xref: /kernel/linux/linux-6.6/arch/x86/kvm/pmu.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine -- Performance Monitoring Unit support
4 *
5 * Copyright 2015 Red Hat, Inc. and/or its affiliates.
6 *
7 * Authors:
8 *   Avi Kivity   <avi@redhat.com>
9 *   Gleb Natapov <gleb@redhat.com>
10 *   Wei Huang    <wei@redhat.com>
11 */
12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14#include <linux/types.h>
15#include <linux/kvm_host.h>
16#include <linux/perf_event.h>
17#include <linux/bsearch.h>
18#include <linux/sort.h>
19#include <asm/perf_event.h>
20#include <asm/cpu_device_id.h>
21#include "x86.h"
22#include "cpuid.h"
23#include "lapic.h"
24#include "pmu.h"
25
26/* This is enough to filter the vast majority of currently defined events. */
27#define KVM_PMU_EVENT_FILTER_MAX_EVENTS 300
28
29struct x86_pmu_capability __read_mostly kvm_pmu_cap;
30EXPORT_SYMBOL_GPL(kvm_pmu_cap);
31
32/* Precise Distribution of Instructions Retired (PDIR) */
33static const struct x86_cpu_id vmx_pebs_pdir_cpu[] = {
34	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, NULL),
35	X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, NULL),
36	/* Instruction-Accurate PDIR (PDIR++) */
37	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
38	{}
39};
40
41/* Precise Distribution (PDist) */
42static const struct x86_cpu_id vmx_pebs_pdist_cpu[] = {
43	X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, NULL),
44	{}
45};
46
47/* NOTE:
48 * - Each perf counter is defined as "struct kvm_pmc";
49 * - There are two types of perf counters: general purpose (gp) and fixed.
50 *   gp counters are stored in gp_counters[] and fixed counters are stored
51 *   in fixed_counters[] respectively. Both of them are part of "struct
52 *   kvm_pmu";
53 * - pmu.c understands the difference between gp counters and fixed counters.
54 *   However AMD doesn't support fixed-counters;
55 * - There are three types of index to access perf counters (PMC):
56 *     1. MSR (named msr): For example Intel has MSR_IA32_PERFCTRn and AMD
57 *        has MSR_K7_PERFCTRn and, for families 15H and later,
58 *        MSR_F15H_PERF_CTRn, where MSR_F15H_PERF_CTR[0-3] are
59 *        aliased to MSR_K7_PERFCTRn.
60 *     2. MSR Index (named idx): This normally is used by RDPMC instruction.
61 *        For instance AMD RDPMC instruction uses 0000_0003h in ECX to access
62 *        C001_0007h (MSR_K7_PERCTR3). Intel has a similar mechanism, except
63 *        that it also supports fixed counters. idx can be used to as index to
64 *        gp and fixed counters.
65 *     3. Global PMC Index (named pmc): pmc is an index specific to PMU
66 *        code. Each pmc, stored in kvm_pmc.idx field, is unique across
67 *        all perf counters (both gp and fixed). The mapping relationship
68 *        between pmc and perf counters is as the following:
69 *        * Intel: [0 .. KVM_INTEL_PMC_MAX_GENERIC-1] <=> gp counters
70 *                 [INTEL_PMC_IDX_FIXED .. INTEL_PMC_IDX_FIXED + 2] <=> fixed
71 *        * AMD:   [0 .. AMD64_NUM_COUNTERS-1] and, for families 15H
72 *          and later, [0 .. AMD64_NUM_COUNTERS_CORE-1] <=> gp counters
73 */
74
75static struct kvm_pmu_ops kvm_pmu_ops __read_mostly;
76
77#define KVM_X86_PMU_OP(func)					     \
78	DEFINE_STATIC_CALL_NULL(kvm_x86_pmu_##func,			     \
79				*(((struct kvm_pmu_ops *)0)->func));
80#define KVM_X86_PMU_OP_OPTIONAL KVM_X86_PMU_OP
81#include <asm/kvm-x86-pmu-ops.h>
82
83void kvm_pmu_ops_update(const struct kvm_pmu_ops *pmu_ops)
84{
85	memcpy(&kvm_pmu_ops, pmu_ops, sizeof(kvm_pmu_ops));
86
87#define __KVM_X86_PMU_OP(func) \
88	static_call_update(kvm_x86_pmu_##func, kvm_pmu_ops.func);
89#define KVM_X86_PMU_OP(func) \
90	WARN_ON(!kvm_pmu_ops.func); __KVM_X86_PMU_OP(func)
91#define KVM_X86_PMU_OP_OPTIONAL __KVM_X86_PMU_OP
92#include <asm/kvm-x86-pmu-ops.h>
93#undef __KVM_X86_PMU_OP
94}
95
96static inline void __kvm_perf_overflow(struct kvm_pmc *pmc, bool in_pmi)
97{
98	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
99	bool skip_pmi = false;
100
101	if (pmc->perf_event && pmc->perf_event->attr.precise_ip) {
102		if (!in_pmi) {
103			/*
104			 * TODO: KVM is currently _choosing_ to not generate records
105			 * for emulated instructions, avoiding BUFFER_OVF PMI when
106			 * there are no records. Strictly speaking, it should be done
107			 * as well in the right context to improve sampling accuracy.
