xref: /kernel/linux/linux-6.6/arch/x86/kvm/mmu/tdp_mmu.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4#include "mmu.h"
5#include "mmu_internal.h"
6#include "mmutrace.h"
7#include "tdp_iter.h"
8#include "tdp_mmu.h"
9#include "spte.h"
10
11#include <asm/cmpxchg.h>
12#include <trace/events/kvm.h>
13
14/* Initializes the TDP MMU for the VM, if enabled. */
15void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
16{
17	INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
18	spin_lock_init(&kvm->arch.tdp_mmu_pages_lock);
19}
20
21/* Arbitrarily returns true so that this may be used in if statements. */
22static __always_inline bool kvm_lockdep_assert_mmu_lock_held(struct kvm *kvm,
23							     bool shared)
24{
25	if (shared)
26		lockdep_assert_held_read(&kvm->mmu_lock);
27	else
28		lockdep_assert_held_write(&kvm->mmu_lock);
29
30	return true;
31}
32
33void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
34{
35	/*
36	 * Invalidate all roots, which besides the obvious, schedules all roots
37	 * for zapping and thus puts the TDP MMU's reference to each root, i.e.
38	 * ultimately frees all roots.
39	 */
40	kvm_tdp_mmu_invalidate_all_roots(kvm);
41	kvm_tdp_mmu_zap_invalidated_roots(kvm);
42
43	WARN_ON(atomic64_read(&kvm->arch.tdp_mmu_pages));
44	WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
45
46	/*
47	 * Ensure that all the outstanding RCU callbacks to free shadow pages
48	 * can run before the VM is torn down.  Putting the last reference to
49	 * zapped roots will create new callbacks.
50	 */
51	rcu_barrier();
52}
53
54static void tdp_mmu_free_sp(struct kvm_mmu_page *sp)
55{
56	free_page((unsigned long)sp->spt);
57	kmem_cache_free(mmu_page_header_cache, sp);
58}
59
60/*
61 * This is called through call_rcu in order to free TDP page table memory
62 * safely with respect to other kernel threads that may be operating on
63 * the memory.
64 * By only accessing TDP MMU page table memory in an RCU read critical
65 * section, and freeing it after a grace period, lockless access to that
66 * memory won't use it after it is freed.
67 */
68static void tdp_mmu_free_sp_rcu_callback(struct rcu_head *head)
69{
70	struct kvm_mmu_page *sp = container_of(head, struct kvm_mmu_page,
71					       rcu_head);
72
73	tdp_mmu_free_sp(sp);
74}
75
76void kvm_tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root,
77			  bool shared)
78{
79	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
80
81	if (!refcount_dec_and_test(&root->tdp_mmu_root_count))
82		return;
83
84	/*
85	 * The TDP MMU itself holds a reference to each root until the root is
86	 * explicitly invalidated, i.e. the final reference should be never be
87	 * put for a valid root.
88	 */
89	KVM_BUG_ON(!is_tdp_mmu_page(root) || !root->role.invalid, kvm);
90
91	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
92	list_del_rcu(&root->link);
93	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
94	call_rcu(&root->rcu_head, tdp_mmu_free_sp_rcu_callback);
95}
96
97/*
98 * Returns the next root after @prev_root (or the first root if @prev_root is
99 * NULL).  A reference to the returned root is acquired, and the reference to
100 * @prev_root is released (the caller obviously must hold a reference to
101 * @prev_root if it's non-NULL).
102 *
103 * If @only_valid is true, invalid roots are skipped.
104 *
105 * Returns NULL if the end of tdp_mmu_roots was reached.
106 */
107static struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
108					      struct kvm_mmu_page *prev_root,
109					      bool shared, bool only_valid)
110{
111	struct kvm_mmu_page *next_root;
112
113	rcu_read_lock();
114
115	if (prev_root)
116		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
117						  &prev_root->link,
118						  typeof(*prev_root), link);
119	else
120		next_root = list_first_or_null_rcu(&kvm->arch.tdp_mmu_roots,
121						   typeof(*next_root), link);
122
123	while (next_root) {
124		if ((!only_valid || !next_root->role.invalid) &&
125		    kvm_tdp_mmu_get_root(next_root))
126			break;
127
128		next_root = list_next_or_null_rcu(&kvm->arch.tdp_mmu_roots,
129				&next_root->link, typeof(*next_root), link);
130	}
131
132	rcu_read_unlock();
133
134	if (prev_root)
135		kvm_tdp_mmu_put_root(kvm, prev_root, shared);
136
137	return next_root;
138}
139
140/*
141 * Note: this iterator gets and puts references to the roots it iterates over.
142 * This makes it safe to release the MMU lock and yield within the loop, but
143 * if exiting the loop early, the caller must drop the reference to the most
144 * recent root. (Unless keeping a live reference is desirable.)
145 *
146 * If shared is set, this function is operating under the MMU lock in read
147 * mode. In the unlikely event that this thread must free a root, the lock
148 * will be temporarily dropped and reacquired in write mode.
149 */
150#define __for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, _only_valid)\
151	for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, _only_valid);	\
152	     _root;								\
153	     _root = tdp_mmu_next_root(_kvm, _root, _shared, _only_valid))	\
154		if (kvm_lockdep_assert_mmu_lock_held(_kvm, _shared) &&		\
155		    kvm_mmu_page_as_id(_root) != _as_id) {			\
156		} else
157
158#define for_each_valid_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared)	\
159	__for_each_tdp_mmu_root_yield_safe(_kvm, _root, _as_id, _shared, true)
160
161#define for_each_tdp_mmu_root_yield_safe(_kvm, _root, _shared)			\
162	for (_root = tdp_mmu_next_root(_kvm, NULL, _shared, false);		\
163	     _root;								\
164	     _root = tdp_mmu_next_root(_kvm, _root, _shared, false))		\
165		if (!kvm_lockdep_assert_mmu_lock_held(_kvm, _shared)) {		\
166		} else
167
168/*
169 * Iterate over all TDP MMU roots.  Requires that mmu_lock be held for write,
170 * the implication being that any flow that holds mmu_lock for read is
171 * inherently yield-friendly and should use the yield-safe variant above.
