xref: /kernel/linux/linux-6.6/arch/x86/kvm/svm/sev.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kvm_types.h>
12#include <linux/kvm_host.h>
13#include <linux/kernel.h>
14#include <linux/highmem.h>
15#include <linux/psp.h>
16#include <linux/psp-sev.h>
17#include <linux/pagemap.h>
18#include <linux/swap.h>
19#include <linux/misc_cgroup.h>
20#include <linux/processor.h>
21#include <linux/trace_events.h>
22
23#include <asm/pkru.h>
24#include <asm/trapnr.h>
25#include <asm/fpu/xcr.h>
26#include <asm/debugreg.h>
27
28#include "mmu.h"
29#include "x86.h"
30#include "svm.h"
31#include "svm_ops.h"
32#include "cpuid.h"
33#include "trace.h"
34
35#ifndef CONFIG_KVM_AMD_SEV
36/*
37 * When this config is not defined, SEV feature is not supported and APIs in
38 * this file are not used but this file still gets compiled into the KVM AMD
39 * module.
40 *
41 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
42 * misc_res_type {} defined in linux/misc_cgroup.h.
43 *
44 * Below macros allow compilation to succeed.
45 */
46#define MISC_CG_RES_SEV MISC_CG_RES_TYPES
47#define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
48#endif
49
50#ifdef CONFIG_KVM_AMD_SEV
51/* enable/disable SEV support */
52static bool sev_enabled = true;
53module_param_named(sev, sev_enabled, bool, 0444);
54
55/* enable/disable SEV-ES support */
56static bool sev_es_enabled = true;
57module_param_named(sev_es, sev_es_enabled, bool, 0444);
58
59/* enable/disable SEV-ES DebugSwap support */
60static bool sev_es_debug_swap_enabled = true;
61module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
62#else
63#define sev_enabled false
64#define sev_es_enabled false
65#define sev_es_debug_swap_enabled false
66#endif /* CONFIG_KVM_AMD_SEV */
67
68static u8 sev_enc_bit;
69static DECLARE_RWSEM(sev_deactivate_lock);
70static DEFINE_MUTEX(sev_bitmap_lock);
71unsigned int max_sev_asid;
72static unsigned int min_sev_asid;
73static unsigned long sev_me_mask;
74static unsigned int nr_asids;
75static unsigned long *sev_asid_bitmap;
76static unsigned long *sev_reclaim_asid_bitmap;
77
78struct enc_region {
79	struct list_head list;
80	unsigned long npages;
81	struct page **pages;
82	unsigned long uaddr;
83	unsigned long size;
84};
85
86/* Called with the sev_bitmap_lock held, or on shutdown  */
87static int sev_flush_asids(int min_asid, int max_asid)
88{
89	int ret, asid, error = 0;
90
91	/* Check if there are any ASIDs to reclaim before performing a flush */
92	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
93	if (asid > max_asid)
94		return -EBUSY;
95
96	/*
97	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
98	 * so it must be guarded.
99	 */
100	down_write(&sev_deactivate_lock);
101
102	wbinvd_on_all_cpus();
103	ret = sev_guest_df_flush(&error);
104
105	up_write(&sev_deactivate_lock);
106
107	if (ret)
108		pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
109
110	return ret;
111}
112
113static inline bool is_mirroring_enc_context(struct kvm *kvm)
114{
115	return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
116}
117
118/* Must be called with the sev_bitmap_lock held */
119static bool __sev_recycle_asids(int min_asid, int max_asid)
120{
121	if (sev_flush_asids(min_asid, max_asid))
122		return false;
123
124	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
125	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
126		   nr_asids);
127	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
128
129	return true;
130}
131
132static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
133{
134	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
135	return misc_cg_try_charge(type, sev->misc_cg, 1);
136}
137
138static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
139{
140	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
141	misc_cg_uncharge(type, sev->misc_cg, 1);
142}
143
144static int sev_asid_new(struct kvm_sev_info *sev)
145{
146	int asid, min_asid, max_asid, ret;
147	bool retry = true;
148
149	WARN_ON(sev->misc_cg);
150	sev->misc_cg = get_current_misc_cg();
151	ret = sev_misc_cg_try_charge(sev);
152	if (ret) {
153		put_misc_cg(sev->misc_cg);
154		sev->misc_cg = NULL;
155		return ret;
156	}
157
158	mutex_lock(&sev_bitmap_lock);
159
160	/*
161	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
162	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
163	 */
164	min_asid = sev->es_active ? 1 : min_sev_asid;
165	max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
166again:
167	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
168	if (asid > max_asid) {
169		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
170			retry = false;
171			goto again;
172		}
173		mutex_unlock(&sev_bitmap_lock);
174		ret = -EBUSY;
175		goto e_uncharge;
176	}
177
178	__set_bit(asid, sev_asid_bitmap);
179
180	mutex_unlock(&sev_bitmap_lock);
181
182	return asid;
183e_uncharge:
184	sev_misc_cg_uncharge(sev);
185	put_misc_cg(sev->misc_cg);
186	sev->misc_cg = NULL;
187	return ret;
188}
189
190static int sev_get_asid(struct kvm *kvm)
191{
192	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
193
194	return sev->asid;
195}
196
197static void sev_asid_free(struct kvm_sev_info *sev)
198{
199	struct svm_cpu_data *sd;
200	int cpu;
201
202	mutex_lock(&sev_bitmap_lock);
203
204	__set_bit(sev->asid, sev_reclaim_asid_bitmap);
205
206	for_each_possible_cpu(cpu) {
207		sd = per_cpu_ptr(&svm_data, cpu);
208		sd->sev_vmcbs[sev->asid] = NULL;
209	}
210
211	mutex_unlock(&sev_bitmap_lock);
212
213	sev_misc_cg_uncharge(sev);
214	put_misc_cg(sev->misc_cg);
215	sev->misc_cg = NULL;
216}
217
218static void sev_decommission(unsigned int handle)
219{
220	struct sev_data_decommission decommission;
221
222	if (!handle)
223		return;
224
225	decommission.handle = handle;
226	sev_guest_decommission(&decommission, NULL);
227}
228
229static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
230{
231	struct sev_data_deactivate deactivate;
232
233	if (!handle)
234		return;
235
236	deactivate.handle = handle;
237
238	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
239	down_read(&sev_deactivate_lock);
240	sev_guest_deactivate(&deactivate, NULL);
241	up_read(&sev_deactivate_lock);
242
243	sev_decommission(handle);
244}
245
246static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
247{
248	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
249	int asid, ret;
250
251	if (kvm->created_vcpus)
252		return -EINVAL;
253
254	ret = -EBUSY;
255	if (unlikely(sev->active))
256		return ret;
257
258	sev->active = true;
259	sev->es_active = argp->id == KVM_SEV_ES_INIT;
260	asid = sev_asid_new(sev);
261	if (asid < 0)
262		goto e_no_asid;
263	sev->asid = asid;
264
265	ret = sev_platform_init(&argp->error);
266	if (ret)
267		goto e_free;
268
269	INIT_LIST_HEAD(&sev->regions_list);
270	INIT_LIST_HEAD(&sev->mirror_vms);
271
272	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
273
274	return 0;
275
276e_free:
277	sev_asid_free(sev);
278	sev->asid = 0;
279e_no_asid:
280	sev->es_active = false;
281	sev->active = false;
282	return ret;
283}
284
285static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
286{
287	struct sev_data_activate activate;
288	int asid = sev_get_asid(kvm);
289	int ret;
290
291	/* activate ASID on the given handle */
292	activate.handle = handle;
293	activate.asid   = asid;
294	ret = sev_guest_activate(&activate, error);
295
296	return ret;
297}
298
299static int __sev_issue_cmd(int fd, int id, void *data, int *error)
300{
301	struct fd f;
302	int ret;
303
304	f = fdget(fd);
305	if (!f.file)
306		return -EBADF;
307
308	ret = sev_issue_cmd_external_user(f.file, id, data, error);
309
310	fdput(f);
311	return ret;
312}
313
314static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
315{
316	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
317
318	return __sev_issue_cmd(sev->fd, id, data, error);
319}
320
321static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
322{
323	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
324	struct sev_data_launch_start start;
325	struct kvm_sev_launch_start params;
326	void *dh_blob, *session_blob;
327	int *error = &argp->error;
328	int ret;
329
330	if (!sev_guest(kvm))
331		return -ENOTTY;
332
333	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
334		return -EFAULT;
335
336	memset(&start, 0, sizeof(start));
337
338	dh_blob = NULL;
339	if (params.dh_uaddr) {
340		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
341		if (IS_ERR(dh_blob))
342			return PTR_ERR(dh_blob);
343
344		start.dh_cert_address = __sme_set(__pa(dh_blob));
345		start.dh_cert_len = params.dh_len;
346	}
347
348	session_blob = NULL;
349	if (params.session_uaddr) {
350		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
351		if (IS_ERR(session_blob)) {
352			ret = PTR_ERR(session_blob);
353			goto e_free_dh;
354		}
355
356		start.session_address = __sme_set(__pa(session_blob));
357		start.session_len = params.session_len;
358	}
359
360	start.handle = params.handle;
361	start.policy = params.policy;
362
363	/* create memory encryption context */
364	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
365	if (ret)
366		goto e_free_session;
367
368	/* Bind ASID to this guest */
369	ret = sev_bind_asid(kvm, start.handle, error);
370	if (ret) {
371		sev_decommission(start.handle);
372		goto e_free_session;
373	}
374
375	/* return handle to userspace */
376	params.handle = start.handle;
377	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
378		sev_unbind_asid(kvm, start.handle);
379		ret = -EFAULT;
380		goto e_free_session;
381	}
382
383	sev->handle = start.handle;
384	sev->fd = argp->sev_fd;
385
386e_free_session:
387	kfree(session_blob);
388e_free_dh:
389	kfree(dh_blob);
390	return ret;
391}
392
393static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
394				    unsigned long ulen, unsigned long *n,
395				    int write)
396{
397	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
398	unsigned long npages, size;
399	int npinned;
400	unsigned long locked, lock_limit;
401	struct page **pages;
402	unsigned long first, last;
403	int ret;
404
405	lockdep_assert_held(&kvm->lock);
406
407	if (ulen == 0 || uaddr + ulen < uaddr)
408		return ERR_PTR(-EINVAL);
409
410	/* Calculate number of pages. */
411	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
412	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
413	npages = (last - first + 1);
414
415	locked = sev->pages_locked + npages;
416	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
417	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
418		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
419		return ERR_PTR(-ENOMEM);
420	}
421
422	if (WARN_ON_ONCE(npages > INT_MAX))
423		return ERR_PTR(-EINVAL);
424
425	/* Avoid using vmalloc for smaller buffers. */
426	size = npages * sizeof(struct page *);
427	if (size > PAGE_SIZE)
428		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
429	else
430		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
431
432	if (!pages)
433		return ERR_PTR(-ENOMEM);
434
435	/* Pin the user virtual address. */
436	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
437	if (npinned != npages) {
438		pr_err("SEV: Failure locking %lu pages.\n", npages);
439		ret = -ENOMEM;
440		goto err;
441	}
442
443	*n = npages;
444	sev->pages_locked = locked;
445
446	return pages;
447
448err:
449	if (npinned > 0)
450		unpin_user_pages(pages, npinned);
451
452	kvfree(pages);
453	return ERR_PTR(ret);
454}
455
456static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
457			     unsigned long npages)
458{
459	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
460
461	unpin_user_pages(pages, npages);
462	kvfree(pages);
463	sev->pages_locked -= npages;
464}
465
466static void sev_clflush_pages(struct page *pages[], unsigned long npages)
467{
468	uint8_t *page_virtual;
469	unsigned long i;
470
471	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
472	    pages == NULL)
473		return;
474
475	for (i = 0; i < npages; i++) {
476		page_virtual = kmap_local_page(pages[i]);
477		clflush_cache_range(page_virtual, PAGE_SIZE);
478		kunmap_local(page_virtual);
479		cond_resched();
480	}
481}
482
483static unsigned long get_num_contig_pages(unsigned long idx,
484				struct page **inpages, unsigned long npages)
485{
486	unsigned long paddr, next_paddr;
487	unsigned long i = idx + 1, pages = 1;
488
489	/* find the number of contiguous pages starting from idx */
490	paddr = __sme_page_pa(inpages[idx]);
491	while (i < npages) {
492		next_paddr = __sme_page_pa(inpages[i++]);
493		if ((paddr + PAGE_SIZE) == next_paddr) {
494			pages++;
495			paddr = next_paddr;
496			continue;
497		}
498		break;
499	}
500
501	return pages;
502}
503
504static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
505{
506	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
507	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
508	struct kvm_sev_launch_update_data params;
509	struct sev_data_launch_update_data data;
510	struct page **inpages;
511	int ret;
512
513	if (!sev_guest(kvm))
514		return -ENOTTY;
515
516	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
517		return -EFAULT;
518
519	vaddr = params.uaddr;
520	size = params.len;
521	vaddr_end = vaddr + size;
522
523	/* Lock the user memory. */
524	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
525	if (IS_ERR(inpages))
526		return PTR_ERR(inpages);
527
528	/*
529	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
530	 * place; the cache may contain the data that was written unencrypted.