108			 */
109			skip_pmi = true;
110		} else {
111			/* Indicate PEBS overflow PMI to guest. */
112			skip_pmi = __test_and_set_bit(GLOBAL_STATUS_BUFFER_OVF_BIT,
113						      (unsigned long *)&pmu->global_status);
114		}
115	} else {
116		__set_bit(pmc->idx, (unsigned long *)&pmu->global_status);
117	}
118
119	if (pmc->intr && !skip_pmi)
120		kvm_make_request(KVM_REQ_PMI, pmc->vcpu);
121}
122
123static void kvm_perf_overflow(struct perf_event *perf_event,
124			      struct perf_sample_data *data,
125			      struct pt_regs *regs)
126{
127	struct kvm_pmc *pmc = perf_event->overflow_handler_context;
128
129	/*
130	 * Ignore overflow events for counters that are scheduled to be
131	 * reprogrammed, e.g. if a PMI for the previous event races with KVM's
132	 * handling of a related guest WRMSR.
133	 */
134	if (test_and_set_bit(pmc->idx, pmc_to_pmu(pmc)->reprogram_pmi))
135		return;
136
137	__kvm_perf_overflow(pmc, true);
138
139	kvm_make_request(KVM_REQ_PMU, pmc->vcpu);
140}
141
142static u64 pmc_get_pebs_precise_level(struct kvm_pmc *pmc)
143{
144	/*
145	 * For some model specific pebs counters with special capabilities
146	 * (PDIR, PDIR++, PDIST), KVM needs to raise the event precise
147	 * level to the maximum value (currently 3, backwards compatible)
148	 * so that the perf subsystem would assign specific hardware counter
149	 * with that capability for vPMC.
150	 */
151	if ((pmc->idx == 0 && x86_match_cpu(vmx_pebs_pdist_cpu)) ||
152	    (pmc->idx == 32 && x86_match_cpu(vmx_pebs_pdir_cpu)))
153		return 3;
154
155	/*
156	 * The non-zero precision level of guest event makes the ordinary
157	 * guest event becomes a guest PEBS event and triggers the host
158	 * PEBS PMI handler to determine whether the PEBS overflow PMI
159	 * comes from the host counters or the guest.
160	 */
161	return 1;
162}
163
164static int pmc_reprogram_counter(struct kvm_pmc *pmc, u32 type, u64 config,
165				 bool exclude_user, bool exclude_kernel,
166				 bool intr)
167{
168	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
169	struct perf_event *event;
170	struct perf_event_attr attr = {
171		.type = type,
172		.size = sizeof(attr),
173		.pinned = true,
174		.exclude_idle = true,
175		.exclude_host = 1,
176		.exclude_user = exclude_user,
177		.exclude_kernel = exclude_kernel,
178		.config = config,
179	};
180	bool pebs = test_bit(pmc->idx, (unsigned long *)&pmu->pebs_enable);
181
182	attr.sample_period = get_sample_period(pmc, pmc->counter);
183
184	if ((attr.config & HSW_IN_TX_CHECKPOINTED) &&
185	    guest_cpuid_is_intel(pmc->vcpu)) {
186		/*
187		 * HSW_IN_TX_CHECKPOINTED is not supported with nonzero
188		 * period. Just clear the sample period so at least
189		 * allocating the counter doesn't fail.
190		 */
191		attr.sample_period = 0;
192	}
193	if (pebs) {
194		/*
195		 * For most PEBS hardware events, the difference in the software
196		 * precision levels of guest and host PEBS events will not affect
197		 * the accuracy of the PEBS profiling result, because the "event IP"
198		 * in the PEBS record is calibrated on the guest side.