172 * Holding mmu_lock for write obviates the need for RCU protection as the list
173 * is guaranteed to be stable.
174 */
175#define for_each_tdp_mmu_root(_kvm, _root, _as_id)			\
176	list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)	\
177		if (kvm_lockdep_assert_mmu_lock_held(_kvm, false) &&	\
178		    kvm_mmu_page_as_id(_root) != _as_id) {		\
179		} else
180
181static struct kvm_mmu_page *tdp_mmu_alloc_sp(struct kvm_vcpu *vcpu)
182{
183	struct kvm_mmu_page *sp;
184
185	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
186	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
187
188	return sp;
189}
190
191static void tdp_mmu_init_sp(struct kvm_mmu_page *sp, tdp_ptep_t sptep,
192			    gfn_t gfn, union kvm_mmu_page_role role)
193{
194	INIT_LIST_HEAD(&sp->possible_nx_huge_page_link);
195
196	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
197
198	sp->role = role;
199	sp->gfn = gfn;
200	sp->ptep = sptep;
201	sp->tdp_mmu_page = true;
202
203	trace_kvm_mmu_get_page(sp, true);
204}
205
206static void tdp_mmu_init_child_sp(struct kvm_mmu_page *child_sp,
207				  struct tdp_iter *iter)
208{
209	struct kvm_mmu_page *parent_sp;
210	union kvm_mmu_page_role role;
211
212	parent_sp = sptep_to_sp(rcu_dereference(iter->sptep));
213
214	role = parent_sp->role;
215	role.level--;
216
217	tdp_mmu_init_sp(child_sp, iter->sptep, iter->gfn, role);
218}
219
220hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
221{
222	union kvm_mmu_page_role role = vcpu->arch.mmu->root_role;
223	struct kvm *kvm = vcpu->kvm;
224	struct kvm_mmu_page *root;
225
226	lockdep_assert_held_write(&kvm->mmu_lock);
227
228	/*
229	 * Check for an existing root before allocating a new one.  Note, the
230	 * role check prevents consuming an invalid root.
231	 */
232	for_each_tdp_mmu_root(kvm, root, kvm_mmu_role_as_id(role)) {
233		if (root->role.word == role.word &&
234		    kvm_tdp_mmu_get_root(root))
235			goto out;
236	}
237
238	root = tdp_mmu_alloc_sp(vcpu);
239	tdp_mmu_init_sp(root, NULL, 0, role);
240
241	/*
242	 * TDP MMU roots are kept until they are explicitly invalidated, either
243	 * by a memslot update or by the destruction of the VM.  Initialize the
244	 * refcount to two; one reference for the vCPU, and one reference for
245	 * the TDP MMU itself, which is held until the root is invalidated and
246	 * is ultimately put by kvm_tdp_mmu_zap_invalidated_roots().
247	 */
248	refcount_set(&root->tdp_mmu_root_count, 2);
249
250	spin_lock(&kvm->arch.tdp_mmu_pages_lock);
251	list_add_rcu(&root->link, &kvm->arch.tdp_mmu_roots);
252	spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
253
254out:
255	return __pa(root->spt);
256}
257
258static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
259				u64 old_spte, u64 new_spte, int level,
260				bool shared);
261
262static void tdp_account_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
263{
264	kvm_account_pgtable_pages((void *)sp->spt, +1);
265	atomic64_inc(&kvm->arch.tdp_mmu_pages);
266}
267
268static void tdp_unaccount_mmu_page(struct kvm *kvm, struct kvm_mmu_page *sp)
269{
270	kvm_account_pgtable_pages((void *)sp->spt, -1);
271	atomic64_dec(&kvm->arch.tdp_mmu_pages);
272}
273
274/**
275 * tdp_mmu_unlink_sp() - Remove a shadow page from the list of used pages
276 *
277 * @kvm: kvm instance
278 * @sp: the page to be removed
279 * @shared: This operation may not be running under the exclusive use of
280 *	    the MMU lock and the operation must synchronize with other
281 *	    threads that might be adding or removing pages.
282 */
283static void tdp_mmu_unlink_sp(struct kvm *kvm, struct kvm_mmu_page *sp,
284			      bool shared)
285{
286	tdp_unaccount_mmu_page(kvm, sp);
287
288	if (!sp->nx_huge_page_disallowed)
289		return;
290
291	if (shared)
292		spin_lock(&kvm->arch.tdp_mmu_pages_lock);
293	else
294		lockdep_assert_held_write(&kvm->mmu_lock);
295
296	sp->nx_huge_page_disallowed = false;
297	untrack_possible_nx_huge_page(kvm, sp);
298
299	if (shared)
300		spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
301}
302
303/**
304 * handle_removed_pt() - handle a page table removed from the TDP structure
305 *
306 * @kvm: kvm instance
307 * @pt: the page removed from the paging structure
308 * @shared: This operation may not be running under the exclusive use
309 *	    of the MMU lock and the operation must synchronize with other
310 *	    threads that might be modifying SPTEs.
311 *
312 * Given a page table that has been removed from the TDP paging structure,
313 * iterates through the page table to clear SPTEs and free child page tables.
314 *
315 * Note that pt is passed in as a tdp_ptep_t, but it does not need RCU
316 * protection. Since this thread removed it from the paging structure,
317 * this thread will be responsible for ensuring the page is freed. Hence the
318 * early rcu_dereferences in the function.
