save.sysenter_eip;
2877		if (guest_cpuid_is_intel(vcpu))
2878			msr_info->data |= (u64)svm->sysenter_eip_hi << 32;
2879		break;
2880	case MSR_IA32_SYSENTER_ESP:
2881		msr_info->data = svm->vmcb01.ptr->save.sysenter_esp;
2882		if (guest_cpuid_is_intel(vcpu))
2883			msr_info->data |= (u64)svm->sysenter_esp_hi << 32;
2884		break;
2885	case MSR_TSC_AUX:
2886		msr_info->data = svm->tsc_aux;
2887		break;
2888	case MSR_IA32_DEBUGCTLMSR:
2889		msr_info->data = svm_get_lbr_vmcb(svm)->save.dbgctl;
2890		break;
2891	case MSR_IA32_LASTBRANCHFROMIP:
2892		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_from;
2893		break;
2894	case MSR_IA32_LASTBRANCHTOIP:
2895		msr_info->data = svm_get_lbr_vmcb(svm)->save.br_to;
2896		break;
2897	case MSR_IA32_LASTINTFROMIP:
2898		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_from;
2899		break;
2900	case MSR_IA32_LASTINTTOIP:
2901		msr_info->data = svm_get_lbr_vmcb(svm)->save.last_excp_to;
2902		break;
2903	case MSR_VM_HSAVE_PA:
2904		msr_info->data = svm->nested.hsave_msr;
2905		break;
2906	case MSR_VM_CR:
2907		msr_info->data = svm->nested.vm_cr_msr;
2908		break;
2909	case MSR_IA32_SPEC_CTRL:
2910		if (!msr_info->host_initiated &&
2911		    !guest_has_spec_ctrl_msr(vcpu))
2912			return 1;
2913
2914		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
2915			msr_info->data = svm->vmcb->save.spec_ctrl;
2916		else
2917			msr_info->data = svm->spec_ctrl;
2918		break;
2919	case MSR_AMD64_VIRT_SPEC_CTRL:
2920		if (!msr_info->host_initiated &&
2921		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
2922			return 1;
2923
2924		msr_info->data = svm->virt_spec_ctrl;
2925		break;
2926	case MSR_F15H_IC_CFG: {
2927
2928		int family, model;
2929
2930		family = guest_cpuid_family(vcpu);
2931		model  = guest_cpuid_model(vcpu);
2932
2933		if (family < 0 || model < 0)
2934			return kvm_get_msr_common(vcpu, msr_info);
2935
2936		msr_info->data = 0;
2937
2938		if (family == 0x15 &&
2939		    (model >= 0x2 && model < 0x20))
2940			msr_info->data = 0x1E;
2941		}
2942		break;
2943	case MSR_AMD64_DE_CFG:
2944		msr_info->data = svm->msr_decfg;
2945		break;
2946	default:
2947		return kvm_get_msr_common(vcpu, msr_info);
2948	}
2949	return 0;
2950}
2951
2952static int svm_complete_emulated_msr(struct kvm_vcpu *vcpu, int err)
2953{
2954	struct vcpu_svm *svm = to_svm(vcpu);
2955	if (!err || !sev_es_guest(vcpu->kvm) || WARN_ON_ONCE(!svm->sev_es.ghcb))
2956		return kvm_complete_insn_gp(vcpu, err);
2957
2958	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 1);
2959	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb,
2960				X86_TRAP_GP |
2961				SVM_EVTINJ_TYPE_EXEPT |
2962				SVM_EVTINJ_VALID);
2963	return 1;
2964}
2965
2966static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2967{
2968	struct vcpu_svm *svm = to_svm(vcpu);
2969	int svm_dis, chg_mask;
2970
2971	if (data & ~SVM_VM_CR_VALID_MASK)
2972		return 1;
2973
2974	chg_mask = SVM_VM_CR_VALID_MASK;
2975
2976	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2977		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2978
2979	svm->nested.vm_cr_msr &= ~chg_mask;
2980	svm->nested.vm_cr_msr |= (data & chg_mask);
2981
2982	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2983
2984	/* check for svm_disable while efer.svme is set */
2985	if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2986		return 1;
2987
2988	return 0;
2989}
2990
2991static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2992{
2993	struct vcpu_svm *svm = to_svm(vcpu);
2994	int ret = 0;
2995
2996	u32 ecx = msr->index;
2997	u64 data = msr->data;
2998	switch (ecx) {
2999	case MSR_AMD64_TSC_RATIO:
3000
3001		if (!guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR)) {
3002
3003			if (!msr->host_initiated)
3004				return 1;
3005			/*
3006			 * In case TSC scaling is not enabled, always
3007			 * leave this MSR at the default value.
3008			 *
3009			 * Due to bug in qemu 6.2.0, it would try to set
3010			 * this msr to 0 if tsc scaling is not enabled.
3011			 * Ignore this value as well.
3012			 */
3013			if (data != 0 && data != svm->tsc_ratio_msr)
3014				return 1;
3015			break;
3016		}
3017
3018		if (data & SVM_TSC_RATIO_RSVD)
3019			return 1;
3020
3021		svm->tsc_ratio_msr = data;
3022
3023		if (guest_can_use(vcpu, X86_FEATURE_TSCRATEMSR) &&
3024		    is_guest_mode(vcpu))
3025			nested_svm_update_tsc_ratio_msr(vcpu);
3026
3027		break;
3028	case MSR_IA32_CR_PAT:
3029		ret = kvm_set_msr_common(vcpu, msr);
3030		if (ret)
3031			break;
3032
3033		svm->vmcb01.ptr->save.g_pat = data;
3034		if (is_guest_mode(vcpu))
3035			nested_vmcb02_compute_g_pat(svm);
3036		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
3037		break;
3038	case MSR_IA32_SPEC_CTRL:
3039		if (!msr->host_initiated &&
3040		    !guest_has_spec_ctrl_msr(vcpu))
3041			return 1;
3042
3043		if (kvm_spec_ctrl_test_value(data))
3044			return 1;
3045
3046		if (boot_cpu_has(X86_FEATURE_V_SPEC_CTRL))
3047			svm->vmcb->save.spec_ctrl = data;
3048		else
3049			svm->spec_ctrl = data;
3050		if (!data)
3051			break;
3052
3053		/*
3054		 * For non-nested:
3055		 * When it's written (to non-zero) for the first time, pass
3056		 * it through.
3057		 *
3058		 * For nested:
3059		 * The handling of the MSR bitmap for L2 guests is done in
3060		 * nested_svm_vmrun_msrpm.
3061		 * We update the L1 MSR bit as well since it will end up
3062		 * touching the MSR anyway now.
3063		 */
3064		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1);
3065		break;
3066	case MSR_AMD64_VIRT_SPEC_CTRL:
3067		if (!msr->host_initiated &&
3068		    !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD))
3069			return 1;
3070
3071		if (data & ~SPEC_CTRL_SSBD)
3072			return 1;
3073
3074		svm->virt_spec_ctrl = data;
3075		break;
3076	case MSR_STAR:
3077		svm->vmcb01.ptr->save.star = data;
3078		break;
3079#ifdef CONFIG_X86_64
3080	case MSR_LSTAR:
3081		svm->vmcb01.ptr->save.lstar = data;
3082		break;
3083	case MSR_CSTAR:
3084		svm->vmcb01.ptr->save.cstar = data;
3085		break;
3086	case MSR_KERNEL_GS_BASE:
3087		svm->vmcb01.ptr->save.kernel_gs_base = data;
3088		break;
3089	case MSR_SYSCALL_MASK:
3090		svm->vmcb01.ptr->save.sfmask = data;
3091		break;
3092#endif
3093	case MSR_IA32_SYSENTER_CS:
3094		svm->vmcb01.ptr->save.sysenter_cs = data;
3095		break;
3096	case MSR_IA32_SYSENTER_EIP:
3097		svm->vmcb01.ptr->save.sysenter_eip = (u32)data;
3098		/*
3099		 * We only intercept the MSR_IA32_SYSENTER_{EIP|ESP} msrs
3100		 * when we spoof an Intel vendor ID (for cross vendor migration).
3101		 * In this case we use this intercept to track the high
3102		 * 32 bit part of these msrs to support Intel's
3103		 * implementation of SYSENTER/SYSEXIT.
3104		 */
3105		svm->sysenter_eip_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3106		break;
3107	case MSR_IA32_SYSENTER_ESP:
3108		svm->vmcb01.ptr->save.sysenter_esp = (u32)data;
3109		svm->sysenter_esp_hi = guest_cpuid_is_intel(vcpu) ? (data >> 32) : 0;
3110		break;
3111	case MSR_TSC_AUX:
3112		/*
3113		 * TSC_AUX is always virtualized for SEV-ES guests when the
3114		 * feature is available. The user return MSR support is not
3115		 * required in this case because TSC_AUX is restored on #VMEXIT
3116		 * from the host save area (which has been initialized in
3117		 * svm_hardware_enable()).
3118		 */
3119		if (boot_cpu_has(X86_FEATURE_V_TSC_AUX) && sev_es_guest(vcpu->kvm))
3120			break;
3121
3122		/*
3123		 * TSC_AUX is usually changed only during boot and never read
3124		 * directly.  Intercept TSC_AUX instead of exposing it to the
3125		 * guest via direct_access_msrs, and switch it via user return.
3126		 */
3127		preempt_disable();
3128		ret = kvm_set_user_return_msr(tsc_aux_uret_slot, data, -1ull);
3129		preempt_enable();
3130		if (ret)
3131			break;
3132
3133		svm->tsc_aux = data;
3134		break;
3135	case MSR_IA32_DEBUGCTLMSR:
3136		if (!lbrv) {
3137			kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3138			break;
3139		}
3140		if (data & DEBUGCTL_RESERVED_BITS)
3141			return 1;
3142
3143		svm_get_lbr_vmcb(svm)->save.dbgctl = data;
3144		svm_update_lbrv(vcpu);
3145		break;
3146	case MSR_VM_HSAVE_PA:
3147		/*
3148		 * Old kernels did not validate the value written to
3149		 * MSR_VM_HSAVE_PA.  Allow KVM_SET_MSR to set an invalid
3150		 * value to allow live migrating buggy or malicious guests
3151		 * originating from those kernels.
3152		 */
3153		if (!msr->host_initiated && !page_address_valid(vcpu, data))
3154			return 1;
3155
3156		svm->nested.hsave_msr = data & PAGE_MASK;
3157		break;
3158	case MSR_VM_CR:
3159		return svm_set_vm_cr(vcpu, data);
3160	case MSR_VM_IGNNE:
3161		kvm_pr_unimpl_wrmsr(vcpu, ecx, data);
3162		break;
3163	case MSR_AMD64_DE_CFG: {
3164		struct kvm_msr_entry msr_entry;
3165
3166		msr_entry.index = msr->index;
3167		if (svm_get_msr_feature(&msr_entry))
3168			return 1;
3169
3170		/* Check the supported bits */
3171		if (data & ~msr_entry.data)
3172			return 1;
3173
3174		/* Don't allow the guest to change a bit, #GP */
3175		if (!msr->host_initiated && (data ^ msr_entry.data))
3176			return 1;
3177
3178		svm->msr_decfg = data;
3179		break;
3180	}
3181	default:
3182		return kvm_set_msr_common(vcpu, msr);
3183	}
3184	return ret;
3185}
3186
3187static int msr_interception(struct kvm_vcpu *vcpu)
3188{
3189	if (to_svm(vcpu)->vmcb->control.exit_info_1)
3190		return kvm_emulate_wrmsr(vcpu);
3191	else
3192		return kvm_emulate_rdmsr(vcpu);
3193}
3194
3195static int interrupt_window_interception(struct kvm_vcpu *vcpu)
3196{
3197	kvm_make_request(KVM_REQ_EVENT, vcpu);
3198	svm_clear_vintr(to_svm(vcpu));
3199
3200	/*
3201	 * If not running nested, for AVIC, the only reason to end up here is ExtINTs.
3202	 * In this case AVIC was temporarily disabled for
3203	 * requesting the IRQ window and we have to re-enable it.
3204	 *
3205	 * If running nested, still remove the VM wide AVIC inhibit to
3206	 * support case in which the interrupt window was requested when the
3207	 * vCPU was not running nested.
3208
3209	 * All vCPUs which run still run nested, will remain to have their
3210	 * AVIC still inhibited due to per-cpu AVIC inhibition.