199		 */
200		attr.precise_ip = pmc_get_pebs_precise_level(pmc);
201	}
202
203	event = perf_event_create_kernel_counter(&attr, -1, current,
204						 kvm_perf_overflow, pmc);
205	if (IS_ERR(event)) {
206		pr_debug_ratelimited("kvm_pmu: event creation failed %ld for pmc->idx = %d\n",
207			    PTR_ERR(event), pmc->idx);
208		return PTR_ERR(event);
209	}
210
211	pmc->perf_event = event;
212	pmc_to_pmu(pmc)->event_count++;
213	pmc->is_paused = false;
214	pmc->intr = intr || pebs;
215	return 0;
216}
217
218static void pmc_pause_counter(struct kvm_pmc *pmc)
219{
220	u64 counter = pmc->counter;
221
222	if (!pmc->perf_event || pmc->is_paused)
223		return;
224
225	/* update counter, reset event value to avoid redundant accumulation */
226	counter += perf_event_pause(pmc->perf_event, true);
227	pmc->counter = counter & pmc_bitmask(pmc);
228	pmc->is_paused = true;
229}
230
231static bool pmc_resume_counter(struct kvm_pmc *pmc)
232{
233	if (!pmc->perf_event)
234		return false;
235
236	/* recalibrate sample period and check if it's accepted by perf core */
237	if (is_sampling_event(pmc->perf_event) &&
238	    perf_event_period(pmc->perf_event,
239			      get_sample_period(pmc, pmc->counter)))
240		return false;
241
242	if (test_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->pebs_enable) !=
243	    (!!pmc->perf_event->attr.precise_ip))
244		return false;
245
246	/* reuse perf_event to serve as pmc_reprogram_counter() does*/
247	perf_event_enable(pmc->perf_event);
248	pmc->is_paused = false;
249
250	return true;
251}
252
253static void pmc_release_perf_event(struct kvm_pmc *pmc)
254{
255	if (pmc->perf_event) {
256		perf_event_release_kernel(pmc->perf_event);
257		pmc->perf_event = NULL;
258		pmc->current_config = 0;
259		pmc_to_pmu(pmc)->event_count--;
260	}
261}
262
263static void pmc_stop_counter(struct kvm_pmc *pmc)
264{
265	if (pmc->perf_event) {
266		pmc->counter = pmc_read_counter(pmc);
267		pmc_release_perf_event(pmc);
268	}
269}
270
271static int filter_cmp(const void *pa, const void *pb, u64 mask)
272{
273	u64 a = *(u64 *)pa & mask;
274	u64 b = *(u64 *)pb & mask;
275
276	return (a > b) - (a < b);
277}
278
279
280static int filter_sort_cmp(const void *pa, const void *pb)
281{
282	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT |
283				   KVM_PMU_MASKED_ENTRY_EXCLUDE));
284}
285
286/*
287 * For the event filter, searching is done on the 'includes' list and
288 * 'excludes' list separately rather than on the 'events' list (which
289 * has both).  As a result the exclude bit can be ignored.
290 */
291static int filter_event_cmp(const void *pa, const void *pb)
292{
293	return filter_cmp(pa, pb, (KVM_PMU_MASKED_ENTRY_EVENT_SELECT));
294}
295
296static int find_filter_index(u64 *events, u64 nevents, u64 key)
297{
298	u64 *fe = bsearch(&key, events, nevents, sizeof(events[0]),
299			  filter_event_cmp);
300
301	if (!fe)
302		return -1;
303
304	return fe - events;
305}
306
307static bool is_filter_entry_match(u64 filter_event, u64 umask)
308{
309	u64 mask = filter_event >> (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8);
310	u64 match = filter_event & KVM_PMU_MASKED_ENTRY_UMASK_MATCH;
311
312	BUILD_BUG_ON((KVM_PMU_ENCODE_MASKED_ENTRY(0, 0xff, 0, false) >>
313		     (KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT - 8)) !=
314		     ARCH_PERFMON_EVENTSEL_UMASK);
315
316	return (umask & mask) == match;
317}
318
319static bool filter_contains_match(u64 *events, u64 nevents, u64 eventsel)
320{
321	u64 event_select = eventsel & kvm_pmu_ops.EVENTSEL_EVENT;
322	u64 umask = eventsel & ARCH_PERFMON_EVENTSEL_UMASK;
323	int i, index;
324
325	index = find_filter_index(events, nevents, event_select);
326	if (index < 0)
327		return false;
328
329	/*
330	 * Entries are sorted by the event select.  Walk the list in both
331	 * directions to process all entries with the targeted event select.