319 */
320static void handle_removed_pt(struct kvm *kvm, tdp_ptep_t pt, bool shared)
321{
322	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(pt));
323	int level = sp->role.level;
324	gfn_t base_gfn = sp->gfn;
325	int i;
326
327	trace_kvm_mmu_prepare_zap_page(sp);
328
329	tdp_mmu_unlink_sp(kvm, sp, shared);
330
331	for (i = 0; i < SPTE_ENT_PER_PAGE; i++) {
332		tdp_ptep_t sptep = pt + i;
333		gfn_t gfn = base_gfn + i * KVM_PAGES_PER_HPAGE(level);
334		u64 old_spte;
335
336		if (shared) {
337			/*
338			 * Set the SPTE to a nonpresent value that other
339			 * threads will not overwrite. If the SPTE was
340			 * already marked as removed then another thread
341			 * handling a page fault could overwrite it, so
342			 * set the SPTE until it is set from some other
343			 * value to the removed SPTE value.
344			 */
345			for (;;) {
346				old_spte = kvm_tdp_mmu_write_spte_atomic(sptep, REMOVED_SPTE);
347				if (!is_removed_spte(old_spte))
348					break;
349				cpu_relax();
350			}
351		} else {
352			/*
353			 * If the SPTE is not MMU-present, there is no backing
354			 * page associated with the SPTE and so no side effects
355			 * that need to be recorded, and exclusive ownership of
356			 * mmu_lock ensures the SPTE can't be made present.
357			 * Note, zapping MMIO SPTEs is also unnecessary as they
358			 * are guarded by the memslots generation, not by being
359			 * unreachable.
360			 */
361			old_spte = kvm_tdp_mmu_read_spte(sptep);
362			if (!is_shadow_present_pte(old_spte))
363				continue;
364
365			/*
366			 * Use the common helper instead of a raw WRITE_ONCE as
367			 * the SPTE needs to be updated atomically if it can be
368			 * modified by a different vCPU outside of mmu_lock.
369			 * Even though the parent SPTE is !PRESENT, the TLB
370			 * hasn't yet been flushed, and both Intel and AMD
371			 * document that A/D assists can use upper-level PxE
372			 * entries that are cached in the TLB, i.e. the CPU can
373			 * still access the page and mark it dirty.
374			 *
375			 * No retry is needed in the atomic update path as the
376			 * sole concern is dropping a Dirty bit, i.e. no other
377			 * task can zap/remove the SPTE as mmu_lock is held for
378			 * write.  Marking the SPTE as a removed SPTE is not
379			 * strictly necessary for the same reason, but using
380			 * the remove SPTE value keeps the shared/exclusive
381			 * paths consistent and allows the handle_changed_spte()
382			 * call below to hardcode the new value to REMOVED_SPTE.
383			 *
384			 * Note, even though dropping a Dirty bit is the only
385			 * scenario where a non-atomic update could result in a
386			 * functional bug, simply checking the Dirty bit isn't
387			 * sufficient as a fast page fault could read the upper
388			 * level SPTE before it is zapped, and then make this
389			 * target SPTE writable, resume the guest, and set the
390			 * Dirty bit between reading the SPTE above and writing
391			 * it here.
392			 */
393			old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte,
394							  REMOVED_SPTE, level);
395		}
396		handle_changed_spte(kvm, kvm_mmu_page_as_id(sp), gfn,
397				    old_spte, REMOVED_SPTE, level, shared);
398	}
399
400	call_rcu(&sp->rcu_head, tdp_mmu_free_sp_rcu_callback);
401}
402
403/**
404 * handle_changed_spte - handle bookkeeping associated with an SPTE change
405 * @kvm: kvm instance
406 * @as_id: the address space of the paging structure the SPTE was a part of
407 * @gfn: the base GFN that was mapped by the SPTE
408 * @old_spte: The value of the SPTE before the change
409 * @new_spte: The value of the SPTE after the change
410 * @level: the level of the PT the SPTE is part of in the paging structure
411 * @shared: This operation may not be running under the exclusive use of
412 *	    the MMU lock and the operation must synchronize with other
413 *	    threads that might be modifying SPTEs.
414 *
415 * Handle bookkeeping that might result from the modification of a SPTE.  Note,
416 * dirty logging updates are handled in common code, not here (see make_spte()
417 * and fast_pf_fix_direct_spte()).
418 */
419static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
420				u64 old_spte, u64 new_spte, int level,
421				bool shared)
422{
423	bool was_present = is_shadow_present_pte(old_spte);
424	bool is_present = is_shadow_present_pte(new_spte);
425	bool was_leaf = was_present && is_last_spte(old_spte, level);
426	bool is_leaf = is_present && is_last_spte(new_spte, level);
427	bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
428
429	WARN_ON_ONCE(level > PT64_ROOT_MAX_LEVEL);
430	WARN_ON_ONCE(level < PG_LEVEL_4K);
431	WARN_ON_ONCE(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
432
433	/*
434	 * If this warning were to trigger it would indicate that there was a
435	 * missing MMU notifier or a race with some notifier handler.
436	 * A present, leaf SPTE should never be directly replaced with another
437	 * present leaf SPTE pointing to a different PFN. A notifier handler
438	 * should be zapping the SPTE before the main MM's page table is
439	 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
440	 * thread before replacement.
441	 */
442	if (was_leaf && is_leaf && pfn_changed) {
443		pr_err("Invalid SPTE change: cannot replace a present leaf\n"
444		       "SPTE with another present leaf SPTE mapping a\n"
445		       "different PFN!\n"
446		       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
447		       as_id, gfn, old_spte, new_spte, level);
448
449		/*
450		 * Crash the host to prevent error propagation and guest data
451		 * corruption.
452		 */
453		BUG();
454	}
455
456	if (old_spte == new_spte)
457		return;
458
459	trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
460
461	if (is_leaf)
462		check_spte_writable_invariants(new_spte);
463
464	/*
465	 * The only times a SPTE should be changed from a non-present to
466	 * non-present state is when an MMIO entry is installed/modified/
467	 * removed. In that case, there is nothing to do here.