531	 */
532	sev_clflush_pages(inpages, npages);
533
534	data.reserved = 0;
535	data.handle = sev->handle;
536
537	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
538		int offset, len;
539
540		/*
541		 * If the user buffer is not page-aligned, calculate the offset
542		 * within the page.
543		 */
544		offset = vaddr & (PAGE_SIZE - 1);
545
546		/* Calculate the number of pages that can be encrypted in one go. */
547		pages = get_num_contig_pages(i, inpages, npages);
548
549		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
550
551		data.len = len;
552		data.address = __sme_page_pa(inpages[i]) + offset;
553		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
554		if (ret)
555			goto e_unpin;
556
557		size -= len;
558		next_vaddr = vaddr + len;
559	}
560
561e_unpin:
562	/* content of memory is updated, mark pages dirty */
563	for (i = 0; i < npages; i++) {
564		set_page_dirty_lock(inpages[i]);
565		mark_page_accessed(inpages[i]);
566	}
567	/* unlock the user pages */
568	sev_unpin_memory(kvm, inpages, npages);
569	return ret;
570}
571
572static int sev_es_sync_vmsa(struct vcpu_svm *svm)
573{
574	struct sev_es_save_area *save = svm->sev_es.vmsa;
575
576	/* Check some debug related fields before encrypting the VMSA */
577	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
578		return -EINVAL;
579
580	/*
581	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
582	 * the traditional VMSA that is part of the VMCB. Copy the
583	 * traditional VMSA as it has been built so far (in prep
584	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
585	 */
586	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
587
588	/* Sync registgers */
589	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
590	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
591	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
592	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
593	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
594	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
595	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
596	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
597#ifdef CONFIG_X86_64
598	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
599	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
600	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
601	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
602	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
603	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
604	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
605	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
606#endif
607	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
608
609	/* Sync some non-GPR registers before encrypting */
610	save->xcr0 = svm->vcpu.arch.xcr0;
611	save->pkru = svm->vcpu.arch.pkru;
612	save->xss  = svm->vcpu.arch.ia32_xss;
613	save->dr6  = svm->vcpu.arch.dr6;
614
615	if (sev_es_debug_swap_enabled)
616		save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP;
617
618	pr_debug("Virtual Machine Save Area (VMSA):\n");
619	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
620
621	return 0;
622}
623
624static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
625				    int *error)
626{
627	struct sev_data_launch_update_vmsa vmsa;
628	struct vcpu_svm *svm = to_svm(vcpu);
629	int ret;
630
631	if (vcpu->guest_debug) {
632		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
633		return -EINVAL;
634	}
635
636	/* Perform some pre-encryption checks against the VMSA */
637	ret = sev_es_sync_vmsa(svm);
638	if (ret)
639		return ret;
640
641	/*
642	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
643	 * the VMSA memory content (i.e it will write the same memory region
644	 * with the guest's key), so invalidate it first.
645	 */
646	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
647
648	vmsa.reserved = 0;
649	vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
650	vmsa.address = __sme_pa(svm->sev_es.vmsa);
651	vmsa.len = PAGE_SIZE;
652	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
653	if (ret)
654	  return ret;
655
656	vcpu->arch.guest_state_protected = true;
657	return 0;
658}
659
660static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
661{
662	struct kvm_vcpu *vcpu;
663	unsigned long i;
664	int ret;
665
666	if (!sev_es_guest(kvm))
667		return -ENOTTY;
668
669	kvm_for_each_vcpu(i, vcpu, kvm) {
670		ret = mutex_lock_killable(&vcpu->mutex);
671		if (ret)
672			return ret;
673
674		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
675
676		mutex_unlock(&vcpu->mutex);
677		if (ret)
678			return ret;
679	}
680
681	return 0;
682}
683
684static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
685{
686	void __user *measure = (void __user *)(uintptr_t)argp->data;
687	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
688	struct sev_data_launch_measure data;
689	struct kvm_sev_launch_measure params;
690	void __user *p = NULL;
691	void *blob = NULL;
692	int ret;
693
694	if (!sev_guest(kvm))
695		return -ENOTTY;
696
697	if (copy_from_user(&params, measure, sizeof(params)))
698		return -EFAULT;
699
700	memset(&data, 0, sizeof(data));
701
702	/* User wants to query the blob length */
703	if (!params.len)
704		goto cmd;
705
706	p = (void __user *)(uintptr_t)params.uaddr;
707	if (p) {
708		if (params.len > SEV_FW_BLOB_MAX_SIZE)
709			return -EINVAL;
710
711		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
712		if (!blob)
713			return -ENOMEM;
714
715		data.address = __psp_pa(blob);
716		data.len = params.len;
717	}
718
719cmd:
720	data.handle = sev->handle;
721	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
722
723	/*
724	 * If we query the session length, FW responded with expected data.
725	 */
726	if (!params.len)
727		goto done;
728
729	if (ret)
730		goto e_free_blob;
731
732	if (blob) {
733		if (copy_to_user(p, blob, params.len))
734			ret = -EFAULT;
735	}
736
737done:
738	params.len = data.len;
739	if (copy_to_user(measure, &params, sizeof(params)))
740		ret = -EFAULT;
741e_free_blob:
742	kfree(blob);
743	return ret;
744}
745
746static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
747{
748	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
749	struct sev_data_launch_finish data;
750
751	if (!sev_guest(kvm))
752		return -ENOTTY;
753
754	data.handle = sev->handle;
755	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
756}
757
758static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
759{
760	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
761	struct kvm_sev_guest_status params;
762	struct sev_data_guest_status data;
763	int ret;
764
765	if (!sev_guest(kvm))
766		return -ENOTTY;
767
768	memset(&data, 0, sizeof(data));
769
770	data.handle = sev->handle;
771	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
772	if (ret)
773		return ret;
774
775	params.policy = data.policy;
776	params.state = data.state;
777	params.handle = data.handle;
778
779	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
780		ret = -EFAULT;
781
782	return ret;
783}
784
785static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
786			       unsigned long dst, int size,
787			       int *error, bool enc)
788{
789	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
790	struct sev_data_dbg data;
791
792	data.reserved = 0;
793	data.handle = sev->handle;
794	data.dst_addr = dst;
795	data.src_addr = src;
796	data.len = size;
797
798	return sev_issue_cmd(kvm,
799			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
800			     &data, error);
801}
802
803static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
804			     unsigned long dst_paddr, int sz, int *err)
805{
806	int offset;
807
808	/*
809	 * Its safe to read more than we are asked, caller should ensure that
810	 * destination has enough space.
811	 */
812	offset = src_paddr & 15;
813	src_paddr = round_down(src_paddr, 16);
814	sz = round_up(sz + offset, 16);
815
816	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
817}
818
819static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
820				  void __user *dst_uaddr,
821				  unsigned long dst_paddr,
822				  int size, int *err)
823{
824	struct page *tpage = NULL;
825	int ret, offset;
826
827	/* if inputs are not 16-byte then use intermediate buffer */
828	if (!IS_ALIGNED(dst_paddr, 16) ||
829	    !IS_ALIGNED(paddr,     16) ||
830	    !IS_ALIGNED(size,      16)) {
831		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
832		if (!tpage)
833			return -ENOMEM;
834
835		dst_paddr = __sme_page_pa(tpage);
836	}
837
838	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
839	if (ret)
840		goto e_free;
841
842	if (tpage) {
843		offset = paddr & 15;
844		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
845			ret = -EFAULT;
846	}
847
848e_free:
849	if (tpage)
850		__free_page(tpage);
851
852	return ret;
853}
854
855static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
856				  void __user *vaddr,
857				  unsigned long dst_paddr,
858				  void __user *dst_vaddr,
859				  int size, int *error)
860{
861	struct page *src_tpage = NULL;
862	struct page *dst_tpage = NULL;
863	int ret, len = size;
864
865	/* If source buffer is not aligned then use an intermediate buffer */
866	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
867		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
868		if (!src_tpage)
869			return -ENOMEM;
870
871		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
872			__free_page(src_tpage);
873			return -EFAULT;
874		}
875
876		paddr = __sme_page_pa(src_tpage);
877	}
878
879	/*
880	 *  If destination buffer or length is not aligned then do read-modify-write:
881	 *   - decrypt destination in an intermediate buffer
882	 *   - copy the source buffer in an intermediate buffer
883	 *   - use the intermediate buffer as source buffer
884	 */
885	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
886		int dst_offset;
887
888		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
889		if (!dst_tpage) {
890			ret = -ENOMEM;
891			goto e_free;
892		}
893
894		ret = __sev_dbg_decrypt(kvm, dst_paddr,
895					__sme_page_pa(dst_tpage), size, error);
896		if (ret)
897			goto e_free;
898
899		/*
900		 *  If source is kernel buffer then use memcpy() otherwise
901		 *  copy_from_user().