3211	 */
3212	kvm_clear_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3213
3214	++vcpu->stat.irq_window_exits;
3215	return 1;
3216}
3217
3218static int pause_interception(struct kvm_vcpu *vcpu)
3219{
3220	bool in_kernel;
3221	/*
3222	 * CPL is not made available for an SEV-ES guest, therefore
3223	 * vcpu->arch.preempted_in_kernel can never be true.  Just
3224	 * set in_kernel to false as well.
3225	 */
3226	in_kernel = !sev_es_guest(vcpu->kvm) && svm_get_cpl(vcpu) == 0;
3227
3228	grow_ple_window(vcpu);
3229
3230	kvm_vcpu_on_spin(vcpu, in_kernel);
3231	return kvm_skip_emulated_instruction(vcpu);
3232}
3233
3234static int invpcid_interception(struct kvm_vcpu *vcpu)
3235{
3236	struct vcpu_svm *svm = to_svm(vcpu);
3237	unsigned long type;
3238	gva_t gva;
3239
3240	if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
3241		kvm_queue_exception(vcpu, UD_VECTOR);
3242		return 1;
3243	}
3244
3245	/*
3246	 * For an INVPCID intercept:
3247	 * EXITINFO1 provides the linear address of the memory operand.
3248	 * EXITINFO2 provides the contents of the register operand.
3249	 */
3250	type = svm->vmcb->control.exit_info_2;
3251	gva = svm->vmcb->control.exit_info_1;
3252
3253	return kvm_handle_invpcid(vcpu, type, gva);
3254}
3255
3256static int (*const svm_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3257	[SVM_EXIT_READ_CR0]			= cr_interception,
3258	[SVM_EXIT_READ_CR3]			= cr_interception,
3259	[SVM_EXIT_READ_CR4]			= cr_interception,
3260	[SVM_EXIT_READ_CR8]			= cr_interception,
3261	[SVM_EXIT_CR0_SEL_WRITE]		= cr_interception,
3262	[SVM_EXIT_WRITE_CR0]			= cr_interception,
3263	[SVM_EXIT_WRITE_CR3]			= cr_interception,
3264	[SVM_EXIT_WRITE_CR4]			= cr_interception,
3265	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception,
3266	[SVM_EXIT_READ_DR0]			= dr_interception,
3267	[SVM_EXIT_READ_DR1]			= dr_interception,
3268	[SVM_EXIT_READ_DR2]			= dr_interception,
3269	[SVM_EXIT_READ_DR3]			= dr_interception,
3270	[SVM_EXIT_READ_DR4]			= dr_interception,
3271	[SVM_EXIT_READ_DR5]			= dr_interception,
3272	[SVM_EXIT_READ_DR6]			= dr_interception,
3273	[SVM_EXIT_READ_DR7]			= dr_interception,
3274	[SVM_EXIT_WRITE_DR0]			= dr_interception,
3275	[SVM_EXIT_WRITE_DR1]			= dr_interception,
3276	[SVM_EXIT_WRITE_DR2]			= dr_interception,
3277	[SVM_EXIT_WRITE_DR3]			= dr_interception,
3278	[SVM_EXIT_WRITE_DR4]			= dr_interception,
3279	[SVM_EXIT_WRITE_DR5]			= dr_interception,
3280	[SVM_EXIT_WRITE_DR6]			= dr_interception,
3281	[SVM_EXIT_WRITE_DR7]			= dr_interception,
3282	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception,
3283	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception,
3284	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception,
3285	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception,
3286	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception,
3287	[SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception,
3288	[SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception,
3289	[SVM_EXIT_INTR]				= intr_interception,
3290	[SVM_EXIT_NMI]				= nmi_interception,
3291	[SVM_EXIT_SMI]				= smi_interception,
3292	[SVM_EXIT_VINTR]			= interrupt_window_interception,
3293	[SVM_EXIT_RDPMC]			= kvm_emulate_rdpmc,
3294	[SVM_EXIT_CPUID]			= kvm_emulate_cpuid,
3295	[SVM_EXIT_IRET]                         = iret_interception,
3296	[SVM_EXIT_INVD]                         = kvm_emulate_invd,
3297	[SVM_EXIT_PAUSE]			= pause_interception,
3298	[SVM_EXIT_HLT]				= kvm_emulate_halt,
3299	[SVM_EXIT_INVLPG]			= invlpg_interception,
3300	[SVM_EXIT_INVLPGA]			= invlpga_interception,
3301	[SVM_EXIT_IOIO]				= io_interception,
3302	[SVM_EXIT_MSR]				= msr_interception,
3303	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception,
3304	[SVM_EXIT_SHUTDOWN]			= shutdown_interception,
3305	[SVM_EXIT_VMRUN]			= vmrun_interception,
3306	[SVM_EXIT_VMMCALL]			= kvm_emulate_hypercall,
3307	[SVM_EXIT_VMLOAD]			= vmload_interception,
3308	[SVM_EXIT_VMSAVE]			= vmsave_interception,
3309	[SVM_EXIT_STGI]				= stgi_interception,
3310	[SVM_EXIT_CLGI]				= clgi_interception,
3311	[SVM_EXIT_SKINIT]			= skinit_interception,
3312	[SVM_EXIT_RDTSCP]			= kvm_handle_invalid_op,
3313	[SVM_EXIT_WBINVD]                       = kvm_emulate_wbinvd,
3314	[SVM_EXIT_MONITOR]			= kvm_emulate_monitor,
3315	[SVM_EXIT_MWAIT]			= kvm_emulate_mwait,
3316	[SVM_EXIT_XSETBV]			= kvm_emulate_xsetbv,
3317	[SVM_EXIT_RDPRU]			= kvm_handle_invalid_op,
3318	[SVM_EXIT_EFER_WRITE_TRAP]		= efer_trap,
3319	[SVM_EXIT_CR0_WRITE_TRAP]		= cr_trap,
3320	[SVM_EXIT_CR4_WRITE_TRAP]		= cr_trap,
3321	[SVM_EXIT_CR8_WRITE_TRAP]		= cr_trap,
3322	[SVM_EXIT_INVPCID]                      = invpcid_interception,
3323	[SVM_EXIT_NPF]				= npf_interception,
3324	[SVM_EXIT_RSM]                          = rsm_interception,
3325	[SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception,
3326	[SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception,
3327	[SVM_EXIT_VMGEXIT]			= sev_handle_vmgexit,
3328};
3329
3330static void dump_vmcb(struct kvm_vcpu *vcpu)
3331{
3332	struct vcpu_svm *svm = to_svm(vcpu);
3333	struct vmcb_control_area *control = &svm->vmcb->control;
3334	struct vmcb_save_area *save = &svm->vmcb->save;
3335	struct vmcb_save_area *save01 = &svm->vmcb01.ptr->save;
3336
3337	if (!dump_invalid_vmcb) {
3338		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
3339		return;
3340	}
3341
3342	pr_err("VMCB %p, last attempted VMRUN on CPU %d\n",
3343	       svm->current_vmcb->ptr, vcpu->arch.last_vmentry_cpu);
3344	pr_err("VMCB Control Area:\n");
3345	pr_err("%-20s%04x\n", "cr_read:", control->intercepts[INTERCEPT_CR] & 0xffff);
3346	pr_err("%-20s%04x\n", "cr_write:", control->intercepts[INTERCEPT_CR] >> 16);
3347	pr_err("%-20s%04x\n", "dr_read:", control->intercepts[INTERCEPT_DR] & 0xffff);
3348	pr_err("%-20s%04x\n", "dr_write:", control->intercepts[INTERCEPT_DR] >> 16);
3349	pr_err("%-20s%08x\n", "exceptions:", control->intercepts[INTERCEPT_EXCEPTION]);
3350	pr_err("%-20s%08x %08x\n", "intercepts:",
3351              control->intercepts[INTERCEPT_WORD3],
3352	       control->intercepts[INTERCEPT_WORD4]);
3353	pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3354	pr_err("%-20s%d\n", "pause filter threshold:",
3355	       control->pause_filter_thresh);
3356	pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3357	pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3358	pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3359	pr_err("%-20s%d\n", "asid:", control->asid);
3360	pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3361	pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3362	pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3363	pr_err("%-20s%08x\n", "int_state:", control->int_state);
3364	pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3365	pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3366	pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3367	pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3368	pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3369	pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3370	pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3371	pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar);
3372	pr_err("%-20s%016llx\n", "ghcb:", control->ghcb_gpa);
3373	pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3374	pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3375	pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext);
3376	pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3377	pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page);
3378	pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id);
3379	pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id);
3380	pr_err("%-20s%016llx\n", "vmsa_pa:", control->vmsa_pa);
3381	pr_err("VMCB State Save Area:\n");
3382	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3383	       "es:",
3384	       save->es.selector, save->es.attrib,
3385	       save->es.limit, save->es.base);
3386	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3387	       "cs:",
3388	       save->cs.selector, save->cs.attrib,
3389	       save->cs.limit, save->cs.base);
3390	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3391	       "ss:",
3392	       save->ss.selector, save->ss.attrib,
3393	       save->ss.limit, save->ss.base);
3394	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3395	       "ds:",
3396	       save->ds.selector, save->ds.attrib,
3397	       save->ds.limit, save->ds.base);
3398	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3399	       "fs:",
3400	       save01->fs.selector, save01->fs.attrib,
3401	       save01->fs.limit, save01->fs.base);
3402	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3403	       "gs:",
3404	       save01->gs.selector, save01->gs.attrib,
3405	       save01->gs.limit, save01->gs.base);
3406	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3407	       "gdtr:",
3408	       save->gdtr.selector, save->gdtr.attrib,
3409	       save->gdtr.limit, save->gdtr.base);
3410	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3411	       "ldtr:",
3412	       save01->ldtr.selector, save01->ldtr.attrib,
3413	       save01->ldtr.limit, save01->ldtr.base);
3414	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3415	       "idtr:",
3416	       save->idtr.selector, save->idtr.attrib,
3417	       save->idtr.limit, save->idtr.base);
3418	pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3419	       "tr:",
3420	       save01->tr.selector, save01->tr.attrib,
3421	       save01->tr.limit, save01->tr.base);
3422	pr_err("vmpl: %d   cpl:  %d               efer:          %016llx\n",
3423	       save->vmpl, save->cpl, save->efer);
3424	pr_err("%-15s %016llx %-13s %016llx\n",
3425	       "cr0:", save->cr0, "cr2:", save->cr2);
3426	pr_err("%-15s %016llx %-13s %016llx\n",
3427	       "cr3:", save->cr3, "cr4:", save->cr4);
3428	pr_err("%-15s %016llx %-13s %016llx\n",
3429	       "dr6:", save->dr6, "dr7:", save->dr7);
3430	pr_err("%-15s %016llx %-13s %016llx\n",
3431	       "rip:", save->rip, "rflags:", save->rflags);
3432	pr_err("%-15s %016llx %-13s %016llx\n",
3433	       "rsp:", save->rsp, "rax:", save->rax);
3434	pr_err("%-15s %016llx %-13s %016llx\n",
3435	       "star:", save01->star, "lstar:", save01->lstar);
3436	pr_err("%-15s %016llx %-13s %016llx\n",
3437	       "cstar:", save01->cstar, "sfmask:", save01->sfmask);
3438	pr_err("%-15s %016llx %-13s %016llx\n",
3439	       "kernel_gs_base:", save01->kernel_gs_base,
3440	       "sysenter_cs:", save01->sysenter_cs);
3441	pr_err("%-15s %016llx %-13s %016llx\n",
3442	       "sysenter_esp:", save01->sysenter_esp,
3443	       "sysenter_eip:", save01->sysenter_eip);
3444	pr_err("%-15s %016llx %-13s %016llx\n",
3445	       "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3446	pr_err("%-15s %016llx %-13s %016llx\n",
3447	       "br_from:", save->br_from, "br_to:", save->br_to);
3448	pr_err("%-15s %016llx %-13s %016llx\n",
3449	       "excp_from:", save->last_excp_from,
3450	       "excp_to:", save->last_excp_to);