468	 */
469	if (!was_present && !is_present) {
470		/*
471		 * If this change does not involve a MMIO SPTE or removed SPTE,
472		 * it is unexpected. Log the change, though it should not
473		 * impact the guest since both the former and current SPTEs
474		 * are nonpresent.
475		 */
476		if (WARN_ON_ONCE(!is_mmio_spte(old_spte) &&
477				 !is_mmio_spte(new_spte) &&
478				 !is_removed_spte(new_spte)))
479			pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
480			       "should not be replaced with another,\n"
481			       "different nonpresent SPTE, unless one or both\n"
482			       "are MMIO SPTEs, or the new SPTE is\n"
483			       "a temporary removed SPTE.\n"
484			       "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
485			       as_id, gfn, old_spte, new_spte, level);
486		return;
487	}
488
489	if (is_leaf != was_leaf)
490		kvm_update_page_stats(kvm, level, is_leaf ? 1 : -1);
491
492	if (was_leaf && is_dirty_spte(old_spte) &&
493	    (!is_present || !is_dirty_spte(new_spte) || pfn_changed))
494		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
495
496	/*
497	 * Recursively handle child PTs if the change removed a subtree from
498	 * the paging structure.  Note the WARN on the PFN changing without the
499	 * SPTE being converted to a hugepage (leaf) or being zapped.  Shadow
500	 * pages are kernel allocations and should never be migrated.
501	 */
502	if (was_present && !was_leaf &&
503	    (is_leaf || !is_present || WARN_ON_ONCE(pfn_changed)))
504		handle_removed_pt(kvm, spte_to_child_pt(old_spte, level), shared);
505
506	if (was_leaf && is_accessed_spte(old_spte) &&
507	    (!is_present || !is_accessed_spte(new_spte) || pfn_changed))
508		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
509}
510
511/*
512 * tdp_mmu_set_spte_atomic - Set a TDP MMU SPTE atomically
513 * and handle the associated bookkeeping.  Do not mark the page dirty
514 * in KVM's dirty bitmaps.
515 *
516 * If setting the SPTE fails because it has changed, iter->old_spte will be
517 * refreshed to the current value of the spte.
518 *
519 * @kvm: kvm instance
520 * @iter: a tdp_iter instance currently on the SPTE that should be set
521 * @new_spte: The value the SPTE should be set to
522 * Return:
523 * * 0      - If the SPTE was set.
524 * * -EBUSY - If the SPTE cannot be set. In this case this function will have
525 *            no side-effects other than setting iter->old_spte to the last
526 *            known value of the spte.
527 */
528static inline int tdp_mmu_set_spte_atomic(struct kvm *kvm,
529					  struct tdp_iter *iter,
530					  u64 new_spte)
531{
532	u64 *sptep = rcu_dereference(iter->sptep);
533
534	/*
535	 * The caller is responsible for ensuring the old SPTE is not a REMOVED
536	 * SPTE.  KVM should never attempt to zap or manipulate a REMOVED SPTE,
537	 * and pre-checking before inserting a new SPTE is advantageous as it
538	 * avoids unnecessary work.
539	 */
540	WARN_ON_ONCE(iter->yielded || is_removed_spte(iter->old_spte));
541
542	lockdep_assert_held_read(&kvm->mmu_lock);
543
544	/*
545	 * Note, fast_pf_fix_direct_spte() can also modify TDP MMU SPTEs and
546	 * does not hold the mmu_lock.  On failure, i.e. if a different logical
547	 * CPU modified the SPTE, try_cmpxchg64() updates iter->old_spte with
548	 * the current value, so the caller operates on fresh data, e.g. if it
549	 * retries tdp_mmu_set_spte_atomic()
550	 */
551	if (!try_cmpxchg64(sptep, &iter->old_spte, new_spte))
552		return -EBUSY;
553
554	handle_changed_spte(kvm, iter->as_id, iter->gfn, iter->old_spte,
555			    new_spte, iter->level, true);
556
557	return 0;
558}
559
560static inline int tdp_mmu_zap_spte_atomic(struct kvm *kvm,
561					  struct tdp_iter *iter)
562{
563	int ret;
564
565	/*
566	 * Freeze the SPTE by setting it to a special,
567	 * non-present value. This will stop other threads from
568	 * immediately installing a present entry in its place
569	 * before the TLBs are flushed.
570	 */
571	ret = tdp_mmu_set_spte_atomic(kvm, iter, REMOVED_SPTE);
572	if (ret)
573		return ret;
574
575	kvm_flush_remote_tlbs_gfn(kvm, iter->gfn, iter->level);
576
577	/*
578	 * No other thread can overwrite the removed SPTE as they must either
579	 * wait on the MMU lock or use tdp_mmu_set_spte_atomic() which will not
580	 * overwrite the special removed SPTE value. No bookkeeping is needed
581	 * here since the SPTE is going from non-present to non-present.  Use
582	 * the raw write helper to avoid an unnecessary check on volatile bits.
583	 */
584	__kvm_tdp_mmu_write_spte(iter->sptep, 0);
585
586	return 0;
587}
588
589
590/*
591 * tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
592 * @kvm:	      KVM instance
593 * @as_id:	      Address space ID, i.e. regular vs. SMM
594 * @sptep:	      Pointer to the SPTE
595 * @old_spte:	      The current value of the SPTE
596 * @new_spte:	      The new value that will be set for the SPTE
597 * @gfn:	      The base GFN that was (or will be) mapped by the SPTE
598 * @level:	      The level _containing_ the SPTE (its parent PT's level)
599 *
600 * Returns the old SPTE value, which _may_ be different than @old_spte if the
601 * SPTE had voldatile bits.