332	 */
333	for (i = index; i < nevents; i++) {
334		if (filter_event_cmp(&events[i], &event_select))
335			break;
336
337		if (is_filter_entry_match(events[i], umask))
338			return true;
339	}
340
341	for (i = index - 1; i >= 0; i--) {
342		if (filter_event_cmp(&events[i], &event_select))
343			break;
344
345		if (is_filter_entry_match(events[i], umask))
346			return true;
347	}
348
349	return false;
350}
351
352static bool is_gp_event_allowed(struct kvm_x86_pmu_event_filter *f,
353				u64 eventsel)
354{
355	if (filter_contains_match(f->includes, f->nr_includes, eventsel) &&
356	    !filter_contains_match(f->excludes, f->nr_excludes, eventsel))
357		return f->action == KVM_PMU_EVENT_ALLOW;
358
359	return f->action == KVM_PMU_EVENT_DENY;
360}
361
362static bool is_fixed_event_allowed(struct kvm_x86_pmu_event_filter *filter,
363				   int idx)
364{
365	int fixed_idx = idx - INTEL_PMC_IDX_FIXED;
366
367	if (filter->action == KVM_PMU_EVENT_DENY &&
368	    test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
369		return false;
370	if (filter->action == KVM_PMU_EVENT_ALLOW &&
371	    !test_bit(fixed_idx, (ulong *)&filter->fixed_counter_bitmap))
372		return false;
373
374	return true;
375}
376
377static bool check_pmu_event_filter(struct kvm_pmc *pmc)
378{
379	struct kvm_x86_pmu_event_filter *filter;
380	struct kvm *kvm = pmc->vcpu->kvm;
381
382	filter = srcu_dereference(kvm->arch.pmu_event_filter, &kvm->srcu);
383	if (!filter)
384		return true;
385
386	if (pmc_is_gp(pmc))
387		return is_gp_event_allowed(filter, pmc->eventsel);
388
389	return is_fixed_event_allowed(filter, pmc->idx);
390}
391
392static bool pmc_event_is_allowed(struct kvm_pmc *pmc)
393{
394	return pmc_is_globally_enabled(pmc) && pmc_speculative_in_use(pmc) &&
395	       static_call(kvm_x86_pmu_hw_event_available)(pmc) &&
396	       check_pmu_event_filter(pmc);
397}
398
399static void reprogram_counter(struct kvm_pmc *pmc)
400{
401	struct kvm_pmu *pmu = pmc_to_pmu(pmc);
402	u64 eventsel = pmc->eventsel;
403	u64 new_config = eventsel;
404	u8 fixed_ctr_ctrl;
405
406	pmc_pause_counter(pmc);
407
408	if (!pmc_event_is_allowed(pmc))
409		goto reprogram_complete;
410
411	if (pmc->counter < pmc->prev_counter)
412		__kvm_perf_overflow(pmc, false);
413
414	if (eventsel & ARCH_PERFMON_EVENTSEL_PIN_CONTROL)
415		printk_once("kvm pmu: pin control bit is ignored\n");
416
417	if (pmc_is_fixed(pmc)) {
418		fixed_ctr_ctrl = fixed_ctrl_field(pmu->fixed_ctr_ctrl,
419						  pmc->idx - INTEL_PMC_IDX_FIXED);
420		if (fixed_ctr_ctrl & 0x1)
421			eventsel |= ARCH_PERFMON_EVENTSEL_OS;
422		if (fixed_ctr_ctrl & 0x2)
423			eventsel |= ARCH_PERFMON_EVENTSEL_USR;
424		if (fixed_ctr_ctrl & 0x8)
425			eventsel |= ARCH_PERFMON_EVENTSEL_INT;
426		new_config = (u64)fixed_ctr_ctrl;
427	}
428
429	if (pmc->current_config == new_config && pmc_resume_counter(pmc))
430		goto reprogram_complete;
431
432	pmc_release_perf_event(pmc);
433
434	pmc->current_config = new_config;
435
436	/*
437	 * If reprogramming fails, e.g. due to contention, leave the counter's
438	 * regprogram bit set, i.e. opportunistically try again on the next PMU
439	 * refresh.  Don't make a new request as doing so can stall the guest
440	 * if reprogramming repeatedly fails.