3451}
3452
3453static bool svm_check_exit_valid(u64 exit_code)
3454{
3455	return (exit_code < ARRAY_SIZE(svm_exit_handlers) &&
3456		svm_exit_handlers[exit_code]);
3457}
3458
3459static int svm_handle_invalid_exit(struct kvm_vcpu *vcpu, u64 exit_code)
3460{
3461	vcpu_unimpl(vcpu, "svm: unexpected exit reason 0x%llx\n", exit_code);
3462	dump_vmcb(vcpu);
3463	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3464	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
3465	vcpu->run->internal.ndata = 2;
3466	vcpu->run->internal.data[0] = exit_code;
3467	vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
3468	return 0;
3469}
3470
3471int svm_invoke_exit_handler(struct kvm_vcpu *vcpu, u64 exit_code)
3472{
3473	if (!svm_check_exit_valid(exit_code))
3474		return svm_handle_invalid_exit(vcpu, exit_code);
3475
3476#ifdef CONFIG_RETPOLINE
3477	if (exit_code == SVM_EXIT_MSR)
3478		return msr_interception(vcpu);
3479	else if (exit_code == SVM_EXIT_VINTR)
3480		return interrupt_window_interception(vcpu);
3481	else if (exit_code == SVM_EXIT_INTR)
3482		return intr_interception(vcpu);
3483	else if (exit_code == SVM_EXIT_HLT)
3484		return kvm_emulate_halt(vcpu);
3485	else if (exit_code == SVM_EXIT_NPF)
3486		return npf_interception(vcpu);
3487#endif
3488	return svm_exit_handlers[exit_code](vcpu);
3489}
3490
3491static void svm_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
3492			      u64 *info1, u64 *info2,
3493			      u32 *intr_info, u32 *error_code)
3494{
3495	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3496
3497	*reason = control->exit_code;
3498	*info1 = control->exit_info_1;
3499	*info2 = control->exit_info_2;
3500	*intr_info = control->exit_int_info;
3501	if ((*intr_info & SVM_EXITINTINFO_VALID) &&
3502	    (*intr_info & SVM_EXITINTINFO_VALID_ERR))
3503		*error_code = control->exit_int_info_err;
3504	else
3505		*error_code = 0;
3506}
3507
3508static int svm_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
3509{
3510	struct vcpu_svm *svm = to_svm(vcpu);
3511	struct kvm_run *kvm_run = vcpu->run;
3512	u32 exit_code = svm->vmcb->control.exit_code;
3513
3514	/* SEV-ES guests must use the CR write traps to track CR registers. */
3515	if (!sev_es_guest(vcpu->kvm)) {
3516		if (!svm_is_intercept(svm, INTERCEPT_CR0_WRITE))
3517			vcpu->arch.cr0 = svm->vmcb->save.cr0;
3518		if (npt_enabled)
3519			vcpu->arch.cr3 = svm->vmcb->save.cr3;
3520	}
3521
3522	if (is_guest_mode(vcpu)) {
3523		int vmexit;
3524
3525		trace_kvm_nested_vmexit(vcpu, KVM_ISA_SVM);
3526
3527		vmexit = nested_svm_exit_special(svm);
3528
3529		if (vmexit == NESTED_EXIT_CONTINUE)
3530			vmexit = nested_svm_exit_handled(svm);
3531
3532		if (vmexit == NESTED_EXIT_DONE)
3533			return 1;
3534	}
3535
3536	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3537		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3538		kvm_run->fail_entry.hardware_entry_failure_reason
3539			= svm->vmcb->control.exit_code;
3540		kvm_run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
3541		dump_vmcb(vcpu);
3542		return 0;
3543	}
3544
3545	if (exit_fastpath != EXIT_FASTPATH_NONE)
3546		return 1;
3547
3548	return svm_invoke_exit_handler(vcpu, exit_code);
3549}
3550
3551static void pre_svm_run(struct kvm_vcpu *vcpu)
3552{
3553	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, vcpu->cpu);
3554	struct vcpu_svm *svm = to_svm(vcpu);
3555
3556	/*
3557	 * If the previous vmrun of the vmcb occurred on a different physical
3558	 * cpu, then mark the vmcb dirty and assign a new asid.  Hardware's
3559	 * vmcb clean bits are per logical CPU, as are KVM's asid assignments.
3560	 */
3561	if (unlikely(svm->current_vmcb->cpu != vcpu->cpu)) {
3562		svm->current_vmcb->asid_generation = 0;
3563		vmcb_mark_all_dirty(svm->vmcb);
3564		svm->current_vmcb->cpu = vcpu->cpu;
3565        }
3566
3567	if (sev_guest(vcpu->kvm))
3568		return pre_sev_run(svm, vcpu->cpu);
3569
3570	/* FIXME: handle wraparound of asid_generation */
3571	if (svm->current_vmcb->asid_generation != sd->asid_generation)
3572		new_asid(svm, sd);
3573}
3574
3575static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3576{
3577	struct vcpu_svm *svm = to_svm(vcpu);
3578
3579	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3580
3581	if (svm->nmi_l1_to_l2)
3582		return;
3583
3584	svm->nmi_masked = true;
3585	svm_set_iret_intercept(svm);
3586	++vcpu->stat.nmi_injections;
3587}
3588
3589static bool svm_is_vnmi_pending(struct kvm_vcpu *vcpu)
3590{
3591	struct vcpu_svm *svm = to_svm(vcpu);
3592
3593	if (!is_vnmi_enabled(svm))
3594		return false;
3595
3596	return !!(svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK);
3597}
3598
3599static bool svm_set_vnmi_pending(struct kvm_vcpu *vcpu)
3600{
3601	struct vcpu_svm *svm = to_svm(vcpu);
3602
3603	if (!is_vnmi_enabled(svm))
3604		return false;
3605
3606	if (svm->vmcb->control.int_ctl & V_NMI_PENDING_MASK)
3607		return false;
3608
3609	svm->vmcb->control.int_ctl |= V_NMI_PENDING_MASK;
3610	vmcb_mark_dirty(svm->vmcb, VMCB_INTR);
3611
3612	/*
3613	 * Because the pending NMI is serviced by hardware, KVM can't know when
3614	 * the NMI is "injected", but for all intents and purposes, passing the
3615	 * NMI off to hardware counts as injection.
3616	 */
3617	++vcpu->stat.nmi_injections;
3618
3619	return true;
3620}
3621
3622static void svm_inject_irq(struct kvm_vcpu *vcpu, bool reinjected)
3623{
3624	struct vcpu_svm *svm = to_svm(vcpu);
3625	u32 type;
3626
3627	if (vcpu->arch.interrupt.soft) {
3628		if (svm_update_soft_interrupt_rip(vcpu))
3629			return;
3630
3631		type = SVM_EVTINJ_TYPE_SOFT;
3632	} else {
3633		type = SVM_EVTINJ_TYPE_INTR;
3634	}
3635
3636	trace_kvm_inj_virq(vcpu->arch.interrupt.nr,
3637			   vcpu->arch.interrupt.soft, reinjected);
3638	++vcpu->stat.irq_injections;
3639
3640	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3641				       SVM_EVTINJ_VALID | type;
3642}
3643
3644void svm_complete_interrupt_delivery(struct kvm_vcpu *vcpu, int delivery_mode,
3645				     int trig_mode, int vector)
3646{
3647	/*
3648	 * apic->apicv_active must be read after vcpu->mode.
3649	 * Pairs with smp_store_release in vcpu_enter_guest.
3650	 */
3651	bool in_guest_mode = (smp_load_acquire(&vcpu->mode) == IN_GUEST_MODE);
3652
3653	/* Note, this is called iff the local APIC is in-kernel. */
3654	if (!READ_ONCE(vcpu->arch.apic->apicv_active)) {
3655		/* Process the interrupt via kvm_check_and_inject_events(). */
3656		kvm_make_request(KVM_REQ_EVENT, vcpu);
3657		kvm_vcpu_kick(vcpu);
3658		return;
3659	}
3660
3661	trace_kvm_apicv_accept_irq(vcpu->vcpu_id, delivery_mode, trig_mode, vector);
3662	if (in_guest_mode) {
3663		/*
3664		 * Signal the doorbell to tell hardware to inject the IRQ.  If
3665		 * the vCPU exits the guest before the doorbell chimes, hardware
3666		 * will automatically process AVIC interrupts at the next VMRUN.
3667		 */
3668		avic_ring_doorbell(vcpu);
3669	} else {
3670		/*
3671		 * Wake the vCPU if it was blocking.  KVM will then detect the
3672		 * pending IRQ when checking if the vCPU has a wake event.
3673		 */
3674		kvm_vcpu_wake_up(vcpu);
3675	}
3676}
3677
3678static void svm_deliver_interrupt(struct kvm_lapic *apic,  int delivery_mode,
3679				  int trig_mode, int vector)
3680{
3681	kvm_lapic_set_irr(vector, apic);
3682
3683	/*
3684	 * Pairs with the smp_mb_*() after setting vcpu->guest_mode in
3685	 * vcpu_enter_guest() to ensure the write to the vIRR is ordered before
3686	 * the read of guest_mode.  This guarantees that either VMRUN will see
3687	 * and process the new vIRR entry, or that svm_complete_interrupt_delivery
3688	 * will signal the doorbell if the CPU has already entered the guest.
3689	 */
3690	smp_mb__after_atomic();
3691	svm_complete_interrupt_delivery(apic->vcpu, delivery_mode, trig_mode, vector);
3692}
3693
3694static void svm_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3695{
3696	struct vcpu_svm *svm = to_svm(vcpu);
3697
3698	/*
3699	 * SEV-ES guests must always keep the CR intercepts cleared. CR
3700	 * tracking is done using the CR write traps.
3701	 */
3702	if (sev_es_guest(vcpu->kvm))
3703		return;
3704
3705	if (nested_svm_virtualize_tpr(vcpu))
3706		return;
3707
3708	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3709
3710	if (irr == -1)
3711		return;
3712
3713	if (tpr >= irr)
3714		svm_set_intercept(svm, INTERCEPT_CR8_WRITE);
3715}
3716
3717static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3718{
3719	struct vcpu_svm *svm = to_svm(vcpu);
3720
3721	if (is_vnmi_enabled(svm))
3722		return svm->vmcb->control.int_ctl & V_NMI_BLOCKING_MASK;
3723	else
3724		return svm->nmi_masked;
3725}
3726
3727static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3728{
3729	struct vcpu_svm *svm = to_svm(vcpu);
3730
3731	if (is_vnmi_enabled(svm)) {
3732		if (masked)
3733			svm->vmcb->control.int_ctl |= V_NMI_BLOCKING_MASK;
3734		else
3735			svm->vmcb->control.int_ctl &= ~V_NMI_BLOCKING_MASK;
3736
3737	} else {
3738		svm->nmi_masked = masked;
3739		if (masked)
3740			svm_set_iret_intercept(svm);
3741		else
3742			svm_clr_iret_intercept(svm);
3743	}
3744}
3745
3746bool svm_nmi_blocked(struct kvm_vcpu *vcpu)
3747{
3748	struct vcpu_svm *svm = to_svm(vcpu);
3749	struct vmcb *vmcb = svm->vmcb;
3750
3751	if (!gif_set(svm))
3752		return true;
3753
3754	if (is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3755		return false;
3756
3757	if (svm_get_nmi_mask(vcpu))
3758		return true;
3759
3760	return vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK;
3761}
3762
3763static int svm_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3764{
3765	struct vcpu_svm *svm = to_svm(vcpu);
3766	if (svm->nested.nested_run_pending)
3767		return -EBUSY;
3768
3769	if (svm_nmi_blocked(vcpu))
3770		return 0;
3771
3772	/* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
3773	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(svm))
3774		return -EBUSY;
3775	return 1;
3776}
3777
3778bool svm_interrupt_blocked(struct kvm_vcpu *vcpu)
3779{
3780	struct vcpu_svm *svm = to_svm(vcpu);
3781	struct vmcb *vmcb = svm->vmcb;
3782
3783	if (!gif_set(svm))
3784		return true;
3785
3786	if (is_guest_mode(vcpu)) {
3787		/* As long as interrupts are being delivered...  */
3788		if ((svm->nested.ctl.int_ctl & V_INTR_MASKING_MASK)
3789		    ? !(svm->vmcb01.ptr->save.rflags & X86_EFLAGS_IF)
3790		    : !(kvm_get_rflags(vcpu) & X86_EFLAGS_IF))
3791			return true;
3792
3793		/* ... vmexits aren't blocked by the interrupt shadow  */
3794		if (nested_exit_on_intr(svm))
3795			return false;
3796	} else {
3797		if (!svm_get_if_flag(vcpu))
3798			return true;
3799	}
3800
3801	return (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK);
3802}
3803
3804static int svm_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
3805{
3806	struct vcpu_svm *svm = to_svm(vcpu);
3807
3808	if (svm->nested.nested_run_pending)
3809		return -EBUSY;
3810
3811	if (svm_interrupt_blocked(vcpu))
3812		return 0;
3813
3814	/*
3815	 * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
3816	 * e.g. if the IRQ arrived asynchronously after checking nested events.