602 */
603static u64 tdp_mmu_set_spte(struct kvm *kvm, int as_id, tdp_ptep_t sptep,
604			    u64 old_spte, u64 new_spte, gfn_t gfn, int level)
605{
606	lockdep_assert_held_write(&kvm->mmu_lock);
607
608	/*
609	 * No thread should be using this function to set SPTEs to or from the
610	 * temporary removed SPTE value.
611	 * If operating under the MMU lock in read mode, tdp_mmu_set_spte_atomic
612	 * should be used. If operating under the MMU lock in write mode, the
613	 * use of the removed SPTE should not be necessary.
614	 */
615	WARN_ON_ONCE(is_removed_spte(old_spte) || is_removed_spte(new_spte));
616
617	old_spte = kvm_tdp_mmu_write_spte(sptep, old_spte, new_spte, level);
618
619	handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level, false);
620	return old_spte;
621}
622
623static inline void tdp_mmu_iter_set_spte(struct kvm *kvm, struct tdp_iter *iter,
624					 u64 new_spte)
625{
626	WARN_ON_ONCE(iter->yielded);
627	iter->old_spte = tdp_mmu_set_spte(kvm, iter->as_id, iter->sptep,
628					  iter->old_spte, new_spte,
629					  iter->gfn, iter->level);
630}
631
632#define tdp_root_for_each_pte(_iter, _root, _start, _end) \
633	for_each_tdp_pte(_iter, _root, _start, _end)
634
635#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end)	\
636	tdp_root_for_each_pte(_iter, _root, _start, _end)		\
637		if (!is_shadow_present_pte(_iter.old_spte) ||		\
638		    !is_last_spte(_iter.old_spte, _iter.level))		\
639			continue;					\
640		else
641
642#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end)		\
643	for_each_tdp_pte(_iter, root_to_sp(_mmu->root.hpa), _start, _end)
644
645/*
646 * Yield if the MMU lock is contended or this thread needs to return control
647 * to the scheduler.
648 *
649 * If this function should yield and flush is set, it will perform a remote
650 * TLB flush before yielding.
651 *
652 * If this function yields, iter->yielded is set and the caller must skip to
653 * the next iteration, where tdp_iter_next() will reset the tdp_iter's walk
654 * over the paging structures to allow the iterator to continue its traversal
655 * from the paging structure root.
656 *
657 * Returns true if this function yielded.
658 */
659static inline bool __must_check tdp_mmu_iter_cond_resched(struct kvm *kvm,
660							  struct tdp_iter *iter,
661							  bool flush, bool shared)
662{
663	WARN_ON_ONCE(iter->yielded);
664
665	/* Ensure forward progress has been made before yielding. */
666	if (iter->next_last_level_gfn == iter->yielded_gfn)
667		return false;
668
669	if (need_resched() || rwlock_needbreak(&kvm->mmu_lock)) {
670		if (flush)
671			kvm_flush_remote_tlbs(kvm);
672
673		rcu_read_unlock();
674
675		if (shared)
676			cond_resched_rwlock_read(&kvm->mmu_lock);
677		else
678			cond_resched_rwlock_write(&kvm->mmu_lock);
679
680		rcu_read_lock();
681
682		WARN_ON_ONCE(iter->gfn > iter->next_last_level_gfn);
683
684		iter->yielded = true;
685	}
686
687	return iter->yielded;
688}
689
690static inline gfn_t tdp_mmu_max_gfn_exclusive(void)
691{
692	/*
693	 * Bound TDP MMU walks at host.MAXPHYADDR.  KVM disallows memslots with
694	 * a gpa range that would exceed the max gfn, and KVM does not create
695	 * MMIO SPTEs for "impossible" gfns, instead sending such accesses down
696	 * the slow emulation path every time.
697	 */
698	return kvm_mmu_max_gfn() + 1;
699}
700
701static void __tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
702			       bool shared, int zap_level)
703{
704	struct tdp_iter iter;
705
706	gfn_t end = tdp_mmu_max_gfn_exclusive();
707	gfn_t start = 0;
708
709	for_each_tdp_pte_min_level(iter, root, zap_level, start, end) {
710retry:
711		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
712			continue;
713
714		if (!is_shadow_present_pte(iter.old_spte))
715			continue;
716
717		if (iter.level > zap_level)
718			continue;
719
720		if (!shared)
721			tdp_mmu_iter_set_spte(kvm, &iter, 0);
722		else if (tdp_mmu_set_spte_atomic(kvm, &iter, 0))
723			goto retry;
724	}
725}
726
727static void tdp_mmu_zap_root(struct kvm *kvm, struct kvm_mmu_page *root,
728			     bool shared)
729{
730
731	/*
732	 * The root must have an elevated refcount so that it's reachable via
733	 * mmu_notifier callbacks, which allows this path to yield and drop
734	 * mmu_lock.  When handling an unmap/release mmu_notifier command, KVM
735	 * must drop all references to relevant pages prior to completing the
736	 * callback.  Dropping mmu_lock with an unreachable root would result
737	 * in zapping SPTEs after a relevant mmu_notifier callback completes
738	 * and lead to use-after-free as zapping a SPTE triggers "writeback" of
739	 * dirty accessed bits to the SPTE's associated struct page.
740	 */
741	WARN_ON_ONCE(!refcount_read(&root->tdp_mmu_root_count));
742
743	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
744
745	rcu_read_lock();
746
747	/*
748	 * To avoid RCU stalls due to recursively removing huge swaths of SPs,
749	 * split the zap into two passes.  On the first pass, zap at the 1gb
750	 * level, and then zap top-level SPs on the second pass.  "1gb" is not
751	 * arbitrary, as KVM must be able to zap a 1gb shadow page without
752	 * inducing a stall to allow in-place replacement with a 1gb hugepage.
753	 *
754	 * Because zapping a SP recurses on its children, stepping down to
755	 * PG_LEVEL_4K in the iterator itself is unnecessary.