902		 */
903		dst_offset = dst_paddr & 15;
904
905		if (src_tpage)
906			memcpy(page_address(dst_tpage) + dst_offset,
907			       page_address(src_tpage), size);
908		else {
909			if (copy_from_user(page_address(dst_tpage) + dst_offset,
910					   vaddr, size)) {
911				ret = -EFAULT;
912				goto e_free;
913			}
914		}
915
916		paddr = __sme_page_pa(dst_tpage);
917		dst_paddr = round_down(dst_paddr, 16);
918		len = round_up(size, 16);
919	}
920
921	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
922
923e_free:
924	if (src_tpage)
925		__free_page(src_tpage);
926	if (dst_tpage)
927		__free_page(dst_tpage);
928	return ret;
929}
930
931static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
932{
933	unsigned long vaddr, vaddr_end, next_vaddr;
934	unsigned long dst_vaddr;
935	struct page **src_p, **dst_p;
936	struct kvm_sev_dbg debug;
937	unsigned long n;
938	unsigned int size;
939	int ret;
940
941	if (!sev_guest(kvm))
942		return -ENOTTY;
943
944	if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
945		return -EFAULT;
946
947	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
948		return -EINVAL;
949	if (!debug.dst_uaddr)
950		return -EINVAL;
951
952	vaddr = debug.src_uaddr;
953	size = debug.len;
954	vaddr_end = vaddr + size;
955	dst_vaddr = debug.dst_uaddr;
956
957	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
958		int len, s_off, d_off;
959
960		/* lock userspace source and destination page */
961		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
962		if (IS_ERR(src_p))
963			return PTR_ERR(src_p);
964
965		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
966		if (IS_ERR(dst_p)) {
967			sev_unpin_memory(kvm, src_p, n);
968			return PTR_ERR(dst_p);
969		}
970
971		/*
972		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
973		 * the pages; flush the destination too so that future accesses do not
974		 * see stale data.
975		 */
976		sev_clflush_pages(src_p, 1);
977		sev_clflush_pages(dst_p, 1);
978
979		/*
980		 * Since user buffer may not be page aligned, calculate the
981		 * offset within the page.
982		 */
983		s_off = vaddr & ~PAGE_MASK;
984		d_off = dst_vaddr & ~PAGE_MASK;
985		len = min_t(size_t, (PAGE_SIZE - s_off), size);
986
987		if (dec)
988			ret = __sev_dbg_decrypt_user(kvm,
989						     __sme_page_pa(src_p[0]) + s_off,
990						     (void __user *)dst_vaddr,
991						     __sme_page_pa(dst_p[0]) + d_off,
992						     len, &argp->error);
993		else
994			ret = __sev_dbg_encrypt_user(kvm,
995						     __sme_page_pa(src_p[0]) + s_off,
996						     (void __user *)vaddr,
997						     __sme_page_pa(dst_p[0]) + d_off,
998						     (void __user *)dst_vaddr,
999						     len, &argp->error);
1000
1001		sev_unpin_memory(kvm, src_p, n);
1002		sev_unpin_memory(kvm, dst_p, n);
1003
1004		if (ret)
1005			goto err;
1006
1007		next_vaddr = vaddr + len;
1008		dst_vaddr = dst_vaddr + len;
1009		size -= len;
1010	}
1011err:
1012	return ret;
1013}
1014
1015static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1016{
1017	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1018	struct sev_data_launch_secret data;
1019	struct kvm_sev_launch_secret params;
1020	struct page **pages;
1021	void *blob, *hdr;
1022	unsigned long n, i;
1023	int ret, offset;
1024
1025	if (!sev_guest(kvm))
1026		return -ENOTTY;
1027
1028	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1029		return -EFAULT;
1030
1031	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
1032	if (IS_ERR(pages))
1033		return PTR_ERR(pages);
1034
1035	/*
1036	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1037	 * place; the cache may contain the data that was written unencrypted.
1038	 */
1039	sev_clflush_pages(pages, n);
1040
1041	/*
1042	 * The secret must be copied into contiguous memory region, lets verify
1043	 * that userspace memory pages are contiguous before we issue command.
1044	 */
1045	if (get_num_contig_pages(0, pages, n) != n) {
1046		ret = -EINVAL;
1047		goto e_unpin_memory;
1048	}
1049
1050	memset(&data, 0, sizeof(data));
1051
1052	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1053	data.guest_address = __sme_page_pa(pages[0]) + offset;
1054	data.guest_len = params.guest_len;
1055
1056	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1057	if (IS_ERR(blob)) {
1058		ret = PTR_ERR(blob);
1059		goto e_unpin_memory;
1060	}
1061
1062	data.trans_address = __psp_pa(blob);
1063	data.trans_len = params.trans_len;
1064
1065	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1066	if (IS_ERR(hdr)) {
1067		ret = PTR_ERR(hdr);
1068		goto e_free_blob;
1069	}
1070	data.hdr_address = __psp_pa(hdr);
1071	data.hdr_len = params.hdr_len;
1072
1073	data.handle = sev->handle;
1074	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
1075
1076	kfree(hdr);
1077
1078e_free_blob:
1079	kfree(blob);
1080e_unpin_memory:
1081	/* content of memory is updated, mark pages dirty */
1082	for (i = 0; i < n; i++) {
1083		set_page_dirty_lock(pages[i]);
1084		mark_page_accessed(pages[i]);
1085	}
1086	sev_unpin_memory(kvm, pages, n);
1087	return ret;
1088}
1089
1090static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1091{
1092	void __user *report = (void __user *)(uintptr_t)argp->data;
1093	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1094	struct sev_data_attestation_report data;
1095	struct kvm_sev_attestation_report params;
1096	void __user *p;
1097	void *blob = NULL;
1098	int ret;
1099
1100	if (!sev_guest(kvm))
1101		return -ENOTTY;
1102
1103	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1104		return -EFAULT;
1105
1106	memset(&data, 0, sizeof(data));
1107
1108	/* User wants to query the blob length */
1109	if (!params.len)
1110		goto cmd;
1111
1112	p = (void __user *)(uintptr_t)params.uaddr;
1113	if (p) {
1114		if (params.len > SEV_FW_BLOB_MAX_SIZE)
1115			return -EINVAL;
1116
1117		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
1118		if (!blob)
1119			return -ENOMEM;
1120
1121		data.address = __psp_pa(blob);
1122		data.len = params.len;
1123		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
1124	}
1125cmd:
1126	data.handle = sev->handle;
1127	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
1128	/*
1129	 * If we query the session length, FW responded with expected data.
1130	 */
1131	if (!params.len)
1132		goto done;
1133
1134	if (ret)
1135		goto e_free_blob;
1136
1137	if (blob) {
1138		if (copy_to_user(p, blob, params.len))
1139			ret = -EFAULT;
1140	}
1141
1142done:
1143	params.len = data.len;
1144	if (copy_to_user(report, &params, sizeof(params)))
1145		ret = -EFAULT;
1146e_free_blob:
1147	kfree(blob);
1148	return ret;
1149}
1150
1151/* Userspace wants to query session length. */
1152static int
1153__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1154				      struct kvm_sev_send_start *params)
1155{
1156	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1157	struct sev_data_send_start data;
1158	int ret;
1159
1160	memset(&data, 0, sizeof(data));
1161	data.handle = sev->handle;
1162	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1163
1164	params->session_len = data.session_len;
1165	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1166				sizeof(struct kvm_sev_send_start)))
1167		ret = -EFAULT;
1168
1169	return ret;
1170}
1171
1172static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1173{
1174	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1175	struct sev_data_send_start data;
1176	struct kvm_sev_send_start params;
1177	void *amd_certs, *session_data;
1178	void *pdh_cert, *plat_certs;
1179	int ret;
1180
1181	if (!sev_guest(kvm))
1182		return -ENOTTY;
1183
1184	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1185				sizeof(struct kvm_sev_send_start)))
1186		return -EFAULT;
1187
1188	/* if session_len is zero, userspace wants to query the session length */
1189	if (!params.session_len)
1190		return __sev_send_start_query_session_length(kvm, argp,
1191				&params);
1192
1193	/* some sanity checks */
1194	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1195	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1196		return -EINVAL;
1197
1198	/* allocate the memory to hold the session data blob */
1199	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
1200	if (!session_data)
1201		return -ENOMEM;
1202
1203	/* copy the certificate blobs from userspace */
1204	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1205				params.pdh_cert_len);
1206	if (IS_ERR(pdh_cert)) {
1207		ret = PTR_ERR(pdh_cert);
1208		goto e_free_session;
1209	}
1210
1211	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1212				params.plat_certs_len);
1213	if (IS_ERR(plat_certs)) {
1214		ret = PTR_ERR(plat_certs);
1215		goto e_free_pdh;
1216	}
1217
1218	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1219				params.amd_certs_len);
1220	if (IS_ERR(amd_certs)) {
1221		ret = PTR_ERR(amd_certs);
1222		goto e_free_plat_cert;
1223	}
1224
1225	/* populate the FW SEND_START field with system physical address */
1226	memset(&data, 0, sizeof(data));
1227	data.pdh_cert_address = __psp_pa(pdh_cert);
1228	data.pdh_cert_len = params.pdh_cert_len;
1229	data.plat_certs_address = __psp_pa(plat_certs);
1230	data.plat_certs_len = params.plat_certs_len;
1231	data.amd_certs_address = __psp_pa(amd_certs);
1232	data.amd_certs_len = params.amd_certs_len;
1233	data.session_address = __psp_pa(session_data);
1234	data.session_len = params.session_len;
1235	data.handle = sev->handle;
1236
1237	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
1238
1239	if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1240			session_data, params.session_len)) {
1241		ret = -EFAULT;
1242		goto e_free_amd_cert;
1243	}
1244
1245	params.policy = data.policy;
1246	params.session_len = data.session_len;
1247	if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1248				sizeof(struct kvm_sev_send_start)))
1249		ret = -EFAULT;
1250
1251e_free_amd_cert:
1252	kfree(amd_certs);
1253e_free_plat_cert:
1254	kfree(plat_certs);
1255e_free_pdh:
1256	kfree(pdh_cert);
1257e_free_session:
1258	kfree(session_data);
1259	return ret;
1260}
1261
1262/* Userspace wants to query either header or trans length. */
1263static int
1264__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1265				     struct kvm_sev_send_update_data *params)
1266{
1267	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1268	struct sev_data_send_update_data data;
1269	int ret;
1270
1271	memset(&data, 0, sizeof(data));
1272	data.handle = sev->handle;
1273	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1274
1275	params->hdr_len = data.hdr_len;
1276	params->trans_len = data.trans_len;
1277
1278	if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1279			 sizeof(struct kvm_sev_send_update_data)))
1280		ret = -EFAULT;
1281
1282	return ret;
1283}
1284
1285static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1286{
1287	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1288	struct sev_data_send_update_data data;
1289	struct kvm_sev_send_update_data params;
1290	void *hdr, *trans_data;
1291	struct page **guest_page;
1292	unsigned long n;
1293	int ret, offset;
1294
1295	if (!sev_guest(kvm))
1296		return -ENOTTY;
1297
1298	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1299			sizeof(struct kvm_sev_send_update_data)))
1300		return -EFAULT;
1301
1302	/* userspace wants to query either header or trans length */
1303	if (!params.trans_len || !params.hdr_len)
1304		return __sev_send_update_data_query_lengths(kvm, argp, &params);
1305
1306	if (!params.trans_uaddr || !params.guest_uaddr ||