3817	 */
3818	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(svm))
3819		return -EBUSY;
3820
3821	return 1;
3822}
3823
3824static void svm_enable_irq_window(struct kvm_vcpu *vcpu)
3825{
3826	struct vcpu_svm *svm = to_svm(vcpu);
3827
3828	/*
3829	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3830	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3831	 * get that intercept, this function will be called again though and
3832	 * we'll get the vintr intercept. However, if the vGIF feature is
3833	 * enabled, the STGI interception will not occur. Enable the irq
3834	 * window under the assumption that the hardware will set the GIF.
3835	 */
3836	if (vgif || gif_set(svm)) {
3837		/*
3838		 * IRQ window is not needed when AVIC is enabled,
3839		 * unless we have pending ExtINT since it cannot be injected
3840		 * via AVIC. In such case, KVM needs to temporarily disable AVIC,
3841		 * and fallback to injecting IRQ via V_IRQ.
3842		 *
3843		 * If running nested, AVIC is already locally inhibited
3844		 * on this vCPU, therefore there is no need to request
3845		 * the VM wide AVIC inhibition.
3846		 */
3847		if (!is_guest_mode(vcpu))
3848			kvm_set_apicv_inhibit(vcpu->kvm, APICV_INHIBIT_REASON_IRQWIN);
3849
3850		svm_set_vintr(svm);
3851	}
3852}
3853
3854static void svm_enable_nmi_window(struct kvm_vcpu *vcpu)
3855{
3856	struct vcpu_svm *svm = to_svm(vcpu);
3857
3858	/*
3859	 * KVM should never request an NMI window when vNMI is enabled, as KVM
3860	 * allows at most one to-be-injected NMI and one pending NMI, i.e. if
3861	 * two NMIs arrive simultaneously, KVM will inject one and set
3862	 * V_NMI_PENDING for the other.  WARN, but continue with the standard
3863	 * single-step approach to try and salvage the pending NMI.
3864	 */
3865	WARN_ON_ONCE(is_vnmi_enabled(svm));
3866
3867	if (svm_get_nmi_mask(vcpu) && !svm->awaiting_iret_completion)
3868		return; /* IRET will cause a vm exit */
3869
3870	/*
3871	 * SEV-ES guests are responsible for signaling when a vCPU is ready to
3872	 * receive a new NMI, as SEV-ES guests can't be single-stepped, i.e.
3873	 * KVM can't intercept and single-step IRET to detect when NMIs are
3874	 * unblocked (architecturally speaking).  See SVM_VMGEXIT_NMI_COMPLETE.
3875	 *
3876	 * Note, GIF is guaranteed to be '1' for SEV-ES guests as hardware
3877	 * ignores SEV-ES guest writes to EFER.SVME *and* CLGI/STGI are not
3878	 * supported NAEs in the GHCB protocol.
3879	 */
3880	if (sev_es_guest(vcpu->kvm))
3881		return;
3882
3883	if (!gif_set(svm)) {
3884		if (vgif)
3885			svm_set_intercept(svm, INTERCEPT_STGI);
3886		return; /* STGI will cause a vm exit */
3887	}
3888
3889	/*
3890	 * Something prevents NMI from been injected. Single step over possible
3891	 * problem (IRET or exception injection or interrupt shadow)
3892	 */
3893	svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu);
3894	svm->nmi_singlestep = true;
3895	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3896}
3897
3898static void svm_flush_tlb_asid(struct kvm_vcpu *vcpu)
3899{
3900	struct vcpu_svm *svm = to_svm(vcpu);
3901
3902	/*
3903	 * Unlike VMX, SVM doesn't provide a way to flush only NPT TLB entries.
3904	 * A TLB flush for the current ASID flushes both "host" and "guest" TLB
3905	 * entries, and thus is a superset of Hyper-V's fine grained flushing.
3906	 */
3907	kvm_hv_vcpu_purge_flush_tlb(vcpu);
3908
3909	/*
3910	 * Flush only the current ASID even if the TLB flush was invoked via
3911	 * kvm_flush_remote_tlbs().  Although flushing remote TLBs requires all
3912	 * ASIDs to be flushed, KVM uses a single ASID for L1 and L2, and
3913	 * unconditionally does a TLB flush on both nested VM-Enter and nested
3914	 * VM-Exit (via kvm_mmu_reset_context()).
3915	 */
3916	if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3917		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3918	else
3919		svm->current_vmcb->asid_generation--;
3920}
3921
3922static void svm_flush_tlb_current(struct kvm_vcpu *vcpu)
3923{
3924	hpa_t root_tdp = vcpu->arch.mmu->root.hpa;
3925
3926	/*
3927	 * When running on Hyper-V with EnlightenedNptTlb enabled, explicitly
3928	 * flush the NPT mappings via hypercall as flushing the ASID only
3929	 * affects virtual to physical mappings, it does not invalidate guest
3930	 * physical to host physical mappings.
3931	 */
3932	if (svm_hv_is_enlightened_tlb_enabled(vcpu) && VALID_PAGE(root_tdp))
3933		hyperv_flush_guest_mapping(root_tdp);
3934
3935	svm_flush_tlb_asid(vcpu);
3936}
3937
3938static void svm_flush_tlb_all(struct kvm_vcpu *vcpu)
3939{
3940	/*
3941	 * When running on Hyper-V with EnlightenedNptTlb enabled, remote TLB
3942	 * flushes should be routed to hv_flush_remote_tlbs() without requesting
3943	 * a "regular" remote flush.  Reaching this point means either there's
3944	 * a KVM bug or a prior hv_flush_remote_tlbs() call failed, both of
3945	 * which might be fatal to the guest.  Yell, but try to recover.
3946	 */
3947	if (WARN_ON_ONCE(svm_hv_is_enlightened_tlb_enabled(vcpu)))
3948		hv_flush_remote_tlbs(vcpu->kvm);
3949
3950	svm_flush_tlb_asid(vcpu);
3951}
3952
3953static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva)
3954{
3955	struct vcpu_svm *svm = to_svm(vcpu);
3956
3957	invlpga(gva, svm->vmcb->control.asid);
3958}
3959
3960static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3961{
3962	struct vcpu_svm *svm = to_svm(vcpu);
3963
3964	if (nested_svm_virtualize_tpr(vcpu))
3965		return;
3966
3967	if (!svm_is_intercept(svm, INTERCEPT_CR8_WRITE)) {
3968		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3969		kvm_set_cr8(vcpu, cr8);
3970	}
3971}
3972
3973static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3974{
3975	struct vcpu_svm *svm = to_svm(vcpu);
3976	u64 cr8;
3977
3978	if (nested_svm_virtualize_tpr(vcpu) ||
3979	    kvm_vcpu_apicv_active(vcpu))
3980		return;
3981
3982	cr8 = kvm_get_cr8(vcpu);
3983	svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3984	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3985}
3986
3987static void svm_complete_soft_interrupt(struct kvm_vcpu *vcpu, u8 vector,
3988					int type)
3989{
3990	bool is_exception = (type == SVM_EXITINTINFO_TYPE_EXEPT);
3991	bool is_soft = (type == SVM_EXITINTINFO_TYPE_SOFT);
3992	struct vcpu_svm *svm = to_svm(vcpu);
3993
3994	/*
3995	 * If NRIPS is enabled, KVM must snapshot the pre-VMRUN next_rip that's
3996	 * associated with the original soft exception/interrupt.  next_rip is
3997	 * cleared on all exits that can occur while vectoring an event, so KVM
3998	 * needs to manually set next_rip for re-injection.  Unlike the !nrips
3999	 * case below, this needs to be done if and only if KVM is re-injecting
4000	 * the same event, i.e. if the event is a soft exception/interrupt,
4001	 * otherwise next_rip is unused on VMRUN.
4002	 */
4003	if (nrips && (is_soft || (is_exception && kvm_exception_is_soft(vector))) &&
4004	    kvm_is_linear_rip(vcpu, svm->soft_int_old_rip + svm->soft_int_csbase))
4005		svm->vmcb->control.next_rip = svm->soft_int_next_rip;
4006	/*
4007	 * If NRIPS isn't enabled, KVM must manually advance RIP prior to
4008	 * injecting the soft exception/interrupt.  That advancement needs to
4009	 * be unwound if vectoring didn't complete.  Note, the new event may
4010	 * not be the injected event, e.g. if KVM injected an INTn, the INTn
4011	 * hit a #NP in the guest, and the #NP encountered a #PF, the #NP will
4012	 * be the reported vectored event, but RIP still needs to be unwound.
4013	 */
4014	else if (!nrips && (is_soft || is_exception) &&
4015		 kvm_is_linear_rip(vcpu, svm->soft_int_next_rip + svm->soft_int_csbase))
4016		kvm_rip_write(vcpu, svm->soft_int_old_rip);
4017}
4018
4019static void svm_complete_interrupts(struct kvm_vcpu *vcpu)
4020{
4021	struct vcpu_svm *svm = to_svm(vcpu);
4022	u8 vector;
4023	int type;
4024	u32 exitintinfo = svm->vmcb->control.exit_int_info;
4025	bool nmi_l1_to_l2 = svm->nmi_l1_to_l2;
4026	bool soft_int_injected = svm->soft_int_injected;
4027
4028	svm->nmi_l1_to_l2 = false;
4029	svm->soft_int_injected = false;
4030
4031	/*
4032	 * If we've made progress since setting awaiting_iret_completion, we've
4033	 * executed an IRET and can allow NMI injection.
4034	 */
4035	if (svm->awaiting_iret_completion &&
4036	    kvm_rip_read(vcpu) != svm->nmi_iret_rip) {
4037		svm->awaiting_iret_completion = false;
4038		svm->nmi_masked = false;
4039		kvm_make_request(KVM_REQ_EVENT, vcpu);
4040	}
4041
4042	vcpu->arch.nmi_injected = false;
4043	kvm_clear_exception_queue(vcpu);
4044	kvm_clear_interrupt_queue(vcpu);
4045
4046	if (!(exitintinfo & SVM_EXITINTINFO_VALID))
4047		return;
4048
4049	kvm_make_request(KVM_REQ_EVENT, vcpu);
4050
4051	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
4052	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
4053
4054	if (soft_int_injected)
4055		svm_complete_soft_interrupt(vcpu, vector, type);
4056
4057	switch (type) {
4058	case SVM_EXITINTINFO_TYPE_NMI:
4059		vcpu->arch.nmi_injected = true;
4060		svm->nmi_l1_to_l2 = nmi_l1_to_l2;
4061		break;
4062	case SVM_EXITINTINFO_TYPE_EXEPT:
4063		/*
4064		 * Never re-inject a #VC exception.
4065		 */
4066		if (vector == X86_TRAP_VC)
4067			break;
4068
4069		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
4070			u32 err = svm->vmcb->control.exit_int_info_err;
4071			kvm_requeue_exception_e(vcpu, vector, err);
4072
4073		} else
4074			kvm_requeue_exception(vcpu, vector);
4075		break;
4076	case SVM_EXITINTINFO_TYPE_INTR:
4077		kvm_queue_interrupt(vcpu, vector, false);
4078		break;
4079	case SVM_EXITINTINFO_TYPE_SOFT:
4080		kvm_queue_interrupt(vcpu, vector, true);
4081		break;
4082	default:
4083		break;
4084	}
4085
4086}
4087
4088static void svm_cancel_injection(struct kvm_vcpu *vcpu)
4089{
4090	struct vcpu_svm *svm = to_svm(vcpu);
4091	struct vmcb_control_area *control = &svm->vmcb->control;
4092
4093	control->exit_int_info = control->event_inj;
4094	control->exit_int_info_err = control->event_inj_err;
4095	control->event_inj = 0;
4096	svm_complete_interrupts(vcpu);
4097}
4098
4099static int svm_vcpu_pre_run(struct kvm_vcpu *vcpu)
4100{
4101	return 1;
4102}
4103
4104static fastpath_t svm_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
4105{
4106	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_MSR &&
4107	    to_svm(vcpu)->vmcb->control.exit_info_1)
4108		return handle_fastpath_set_msr_irqoff(vcpu);
4109
4110	return EXIT_FASTPATH_NONE;
4111}
4112
4113static noinstr void svm_vcpu_enter_exit(struct kvm_vcpu *vcpu, bool spec_ctrl_intercepted)
4114{
4115	struct vcpu_svm *svm = to_svm(vcpu);
4116
4117	guest_state_enter_irqoff();
4118
4119	amd_clear_divider();
4120
4121	if (sev_es_guest(vcpu->kvm))
4122		__svm_sev_es_vcpu_run(svm, spec_ctrl_intercepted);
4123	else
4124		__svm_vcpu_run(svm, spec_ctrl_intercepted);
4125
4126	guest_state_exit_irqoff();
4127}
4128
4129static __no_kcsan fastpath_t svm_vcpu_run(struct kvm_vcpu *vcpu)
4130{
4131	struct vcpu_svm *svm = to_svm(vcpu);
4132	bool spec_ctrl_intercepted = msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL);
4133
4134	trace_kvm_entry(vcpu);
4135
4136	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4137	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4138	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4139
4140	/*
4141	 * Disable singlestep if we're injecting an interrupt/exception.