756	 */
757	__tdp_mmu_zap_root(kvm, root, shared, PG_LEVEL_1G);
758	__tdp_mmu_zap_root(kvm, root, shared, root->role.level);
759
760	rcu_read_unlock();
761}
762
763bool kvm_tdp_mmu_zap_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
764{
765	u64 old_spte;
766
767	/*
768	 * This helper intentionally doesn't allow zapping a root shadow page,
769	 * which doesn't have a parent page table and thus no associated entry.
770	 */
771	if (WARN_ON_ONCE(!sp->ptep))
772		return false;
773
774	old_spte = kvm_tdp_mmu_read_spte(sp->ptep);
775	if (WARN_ON_ONCE(!is_shadow_present_pte(old_spte)))
776		return false;
777
778	tdp_mmu_set_spte(kvm, kvm_mmu_page_as_id(sp), sp->ptep, old_spte, 0,
779			 sp->gfn, sp->role.level + 1);
780
781	return true;
782}
783
784/*
785 * If can_yield is true, will release the MMU lock and reschedule if the
786 * scheduler needs the CPU or there is contention on the MMU lock. If this
787 * function cannot yield, it will not release the MMU lock or reschedule and
788 * the caller must ensure it does not supply too large a GFN range, or the
789 * operation can cause a soft lockup.
790 */
791static bool tdp_mmu_zap_leafs(struct kvm *kvm, struct kvm_mmu_page *root,
792			      gfn_t start, gfn_t end, bool can_yield, bool flush)
793{
794	struct tdp_iter iter;
795
796	end = min(end, tdp_mmu_max_gfn_exclusive());
797
798	lockdep_assert_held_write(&kvm->mmu_lock);
799
800	rcu_read_lock();
801
802	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_4K, start, end) {
803		if (can_yield &&
804		    tdp_mmu_iter_cond_resched(kvm, &iter, flush, false)) {
805			flush = false;
806			continue;
807		}
808
809		if (!is_shadow_present_pte(iter.old_spte) ||
810		    !is_last_spte(iter.old_spte, iter.level))
811			continue;
812
813		tdp_mmu_iter_set_spte(kvm, &iter, 0);
814		flush = true;
815	}
816
817	rcu_read_unlock();
818
819	/*
820	 * Because this flow zaps _only_ leaf SPTEs, the caller doesn't need
821	 * to provide RCU protection as no 'struct kvm_mmu_page' will be freed.
822	 */
823	return flush;
824}
825
826/*
827 * Zap leaf SPTEs for the range of gfns, [start, end), for all roots. Returns
828 * true if a TLB flush is needed before releasing the MMU lock, i.e. if one or
829 * more SPTEs were zapped since the MMU lock was last acquired.
830 */
831bool kvm_tdp_mmu_zap_leafs(struct kvm *kvm, gfn_t start, gfn_t end, bool flush)
832{
833	struct kvm_mmu_page *root;
834
835	for_each_tdp_mmu_root_yield_safe(kvm, root, false)
836		flush = tdp_mmu_zap_leafs(kvm, root, start, end, true, flush);
837
838	return flush;
839}
840
841void kvm_tdp_mmu_zap_all(struct kvm *kvm)
842{
843	struct kvm_mmu_page *root;
844
845	/*
846	 * Zap all roots, including invalid roots, as all SPTEs must be dropped
847	 * before returning to the caller.  Zap directly even if the root is
848	 * also being zapped by a worker.  Walking zapped top-level SPTEs isn't
849	 * all that expensive and mmu_lock is already held, which means the
850	 * worker has yielded, i.e. flushing the work instead of zapping here
851	 * isn't guaranteed to be any faster.
852	 *
853	 * A TLB flush is unnecessary, KVM zaps everything if and only the VM
854	 * is being destroyed or the userspace VMM has exited.  In both cases,
855	 * KVM_RUN is unreachable, i.e. no vCPUs will ever service the request.
856	 */
857	for_each_tdp_mmu_root_yield_safe(kvm, root, false)
858		tdp_mmu_zap_root(kvm, root, false);
859}
860
861/*
862 * Zap all invalidated roots to ensure all SPTEs are dropped before the "fast
863 * zap" completes.
864 */
865void kvm_tdp_mmu_zap_invalidated_roots(struct kvm *kvm)
866{
867	struct kvm_mmu_page *root;
868
869	read_lock(&kvm->mmu_lock);
870
871	for_each_tdp_mmu_root_yield_safe(kvm, root, true) {
872		if (!root->tdp_mmu_scheduled_root_to_zap)
873			continue;
874
875		root->tdp_mmu_scheduled_root_to_zap = false;
876		KVM_BUG_ON(!root->role.invalid, kvm);
877
878		/*
879		 * A TLB flush is not necessary as KVM performs a local TLB
880		 * flush when allocating a new root (see kvm_mmu_load()), and
881		 * when migrating a vCPU to a different pCPU.  Note, the local
882		 * TLB flush on reuse also invalidates paging-structure-cache
883		 * entries, i.e. TLB entries for intermediate paging structures,
884		 * that may be zapped, as such entries are associated with the
885		 * ASID on both VMX and SVM.
886		 */
887		tdp_mmu_zap_root(kvm, root, true);
888
889		/*
890		 * The referenced needs to be put *after* zapping the root, as
891		 * the root must be reachable by mmu_notifiers while it's being
892		 * zapped
893		 */
894		kvm_tdp_mmu_put_root(kvm, root, true);
895	}
896
897	read_unlock(&kvm->mmu_lock);
898}
899
900/*
901 * Mark each TDP MMU root as invalid to prevent vCPUs from reusing a root that
902 * is about to be zapped, e.g. in response to a memslots update.  The actual
903 * zapping is done separately so that it happens with mmu_lock with read,
904 * whereas invalidating roots must be done with mmu_lock held for write (unless
905 * the VM is being destroyed).