1307	    !params.guest_len || !params.hdr_uaddr)
1308		return -EINVAL;
1309
1310	/* Check if we are crossing the page boundary */
1311	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1312	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1313		return -EINVAL;
1314
1315	/* Pin guest memory */
1316	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1317				    PAGE_SIZE, &n, 0);
1318	if (IS_ERR(guest_page))
1319		return PTR_ERR(guest_page);
1320
1321	/* allocate memory for header and transport buffer */
1322	ret = -ENOMEM;
1323	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
1324	if (!hdr)
1325		goto e_unpin;
1326
1327	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
1328	if (!trans_data)
1329		goto e_free_hdr;
1330
1331	memset(&data, 0, sizeof(data));
1332	data.hdr_address = __psp_pa(hdr);
1333	data.hdr_len = params.hdr_len;
1334	data.trans_address = __psp_pa(trans_data);
1335	data.trans_len = params.trans_len;
1336
1337	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
1338	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1339	data.guest_address |= sev_me_mask;
1340	data.guest_len = params.guest_len;
1341	data.handle = sev->handle;
1342
1343	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
1344
1345	if (ret)
1346		goto e_free_trans_data;
1347
1348	/* copy transport buffer to user space */
1349	if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1350			 trans_data, params.trans_len)) {
1351		ret = -EFAULT;
1352		goto e_free_trans_data;
1353	}
1354
1355	/* Copy packet header to userspace. */
1356	if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1357			 params.hdr_len))
1358		ret = -EFAULT;
1359
1360e_free_trans_data:
1361	kfree(trans_data);
1362e_free_hdr:
1363	kfree(hdr);
1364e_unpin:
1365	sev_unpin_memory(kvm, guest_page, n);
1366
1367	return ret;
1368}
1369
1370static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1371{
1372	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1373	struct sev_data_send_finish data;
1374
1375	if (!sev_guest(kvm))
1376		return -ENOTTY;
1377
1378	data.handle = sev->handle;
1379	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
1380}
1381
1382static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1383{
1384	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1385	struct sev_data_send_cancel data;
1386
1387	if (!sev_guest(kvm))
1388		return -ENOTTY;
1389
1390	data.handle = sev->handle;
1391	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
1392}
1393
1394static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1395{
1396	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1397	struct sev_data_receive_start start;
1398	struct kvm_sev_receive_start params;
1399	int *error = &argp->error;
1400	void *session_data;
1401	void *pdh_data;
1402	int ret;
1403
1404	if (!sev_guest(kvm))
1405		return -ENOTTY;
1406
1407	/* Get parameter from the userspace */
1408	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1409			sizeof(struct kvm_sev_receive_start)))
1410		return -EFAULT;
1411
1412	/* some sanity checks */
1413	if (!params.pdh_uaddr || !params.pdh_len ||
1414	    !params.session_uaddr || !params.session_len)
1415		return -EINVAL;
1416
1417	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1418	if (IS_ERR(pdh_data))
1419		return PTR_ERR(pdh_data);
1420
1421	session_data = psp_copy_user_blob(params.session_uaddr,
1422			params.session_len);
1423	if (IS_ERR(session_data)) {
1424		ret = PTR_ERR(session_data);
1425		goto e_free_pdh;
1426	}
1427
1428	memset(&start, 0, sizeof(start));
1429	start.handle = params.handle;
1430	start.policy = params.policy;
1431	start.pdh_cert_address = __psp_pa(pdh_data);
1432	start.pdh_cert_len = params.pdh_len;
1433	start.session_address = __psp_pa(session_data);
1434	start.session_len = params.session_len;
1435
1436	/* create memory encryption context */
1437	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
1438				error);
1439	if (ret)
1440		goto e_free_session;
1441
1442	/* Bind ASID to this guest */
1443	ret = sev_bind_asid(kvm, start.handle, error);
1444	if (ret) {
1445		sev_decommission(start.handle);
1446		goto e_free_session;
1447	}
1448
1449	params.handle = start.handle;
1450	if (copy_to_user((void __user *)(uintptr_t)argp->data,
1451			 &params, sizeof(struct kvm_sev_receive_start))) {
1452		ret = -EFAULT;
1453		sev_unbind_asid(kvm, start.handle);
1454		goto e_free_session;
1455	}
1456
1457    	sev->handle = start.handle;
1458	sev->fd = argp->sev_fd;
1459
1460e_free_session:
1461	kfree(session_data);
1462e_free_pdh:
1463	kfree(pdh_data);
1464
1465	return ret;
1466}
1467
1468static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1469{
1470	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1471	struct kvm_sev_receive_update_data params;
1472	struct sev_data_receive_update_data data;
1473	void *hdr = NULL, *trans = NULL;
1474	struct page **guest_page;
1475	unsigned long n;
1476	int ret, offset;
1477
1478	if (!sev_guest(kvm))
1479		return -EINVAL;
1480
1481	if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1482			sizeof(struct kvm_sev_receive_update_data)))
1483		return -EFAULT;
1484
1485	if (!params.hdr_uaddr || !params.hdr_len ||
1486	    !params.guest_uaddr || !params.guest_len ||
1487	    !params.trans_uaddr || !params.trans_len)
1488		return -EINVAL;
1489
1490	/* Check if we are crossing the page boundary */
1491	offset = params.guest_uaddr & (PAGE_SIZE - 1);
1492	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
1493		return -EINVAL;
1494
1495	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1496	if (IS_ERR(hdr))
1497		return PTR_ERR(hdr);
1498
1499	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1500	if (IS_ERR(trans)) {
1501		ret = PTR_ERR(trans);
1502		goto e_free_hdr;
1503	}
1504
1505	memset(&data, 0, sizeof(data));
1506	data.hdr_address = __psp_pa(hdr);
1507	data.hdr_len = params.hdr_len;
1508	data.trans_address = __psp_pa(trans);
1509	data.trans_len = params.trans_len;
1510
1511	/* Pin guest memory */
1512	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1513				    PAGE_SIZE, &n, 1);
1514	if (IS_ERR(guest_page)) {
1515		ret = PTR_ERR(guest_page);
1516		goto e_free_trans;
1517	}
1518
1519	/*
1520	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1521	 * encrypts the written data with the guest's key, and the cache may
1522	 * contain dirty, unencrypted data.
1523	 */
1524	sev_clflush_pages(guest_page, n);
1525
1526	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
1527	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1528	data.guest_address |= sev_me_mask;
1529	data.guest_len = params.guest_len;
1530	data.handle = sev->handle;
1531
1532	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
1533				&argp->error);
1534
1535	sev_unpin_memory(kvm, guest_page, n);
1536
1537e_free_trans:
1538	kfree(trans);
1539e_free_hdr:
1540	kfree(hdr);
1541
1542	return ret;
1543}
1544
1545static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1546{
1547	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1548	struct sev_data_receive_finish data;
1549
1550	if (!sev_guest(kvm))
1551		return -ENOTTY;
1552
1553	data.handle = sev->handle;
1554	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
1555}
1556
1557static bool is_cmd_allowed_from_mirror(u32 cmd_id)
1558{
1559	/*
1560	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1561	 * active mirror VMs. Also allow the debugging and status commands.
1562	 */
1563	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1564	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1565	    cmd_id == KVM_SEV_DBG_ENCRYPT)
1566		return true;
1567
1568	return false;
1569}
1570
1571static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1572{
1573	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1574	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1575	int r = -EBUSY;
1576
1577	if (dst_kvm == src_kvm)
1578		return -EINVAL;
1579
1580	/*
1581	 * Bail if these VMs are already involved in a migration to avoid
1582	 * deadlock between two VMs trying to migrate to/from each other.
1583	 */
1584	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
1585		return -EBUSY;
1586
1587	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1588		goto release_dst;
1589
1590	r = -EINTR;
1591	if (mutex_lock_killable(&dst_kvm->lock))
1592		goto release_src;
1593	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
1594		goto unlock_dst;
1595	return 0;
1596
1597unlock_dst:
1598	mutex_unlock(&dst_kvm->lock);
1599release_src:
1600	atomic_set_release(&src_sev->migration_in_progress, 0);
1601release_dst:
1602	atomic_set_release(&dst_sev->migration_in_progress, 0);
1603	return r;
1604}
1605
1606static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
1607{
1608	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1609	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
1610
1611	mutex_unlock(&dst_kvm->lock);
1612	mutex_unlock(&src_kvm->lock);
1613	atomic_set_release(&dst_sev->migration_in_progress, 0);
1614	atomic_set_release(&src_sev->migration_in_progress, 0);
1615}
1616
1617/* vCPU mutex subclasses.  */
1618enum sev_migration_role {
1619	SEV_MIGRATION_SOURCE = 0,
1620	SEV_MIGRATION_TARGET,
1621	SEV_NR_MIGRATION_ROLES,
1622};
1623
1624static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1625					enum sev_migration_role role)
1626{
1627	struct kvm_vcpu *vcpu;
1628	unsigned long i, j;
1629
1630	kvm_for_each_vcpu(i, vcpu, kvm) {
1631		if (mutex_lock_killable_nested(&vcpu->mutex, role))
1632			goto out_unlock;
1633
1634#ifdef CONFIG_PROVE_LOCKING
1635		if (!i)
1636			/*
1637			 * Reset the role to one that avoids colliding with
1638			 * the role used for the first vcpu mutex.
1639			 */
1640			role = SEV_NR_MIGRATION_ROLES;
1641		else
1642			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
1643#endif
1644	}
1645
1646	return 0;
1647
1648out_unlock:
1649
1650	kvm_for_each_vcpu(j, vcpu, kvm) {
1651		if (i == j)
1652			break;
1653
1654#ifdef CONFIG_PROVE_LOCKING
1655		if (j)
1656			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
1657#endif
1658
1659		mutex_unlock(&vcpu->mutex);
1660	}
1661	return -EINTR;
1662}
1663
1664static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1665{
1666	struct kvm_vcpu *vcpu;
1667	unsigned long i;
1668	bool first = true;
1669
1670	kvm_for_each_vcpu(i, vcpu, kvm) {
1671		if (first)
1672			first = false;
1673		else
1674			mutex_acquire(&vcpu->mutex.dep_map,
1675				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1676
1677		mutex_unlock(&vcpu->mutex);
1678	}
1679}
1680
1681static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
1682{
1683	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1684	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
1685	struct kvm_vcpu *dst_vcpu, *src_vcpu;
1686	struct vcpu_svm *dst_svm, *src_svm;
1687	struct kvm_sev_info *mirror;
1688	unsigned long i;
1689
1690	dst->active = true;
1691	dst->asid = src->asid;
1692	dst->handle = src->handle;
1693	dst->pages_locked = src->pages_locked;
1694	dst->enc_context_owner = src->enc_context_owner;
1695	dst->es_active = src->es_active;
1696
1697	src->asid = 0;
1698	src->active = false;
1699	src->handle = 0;
1700	src->pages_locked = 0;
1701	src->enc_context_owner = NULL;
1702	src->es_active = false;
1703
1704	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
1705
1706	/*
1707	 * If this VM has mirrors, "transfer" each mirror's refcount of the
1708	 * source to the destination (this KVM).  The caller holds a reference
1709	 * to the source, so there's no danger of use-after-free.