441	 */
442	if (pmc_reprogram_counter(pmc, PERF_TYPE_RAW,
443				  (eventsel & pmu->raw_event_mask),
444				  !(eventsel & ARCH_PERFMON_EVENTSEL_USR),
445				  !(eventsel & ARCH_PERFMON_EVENTSEL_OS),
446				  eventsel & ARCH_PERFMON_EVENTSEL_INT))
447		return;
448
449reprogram_complete:
450	clear_bit(pmc->idx, (unsigned long *)&pmc_to_pmu(pmc)->reprogram_pmi);
451	pmc->prev_counter = 0;
452}
453
454void kvm_pmu_handle_event(struct kvm_vcpu *vcpu)
455{
456	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
457	int bit;
458
459	for_each_set_bit(bit, pmu->reprogram_pmi, X86_PMC_IDX_MAX) {
460		struct kvm_pmc *pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, bit);
461
462		if (unlikely(!pmc)) {
463			clear_bit(bit, pmu->reprogram_pmi);
464			continue;
465		}
466
467		reprogram_counter(pmc);
468	}
469
470	/*
471	 * Unused perf_events are only released if the corresponding MSRs
472	 * weren't accessed during the last vCPU time slice. kvm_arch_sched_in
473	 * triggers KVM_REQ_PMU if cleanup is needed.
474	 */
475	if (unlikely(pmu->need_cleanup))
476		kvm_pmu_cleanup(vcpu);
477}
478
479/* check if idx is a valid index to access PMU */
480bool kvm_pmu_is_valid_rdpmc_ecx(struct kvm_vcpu *vcpu, unsigned int idx)
481{
482	return static_call(kvm_x86_pmu_is_valid_rdpmc_ecx)(vcpu, idx);
483}
484
485bool is_vmware_backdoor_pmc(u32 pmc_idx)
486{
487	switch (pmc_idx) {
488	case VMWARE_BACKDOOR_PMC_HOST_TSC:
489	case VMWARE_BACKDOOR_PMC_REAL_TIME:
490	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
491		return true;
492	}
493	return false;
494}
495
496static int kvm_pmu_rdpmc_vmware(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
497{
498	u64 ctr_val;
499
500	switch (idx) {
501	case VMWARE_BACKDOOR_PMC_HOST_TSC:
502		ctr_val = rdtsc();
503		break;
504	case VMWARE_BACKDOOR_PMC_REAL_TIME:
505		ctr_val = ktime_get_boottime_ns();
506		break;
507	case VMWARE_BACKDOOR_PMC_APPARENT_TIME:
508		ctr_val = ktime_get_boottime_ns() +
509			vcpu->kvm->arch.kvmclock_offset;
510		break;
511	default:
512		return 1;
513	}
514
515	*data = ctr_val;
516	return 0;
517}
518
519int kvm_pmu_rdpmc(struct kvm_vcpu *vcpu, unsigned idx, u64 *data)
520{
521	bool fast_mode = idx & (1u << 31);
522	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
523	struct kvm_pmc *pmc;
524	u64 mask = fast_mode ? ~0u : ~0ull;
525
526	if (!pmu->version)
527		return 1;
528
529	if (is_vmware_backdoor_pmc(idx))
530		return kvm_pmu_rdpmc_vmware(vcpu, idx, data);
531
532	pmc = static_call(kvm_x86_pmu_rdpmc_ecx_to_pmc)(vcpu, idx, &mask);
533	if (!pmc)
534		return 1;
535
536	if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCE) &&
537	    (static_call(kvm_x86_get_cpl)(vcpu) != 0) &&
538	    kvm_is_cr0_bit_set(vcpu, X86_CR0_PE))
539		return 1;
540
541	*data = pmc_read_counter(pmc) & mask;
542	return 0;
543}
544
545void kvm_pmu_deliver_pmi(struct kvm_vcpu *vcpu)
546{
547	if (lapic_in_kernel(vcpu)) {
548		static_call_cond(kvm_x86_pmu_deliver_pmi)(vcpu);
549		kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTPC);
550	}
551}
552
553bool kvm_pmu_is_valid_msr(struct kvm_vcpu *vcpu, u32 msr)
554{
555	switch (msr) {
556	case MSR_CORE_PERF_GLOBAL_STATUS:
557	case MSR_CORE_PERF_GLOBAL_CTRL:
558	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
559		return kvm_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu));
560	default:
561		break;
562	}
563	return static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr) ||
564		static_call(kvm_x86_pmu_is_valid_msr)(vcpu, msr);
565}
566
567static void kvm_pmu_mark_pmc_in_use(struct kvm_vcpu *vcpu, u32 msr)
568{
569	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
570	struct kvm_pmc *pmc = static_call(kvm_x86_pmu_msr_idx_to_pmc)(vcpu, msr);
571
572	if (pmc)
573		__set_bit(pmc->idx, pmu->pmc_in_use);
574}
575
576int kvm_pmu_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
577{
578	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
579	u32 msr = msr_info->index;
580
581	switch (msr) {
582	case MSR_CORE_PERF_GLOBAL_STATUS:
583	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
584		msr_info->data = pmu->global_status;
585		break;
586	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
587	case MSR_CORE_PERF_GLOBAL_CTRL:
588		msr_info->data = pmu->global_ctrl;
589		break;
590	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
591	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
592		msr_info->data = 0;
593		break;
594	default:
595		return static_call(kvm_x86_pmu_get_msr)(vcpu, msr_info);
596	}
597
598	return 0;
599}
600
601int kvm_pmu_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
602{
603	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
604	u32 msr = msr_info->index;
605	u64 data = msr_info->data;
606	u64 diff;
607
608	/*
609	 * Note, AMD ignores writes to reserved bits and read-only PMU MSRs,
610	 * whereas Intel generates #GP on attempts to write reserved/RO MSRs.