906 *
907 * Note, kvm_tdp_mmu_zap_invalidated_roots() is gifted the TDP MMU's reference.
908 * See kvm_tdp_mmu_get_vcpu_root_hpa().
909 */
910void kvm_tdp_mmu_invalidate_all_roots(struct kvm *kvm)
911{
912	struct kvm_mmu_page *root;
913
914	/*
915	 * mmu_lock must be held for write to ensure that a root doesn't become
916	 * invalid while there are active readers (invalidating a root while
917	 * there are active readers may or may not be problematic in practice,
918	 * but it's uncharted territory and not supported).
919	 *
920	 * Waive the assertion if there are no users of @kvm, i.e. the VM is
921	 * being destroyed after all references have been put, or if no vCPUs
922	 * have been created (which means there are no roots), i.e. the VM is
923	 * being destroyed in an error path of KVM_CREATE_VM.
924	 */
925	if (IS_ENABLED(CONFIG_PROVE_LOCKING) &&
926	    refcount_read(&kvm->users_count) && kvm->created_vcpus)
927		lockdep_assert_held_write(&kvm->mmu_lock);
928
929	/*
930	 * As above, mmu_lock isn't held when destroying the VM!  There can't
931	 * be other references to @kvm, i.e. nothing else can invalidate roots
932	 * or get/put references to roots.
933	 */
934	list_for_each_entry(root, &kvm->arch.tdp_mmu_roots, link) {
935		/*
936		 * Note, invalid roots can outlive a memslot update!  Invalid
937		 * roots must be *zapped* before the memslot update completes,
938		 * but a different task can acquire a reference and keep the
939		 * root alive after its been zapped.
940		 */
941		if (!root->role.invalid) {
942			root->tdp_mmu_scheduled_root_to_zap = true;
943			root->role.invalid = true;
944		}
945	}
946}
947
948/*
949 * Installs a last-level SPTE to handle a TDP page fault.
950 * (NPT/EPT violation/misconfiguration)
951 */
952static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu,
953					  struct kvm_page_fault *fault,
954					  struct tdp_iter *iter)
955{
956	struct kvm_mmu_page *sp = sptep_to_sp(rcu_dereference(iter->sptep));
957	u64 new_spte;
958	int ret = RET_PF_FIXED;
959	bool wrprot = false;
960
961	if (WARN_ON_ONCE(sp->role.level != fault->goal_level))
962		return RET_PF_RETRY;
963
964	if (unlikely(!fault->slot))
965		new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
966	else
967		wrprot = make_spte(vcpu, sp, fault->slot, ACC_ALL, iter->gfn,
968					 fault->pfn, iter->old_spte, fault->prefetch, true,
969					 fault->map_writable, &new_spte);
970
971	if (new_spte == iter->old_spte)
972		ret = RET_PF_SPURIOUS;
973	else if (tdp_mmu_set_spte_atomic(vcpu->kvm, iter, new_spte))
974		return RET_PF_RETRY;
975	else if (is_shadow_present_pte(iter->old_spte) &&
976		 !is_last_spte(iter->old_spte, iter->level))
977		kvm_flush_remote_tlbs_gfn(vcpu->kvm, iter->gfn, iter->level);
978
979	/*
980	 * If the page fault was caused by a write but the page is write
981	 * protected, emulation is needed. If the emulation was skipped,
982	 * the vCPU would have the same fault again.
983	 */
984	if (wrprot) {
985		if (fault->write)
986			ret = RET_PF_EMULATE;
987	}
988
989	/* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
990	if (unlikely(is_mmio_spte(new_spte))) {
991		vcpu->stat.pf_mmio_spte_created++;
992		trace_mark_mmio_spte(rcu_dereference(iter->sptep), iter->gfn,
993				     new_spte);
994		ret = RET_PF_EMULATE;
995	} else {
996		trace_kvm_mmu_set_spte(iter->level, iter->gfn,
997				       rcu_dereference(iter->sptep));
998	}
999
1000	return ret;
1001}
1002
1003/*
1004 * tdp_mmu_link_sp - Replace the given spte with an spte pointing to the
1005 * provided page table.
1006 *
1007 * @kvm: kvm instance
1008 * @iter: a tdp_iter instance currently on the SPTE that should be set
1009 * @sp: The new TDP page table to install.
1010 * @shared: This operation is running under the MMU lock in read mode.
1011 *
1012 * Returns: 0 if the new page table was installed. Non-0 if the page table
1013 *          could not be installed (e.g. the atomic compare-exchange failed).
1014 */
1015static int tdp_mmu_link_sp(struct kvm *kvm, struct tdp_iter *iter,
1016			   struct kvm_mmu_page *sp, bool shared)
1017{
1018	u64 spte = make_nonleaf_spte(sp->spt, !kvm_ad_enabled());
1019	int ret = 0;
1020
1021	if (shared) {
1022		ret = tdp_mmu_set_spte_atomic(kvm, iter, spte);
1023		if (ret)
1024			return ret;
1025	} else {
1026		tdp_mmu_iter_set_spte(kvm, iter, spte);
1027	}
1028
1029	tdp_account_mmu_page(kvm, sp);
1030
1031	return 0;
1032}
1033
1034static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1035				   struct kvm_mmu_page *sp, bool shared);
1036
1037/*
1038 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
1039 * page tables and SPTEs to translate the faulting guest physical address.
1040 */
1041int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault)
1042{
1043	struct kvm_mmu *mmu = vcpu->arch.mmu;
1044	struct kvm *kvm = vcpu->kvm;
1045	struct tdp_iter iter;
1046	struct kvm_mmu_page *sp;
1047	int ret = RET_PF_RETRY;
1048
1049	kvm_mmu_hugepage_adjust(vcpu, fault);
1050
1051	trace_kvm_mmu_spte_requested(fault);
1052
1053	rcu_read_lock();
1054
1055	tdp_mmu_for_each_pte(iter, mmu, fault->gfn, fault->gfn + 1) {
1056		int r;
1057
1058		if (fault->nx_huge_page_workaround_enabled)
1059			disallowed_hugepage_adjust(fault, iter.old_spte, iter.level);
1060
1061		/*
1062		 * If SPTE has been frozen by another thread, just give up and
1063		 * retry, avoiding unnecessary page table allocation and free.