1710	 */
1711	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1712	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1713		kvm_get_kvm(dst_kvm);
1714		kvm_put_kvm(src_kvm);
1715		mirror->enc_context_owner = dst_kvm;
1716	}
1717
1718	/*
1719	 * If this VM is a mirror, remove the old mirror from the owners list
1720	 * and add the new mirror to the list.
1721	 */
1722	if (is_mirroring_enc_context(dst_kvm)) {
1723		struct kvm_sev_info *owner_sev_info =
1724			&to_kvm_svm(dst->enc_context_owner)->sev_info;
1725
1726		list_del(&src->mirror_entry);
1727		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1728	}
1729
1730	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1731		dst_svm = to_svm(dst_vcpu);
1732
1733		sev_init_vmcb(dst_svm);
1734
1735		if (!dst->es_active)
1736			continue;
1737
1738		/*
1739		 * Note, the source is not required to have the same number of
1740		 * vCPUs as the destination when migrating a vanilla SEV VM.
1741		 */
1742		src_vcpu = kvm_get_vcpu(src_kvm, i);
1743		src_svm = to_svm(src_vcpu);
1744
1745		/*
1746		 * Transfer VMSA and GHCB state to the destination.  Nullify and
1747		 * clear source fields as appropriate, the state now belongs to
1748		 * the destination.
1749		 */
1750		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1751		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1752		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1753		dst_vcpu->arch.guest_state_protected = true;
1754
1755		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1756		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1757		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1758		src_vcpu->arch.guest_state_protected = false;
1759	}
1760}
1761
1762static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1763{
1764	struct kvm_vcpu *src_vcpu;
1765	unsigned long i;
1766
1767	if (!sev_es_guest(src))
1768		return 0;
1769
1770	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1771		return -EINVAL;
1772
1773	kvm_for_each_vcpu(i, src_vcpu, src) {
1774		if (!src_vcpu->arch.guest_state_protected)
1775			return -EINVAL;
1776	}
1777
1778	return 0;
1779}
1780
1781int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
1782{
1783	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
1784	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
1785	struct fd f = fdget(source_fd);
1786	struct kvm *source_kvm;
1787	bool charged = false;
1788	int ret;
1789
1790	if (!f.file)
1791		return -EBADF;
1792
1793	if (!file_is_kvm(f.file)) {
1794		ret = -EBADF;
1795		goto out_fput;
1796	}
1797
1798	source_kvm = f.file->private_data;
1799	ret = sev_lock_two_vms(kvm, source_kvm);
1800	if (ret)
1801		goto out_fput;
1802
1803	if (sev_guest(kvm) || !sev_guest(source_kvm)) {
1804		ret = -EINVAL;
1805		goto out_unlock;
1806	}
1807
1808	src_sev = &to_kvm_svm(source_kvm)->sev_info;
1809
1810	dst_sev->misc_cg = get_current_misc_cg();
1811	cg_cleanup_sev = dst_sev;
1812	if (dst_sev->misc_cg != src_sev->misc_cg) {
1813		ret = sev_misc_cg_try_charge(dst_sev);
1814		if (ret)
1815			goto out_dst_cgroup;
1816		charged = true;
1817	}
1818
1819	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
1820	if (ret)
1821		goto out_dst_cgroup;
1822	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
1823	if (ret)
1824		goto out_dst_vcpu;
1825
1826	ret = sev_check_source_vcpus(kvm, source_kvm);
1827	if (ret)
1828		goto out_source_vcpu;
1829
1830	sev_migrate_from(kvm, source_kvm);
1831	kvm_vm_dead(source_kvm);
1832	cg_cleanup_sev = src_sev;
1833	ret = 0;
1834
1835out_source_vcpu:
1836	sev_unlock_vcpus_for_migration(source_kvm);
1837out_dst_vcpu:
1838	sev_unlock_vcpus_for_migration(kvm);
1839out_dst_cgroup:
1840	/* Operates on the source on success, on the destination on failure.  */
1841	if (charged)
1842		sev_misc_cg_uncharge(cg_cleanup_sev);
1843	put_misc_cg(cg_cleanup_sev->misc_cg);
1844	cg_cleanup_sev->misc_cg = NULL;
1845out_unlock:
1846	sev_unlock_two_vms(kvm, source_kvm);
1847out_fput:
1848	fdput(f);
1849	return ret;
1850}
1851
1852int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
1853{
1854	struct kvm_sev_cmd sev_cmd;
1855	int r;
1856
1857	if (!sev_enabled)
1858		return -ENOTTY;
1859
1860	if (!argp)
1861		return 0;
1862
1863	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1864		return -EFAULT;
1865
1866	mutex_lock(&kvm->lock);
1867
1868	/* Only the enc_context_owner handles some memory enc operations. */
1869	if (is_mirroring_enc_context(kvm) &&
1870	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
1871		r = -EINVAL;
1872		goto out;
1873	}
1874
1875	switch (sev_cmd.id) {
1876	case KVM_SEV_ES_INIT:
1877		if (!sev_es_enabled) {
1878			r = -ENOTTY;
1879			goto out;
1880		}
1881		fallthrough;
1882	case KVM_SEV_INIT:
1883		r = sev_guest_init(kvm, &sev_cmd);
1884		break;
1885	case KVM_SEV_LAUNCH_START:
1886		r = sev_launch_start(kvm, &sev_cmd);
1887		break;
1888	case KVM_SEV_LAUNCH_UPDATE_DATA:
1889		r = sev_launch_update_data(kvm, &sev_cmd);
1890		break;
1891	case KVM_SEV_LAUNCH_UPDATE_VMSA:
1892		r = sev_launch_update_vmsa(kvm, &sev_cmd);
1893		break;
1894	case KVM_SEV_LAUNCH_MEASURE:
1895		r = sev_launch_measure(kvm, &sev_cmd);
1896		break;
1897	case KVM_SEV_LAUNCH_FINISH:
1898		r = sev_launch_finish(kvm, &sev_cmd);
1899		break;
1900	case KVM_SEV_GUEST_STATUS:
1901		r = sev_guest_status(kvm, &sev_cmd);
1902		break;
1903	case KVM_SEV_DBG_DECRYPT:
1904		r = sev_dbg_crypt(kvm, &sev_cmd, true);
1905		break;
1906	case KVM_SEV_DBG_ENCRYPT:
1907		r = sev_dbg_crypt(kvm, &sev_cmd, false);
1908		break;
1909	case KVM_SEV_LAUNCH_SECRET:
1910		r = sev_launch_secret(kvm, &sev_cmd);
1911		break;
1912	case KVM_SEV_GET_ATTESTATION_REPORT:
1913		r = sev_get_attestation_report(kvm, &sev_cmd);
1914		break;
1915	case KVM_SEV_SEND_START:
1916		r = sev_send_start(kvm, &sev_cmd);
1917		break;
1918	case KVM_SEV_SEND_UPDATE_DATA:
1919		r = sev_send_update_data(kvm, &sev_cmd);
1920		break;
1921	case KVM_SEV_SEND_FINISH:
1922		r = sev_send_finish(kvm, &sev_cmd);
1923		break;
1924	case KVM_SEV_SEND_CANCEL:
1925		r = sev_send_cancel(kvm, &sev_cmd);
1926		break;
1927	case KVM_SEV_RECEIVE_START:
1928		r = sev_receive_start(kvm, &sev_cmd);
1929		break;
1930	case KVM_SEV_RECEIVE_UPDATE_DATA:
1931		r = sev_receive_update_data(kvm, &sev_cmd);
1932		break;
1933	case KVM_SEV_RECEIVE_FINISH:
1934		r = sev_receive_finish(kvm, &sev_cmd);
1935		break;
1936	default:
1937		r = -EINVAL;
1938		goto out;
1939	}
1940
1941	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1942		r = -EFAULT;
1943
1944out:
1945	mutex_unlock(&kvm->lock);
1946	return r;
1947}
1948
1949int sev_mem_enc_register_region(struct kvm *kvm,
1950				struct kvm_enc_region *range)
1951{
1952	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1953	struct enc_region *region;
1954	int ret = 0;
1955
1956	if (!sev_guest(kvm))
1957		return -ENOTTY;
1958
1959	/* If kvm is mirroring encryption context it isn't responsible for it */
1960	if (is_mirroring_enc_context(kvm))
1961		return -EINVAL;
1962
1963	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1964		return -EINVAL;
1965
1966	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1967	if (!region)
1968		return -ENOMEM;
1969
1970	mutex_lock(&kvm->lock);
1971	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
1972	if (IS_ERR(region->pages)) {
1973		ret = PTR_ERR(region->pages);
1974		mutex_unlock(&kvm->lock);
1975		goto e_free;
1976	}
1977
1978	region->uaddr = range->addr;
1979	region->size = range->size;
1980
1981	list_add_tail(&region->list, &sev->regions_list);
1982	mutex_unlock(&kvm->lock);
1983
1984	/*
1985	 * The guest may change the memory encryption attribute from C=0 -> C=1
1986	 * or vice versa for this memory range. Lets make sure caches are
1987	 * flushed to ensure that guest data gets written into memory with
1988	 * correct C-bit.
1989	 */
1990	sev_clflush_pages(region->pages, region->npages);
1991
1992	return ret;
1993
1994e_free:
1995	kfree(region);
1996	return ret;
1997}
1998
1999static struct enc_region *
2000find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2001{
2002	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2003	struct list_head *head = &sev->regions_list;
2004	struct enc_region *i;
2005
2006	list_for_each_entry(i, head, list) {
2007		if (i->uaddr == range->addr &&
2008		    i->size == range->size)
2009			return i;
2010	}
2011
2012	return NULL;
2013}
2014
2015static void __unregister_enc_region_locked(struct kvm *kvm,
2016					   struct enc_region *region)
2017{
2018	sev_unpin_memory(kvm, region->pages, region->npages);
2019	list_del(&region->list);
2020	kfree(region);
2021}
2022
2023int sev_mem_enc_unregister_region(struct kvm *kvm,
2024				  struct kvm_enc_region *range)
2025{
2026	struct enc_region *region;
2027	int ret;
2028
2029	/* If kvm is mirroring encryption context it isn't responsible for it */
2030	if (is_mirroring_enc_context(kvm))
2031		return -EINVAL;
2032
2033	mutex_lock(&kvm->lock);
2034
2035	if (!sev_guest(kvm)) {
2036		ret = -ENOTTY;
2037		goto failed;
2038	}
2039
2040	region = find_enc_region(kvm, range);
2041	if (!region) {
2042		ret = -EINVAL;
2043		goto failed;
2044	}
2045
2046	/*
2047	 * Ensure that all guest tagged cache entries are flushed before
2048	 * releasing the pages back to the system for use. CLFLUSH will
2049	 * not do this, so issue a WBINVD.