611	 */
612	switch (msr) {
613	case MSR_CORE_PERF_GLOBAL_STATUS:
614		if (!msr_info->host_initiated)
615			return 1; /* RO MSR */
616		fallthrough;
617	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
618		/* Per PPR, Read-only MSR. Writes are ignored. */
619		if (!msr_info->host_initiated)
620			break;
621
622		if (data & pmu->global_status_mask)
623			return 1;
624
625		pmu->global_status = data;
626		break;
627	case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
628		data &= ~pmu->global_ctrl_mask;
629		fallthrough;
630	case MSR_CORE_PERF_GLOBAL_CTRL:
631		if (!kvm_valid_perf_global_ctrl(pmu, data))
632			return 1;
633
634		if (pmu->global_ctrl != data) {
635			diff = pmu->global_ctrl ^ data;
636			pmu->global_ctrl = data;
637			reprogram_counters(pmu, diff);
638		}
639		break;
640	case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
641		/*
642		 * GLOBAL_OVF_CTRL, a.k.a. GLOBAL STATUS_RESET, clears bits in
643		 * GLOBAL_STATUS, and so the set of reserved bits is the same.
644		 */
645		if (data & pmu->global_status_mask)
646			return 1;
647		fallthrough;
648	case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
649		if (!msr_info->host_initiated)
650			pmu->global_status &= ~data;
651		break;
652	default:
653		kvm_pmu_mark_pmc_in_use(vcpu, msr_info->index);
654		return static_call(kvm_x86_pmu_set_msr)(vcpu, msr_info);
655	}
656
657	return 0;
658}
659
660void kvm_pmu_reset(struct kvm_vcpu *vcpu)
661{
662	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
663	struct kvm_pmc *pmc;
664	int i;
665
666	pmu->need_cleanup = false;
667
668	bitmap_zero(pmu->reprogram_pmi, X86_PMC_IDX_MAX);
669
670	for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
671		pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
672		if (!pmc)
673			continue;
674
675		pmc_stop_counter(pmc);
676		pmc->counter = 0;
677
678		if (pmc_is_gp(pmc))
679			pmc->eventsel = 0;
680	}
681
682	pmu->fixed_ctr_ctrl = pmu->global_ctrl = pmu->global_status = 0;
683
684	static_call_cond(kvm_x86_pmu_reset)(vcpu);
685}
686
687
688/*
689 * Refresh the PMU configuration for the vCPU, e.g. if userspace changes CPUID
690 * and/or PERF_CAPABILITIES.
691 */
692void kvm_pmu_refresh(struct kvm_vcpu *vcpu)
693{
694	if (KVM_BUG_ON(kvm_vcpu_has_run(vcpu), vcpu->kvm))
695		return;
696
697	/*
698	 * Stop/release all existing counters/events before realizing the new
699	 * vPMU model.