4142	 * We don't want our modified rflags to be pushed on the stack where
4143	 * we might not be able to easily reset them if we disabled NMI
4144	 * singlestep later.
4145	 */
4146	if (svm->nmi_singlestep && svm->vmcb->control.event_inj) {
4147		/*
4148		 * Event injection happens before external interrupts cause a
4149		 * vmexit and interrupts are disabled here, so smp_send_reschedule
4150		 * is enough to force an immediate vmexit.
4151		 */
4152		disable_nmi_singlestep(svm);
4153		smp_send_reschedule(vcpu->cpu);
4154	}
4155
4156	pre_svm_run(vcpu);
4157
4158	sync_lapic_to_cr8(vcpu);
4159
4160	if (unlikely(svm->asid != svm->vmcb->control.asid)) {
4161		svm->vmcb->control.asid = svm->asid;
4162		vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
4163	}
4164	svm->vmcb->save.cr2 = vcpu->arch.cr2;
4165
4166	svm_hv_update_vp_id(svm->vmcb, vcpu);
4167
4168	/*
4169	 * Run with all-zero DR6 unless needed, so that we can get the exact cause
4170	 * of a #DB.
4171	 */
4172	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
4173		svm_set_dr6(svm, vcpu->arch.dr6);
4174	else
4175		svm_set_dr6(svm, DR6_ACTIVE_LOW);
4176
4177	clgi();
4178	kvm_load_guest_xsave_state(vcpu);
4179
4180	kvm_wait_lapic_expire(vcpu);
4181
4182	/*
4183	 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
4184	 * it's non-zero. Since vmentry is serialising on affected CPUs, there
4185	 * is no need to worry about the conditional branch over the wrmsr
4186	 * being speculatively taken.
4187	 */
4188	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4189		x86_spec_ctrl_set_guest(svm->virt_spec_ctrl);
4190
4191	svm_vcpu_enter_exit(vcpu, spec_ctrl_intercepted);
4192
4193	if (!static_cpu_has(X86_FEATURE_V_SPEC_CTRL))
4194		x86_spec_ctrl_restore_host(svm->virt_spec_ctrl);
4195
4196	if (!sev_es_guest(vcpu->kvm)) {
4197		vcpu->arch.cr2 = svm->vmcb->save.cr2;
4198		vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
4199		vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
4200		vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
4201	}
4202	vcpu->arch.regs_dirty = 0;
4203
4204	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4205		kvm_before_interrupt(vcpu, KVM_HANDLING_NMI);
4206
4207	kvm_load_host_xsave_state(vcpu);
4208	stgi();
4209
4210	/* Any pending NMI will happen here */
4211
4212	if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
4213		kvm_after_interrupt(vcpu);
4214
4215	sync_cr8_to_lapic(vcpu);
4216
4217	svm->next_rip = 0;
4218	if (is_guest_mode(vcpu)) {
4219		nested_sync_control_from_vmcb02(svm);
4220
4221		/* Track VMRUNs that have made past consistency checking */
4222		if (svm->nested.nested_run_pending &&
4223		    svm->vmcb->control.exit_code != SVM_EXIT_ERR)
4224                        ++vcpu->stat.nested_run;
4225
4226		svm->nested.nested_run_pending = 0;
4227	}
4228
4229	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
4230	vmcb_mark_all_clean(svm->vmcb);
4231
4232	/* if exit due to PF check for async PF */
4233	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
4234		vcpu->arch.apf.host_apf_flags =
4235			kvm_read_and_reset_apf_flags();
4236
4237	vcpu->arch.regs_avail &= ~SVM_REGS_LAZY_LOAD_SET;
4238
4239	/*
4240	 * We need to handle MC intercepts here before the vcpu has a chance to
4241	 * change the physical cpu
4242	 */
4243	if (unlikely(svm->vmcb->control.exit_code ==
4244		     SVM_EXIT_EXCP_BASE + MC_VECTOR))
4245		svm_handle_mce(vcpu);
4246
4247	trace_kvm_exit(vcpu, KVM_ISA_SVM);
4248
4249	svm_complete_interrupts(vcpu);
4250
4251	if (is_guest_mode(vcpu))
4252		return EXIT_FASTPATH_NONE;
4253
4254	return svm_exit_handlers_fastpath(vcpu);
4255}
4256
4257static void svm_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
4258			     int root_level)
4259{
4260	struct vcpu_svm *svm = to_svm(vcpu);
4261	unsigned long cr3;
4262
4263	if (npt_enabled) {
4264		svm->vmcb->control.nested_cr3 = __sme_set(root_hpa);
4265		vmcb_mark_dirty(svm->vmcb, VMCB_NPT);
4266
4267		hv_track_root_tdp(vcpu, root_hpa);
4268
4269		cr3 = vcpu->arch.cr3;
4270	} else if (root_level >= PT64_ROOT_4LEVEL) {
4271		cr3 = __sme_set(root_hpa) | kvm_get_active_pcid(vcpu);
4272	} else {
4273		/* PCID in the guest should be impossible with a 32-bit MMU. */
4274		WARN_ON_ONCE(kvm_get_active_pcid(vcpu));
4275		cr3 = root_hpa;
4276	}
4277
4278	svm->vmcb->save.cr3 = cr3;
4279	vmcb_mark_dirty(svm->vmcb, VMCB_CR);
4280}
4281
4282static void
4283svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4284{
4285	/*
4286	 * Patch in the VMMCALL instruction:
4287	 */
4288	hypercall[0] = 0x0f;
4289	hypercall[1] = 0x01;
4290	hypercall[2] = 0xd9;
4291}
4292
4293/*
4294 * The kvm parameter can be NULL (module initialization, or invocation before
4295 * VM creation). Be sure to check the kvm parameter before using it.
4296 */
4297static bool svm_has_emulated_msr(struct kvm *kvm, u32 index)
4298{
4299	switch (index) {
4300	case MSR_IA32_MCG_EXT_CTL:
4301	case KVM_FIRST_EMULATED_VMX_MSR ... KVM_LAST_EMULATED_VMX_MSR:
4302		return false;
4303	case MSR_IA32_SMBASE:
4304		if (!IS_ENABLED(CONFIG_KVM_SMM))
4305			return false;
4306		/* SEV-ES guests do not support SMM, so report false */
4307		if (kvm && sev_es_guest(kvm))
4308			return false;
4309		break;
4310	default:
4311		break;
4312	}
4313
4314	return true;
4315}
4316
4317static void svm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
4318{
4319	struct vcpu_svm *svm = to_svm(vcpu);
4320
4321	/*
4322	 * SVM doesn't provide a way to disable just XSAVES in the guest, KVM
4323	 * can only disable all variants of by disallowing CR4.OSXSAVE from
4324	 * being set.  As a result, if the host has XSAVE and XSAVES, and the
4325	 * guest has XSAVE enabled, the guest can execute XSAVES without
4326	 * faulting.  Treat XSAVES as enabled in this case regardless of
4327	 * whether it's advertised to the guest so that KVM context switches
4328	 * XSS on VM-Enter/VM-Exit.  Failure to do so would effectively give
4329	 * the guest read/write access to the host's XSS.
4330	 */
4331	if (boot_cpu_has(X86_FEATURE_XSAVE) &&
4332	    boot_cpu_has(X86_FEATURE_XSAVES) &&
4333	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVE))
4334		kvm_governed_feature_set(vcpu, X86_FEATURE_XSAVES);
4335
4336	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_NRIPS);
4337	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_TSCRATEMSR);
4338	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_LBRV);
4339
4340	/*
4341	 * Intercept VMLOAD if the vCPU mode is Intel in order to emulate that
4342	 * VMLOAD drops bits 63:32 of SYSENTER (ignoring the fact that exposing
4343	 * SVM on Intel is bonkers and extremely unlikely to work).