2050	 */
2051	wbinvd_on_all_cpus();
2052
2053	__unregister_enc_region_locked(kvm, region);
2054
2055	mutex_unlock(&kvm->lock);
2056	return 0;
2057
2058failed:
2059	mutex_unlock(&kvm->lock);
2060	return ret;
2061}
2062
2063int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
2064{
2065	struct fd f = fdget(source_fd);
2066	struct kvm *source_kvm;
2067	struct kvm_sev_info *source_sev, *mirror_sev;
2068	int ret;
2069
2070	if (!f.file)
2071		return -EBADF;
2072
2073	if (!file_is_kvm(f.file)) {
2074		ret = -EBADF;
2075		goto e_source_fput;
2076	}
2077
2078	source_kvm = f.file->private_data;
2079	ret = sev_lock_two_vms(kvm, source_kvm);
2080	if (ret)
2081		goto e_source_fput;
2082
2083	/*
2084	 * Mirrors of mirrors should work, but let's not get silly.  Also
2085	 * disallow out-of-band SEV/SEV-ES init if the target is already an
2086	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
2087	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2088	 */
2089	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2090	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
2091		ret = -EINVAL;
2092		goto e_unlock;
2093	}
2094
2095	/*
2096	 * The mirror kvm holds an enc_context_owner ref so its asid can't
2097	 * disappear until we're done with it
2098	 */
2099	source_sev = &to_kvm_svm(source_kvm)->sev_info;
2100	kvm_get_kvm(source_kvm);
2101	mirror_sev = &to_kvm_svm(kvm)->sev_info;
2102	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
2103
2104	/* Set enc_context_owner and copy its encryption context over */
2105	mirror_sev->enc_context_owner = source_kvm;
2106	mirror_sev->active = true;
2107	mirror_sev->asid = source_sev->asid;
2108	mirror_sev->fd = source_sev->fd;
2109	mirror_sev->es_active = source_sev->es_active;
2110	mirror_sev->handle = source_sev->handle;
2111	INIT_LIST_HEAD(&mirror_sev->regions_list);
2112	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
2113	ret = 0;
2114
2115	/*
2116	 * Do not copy ap_jump_table. Since the mirror does not share the same
2117	 * KVM contexts as the original, and they may have different
2118	 * memory-views.
2119	 */
2120
2121e_unlock:
2122	sev_unlock_two_vms(kvm, source_kvm);
2123e_source_fput:
2124	fdput(f);
2125	return ret;
2126}
2127
2128void sev_vm_destroy(struct kvm *kvm)
2129{
2130	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2131	struct list_head *head = &sev->regions_list;
2132	struct list_head *pos, *q;
2133
2134	if (!sev_guest(kvm))
2135		return;
2136
2137	WARN_ON(!list_empty(&sev->mirror_vms));
2138
2139	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2140	if (is_mirroring_enc_context(kvm)) {
2141		struct kvm *owner_kvm = sev->enc_context_owner;
2142
2143		mutex_lock(&owner_kvm->lock);
2144		list_del(&sev->mirror_entry);
2145		mutex_unlock(&owner_kvm->lock);
2146		kvm_put_kvm(owner_kvm);
2147		return;
2148	}
2149
2150	/*
2151	 * Ensure that all guest tagged cache entries are flushed before
2152	 * releasing the pages back to the system for use. CLFLUSH will
2153	 * not do this, so issue a WBINVD.
2154	 */
2155	wbinvd_on_all_cpus();
2156
2157	/*
2158	 * if userspace was terminated before unregistering the memory regions
2159	 * then lets unpin all the registered memory.
2160	 */
2161	if (!list_empty(head)) {
2162		list_for_each_safe(pos, q, head) {
2163			__unregister_enc_region_locked(kvm,
2164				list_entry(pos, struct enc_region, list));
2165			cond_resched();
2166		}
2167	}
2168
2169	sev_unbind_asid(kvm, sev->handle);
2170	sev_asid_free(sev);
2171}
2172
2173void __init sev_set_cpu_caps(void)
2174{
2175	if (!sev_enabled)
2176		kvm_cpu_cap_clear(X86_FEATURE_SEV);
2177	if (!sev_es_enabled)
2178		kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2179}
2180
2181void __init sev_hardware_setup(void)
2182{
2183#ifdef CONFIG_KVM_AMD_SEV
2184	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
2185	bool sev_es_supported = false;
2186	bool sev_supported = false;
2187
2188	if (!sev_enabled || !npt_enabled || !nrips)
2189		goto out;
2190
2191	/*
2192	 * SEV must obviously be supported in hardware.  Sanity check that the
2193	 * CPU supports decode assists, which is mandatory for SEV guests to
2194	 * support instruction emulation.
2195	 */
2196	if (!boot_cpu_has(X86_FEATURE_SEV) ||
2197	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)))
2198		goto out;
2199
2200	/* Retrieve SEV CPUID information */
2201	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2202
2203	/* Set encryption bit location for SEV-ES guests */
2204	sev_enc_bit = ebx & 0x3f;
2205
2206	/* Maximum number of encrypted guests supported simultaneously */
2207	max_sev_asid = ecx;
2208	if (!max_sev_asid)
2209		goto out;
2210
2211	/* Minimum ASID value that should be used for SEV guest */
2212	min_sev_asid = edx;
2213	sev_me_mask = 1UL << (ebx & 0x3f);
2214
2215	/*
2216	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2217	 * even though it's never used, so that the bitmap is indexed by the
2218	 * actual ASID.
2219	 */
2220	nr_asids = max_sev_asid + 1;
2221	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2222	if (!sev_asid_bitmap)
2223		goto out;
2224
2225	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
2226	if (!sev_reclaim_asid_bitmap) {
2227		bitmap_free(sev_asid_bitmap);
2228		sev_asid_bitmap = NULL;
2229		goto out;
2230	}
2231
2232	sev_asid_count = max_sev_asid - min_sev_asid + 1;
2233	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
2234	sev_supported = true;
2235
2236	/* SEV-ES support requested? */
2237	if (!sev_es_enabled)
2238		goto out;
2239
2240	/*
2241	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2242	 * instruction stream, i.e. can't emulate in response to a #NPF and
2243	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2244	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2245	 */
2246	if (!enable_mmio_caching)
2247		goto out;
2248
2249	/* Does the CPU support SEV-ES? */
2250	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2251		goto out;
2252
2253	/* Has the system been allocated ASIDs for SEV-ES? */
2254	if (min_sev_asid == 1)
2255		goto out;
2256
2257	sev_es_asid_count = min_sev_asid - 1;
2258	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
2259	sev_es_supported = true;
2260
2261out:
2262	if (boot_cpu_has(X86_FEATURE_SEV))
2263		pr_info("SEV %s (ASIDs %u - %u)\n",
2264			sev_supported ? "enabled" : "disabled",
2265			min_sev_asid, max_sev_asid);
2266	if (boot_cpu_has(X86_FEATURE_SEV_ES))
2267		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2268			sev_es_supported ? "enabled" : "disabled",
2269			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2270
2271	sev_enabled = sev_supported;
2272	sev_es_enabled = sev_es_supported;
2273	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
2274	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
2275		sev_es_debug_swap_enabled = false;
2276#endif
2277}
2278
2279void sev_hardware_unsetup(void)
2280{
2281	if (!sev_enabled)
2282		return;
2283
2284	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
2285	sev_flush_asids(1, max_sev_asid);
2286
2287	bitmap_free(sev_asid_bitmap);
2288	bitmap_free(sev_reclaim_asid_bitmap);
2289
2290	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2291	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
2292}
2293
2294int sev_cpu_init(struct svm_cpu_data *sd)
2295{
2296	if (!sev_enabled)
2297		return 0;
2298
2299	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
2300	if (!sd->sev_vmcbs)
2301		return -ENOMEM;
2302
2303	return 0;
2304}
2305
2306/*
2307 * Pages used by hardware to hold guest encrypted state must be flushed before
2308 * returning them to the system.
2309 */
2310static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
2311{
2312	int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2313
2314	/*
2315	 * Note!  The address must be a kernel address, as regular page walk
2316	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2317	 * address is non-deterministic and unsafe.  This function deliberately
2318	 * takes a pointer to deter passing in a user address.
2319	 */
2320	unsigned long addr = (unsigned long)va;
2321
2322	/*
2323	 * If CPU enforced cache coherency for encrypted mappings of the
2324	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2325	 * flush is still needed in order to work properly with DMA devices.
2326	 */
2327	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2328		clflush_cache_range(va, PAGE_SIZE);
2329		return;
2330	}
2331
2332	/*
2333	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
2334	 * back to WBINVD if this faults so as not to make any problems worse
2335	 * by leaving stale encrypted data in the cache.
2336	 */
2337	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2338		goto do_wbinvd;
2339
2340	return;
2341
2342do_wbinvd:
2343	wbinvd_on_all_cpus();
2344}
2345
2346void sev_guest_memory_reclaimed(struct kvm *kvm)
2347{
2348	if (!sev_guest(kvm))
2349		return;
2350
2351	wbinvd_on_all_cpus();
2352}
2353
2354void sev_free_vcpu(struct kvm_vcpu *vcpu)
2355{
2356	struct vcpu_svm *svm;
2357
2358	if (!sev_es_guest(vcpu->kvm))
2359		return;
2360
2361	svm = to_svm(vcpu);
2362
2363	if (vcpu->arch.guest_state_protected)
2364		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2365
2366	__free_page(virt_to_page(svm->sev_es.vmsa));
2367
2368	if (svm->sev_es.ghcb_sa_free)
2369		kvfree(svm->sev_es.ghcb_sa);
2370}
2371
2372static void dump_ghcb(struct vcpu_svm *svm)
2373{
2374	struct ghcb *ghcb = svm->sev_es.ghcb;
2375	unsigned int nbits;
2376
2377	/* Re-use the dump_invalid_vmcb module parameter */
2378	if (!dump_invalid_vmcb) {
2379		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2380		return;
2381	}
2382
2383	nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2384
2385	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2386	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2387	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2388	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2389	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2390	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2391	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2392	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2393	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2394	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2395}
2396
2397static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2398{
2399	struct kvm_vcpu *vcpu = &svm->vcpu;
2400	struct ghcb *ghcb = svm->sev_es.ghcb;
2401
2402	/*
2403	 * The GHCB protocol so far allows for the following data
2404	 * to be returned:
2405	 *   GPRs RAX, RBX, RCX, RDX
2406	 *
2407	 * Copy their values, even if they may not have been written during the
2408	 * VM-Exit.  It's the guest's responsibility to not consume random data.