700	 */
701	kvm_pmu_reset(vcpu);
702
703	bitmap_zero(vcpu_to_pmu(vcpu)->all_valid_pmc_idx, X86_PMC_IDX_MAX);
704	static_call(kvm_x86_pmu_refresh)(vcpu);
705}
706
707void kvm_pmu_init(struct kvm_vcpu *vcpu)
708{
709	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
710
711	memset(pmu, 0, sizeof(*pmu));
712	static_call(kvm_x86_pmu_init)(vcpu);
713	pmu->event_count = 0;
714	pmu->need_cleanup = false;
715	kvm_pmu_refresh(vcpu);
716}
717
718/* Release perf_events for vPMCs that have been unused for a full time slice.  */
719void kvm_pmu_cleanup(struct kvm_vcpu *vcpu)
720{
721	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
722	struct kvm_pmc *pmc = NULL;
723	DECLARE_BITMAP(bitmask, X86_PMC_IDX_MAX);
724	int i;
725
726	pmu->need_cleanup = false;
727
728	bitmap_andnot(bitmask, pmu->all_valid_pmc_idx,
729		      pmu->pmc_in_use, X86_PMC_IDX_MAX);
730
731	for_each_set_bit(i, bitmask, X86_PMC_IDX_MAX) {
732		pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
733
734		if (pmc && pmc->perf_event && !pmc_speculative_in_use(pmc))
735			pmc_stop_counter(pmc);
736	}
737
738	static_call_cond(kvm_x86_pmu_cleanup)(vcpu);
739
740	bitmap_zero(pmu->pmc_in_use, X86_PMC_IDX_MAX);
741}
742
743void kvm_pmu_destroy(struct kvm_vcpu *vcpu)
744{
745	kvm_pmu_reset(vcpu);
746}
747
748static void kvm_pmu_incr_counter(struct kvm_pmc *pmc)
749{
750	pmc->prev_counter = pmc->counter;
751	pmc->counter = (pmc->counter + 1) & pmc_bitmask(pmc);
752	kvm_pmu_request_counter_reprogram(pmc);
753}
754
755static inline bool eventsel_match_perf_hw_id(struct kvm_pmc *pmc,
756	unsigned int perf_hw_id)
757{
758	return !((pmc->eventsel ^ perf_get_hw_event_config(perf_hw_id)) &
759		AMD64_RAW_EVENT_MASK_NB);
760}
761
762static inline bool cpl_is_matched(struct kvm_pmc *pmc)
763{
764	bool select_os, select_user;
765	u64 config;
766
767	if (pmc_is_gp(pmc)) {
768		config = pmc->eventsel;
769		select_os = config & ARCH_PERFMON_EVENTSEL_OS;
770		select_user = config & ARCH_PERFMON_EVENTSEL_USR;
771	} else {
772		config = fixed_ctrl_field(pmc_to_pmu(pmc)->fixed_ctr_ctrl,
773					  pmc->idx - INTEL_PMC_IDX_FIXED);
774		select_os = config & 0x1;
775		select_user = config & 0x2;
776	}
777
778	return (static_call(kvm_x86_get_cpl)(pmc->vcpu) == 0) ? select_os : select_user;
779}
780
781void kvm_pmu_trigger_event(struct kvm_vcpu *vcpu, u64 perf_hw_id)
782{
783	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
784	struct kvm_pmc *pmc;
785	int i;
786
787	for_each_set_bit(i, pmu->all_valid_pmc_idx, X86_PMC_IDX_MAX) {
788		pmc = static_call(kvm_x86_pmu_pmc_idx_to_pmc)(pmu, i);
789
790		if (!pmc || !pmc_event_is_allowed(pmc))
791			continue;
792
793		/* Ignore checks for edge detect, pin control, invert and CMASK bits */
794		if (eventsel_match_perf_hw_id(pmc, perf_hw_id) && cpl_is_matched(pmc))
795			kvm_pmu_incr_counter(pmc);
796	}
797}
798EXPORT_SYMBOL_GPL(kvm_pmu_trigger_event);
799
800static bool is_masked_filter_valid(const struct kvm_x86_pmu_event_filter *filter)
801{
802	u64 mask = kvm_pmu_ops.EVENTSEL_EVENT |
803		   KVM_PMU_MASKED_ENTRY_UMASK_MASK |
804		   KVM_PMU_MASKED_ENTRY_UMASK_MATCH |
805		   KVM_PMU_MASKED_ENTRY_EXCLUDE;
806	int i;
807
808	for (i = 0; i < filter->nevents; i++) {
809		if (filter->events[i] & ~mask)
810			return false;
811	}
812
813	return true;
814}
815
816static void convert_to_masked_filter(struct kvm_x86_pmu_event_filter *filter)
817{
818	int i, j;
819
820	for (i = 0, j = 0; i < filter->nevents; i++) {
821		/*
822		 * Skip events that are impossible to match against a guest
823		 * event.  When filtering, only the event select + unit mask
824		 * of the guest event is used.  To maintain backwards
825		 * compatibility, impossible filters can't be rejected :-(
826		 */
827		if (filter->events[i] & ~(kvm_pmu_ops.EVENTSEL_EVENT |
828					  ARCH_PERFMON_EVENTSEL_UMASK))
829			continue;
830		/*
831		 * Convert userspace events to a common in-kernel event so
832		 * only one code path is needed to support both events.  For
833		 * the in-kernel events use masked events because they are
834		 * flexible enough to handle both cases.  To convert to masked
835		 * events all that's needed is to add an "all ones" umask_mask,
836		 * (unmasked filter events don't support EXCLUDE).