4344	 */
4345	if (!guest_cpuid_is_intel(vcpu))
4346		kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_V_VMSAVE_VMLOAD);
4347
4348	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PAUSEFILTER);
4349	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_PFTHRESHOLD);
4350	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VGIF);
4351	kvm_governed_feature_check_and_set(vcpu, X86_FEATURE_VNMI);
4352
4353	svm_recalc_instruction_intercepts(vcpu, svm);
4354
4355	if (boot_cpu_has(X86_FEATURE_IBPB))
4356		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_PRED_CMD, 0,
4357				     !!guest_has_pred_cmd_msr(vcpu));
4358
4359	if (boot_cpu_has(X86_FEATURE_FLUSH_L1D))
4360		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_FLUSH_CMD, 0,
4361				     !!guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D));
4362
4363	if (sev_guest(vcpu->kvm))
4364		sev_vcpu_after_set_cpuid(svm);
4365
4366	init_vmcb_after_set_cpuid(vcpu);
4367}
4368
4369static bool svm_has_wbinvd_exit(void)
4370{
4371	return true;
4372}
4373
4374#define PRE_EX(exit)  { .exit_code = (exit), \
4375			.stage = X86_ICPT_PRE_EXCEPT, }
4376#define POST_EX(exit) { .exit_code = (exit), \
4377			.stage = X86_ICPT_POST_EXCEPT, }
4378#define POST_MEM(exit) { .exit_code = (exit), \
4379			.stage = X86_ICPT_POST_MEMACCESS, }
4380
4381static const struct __x86_intercept {
4382	u32 exit_code;
4383	enum x86_intercept_stage stage;
4384} x86_intercept_map[] = {
4385	[x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0),
4386	[x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0),
4387	[x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0),
4388	[x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0),
4389	[x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0),
4390	[x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0),
4391	[x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0),
4392	[x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ),
4393	[x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ),
4394	[x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE),
4395	[x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE),
4396	[x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ),
4397	[x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ),
4398	[x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE),
4399	[x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE),
4400	[x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN),
4401	[x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL),
4402	[x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD),
4403	[x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE),
4404	[x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI),
4405	[x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI),
4406	[x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT),
4407	[x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA),
4408	[x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP),
4409	[x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR),
4410	[x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT),
4411	[x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG),
4412	[x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD),
4413	[x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD),
4414	[x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR),
4415	[x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC),
4416	[x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR),
4417	[x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC),
4418	[x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID),
4419	[x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM),
4420	[x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE),
4421	[x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF),
4422	[x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF),
4423	[x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT),
4424	[x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET),
4425	[x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP),
4426	[x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT),
4427	[x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO),
4428	[x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO),
4429	[x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO),
4430	[x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO),
4431	[x86_intercept_xsetbv]		= PRE_EX(SVM_EXIT_XSETBV),
4432};
4433
4434#undef PRE_EX
4435#undef POST_EX
4436#undef POST_MEM
4437
4438static int svm_check_intercept(struct kvm_vcpu *vcpu,
4439			       struct x86_instruction_info *info,
4440			       enum x86_intercept_stage stage,
4441			       struct x86_exception *exception)
4442{
4443	struct vcpu_svm *svm = to_svm(vcpu);
4444	int vmexit, ret = X86EMUL_CONTINUE;
4445	struct __x86_intercept icpt_info;
4446	struct vmcb *vmcb = svm->vmcb;
4447
4448	if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4449		goto out;
4450
4451	icpt_info = x86_intercept_map[info->intercept];
4452
4453	if (stage != icpt_info.stage)
4454		goto out;
4455
4456	switch (icpt_info.exit_code) {
4457	case SVM_EXIT_READ_CR0:
4458		if (info->intercept == x86_intercept_cr_read)
4459			icpt_info.exit_code += info->modrm_reg;
4460		break;
4461	case SVM_EXIT_WRITE_CR0: {
4462		unsigned long cr0, val;
4463
4464		if (info->intercept == x86_intercept_cr_write)
4465			icpt_info.exit_code += info->modrm_reg;
4466
4467		if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
4468		    info->intercept == x86_intercept_clts)
4469			break;
4470
4471		if (!(vmcb12_is_intercept(&svm->nested.ctl,
4472					INTERCEPT_SELECTIVE_CR0)))
4473			break;
4474
4475		cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4476		val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4477
4478		if (info->intercept == x86_intercept_lmsw) {
4479			cr0 &= 0xfUL;
4480			val &= 0xfUL;
4481			/* lmsw can't clear PE - catch this here */
4482			if (cr0 & X86_CR0_PE)
4483				val |= X86_CR0_PE;
4484		}
4485
4486		if (cr0 ^ val)
4487			icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4488
4489		break;
4490	}
4491	case SVM_EXIT_READ_DR0:
4492	case SVM_EXIT_WRITE_DR0:
4493		icpt_info.exit_code += info->modrm_reg;
4494		break;
4495	case SVM_EXIT_MSR:
4496		if (info->intercept == x86_intercept_wrmsr)
4497			vmcb->control.exit_info_1 = 1;
4498		else
4499			vmcb->control.exit_info_1 = 0;
4500		break;
4501	case SVM_EXIT_PAUSE:
4502		/*
4503		 * We get this for NOP only, but pause
4504		 * is rep not, check this here
4505		 */
4506		if (info->rep_prefix != REPE_PREFIX)
4507			goto out;
4508		break;
4509	case SVM_EXIT_IOIO: {
4510		u64 exit_info;
4511		u32 bytes;
4512
4513		if (info->intercept == x86_intercept_in ||
4514		    info->intercept == x86_intercept_ins) {
4515			exit_info = ((info->src_val & 0xffff) << 16) |
4516				SVM_IOIO_TYPE_MASK;
4517			bytes = info->dst_bytes;
4518		} else {
4519			exit_info = (info->dst_val & 0xffff) << 16;
4520			bytes = info->src_bytes;
4521		}
4522
4523		if (info->intercept == x86_intercept_outs ||
4524		    info->intercept == x86_intercept_ins)
4525			exit_info |= SVM_IOIO_STR_MASK;
4526
4527		if (info->rep_prefix)
4528			exit_info |= SVM_IOIO_REP_MASK;
4529
4530		bytes = min(bytes, 4u);
4531
4532		exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4533
4534		exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4535
4536		vmcb->control.exit_info_1 = exit_info;
4537		vmcb->control.exit_info_2 = info->next_rip;
4538
4539		break;
4540	}
4541	default:
4542		break;
4543	}
4544
4545	/* TODO: Advertise NRIPS to guest hypervisor unconditionally */
4546	if (static_cpu_has(X86_FEATURE_NRIPS))
4547		vmcb->control.next_rip  = info->next_rip;
4548	vmcb->control.exit_code = icpt_info.exit_code;
4549	vmexit = nested_svm_exit_handled(svm);
4550
4551	ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4552					   : X86EMUL_CONTINUE;
4553
4554out:
4555	return ret;
4556}
4557
4558static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
4559{
4560	if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
4561		vcpu->arch.at_instruction_boundary = true;
4562}
4563
4564static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
4565{
4566	if (!kvm_pause_in_guest(vcpu->kvm))
4567		shrink_ple_window(vcpu);
4568}
4569
4570static void svm_setup_mce(struct kvm_vcpu *vcpu)
4571{
4572	/* [63:9] are reserved. */
4573	vcpu->arch.mcg_cap &= 0x1ff;
4574}
4575
4576#ifdef CONFIG_KVM_SMM
4577bool svm_smi_blocked(struct kvm_vcpu *vcpu)
4578{
4579	struct vcpu_svm *svm = to_svm(vcpu);
4580
4581	/* Per APM Vol.2 15.22.2 "Response to SMI" */
4582	if (!gif_set(svm))
4583		return true;
4584
4585	return is_smm(vcpu);
4586}
4587
4588static int svm_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4589{
4590	struct vcpu_svm *svm = to_svm(vcpu);
4591	if (svm->nested.nested_run_pending)
4592		return -EBUSY;
4593
4594	if (svm_smi_blocked(vcpu))
4595		return 0;
4596
4597	/* An SMI must not be injected into L2 if it's supposed to VM-Exit.  */
4598	if (for_injection && is_guest_mode(vcpu) && nested_exit_on_smi(svm))
4599		return -EBUSY;
4600
4601	return 1;
4602}
4603
4604static int svm_enter_smm(struct kvm_vcpu *vcpu, union kvm_smram *smram)
4605{
4606	struct vcpu_svm *svm = to_svm(vcpu);
4607	struct kvm_host_map map_save;
4608	int ret;
4609
4610	if (!is_guest_mode(vcpu))
4611		return 0;
4612
4613	/*
4614	 * 32-bit SMRAM format doesn't preserve EFER and SVM state.  Userspace is
4615	 * responsible for ensuring nested SVM and SMIs are mutually exclusive.
4616	 */
4617
4618	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4619		return 1;
4620
4621	smram->smram64.svm_guest_flag = 1;
4622	smram->smram64.svm_guest_vmcb_gpa = svm->nested.vmcb12_gpa;
4623
4624	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
4625	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
4626	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
4627
4628	ret = nested_svm_simple_vmexit(svm, SVM_EXIT_SW);
4629	if (ret)
4630		return ret;
4631
4632	/*
4633	 * KVM uses VMCB01 to store L1 host state while L2 runs but
4634	 * VMCB01 is going to be used during SMM and thus the state will
4635	 * be lost. Temporary save non-VMLOAD/VMSAVE state to the host save
4636	 * area pointed to by MSR_VM_HSAVE_PA. APM guarantees that the
4637	 * format of the area is identical to guest save area offsetted
4638	 * by 0x400 (matches the offset of 'struct vmcb_save_area'
4639	 * within 'struct vmcb'). Note: HSAVE area may also be used by
4640	 * L1 hypervisor to save additional host context (e.g. KVM does
4641	 * that, see svm_prepare_switch_to_guest()) which must be
4642	 * preserved.
4643	 */
4644	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4645		return 1;
4646
4647	BUILD_BUG_ON(offsetof(struct vmcb, save) != 0x400);
4648
4649	svm_copy_vmrun_state(map_save.hva + 0x400,
4650			     &svm->vmcb01.ptr->save);
4651
4652	kvm_vcpu_unmap(vcpu, &map_save, true);
4653	return 0;
4654}
4655
4656static int svm_leave_smm(struct kvm_vcpu *vcpu, const union kvm_smram *smram)
4657{
4658	struct vcpu_svm *svm = to_svm(vcpu);
4659	struct kvm_host_map map, map_save;
4660	struct vmcb *vmcb12;
4661	int ret;
4662
4663	const struct kvm_smram_state_64 *smram64 = &smram->smram64;
4664
4665	if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
4666		return 0;
4667
4668	/* Non-zero if SMI arrived while vCPU was in guest mode. */
4669	if (!smram64->svm_guest_flag)
4670		return 0;
4671
4672	if (!guest_cpuid_has(vcpu, X86_FEATURE_SVM))
4673		return 1;
4674
4675	if (!(smram64->efer & EFER_SVME))
4676		return 1;
4677
4678	if (kvm_vcpu_map(vcpu, gpa_to_gfn(smram64->svm_guest_vmcb_gpa), &map))
4679		return 1;
4680
4681	ret = 1;
4682	if (kvm_vcpu_map(vcpu, gpa_to_gfn(svm->nested.hsave_msr), &map_save))
4683		goto unmap_map;
4684
4685	if (svm_allocate_nested(svm))
4686		goto unmap_save;
4687
4688	/*
4689	 * Restore L1 host state from L1 HSAVE area as VMCB01 was
4690	 * used during SMM (see svm_enter_smm())
4691	 */
4692
4693	svm_copy_vmrun_state(&svm->vmcb01.ptr->save, map_save.hva + 0x400);
4694
4695	/*
4696	 * Enter the nested guest now
4697	 */
4698
4699	vmcb_mark_all_dirty(svm->vmcb01.ptr);
4700
4701	vmcb12 = map.hva;
4702	nested_copy_vmcb_control_to_cache(svm, &vmcb12->control);
4703	nested_copy_vmcb_save_to_cache(svm, &vmcb12->save);
4704	ret = enter_svm_guest_mode(vcpu, smram64->svm_guest_vmcb_gpa, vmcb12, false);
4705
4706	if (ret)
4707		goto unmap_save;
4708
4709	svm->nested.nested_run_pending = 1;
4710
4711unmap_save:
4712	kvm_vcpu_unmap(vcpu, &map_save, true);
4713unmap_map:
4714	kvm_vcpu_unmap(vcpu, &map, true);
4715	return ret;
4716}
4717
4718static void svm_enable_smi_window(struct kvm_vcpu *vcpu)
4719{
4720	struct vcpu_svm *svm = to_svm(vcpu);
4721
4722	if (!gif_set(svm)) {
4723		if (vgif)
4724			svm_set_intercept(svm, INTERCEPT_STGI);
4725		/* STGI will cause a vm exit */
4726	} else {
4727		/* We must be in SMM; RSM will cause a vmexit anyway.  */
4728	}
4729}
4730#endif
4731
4732static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type,
4733					void *insn, int insn_len)
4734{
4735	bool smep, smap, is_user;
4736	u64 error_code;
4737
4738	/* Emulation is always possible when KVM has access to all guest state. */
4739	if (!sev_guest(vcpu->kvm))
4740		return true;
4741
4742	/* #UD and #GP should never be intercepted for SEV guests. */
4743	WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD |
4744				  EMULTYPE_TRAP_UD_FORCED |
4745				  EMULTYPE_VMWARE_GP));
4746
4747	/*
4748	 * Emulation is impossible for SEV-ES guests as KVM doesn't have access
4749	 * to guest register state.
4750	 */
4751	if (sev_es_guest(vcpu->kvm))
4752		return false;
4753
4754	/*
4755	 * Emulation is possible if the instruction is already decoded, e.g.
4756	 * when completing I/O after returning from userspace.
4757	 */
4758	if (emul_type & EMULTYPE_NO_DECODE)
4759		return true;
4760
4761	/*
4762	 * Emulation is possible for SEV guests if and only if a prefilled
4763	 * buffer containing the bytes of the intercepted instruction is
4764	 * available. SEV guest memory is encrypted with a guest specific key
4765	 * and cannot be decrypted by KVM, i.e. KVM would read cyphertext and
4766	 * decode garbage.
4767	 *
4768	 * If KVM is NOT trying to simply skip an instruction, inject #UD if
4769	 * KVM reached this point without an instruction buffer.  In practice,
4770	 * this path should never be hit by a well-behaved guest, e.g. KVM
4771	 * doesn't intercept #UD or #GP for SEV guests, but this path is still
4772	 * theoretically reachable, e.g. via unaccelerated fault-like AVIC
4773	 * access, and needs to be handled by KVM to avoid putting the guest
4774	 * into an infinite loop.   Injecting #UD is somewhat arbitrary, but
4775	 * its the least awful option given lack of insight into the guest.
4776	 *
4777	 * If KVM is trying to skip an instruction, simply resume the guest.
4778	 * If a #NPF occurs while the guest is vectoring an INT3/INTO, then KVM
4779	 * will attempt to re-inject the INT3/INTO and skip the instruction.
4780	 * In that scenario, retrying the INT3/INTO and hoping the guest will
4781	 * make forward progress is the only option that has a chance of
4782	 * success (and in practice it will work the vast majority of the time).
4783	 */
4784	if (unlikely(!insn)) {
4785		if (!(emul_type & EMULTYPE_SKIP))
4786			kvm_queue_exception(vcpu, UD_VECTOR);
4787		return false;
4788	}
4789
4790	/*
4791	 * Emulate for SEV guests if the insn buffer is not empty.  The buffer
4792	 * will be empty if the DecodeAssist microcode cannot fetch bytes for
4793	 * the faulting instruction because the code fetch itself faulted, e.g.