2409	 */
2410	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2411	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2412	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2413	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
2414}
2415
2416static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2417{
2418	struct vmcb_control_area *control = &svm->vmcb->control;
2419	struct kvm_vcpu *vcpu = &svm->vcpu;
2420	struct ghcb *ghcb = svm->sev_es.ghcb;
2421	u64 exit_code;
2422
2423	/*
2424	 * The GHCB protocol so far allows for the following data
2425	 * to be supplied:
2426	 *   GPRs RAX, RBX, RCX, RDX
2427	 *   XCR0
2428	 *   CPL
2429	 *
2430	 * VMMCALL allows the guest to provide extra registers. KVM also
2431	 * expects RSI for hypercalls, so include that, too.
2432	 *
2433	 * Copy their values to the appropriate location if supplied.
2434	 */
2435	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2436
2437	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2438	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
2439
2440	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2441	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2442	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2443	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2444	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
2445
2446	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2447
2448	if (kvm_ghcb_xcr0_is_valid(svm)) {
2449		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2450		kvm_update_cpuid_runtime(vcpu);
2451	}
2452
2453	/* Copy the GHCB exit information into the VMCB fields */
2454	exit_code = ghcb_get_sw_exit_code(ghcb);
2455	control->exit_code = lower_32_bits(exit_code);
2456	control->exit_code_hi = upper_32_bits(exit_code);
2457	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2458	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
2459	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
2460
2461	/* Clear the valid entries fields */
2462	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2463}
2464
2465static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2466{
2467	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2468}
2469
2470static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
2471{
2472	struct vmcb_control_area *control = &svm->vmcb->control;
2473	struct kvm_vcpu *vcpu = &svm->vcpu;
2474	u64 exit_code;
2475	u64 reason;
2476
2477	/*
2478	 * Retrieve the exit code now even though it may not be marked valid
2479	 * as it could help with debugging.
2480	 */
2481	exit_code = kvm_ghcb_get_sw_exit_code(control);
2482
2483	/* Only GHCB Usage code 0 is supported */
2484	if (svm->sev_es.ghcb->ghcb_usage) {
2485		reason = GHCB_ERR_INVALID_USAGE;
2486		goto vmgexit_err;
2487	}
2488
2489	reason = GHCB_ERR_MISSING_INPUT;
2490
2491	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2492	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2493	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
2494		goto vmgexit_err;
2495
2496	switch (exit_code) {
2497	case SVM_EXIT_READ_DR7:
2498		break;
2499	case SVM_EXIT_WRITE_DR7:
2500		if (!kvm_ghcb_rax_is_valid(svm))
2501			goto vmgexit_err;
2502		break;
2503	case SVM_EXIT_RDTSC:
2504		break;
2505	case SVM_EXIT_RDPMC:
2506		if (!kvm_ghcb_rcx_is_valid(svm))
2507			goto vmgexit_err;
2508		break;
2509	case SVM_EXIT_CPUID:
2510		if (!kvm_ghcb_rax_is_valid(svm) ||
2511		    !kvm_ghcb_rcx_is_valid(svm))
2512			goto vmgexit_err;
2513		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
2514			if (!kvm_ghcb_xcr0_is_valid(svm))
2515				goto vmgexit_err;
2516		break;
2517	case SVM_EXIT_INVD:
2518		break;
2519	case SVM_EXIT_IOIO:
2520		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
2521			if (!kvm_ghcb_sw_scratch_is_valid(svm))
2522				goto vmgexit_err;
2523		} else {
2524			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
2525				if (!kvm_ghcb_rax_is_valid(svm))
2526					goto vmgexit_err;
2527		}
2528		break;
2529	case SVM_EXIT_MSR:
2530		if (!kvm_ghcb_rcx_is_valid(svm))
2531			goto vmgexit_err;
2532		if (control->exit_info_1) {
2533			if (!kvm_ghcb_rax_is_valid(svm) ||
2534			    !kvm_ghcb_rdx_is_valid(svm))
2535				goto vmgexit_err;
2536		}
2537		break;
2538	case SVM_EXIT_VMMCALL:
2539		if (!kvm_ghcb_rax_is_valid(svm) ||
2540		    !kvm_ghcb_cpl_is_valid(svm))
2541			goto vmgexit_err;
2542		break;
2543	case SVM_EXIT_RDTSCP:
2544		break;
2545	case SVM_EXIT_WBINVD:
2546		break;
2547	case SVM_EXIT_MONITOR:
2548		if (!kvm_ghcb_rax_is_valid(svm) ||
2549		    !kvm_ghcb_rcx_is_valid(svm) ||
2550		    !kvm_ghcb_rdx_is_valid(svm))
2551			goto vmgexit_err;
2552		break;
2553	case SVM_EXIT_MWAIT:
2554		if (!kvm_ghcb_rax_is_valid(svm) ||
2555		    !kvm_ghcb_rcx_is_valid(svm))
2556			goto vmgexit_err;
2557		break;
2558	case SVM_VMGEXIT_MMIO_READ:
2559	case SVM_VMGEXIT_MMIO_WRITE:
2560		if (!kvm_ghcb_sw_scratch_is_valid(svm))
2561			goto vmgexit_err;
2562		break;
2563	case SVM_VMGEXIT_NMI_COMPLETE:
2564	case SVM_VMGEXIT_AP_HLT_LOOP:
2565	case SVM_VMGEXIT_AP_JUMP_TABLE:
2566	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2567		break;
2568	default:
2569		reason = GHCB_ERR_INVALID_EVENT;
2570		goto vmgexit_err;
2571	}
2572
2573	return 0;
2574
2575vmgexit_err:
2576	if (reason == GHCB_ERR_INVALID_USAGE) {
2577		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
2578			    svm->sev_es.ghcb->ghcb_usage);
2579	} else if (reason == GHCB_ERR_INVALID_EVENT) {
2580		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2581			    exit_code);
2582	} else {
2583		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
2584			    exit_code);
2585		dump_ghcb(svm);
2586	}
2587
2588	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2589	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
2590
2591	/* Resume the guest to "return" the error code. */
2592	return 1;
2593}
2594
2595void sev_es_unmap_ghcb(struct vcpu_svm *svm)
2596{
2597	if (!svm->sev_es.ghcb)
2598		return;
2599
2600	if (svm->sev_es.ghcb_sa_free) {
2601		/*
2602		 * The scratch area lives outside the GHCB, so there is a
2603		 * buffer that, depending on the operation performed, may
2604		 * need to be synced, then freed.
2605		 */
2606		if (svm->sev_es.ghcb_sa_sync) {
2607			kvm_write_guest(svm->vcpu.kvm,
2608					svm->sev_es.sw_scratch,
2609					svm->sev_es.ghcb_sa,
2610					svm->sev_es.ghcb_sa_len);
2611			svm->sev_es.ghcb_sa_sync = false;
2612		}
2613
2614		kvfree(svm->sev_es.ghcb_sa);
2615		svm->sev_es.ghcb_sa = NULL;
2616		svm->sev_es.ghcb_sa_free = false;
2617	}
2618
2619	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
2620
2621	sev_es_sync_to_ghcb(svm);
2622
2623	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2624	svm->sev_es.ghcb = NULL;
2625}
2626
2627void pre_sev_run(struct vcpu_svm *svm, int cpu)
2628{
2629	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
2630	int asid = sev_get_asid(svm->vcpu.kvm);
2631
2632	/* Assign the asid allocated with this SEV guest */
2633	svm->asid = asid;
2634
2635	/*
2636	 * Flush guest TLB:
2637	 *
2638	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2639	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2640	 */
2641	if (sd->sev_vmcbs[asid] == svm->vmcb &&
2642	    svm->vcpu.arch.last_vmentry_cpu == cpu)
2643		return;
2644
2645	sd->sev_vmcbs[asid] = svm->vmcb;
2646	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
2647	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
2648}
2649
2650#define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
2651static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
2652{
2653	struct vmcb_control_area *control = &svm->vmcb->control;
2654	u64 ghcb_scratch_beg, ghcb_scratch_end;
2655	u64 scratch_gpa_beg, scratch_gpa_end;
2656	void *scratch_va;
2657
2658	scratch_gpa_beg = svm->sev_es.sw_scratch;
2659	if (!scratch_gpa_beg) {
2660		pr_err("vmgexit: scratch gpa not provided\n");
2661		goto e_scratch;
2662	}
2663
2664	scratch_gpa_end = scratch_gpa_beg + len;
2665	if (scratch_gpa_end < scratch_gpa_beg) {
2666		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2667		       len, scratch_gpa_beg);
2668		goto e_scratch;
2669	}
2670
2671	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2672		/* Scratch area begins within GHCB */
2673		ghcb_scratch_beg = control->ghcb_gpa +
2674				   offsetof(struct ghcb, shared_buffer);
2675		ghcb_scratch_end = control->ghcb_gpa +
2676				   offsetof(struct ghcb, reserved_0xff0);
2677
2678		/*
2679		 * If the scratch area begins within the GHCB, it must be
2680		 * completely contained in the GHCB shared buffer area.
2681		 */
2682		if (scratch_gpa_beg < ghcb_scratch_beg ||
2683		    scratch_gpa_end > ghcb_scratch_end) {
2684			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2685			       scratch_gpa_beg, scratch_gpa_end);
2686			goto e_scratch;
2687		}
2688
2689		scratch_va = (void *)svm->sev_es.ghcb;
2690		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2691	} else {
2692		/*
2693		 * The guest memory must be read into a kernel buffer, so
2694		 * limit the size
2695		 */
2696		if (len > GHCB_SCRATCH_AREA_LIMIT) {
2697			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2698			       len, GHCB_SCRATCH_AREA_LIMIT);
2699			goto e_scratch;
2700		}
2701		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
2702		if (!scratch_va)
2703			return -ENOMEM;
2704
2705		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2706			/* Unable to copy scratch area from guest */
2707			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2708
2709			kvfree(scratch_va);
2710			return -EFAULT;
2711		}
2712
2713		/*
2714		 * The scratch area is outside the GHCB. The operation will
2715		 * dictate whether the buffer needs to be synced before running
2716		 * the vCPU next time (i.e. a read was requested so the data
2717		 * must be written back to the guest memory).