837		 */
838		filter->events[j++] = filter->events[i] |
839				      (0xFFULL << KVM_PMU_MASKED_ENTRY_UMASK_MASK_SHIFT);
840	}
841
842	filter->nevents = j;
843}
844
845static int prepare_filter_lists(struct kvm_x86_pmu_event_filter *filter)
846{
847	int i;
848
849	if (!(filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS))
850		convert_to_masked_filter(filter);
851	else if (!is_masked_filter_valid(filter))
852		return -EINVAL;
853
854	/*
855	 * Sort entries by event select and includes vs. excludes so that all
856	 * entries for a given event select can be processed efficiently during
857	 * filtering.  The EXCLUDE flag uses a more significant bit than the
858	 * event select, and so the sorted list is also effectively split into
859	 * includes and excludes sub-lists.
860	 */
861	sort(&filter->events, filter->nevents, sizeof(filter->events[0]),
862	     filter_sort_cmp, NULL);
863
864	i = filter->nevents;
865	/* Find the first EXCLUDE event (only supported for masked events). */
866	if (filter->flags & KVM_PMU_EVENT_FLAG_MASKED_EVENTS) {
867		for (i = 0; i < filter->nevents; i++) {
868			if (filter->events[i] & KVM_PMU_MASKED_ENTRY_EXCLUDE)
869				break;
870		}
871	}
872
873	filter->nr_includes = i;
874	filter->nr_excludes = filter->nevents - filter->nr_includes;
875	filter->includes = filter->events;
876	filter->excludes = filter->events + filter->nr_includes;
877
878	return 0;
879}
880
881int kvm_vm_ioctl_set_pmu_event_filter(struct kvm *kvm, void __user *argp)
882{
883	struct kvm_pmu_event_filter __user *user_filter = argp;
884	struct kvm_x86_pmu_event_filter *filter;
885	struct kvm_pmu_event_filter tmp;
886	struct kvm_vcpu *vcpu;
887	unsigned long i;
888	size_t size;
889	int r;
890
891	if (copy_from_user(&tmp, user_filter, sizeof(tmp)))
892		return -EFAULT;
893
894	if (tmp.action != KVM_PMU_EVENT_ALLOW &&
895	    tmp.action != KVM_PMU_EVENT_DENY)
896		return -EINVAL;
897
898	if (tmp.flags & ~KVM_PMU_EVENT_FLAGS_VALID_MASK)
899		return -EINVAL;
900
901	if (tmp.nevents > KVM_PMU_EVENT_FILTER_MAX_EVENTS)
902		return -E2BIG;
903
904	size = struct_size(filter, events, tmp.nevents);
905	filter = kzalloc(size, GFP_KERNEL_ACCOUNT);
906	if (!filter)
907		return -ENOMEM;
908
909	filter->action = tmp.action;
910	filter->nevents = tmp.nevents;
911	filter->fixed_counter_bitmap = tmp.fixed_counter_bitmap;
912	filter->flags = tmp.flags;
913
914	r = -EFAULT;
915	if (copy_from_user(filter->events, user_filter->events,
916			   sizeof(filter->events[0]) * filter->nevents))
917		goto cleanup;
918
919	r = prepare_filter_lists(filter);
920	if (r)
921		goto cleanup;
922
923	mutex_lock(&kvm->lock);
924	filter = rcu_replace_pointer(kvm->arch.pmu_event_filter, filter,
925				     mutex_is_locked(&kvm->lock));
926	mutex_unlock(&kvm->lock);
927	synchronize_srcu_expedited(&kvm->srcu);
928
929	BUILD_BUG_ON(sizeof(((struct kvm_pmu *)0)->reprogram_pmi) >
930		     sizeof(((struct kvm_pmu *)0)->__reprogram_pmi));
931
932	kvm_for_each_vcpu(i, vcpu, kvm)
933		atomic64_set(&vcpu_to_pmu(vcpu)->__reprogram_pmi, -1ull);
934
935	kvm_make_all_cpus_request(kvm, KVM_REQ_PMU);
936
937	r = 0;
938cleanup:
939	kfree(filter);
940	return r;
941}
942