4794	 * the guest attempted to fetch from emulated MMIO or a guest page
4795	 * table used to translate CS:RIP resides in emulated MMIO.
4796	 */
4797	if (likely(insn_len))
4798		return true;
4799
4800	/*
4801	 * Detect and workaround Errata 1096 Fam_17h_00_0Fh.
4802	 *
4803	 * Errata:
4804	 * When CPU raises #NPF on guest data access and vCPU CR4.SMAP=1, it is
4805	 * possible that CPU microcode implementing DecodeAssist will fail to
4806	 * read guest memory at CS:RIP and vmcb.GuestIntrBytes will incorrectly
4807	 * be '0'.  This happens because microcode reads CS:RIP using a _data_
4808	 * loap uop with CPL=0 privileges.  If the load hits a SMAP #PF, ucode
4809	 * gives up and does not fill the instruction bytes buffer.
4810	 *
4811	 * As above, KVM reaches this point iff the VM is an SEV guest, the CPU
4812	 * supports DecodeAssist, a #NPF was raised, KVM's page fault handler
4813	 * triggered emulation (e.g. for MMIO), and the CPU returned 0 in the
4814	 * GuestIntrBytes field of the VMCB.
4815	 *
4816	 * This does _not_ mean that the erratum has been encountered, as the
4817	 * DecodeAssist will also fail if the load for CS:RIP hits a legitimate
4818	 * #PF, e.g. if the guest attempt to execute from emulated MMIO and
4819	 * encountered a reserved/not-present #PF.
4820	 *
4821	 * To hit the erratum, the following conditions must be true:
4822	 *    1. CR4.SMAP=1 (obviously).
4823	 *    2. CR4.SMEP=0 || CPL=3.  If SMEP=1 and CPL<3, the erratum cannot
4824	 *       have been hit as the guest would have encountered a SMEP
4825	 *       violation #PF, not a #NPF.
4826	 *    3. The #NPF is not due to a code fetch, in which case failure to
4827	 *       retrieve the instruction bytes is legitimate (see abvoe).
4828	 *
4829	 * In addition, don't apply the erratum workaround if the #NPF occurred
4830	 * while translating guest page tables (see below).
4831	 */
4832	error_code = to_svm(vcpu)->vmcb->control.exit_info_1;
4833	if (error_code & (PFERR_GUEST_PAGE_MASK | PFERR_FETCH_MASK))
4834		goto resume_guest;
4835
4836	smep = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMEP);
4837	smap = kvm_is_cr4_bit_set(vcpu, X86_CR4_SMAP);
4838	is_user = svm_get_cpl(vcpu) == 3;
4839	if (smap && (!smep || is_user)) {
4840		pr_err_ratelimited("SEV Guest triggered AMD Erratum 1096\n");
4841
4842		/*
4843		 * If the fault occurred in userspace, arbitrarily inject #GP
4844		 * to avoid killing the guest and to hopefully avoid confusing
4845		 * the guest kernel too much, e.g. injecting #PF would not be
4846		 * coherent with respect to the guest's page tables.  Request
4847		 * triple fault if the fault occurred in the kernel as there's
4848		 * no fault that KVM can inject without confusing the guest.
4849		 * In practice, the triple fault is moot as no sane SEV kernel
4850		 * will execute from user memory while also running with SMAP=1.
4851		 */
4852		if (is_user)
4853			kvm_inject_gp(vcpu, 0);
4854		else
4855			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4856	}
4857
4858resume_guest:
4859	/*
4860	 * If the erratum was not hit, simply resume the guest and let it fault
4861	 * again.  While awful, e.g. the vCPU may get stuck in an infinite loop
4862	 * if the fault is at CPL=0, it's the lesser of all evils.  Exiting to
4863	 * userspace will kill the guest, and letting the emulator read garbage
4864	 * will yield random behavior and potentially corrupt the guest.
4865	 *
4866	 * Simply resuming the guest is technically not a violation of the SEV
4867	 * architecture.  AMD's APM states that all code fetches and page table
4868	 * accesses for SEV guest are encrypted, regardless of the C-Bit.  The
4869	 * APM also states that encrypted accesses to MMIO are "ignored", but
4870	 * doesn't explicitly define "ignored", i.e. doing nothing and letting
4871	 * the guest spin is technically "ignoring" the access.
4872	 */
4873	return false;
4874}
4875
4876static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
4877{
4878	struct vcpu_svm *svm = to_svm(vcpu);
4879
4880	return !gif_set(svm);
4881}
4882
4883static void svm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
4884{
4885	if (!sev_es_guest(vcpu->kvm))
4886		return kvm_vcpu_deliver_sipi_vector(vcpu, vector);
4887
4888	sev_vcpu_deliver_sipi_vector(vcpu, vector);
4889}
4890
4891static void svm_vm_destroy(struct kvm *kvm)
4892{
4893	avic_vm_destroy(kvm);
4894	sev_vm_destroy(kvm);
4895}
4896
4897static int svm_vm_init(struct kvm *kvm)
4898{
4899	if (!pause_filter_count || !pause_filter_thresh)
4900		kvm->arch.pause_in_guest = true;
4901
4902	if (enable_apicv) {
4903		int ret = avic_vm_init(kvm);
4904		if (ret)
4905			return ret;
4906	}
4907
4908	return 0;
4909}
4910
4911static struct kvm_x86_ops svm_x86_ops __initdata = {
4912	.name = KBUILD_MODNAME,
4913
4914	.check_processor_compatibility = svm_check_processor_compat,
4915
4916	.hardware_unsetup = svm_hardware_unsetup,
4917	.hardware_enable = svm_hardware_enable,
4918	.hardware_disable = svm_hardware_disable,
4919	.has_emulated_msr = svm_has_emulated_msr,
4920
4921	.vcpu_create = svm_vcpu_create,
4922	.vcpu_free = svm_vcpu_free,
4923	.vcpu_reset = svm_vcpu_reset,
4924
4925	.vm_size = sizeof(struct kvm_svm),
4926	.vm_init = svm_vm_init,
4927	.vm_destroy = svm_vm_destroy,
4928
4929	.prepare_switch_to_guest = svm_prepare_switch_to_guest,
4930	.vcpu_load = svm_vcpu_load,
4931	.vcpu_put = svm_vcpu_put,
4932	.vcpu_blocking = avic_vcpu_blocking,
4933	.vcpu_unblocking = avic_vcpu_unblocking,
4934
4935	.update_exception_bitmap = svm_update_exception_bitmap,
4936	.get_msr_feature = svm_get_msr_feature,
4937	.get_msr = svm_get_msr,
4938	.set_msr = svm_set_msr,
4939	.get_segment_base = svm_get_segment_base,
4940	.get_segment = svm_get_segment,
4941	.set_segment = svm_set_segment,
4942	.get_cpl = svm_get_cpl,
4943	.get_cs_db_l_bits = svm_get_cs_db_l_bits,
4944	.is_valid_cr0 = svm_is_valid_cr0,
4945	.set_cr0 = svm_set_cr0,
4946	.post_set_cr3 = sev_post_set_cr3,
4947	.is_valid_cr4 = svm_is_valid_cr4,
4948	.set_cr4 = svm_set_cr4,
4949	.set_efer = svm_set_efer,
4950	.get_idt = svm_get_idt,
4951	.set_idt = svm_set_idt,
4952	.get_gdt = svm_get_gdt,
4953	.set_gdt = svm_set_gdt,
4954	.set_dr7 = svm_set_dr7,
4955	.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
4956	.cache_reg = svm_cache_reg,
4957	.get_rflags = svm_get_rflags,
4958	.set_rflags = svm_set_rflags,
4959	.get_if_flag = svm_get_if_flag,
4960
4961	.flush_tlb_all = svm_flush_tlb_all,
4962	.flush_tlb_current = svm_flush_tlb_current,
4963	.flush_tlb_gva = svm_flush_tlb_gva,
4964	.flush_tlb_guest = svm_flush_tlb_asid,
4965
4966	.vcpu_pre_run = svm_vcpu_pre_run,
4967	.vcpu_run = svm_vcpu_run,
4968	.handle_exit = svm_handle_exit,
4969	.skip_emulated_instruction = svm_skip_emulated_instruction,
4970	.update_emulated_instruction = NULL,
4971	.set_interrupt_shadow = svm_set_interrupt_shadow,
4972	.get_interrupt_shadow = svm_get_interrupt_shadow,
4973	.patch_hypercall = svm_patch_hypercall,
4974	.inject_irq = svm_inject_irq,
4975	.inject_nmi = svm_inject_nmi,
4976	.is_vnmi_pending = svm_is_vnmi_pending,
4977	.set_vnmi_pending = svm_set_vnmi_pending,
4978	.inject_exception = svm_inject_exception,
4979	.cancel_injection = svm_cancel_injection,
4980	.interrupt_allowed = svm_interrupt_allowed,
4981	.nmi_allowed = svm_nmi_allowed,
4982	.get_nmi_mask = svm_get_nmi_mask,
4983	.set_nmi_mask = svm_set_nmi_mask,
4984	.enable_nmi_window = svm_enable_nmi_window,
4985	.enable_irq_window = svm_enable_irq_window,
4986	.update_cr8_intercept = svm_update_cr8_intercept,
4987	.set_virtual_apic_mode = avic_refresh_virtual_apic_mode,
4988	.refresh_apicv_exec_ctrl = avic_refresh_apicv_exec_ctrl,
4989	.apicv_post_state_restore = avic_apicv_post_state_restore,
4990	.required_apicv_inhibits = AVIC_REQUIRED_APICV_INHIBITS,
4991
4992	.get_exit_info = svm_get_exit_info,
4993
4994	.vcpu_after_set_cpuid = svm_vcpu_after_set_cpuid,
4995
4996	.has_wbinvd_exit = svm_has_wbinvd_exit,
4997
4998	.get_l2_tsc_offset = svm_get_l2_tsc_offset,
4999	.get_l2_tsc_multiplier = svm_get_l2_tsc_multiplier,
5000	.write_tsc_offset = svm_write_tsc_offset,
5001	.write_tsc_multiplier = svm_write_tsc_multiplier,
5002
5003	.load_mmu_pgd = svm_load_mmu_pgd,
5004
5005	.check_intercept = svm_check_intercept,
5006	.handle_exit_irqoff = svm_handle_exit_irqoff,
5007
5008	.request_immediate_exit = __kvm_request_immediate_exit,
5009
5010	.sched_in = svm_sched_in,
5011
5012	.nested_ops = &svm_nested_ops,
5013
5014	.deliver_interrupt = svm_deliver_interrupt,
5015	.pi_update_irte = avic_pi_update_irte,
5016	.setup_mce = svm_setup_mce,
5017
5018#ifdef CONFIG_KVM_SMM
5019	.smi_allowed = svm_smi_allowed,
5020	.enter_smm = svm_enter_smm,
5021	.leave_smm = svm_leave_smm,
5022	.enable_smi_window = svm_enable_smi_window,
5023#endif
5024
5025	.mem_enc_ioctl = sev_mem_enc_ioctl,
5026	.mem_enc_register_region = sev_mem_enc_register_region,
5027	.mem_enc_unregister_region = sev_mem_enc_unregister_region,
5028	.guest_memory_reclaimed = sev_guest_memory_reclaimed,
5029
5030	.vm_copy_enc_context_from = sev_vm_copy_enc_context_from,
5031	.vm_move_enc_context_from = sev_vm_move_enc_context_from,
5032
5033	.can_emulate_instruction = svm_can_emulate_instruction,
5034
5035	.apic_init_signal_blocked = svm_apic_init_signal_blocked,
5036
5037	.msr_filter_changed = svm_msr_filter_changed,
5038	.complete_emulated_msr = svm_complete_emulated_msr,
5039
5040	.vcpu_deliver_sipi_vector = svm_vcpu_deliver_sipi_vector,
5041	.vcpu_get_apicv_inhibit_reasons = avic_vcpu_get_apicv_inhibit_reasons,
5042};
5043
5044/*
5045 * The default MMIO mask is a single bit (excluding the present bit),
5046 * which could conflict with the memory encryption bit. Check for
5047 * memory encryption support and override the default MMIO mask if
5048 * memory encryption is enabled.