2718		 */
2719		svm->sev_es.ghcb_sa_sync = sync;
2720		svm->sev_es.ghcb_sa_free = true;
2721	}
2722
2723	svm->sev_es.ghcb_sa = scratch_va;
2724	svm->sev_es.ghcb_sa_len = len;
2725
2726	return 0;
2727
2728e_scratch:
2729	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2730	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
2731
2732	return 1;
2733}
2734
2735static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2736			      unsigned int pos)
2737{
2738	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2739	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2740}
2741
2742static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2743{
2744	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2745}
2746
2747static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2748{
2749	svm->vmcb->control.ghcb_gpa = value;
2750}
2751
2752static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2753{
2754	struct vmcb_control_area *control = &svm->vmcb->control;
2755	struct kvm_vcpu *vcpu = &svm->vcpu;
2756	u64 ghcb_info;
2757	int ret = 1;
2758
2759	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2760
2761	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2762					     control->ghcb_gpa);
2763
2764	switch (ghcb_info) {
2765	case GHCB_MSR_SEV_INFO_REQ:
2766		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2767						    GHCB_VERSION_MIN,
2768						    sev_enc_bit));
2769		break;
2770	case GHCB_MSR_CPUID_REQ: {
2771		u64 cpuid_fn, cpuid_reg, cpuid_value;
2772
2773		cpuid_fn = get_ghcb_msr_bits(svm,
2774					     GHCB_MSR_CPUID_FUNC_MASK,
2775					     GHCB_MSR_CPUID_FUNC_POS);
2776
2777		/* Initialize the registers needed by the CPUID intercept */
2778		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2779		vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2780
2781		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
2782		if (!ret) {
2783			/* Error, keep GHCB MSR value as-is */
2784			break;
2785		}
2786
2787		cpuid_reg = get_ghcb_msr_bits(svm,
2788					      GHCB_MSR_CPUID_REG_MASK,
2789					      GHCB_MSR_CPUID_REG_POS);
2790		if (cpuid_reg == 0)
2791			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2792		else if (cpuid_reg == 1)
2793			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2794		else if (cpuid_reg == 2)
2795			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2796		else
2797			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2798
2799		set_ghcb_msr_bits(svm, cpuid_value,
2800				  GHCB_MSR_CPUID_VALUE_MASK,
2801				  GHCB_MSR_CPUID_VALUE_POS);
2802
2803		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2804				  GHCB_MSR_INFO_MASK,
2805				  GHCB_MSR_INFO_POS);
2806		break;
2807	}
2808	case GHCB_MSR_TERM_REQ: {
2809		u64 reason_set, reason_code;
2810
2811		reason_set = get_ghcb_msr_bits(svm,
2812					       GHCB_MSR_TERM_REASON_SET_MASK,
2813					       GHCB_MSR_TERM_REASON_SET_POS);
2814		reason_code = get_ghcb_msr_bits(svm,
2815						GHCB_MSR_TERM_REASON_MASK,
2816						GHCB_MSR_TERM_REASON_POS);
2817		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2818			reason_set, reason_code);
2819
2820		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
2821		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
2822		vcpu->run->system_event.ndata = 1;
2823		vcpu->run->system_event.data[0] = control->ghcb_gpa;
2824
2825		return 0;
2826	}
2827	default:
2828		/* Error, keep GHCB MSR value as-is */
2829		break;
2830	}
2831
2832	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2833					    control->ghcb_gpa, ret);
2834
2835	return ret;
2836}
2837
2838int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
2839{
2840	struct vcpu_svm *svm = to_svm(vcpu);
2841	struct vmcb_control_area *control = &svm->vmcb->control;
2842	u64 ghcb_gpa, exit_code;
2843	int ret;
2844
2845	/* Validate the GHCB */
2846	ghcb_gpa = control->ghcb_gpa;
2847	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2848		return sev_handle_vmgexit_msr_protocol(svm);
2849
2850	if (!ghcb_gpa) {
2851		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
2852
2853		/* Without a GHCB, just return right back to the guest */
2854		return 1;
2855	}
2856
2857	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
2858		/* Unable to map GHCB from guest */
2859		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
2860			    ghcb_gpa);
2861
2862		/* Without a GHCB, just return right back to the guest */
2863		return 1;
2864	}
2865
2866	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
2867
2868	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
2869
2870	sev_es_sync_from_ghcb(svm);
2871	ret = sev_es_validate_vmgexit(svm);
2872	if (ret)
2873		return ret;
2874
2875	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
2876	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
2877
2878	exit_code = kvm_ghcb_get_sw_exit_code(control);
2879	switch (exit_code) {
2880	case SVM_VMGEXIT_MMIO_READ:
2881		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2882		if (ret)
2883			break;
2884
2885		ret = kvm_sev_es_mmio_read(vcpu,
2886					   control->exit_info_1,
2887					   control->exit_info_2,
2888					   svm->sev_es.ghcb_sa);
2889		break;
2890	case SVM_VMGEXIT_MMIO_WRITE:
2891		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2892		if (ret)
2893			break;
2894
2895		ret = kvm_sev_es_mmio_write(vcpu,
2896					    control->exit_info_1,
2897					    control->exit_info_2,
2898					    svm->sev_es.ghcb_sa);
2899		break;
2900	case SVM_VMGEXIT_NMI_COMPLETE:
2901		++vcpu->stat.nmi_window_exits;
2902		svm->nmi_masked = false;
2903		kvm_make_request(KVM_REQ_EVENT, vcpu);
2904		ret = 1;
2905		break;
2906	case SVM_VMGEXIT_AP_HLT_LOOP:
2907		ret = kvm_emulate_ap_reset_hold(vcpu);
2908		break;
2909	case SVM_VMGEXIT_AP_JUMP_TABLE: {
2910		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
2911
2912		switch (control->exit_info_1) {
2913		case 0:
2914			/* Set AP jump table address */
2915			sev->ap_jump_table = control->exit_info_2;
2916			break;
2917		case 1:
2918			/* Get AP jump table address */
2919			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
2920			break;
2921		default:
2922			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2923			       control->exit_info_1);
2924			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2925			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
2926		}
2927
2928		ret = 1;
2929		break;
2930	}
2931	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2932		vcpu_unimpl(vcpu,
2933			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2934			    control->exit_info_1, control->exit_info_2);
2935		ret = -EINVAL;
2936		break;
2937	default:
2938		ret = svm_invoke_exit_handler(vcpu, exit_code);
2939	}
2940
2941	return ret;
2942}
2943
2944int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2945{
2946	int count;
2947	int bytes;
2948	int r;
2949
2950	if (svm->vmcb->control.exit_info_2 > INT_MAX)
2951		return -EINVAL;
2952
2953	count = svm->vmcb->control.exit_info_2;
2954	if (unlikely(check_mul_overflow(count, size, &bytes)))
2955		return -EINVAL;
2956
2957	r = setup_vmgexit_scratch(svm, in, bytes);
2958	if (r)
2959		return r;
2960
2961	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
2962				    count, in);
2963}
2964
2965static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2966{
2967	struct kvm_vcpu *vcpu = &svm->vcpu;
2968
2969	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
2970		bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
2971				 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
2972
2973		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
2974	}
2975}
2976
2977void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2978{
2979	struct kvm_vcpu *vcpu = &svm->vcpu;
2980	struct kvm_cpuid_entry2 *best;
2981
2982	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
2983	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
2984	if (best)
2985		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
2986
2987	if (sev_es_guest(svm->vcpu.kvm))
2988		sev_es_vcpu_after_set_cpuid(svm);
2989}
2990
2991static void sev_es_init_vmcb(struct vcpu_svm *svm)
2992{
2993	struct vmcb *vmcb = svm->vmcb01.ptr;
2994	struct kvm_vcpu *vcpu = &svm->vcpu;
2995
2996	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
2997	svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
2998
2999	/*
3000	 * An SEV-ES guest requires a VMSA area that is a separate from the
3001	 * VMCB page. Do not include the encryption mask on the VMSA physical
3002	 * address since hardware will access it using the guest key.  Note,
3003	 * the VMSA will be NULL if this vCPU is the destination for intrahost
3004	 * migration, and will be copied later.
3005	 */
3006	if (svm->sev_es.vmsa)
3007		svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
3008
3009	/* Can't intercept CR register access, HV can't modify CR registers */
3010	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
3011	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
3012	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
3013	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
3014	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
3015	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3016
3017	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
3018
3019	/* Track EFER/CR register changes */
3020	svm_set_intercept(svm, TRAP_EFER_WRITE);
3021	svm_set_intercept(svm, TRAP_CR0_WRITE);
3022	svm_set_intercept(svm, TRAP_CR4_WRITE);
3023	svm_set_intercept(svm, TRAP_CR8_WRITE);
3024
3025	vmcb->control.intercepts[INTERCEPT_DR] = 0;
3026	if (!sev_es_debug_swap_enabled) {
3027		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
3028		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
3029		recalc_intercepts(svm);
3030	} else {
3031		/*
3032		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
3033		 * allow debugging SEV-ES guests, and enables DebugSwap iff
3034		 * NO_NESTED_DATA_BP is supported, so there's no reason to
3035		 * intercept #DB when DebugSwap is enabled.  For simplicity
3036		 * with respect to guest debug, intercept #DB for other VMs
3037		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
3038		 * guest can't DoS the CPU with infinite #DB vectoring.
3039		 */
3040		clr_exception_intercept(svm, DB_VECTOR);
3041	}
3042
3043	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
3044	svm_clr_intercept(svm, INTERCEPT_XSETBV);
3045
3046	/* Clear intercepts on selected MSRs */
3047	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
3048	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
3049	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
3050	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
3051	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
3052	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
3053}
3054
3055void sev_init_vmcb(struct vcpu_svm *svm)
3056{
3057	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3058	clr_exception_intercept(svm, UD_VECTOR);
3059
3060	/*
3061	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
3062	 * KVM can't decrypt guest memory to decode the faulting instruction.
3063	 */
3064	clr_exception_intercept(svm, GP_VECTOR);
3065
3066	if (sev_es_guest(svm->vcpu.kvm))
3067		sev_es_init_vmcb(svm);
3068}
3069
3070void sev_es_vcpu_reset(struct vcpu_svm *svm)
3071{
3072	/*
3073	 * Set the GHCB MSR value as per the GHCB specification when emulating
3074	 * vCPU RESET for an SEV-ES guest.
3075	 */
3076	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3077					    GHCB_VERSION_MIN,
3078					    sev_enc_bit));
3079}
3080
3081void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
3082{
3083	/*
3084	 * All host state for SEV-ES guests is categorized into three swap types
3085	 * based on how it is handled by hardware during a world switch:
3086	 *
3087	 * A: VMRUN:   Host state saved in host save area
3088	 *    VMEXIT:  Host state loaded from host save area
3089	 *
3090	 * B: VMRUN:   Host state _NOT_ saved in host save area
3091	 *    VMEXIT:  Host state loaded from host save area
3092	 *
3093	 * C: VMRUN:   Host state _NOT_ saved in host save area
3094	 *    VMEXIT:  Host state initialized to default(reset) values
3095	 *
3096	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
3097	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
3098	 * by common SVM code).
3099	 */
3100	hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
3101	hostsa->pkru = read_pkru();
3102	hostsa->xss = host_xss;
3103
3104	/*
3105	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
3106	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
3107	 * saves and loads debug registers (Type-A).
3108	 */
3109	if (sev_es_debug_swap_enabled) {
3110		hostsa->dr0 = native_get_debugreg(0);
3111		hostsa->dr1 = native_get_debugreg(1);
3112		hostsa->dr2 = native_get_debugreg(2);
3113		hostsa->dr3 = native_get_debugreg(3);
3114		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
3115		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
3116		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
3117		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
3118	}
3119}
3120
3121void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3122{
3123	struct vcpu_svm *svm = to_svm(vcpu);
3124
3125	/* First SIPI: Use the values as initially set by the VMM */
3126	if (!svm->sev_es.received_first_sipi) {
3127		svm->sev_es.received_first_sipi = true;
3128		return;
3129	}
3130
3131	/*
3132	 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3133	 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3134	 * non-zero value.
3135	 */
3136	if (!svm->sev_es.ghcb)
3137		return;
3138
3139	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
3140}
3141