5049 */
5050static __init void svm_adjust_mmio_mask(void)
5051{
5052	unsigned int enc_bit, mask_bit;
5053	u64 msr, mask;
5054
5055	/* If there is no memory encryption support, use existing mask */
5056	if (cpuid_eax(0x80000000) < 0x8000001f)
5057		return;
5058
5059	/* If memory encryption is not enabled, use existing mask */
5060	rdmsrl(MSR_AMD64_SYSCFG, msr);
5061	if (!(msr & MSR_AMD64_SYSCFG_MEM_ENCRYPT))
5062		return;
5063
5064	enc_bit = cpuid_ebx(0x8000001f) & 0x3f;
5065	mask_bit = boot_cpu_data.x86_phys_bits;
5066
5067	/* Increment the mask bit if it is the same as the encryption bit */
5068	if (enc_bit == mask_bit)
5069		mask_bit++;
5070
5071	/*
5072	 * If the mask bit location is below 52, then some bits above the
5073	 * physical addressing limit will always be reserved, so use the
5074	 * rsvd_bits() function to generate the mask. This mask, along with
5075	 * the present bit, will be used to generate a page fault with
5076	 * PFER.RSV = 1.
5077	 *
5078	 * If the mask bit location is 52 (or above), then clear the mask.
5079	 */
5080	mask = (mask_bit < 52) ? rsvd_bits(mask_bit, 51) | PT_PRESENT_MASK : 0;
5081
5082	kvm_mmu_set_mmio_spte_mask(mask, mask, PT_WRITABLE_MASK | PT_USER_MASK);
5083}
5084
5085static __init void svm_set_cpu_caps(void)
5086{
5087	kvm_set_cpu_caps();
5088
5089	kvm_caps.supported_perf_cap = 0;
5090	kvm_caps.supported_xss = 0;
5091
5092	/* CPUID 0x80000001 and 0x8000000A (SVM features) */
5093	if (nested) {
5094		kvm_cpu_cap_set(X86_FEATURE_SVM);
5095		kvm_cpu_cap_set(X86_FEATURE_VMCBCLEAN);
5096
5097		if (nrips)
5098			kvm_cpu_cap_set(X86_FEATURE_NRIPS);
5099
5100		if (npt_enabled)
5101			kvm_cpu_cap_set(X86_FEATURE_NPT);
5102
5103		if (tsc_scaling)
5104			kvm_cpu_cap_set(X86_FEATURE_TSCRATEMSR);
5105
5106		if (vls)
5107			kvm_cpu_cap_set(X86_FEATURE_V_VMSAVE_VMLOAD);
5108		if (lbrv)
5109			kvm_cpu_cap_set(X86_FEATURE_LBRV);
5110
5111		if (boot_cpu_has(X86_FEATURE_PAUSEFILTER))
5112			kvm_cpu_cap_set(X86_FEATURE_PAUSEFILTER);
5113
5114		if (boot_cpu_has(X86_FEATURE_PFTHRESHOLD))
5115			kvm_cpu_cap_set(X86_FEATURE_PFTHRESHOLD);
5116
5117		if (vgif)
5118			kvm_cpu_cap_set(X86_FEATURE_VGIF);
5119
5120		if (vnmi)
5121			kvm_cpu_cap_set(X86_FEATURE_VNMI);
5122
5123		/* Nested VM can receive #VMEXIT instead of triggering #GP */
5124		kvm_cpu_cap_set(X86_FEATURE_SVME_ADDR_CHK);
5125	}
5126
5127	/* CPUID 0x80000008 */
5128	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) ||
5129	    boot_cpu_has(X86_FEATURE_AMD_SSBD))
5130		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
5131
5132	if (enable_pmu) {
5133		/*
5134		 * Enumerate support for PERFCTR_CORE if and only if KVM has
5135		 * access to enough counters to virtualize "core" support,
5136		 * otherwise limit vPMU support to the legacy number of counters.
5137		 */
5138		if (kvm_pmu_cap.num_counters_gp < AMD64_NUM_COUNTERS_CORE)
5139			kvm_pmu_cap.num_counters_gp = min(AMD64_NUM_COUNTERS,
5140							  kvm_pmu_cap.num_counters_gp);
5141		else
5142			kvm_cpu_cap_check_and_set(X86_FEATURE_PERFCTR_CORE);
5143
5144		if (kvm_pmu_cap.version != 2 ||
5145		    !kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
5146			kvm_cpu_cap_clear(X86_FEATURE_PERFMON_V2);
5147	}
5148
5149	/* CPUID 0x8000001F (SME/SEV features) */
5150	sev_set_cpu_caps();
5151}
5152
5153static __init int svm_hardware_setup(void)
5154{
5155	int cpu;
5156	struct page *iopm_pages;
5157	void *iopm_va;
5158	int r;
5159	unsigned int order = get_order(IOPM_SIZE);
5160
5161	/*
5162	 * NX is required for shadow paging and for NPT if the NX huge pages
5163	 * mitigation is enabled.
5164	 */
5165	if (!boot_cpu_has(X86_FEATURE_NX)) {
5166		pr_err_ratelimited("NX (Execute Disable) not supported\n");
5167		return -EOPNOTSUPP;
5168	}
5169	kvm_enable_efer_bits(EFER_NX);
5170
5171	iopm_pages = alloc_pages(GFP_KERNEL, order);
5172
5173	if (!iopm_pages)
5174		return -ENOMEM;
5175
5176	iopm_va = page_address(iopm_pages);
5177	memset(iopm_va, 0xff, PAGE_SIZE * (1 << order));
5178	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
5179
5180	init_msrpm_offsets();
5181
5182	kvm_caps.supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
5183				     XFEATURE_MASK_BNDCSR);
5184
5185	if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
5186		kvm_enable_efer_bits(EFER_FFXSR);
5187
5188	if (tsc_scaling) {
5189		if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
5190			tsc_scaling = false;
5191		} else {
5192			pr_info("TSC scaling supported\n");
5193			kvm_caps.has_tsc_control = true;
5194		}
5195	}
5196	kvm_caps.max_tsc_scaling_ratio = SVM_TSC_RATIO_MAX;
5197	kvm_caps.tsc_scaling_ratio_frac_bits = 32;
5198
5199	tsc_aux_uret_slot = kvm_add_user_return_msr(MSR_TSC_AUX);
5200
5201	if (boot_cpu_has(X86_FEATURE_AUTOIBRS))
5202		kvm_enable_efer_bits(EFER_AUTOIBRS);
5203
5204	/* Check for pause filtering support */
5205	if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
5206		pause_filter_count = 0;
5207		pause_filter_thresh = 0;
5208	} else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) {
5209		pause_filter_thresh = 0;
5210	}
5211
5212	if (nested) {
5213		pr_info("Nested Virtualization enabled\n");
5214		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
5215	}
5216
5217	/*
5218	 * KVM's MMU doesn't support using 2-level paging for itself, and thus
5219	 * NPT isn't supported if the host is using 2-level paging since host
5220	 * CR4 is unchanged on VMRUN.
5221	 */
5222	if (!IS_ENABLED(CONFIG_X86_64) && !IS_ENABLED(CONFIG_X86_PAE))
5223		npt_enabled = false;
5224
5225	if (!boot_cpu_has(X86_FEATURE_NPT))
5226		npt_enabled = false;
5227
5228	/* Force VM NPT level equal to the host's paging level */
5229	kvm_configure_mmu(npt_enabled, get_npt_level(),
5230			  get_npt_level(), PG_LEVEL_1G);
5231	pr_info("Nested Paging %sabled\n", npt_enabled ? "en" : "dis");
5232
5233	/* Setup shadow_me_value and shadow_me_mask */
5234	kvm_mmu_set_me_spte_mask(sme_me_mask, sme_me_mask);
5235
5236	svm_adjust_mmio_mask();
5237
5238	nrips = nrips && boot_cpu_has(X86_FEATURE_NRIPS);
5239
5240	/*
5241	 * Note, SEV setup consumes npt_enabled and enable_mmio_caching (which
5242	 * may be modified by svm_adjust_mmio_mask()), as well as nrips.
5243	 */
5244	sev_hardware_setup();
5245
5246	svm_hv_hardware_setup();
5247
5248	for_each_possible_cpu(cpu) {
5249		r = svm_cpu_init(cpu);
5250		if (r)
5251			goto err;
5252	}
5253
5254	enable_apicv = avic = avic && avic_hardware_setup();
5255
5256	if (!enable_apicv) {
5257		svm_x86_ops.vcpu_blocking = NULL;
5258		svm_x86_ops.vcpu_unblocking = NULL;
5259		svm_x86_ops.vcpu_get_apicv_inhibit_reasons = NULL;
5260	} else if (!x2avic_enabled) {
5261		svm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization = true;
5262	}
5263
5264	if (vls) {
5265		if (!npt_enabled ||
5266		    !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) ||
5267		    !IS_ENABLED(CONFIG_X86_64)) {
5268			vls = false;
5269		} else {
5270			pr_info("Virtual VMLOAD VMSAVE supported\n");
5271		}
5272	}
5273
5274	if (boot_cpu_has(X86_FEATURE_SVME_ADDR_CHK))
5275		svm_gp_erratum_intercept = false;
5276
5277	if (vgif) {
5278		if (!boot_cpu_has(X86_FEATURE_VGIF))
5279			vgif = false;
5280		else
5281			pr_info("Virtual GIF supported\n");
5282	}
5283
5284	vnmi = vgif && vnmi && boot_cpu_has(X86_FEATURE_VNMI);
5285	if (vnmi)
5286		pr_info("Virtual NMI enabled\n");
5287
5288	if (!vnmi) {
5289		svm_x86_ops.is_vnmi_pending = NULL;
5290		svm_x86_ops.set_vnmi_pending = NULL;
5291	}
5292
5293
5294	if (lbrv) {
5295		if (!boot_cpu_has(X86_FEATURE_LBRV))
5296			lbrv = false;
5297		else
5298			pr_info("LBR virtualization supported\n");
5299	}
5300
5301	if (!enable_pmu)
5302		pr_info("PMU virtualization is disabled\n");
5303
5304	svm_set_cpu_caps();
5305
5306	/*
5307	 * It seems that on AMD processors PTE's accessed bit is
5308	 * being set by the CPU hardware before the NPF vmexit.
5309	 * This is not expected behaviour and our tests fail because
5310	 * of it.
5311	 * A workaround here is to disable support for
5312	 * GUEST_MAXPHYADDR < HOST_MAXPHYADDR if NPT is enabled.
5313	 * In this case userspace can know if there is support using
5314	 * KVM_CAP_SMALLER_MAXPHYADDR extension and decide how to handle
5315	 * it
5316	 * If future AMD CPU models change the behaviour described above,
5317	 * this variable can be changed accordingly
5318	 */
5319	allow_smaller_maxphyaddr = !npt_enabled;
5320
5321	return 0;
5322
5323err:
5324	svm_hardware_unsetup();
5325	return r;
5326}
5327
5328
5329static struct kvm_x86_init_ops svm_init_ops __initdata = {
5330	.hardware_setup = svm_hardware_setup,
5331
5332	.runtime_ops = &svm_x86_ops,
5333	.pmu_ops = &amd_pmu_ops,
5334};
5335
5336static void __svm_exit(void)
5337{
5338	kvm_x86_vendor_exit();
5339
5340	cpu_emergency_unregister_virt_callback(svm_emergency_disable);
5341}
5342
5343static int __init svm_init(void)
5344{
5345	int r;
5346
5347	__unused_size_checks();
5348
5349	if (!kvm_is_svm_supported())
5350		return -EOPNOTSUPP;
5351
5352	r = kvm_x86_vendor_init(&svm_init_ops);
5353	if (r)
5354		return r;
5355
5356	cpu_emergency_register_virt_callback(svm_emergency_disable);
5357
5358	/*
5359	 * Common KVM initialization _must_ come last, after this, /dev/kvm is
5360	 * exposed to userspace!
5361	 */
5362	r = kvm_init(sizeof(struct vcpu_svm), __alignof__(struct vcpu_svm),
5363		     THIS_MODULE);
5364	if (r)
5365		goto err_kvm_init;
5366
5367	return 0;
5368
5369err_kvm_init:
5370	__svm_exit();
5371	return r;
5372}
5373
5374static void __exit svm_exit(void)
5375{
5376	kvm_exit();
5377	__svm_exit();
5378}
5379
5380module_init(svm_init)
5381module_exit(svm_exit)
5382