1064		 */
1065		if (is_removed_spte(iter.old_spte))
1066			goto retry;
1067
1068		if (iter.level == fault->goal_level)
1069			goto map_target_level;
1070
1071		/* Step down into the lower level page table if it exists. */
1072		if (is_shadow_present_pte(iter.old_spte) &&
1073		    !is_large_pte(iter.old_spte))
1074			continue;
1075
1076		/*
1077		 * The SPTE is either non-present or points to a huge page that
1078		 * needs to be split.
1079		 */
1080		sp = tdp_mmu_alloc_sp(vcpu);
1081		tdp_mmu_init_child_sp(sp, &iter);
1082
1083		sp->nx_huge_page_disallowed = fault->huge_page_disallowed;
1084
1085		if (is_shadow_present_pte(iter.old_spte))
1086			r = tdp_mmu_split_huge_page(kvm, &iter, sp, true);
1087		else
1088			r = tdp_mmu_link_sp(kvm, &iter, sp, true);
1089
1090		/*
1091		 * Force the guest to retry if installing an upper level SPTE
1092		 * failed, e.g. because a different task modified the SPTE.
1093		 */
1094		if (r) {
1095			tdp_mmu_free_sp(sp);
1096			goto retry;
1097		}
1098
1099		if (fault->huge_page_disallowed &&
1100		    fault->req_level >= iter.level) {
1101			spin_lock(&kvm->arch.tdp_mmu_pages_lock);
1102			if (sp->nx_huge_page_disallowed)
1103				track_possible_nx_huge_page(kvm, sp);
1104			spin_unlock(&kvm->arch.tdp_mmu_pages_lock);
1105		}
1106	}
1107
1108	/*
1109	 * The walk aborted before reaching the target level, e.g. because the
1110	 * iterator detected an upper level SPTE was frozen during traversal.
1111	 */
1112	WARN_ON_ONCE(iter.level == fault->goal_level);
1113	goto retry;
1114
1115map_target_level:
1116	ret = tdp_mmu_map_handle_target_level(vcpu, fault, &iter);
1117
1118retry:
1119	rcu_read_unlock();
1120	return ret;
1121}
1122
1123bool kvm_tdp_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range,
1124				 bool flush)
1125{
1126	struct kvm_mmu_page *root;
1127
1128	__for_each_tdp_mmu_root_yield_safe(kvm, root, range->slot->as_id, false, false)
1129		flush = tdp_mmu_zap_leafs(kvm, root, range->start, range->end,
1130					  range->may_block, flush);
1131
1132	return flush;
1133}
1134
1135typedef bool (*tdp_handler_t)(struct kvm *kvm, struct tdp_iter *iter,
1136			      struct kvm_gfn_range *range);
1137
1138static __always_inline bool kvm_tdp_mmu_handle_gfn(struct kvm *kvm,
1139						   struct kvm_gfn_range *range,
1140						   tdp_handler_t handler)
1141{
1142	struct kvm_mmu_page *root;
1143	struct tdp_iter iter;
1144	bool ret = false;
1145
1146	/*
1147	 * Don't support rescheduling, none of the MMU notifiers that funnel
1148	 * into this helper allow blocking; it'd be dead, wasteful code.
1149	 */
1150	for_each_tdp_mmu_root(kvm, root, range->slot->as_id) {
1151		rcu_read_lock();
1152
1153		tdp_root_for_each_leaf_pte(iter, root, range->start, range->end)
1154			ret |= handler(kvm, &iter, range);
1155
1156		rcu_read_unlock();
1157	}
1158
1159	return ret;
1160}
1161
1162/*
1163 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
1164 * if any of the GFNs in the range have been accessed.
1165 *
1166 * No need to mark the corresponding PFN as accessed as this call is coming
1167 * from the clear_young() or clear_flush_young() notifier, which uses the
1168 * return value to determine if the page has been accessed.
1169 */
1170static bool age_gfn_range(struct kvm *kvm, struct tdp_iter *iter,
1171			  struct kvm_gfn_range *range)
1172{
1173	u64 new_spte;
1174
1175	/* If we have a non-accessed entry we don't need to change the pte. */
1176	if (!is_accessed_spte(iter->old_spte))
1177		return false;
1178
1179	if (spte_ad_enabled(iter->old_spte)) {
1180		iter->old_spte = tdp_mmu_clear_spte_bits(iter->sptep,
1181							 iter->old_spte,
1182							 shadow_accessed_mask,
1183							 iter->level);
1184		new_spte = iter->old_spte & ~shadow_accessed_mask;
1185	} else {
1186		/*
1187		 * Capture the dirty status of the page, so that it doesn't get
1188		 * lost when the SPTE is marked for access tracking.
1189		 */
1190		if (is_writable_pte(iter->old_spte))
1191			kvm_set_pfn_dirty(spte_to_pfn(iter->old_spte));
1192
1193		new_spte = mark_spte_for_access_track(iter->old_spte);
1194		iter->old_spte = kvm_tdp_mmu_write_spte(iter->sptep,
1195							iter->old_spte, new_spte,
1196							iter->level);
1197	}
1198
1199	trace_kvm_tdp_mmu_spte_changed(iter->as_id, iter->gfn, iter->level,
1200				       iter->old_spte, new_spte);
1201	return true;
1202}
1203
1204bool kvm_tdp_mmu_age_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
1205{
1206	return kvm_tdp_mmu_handle_gfn(kvm, range, age_gfn_range);
1207}
1208
1209static bool test_age_gfn(struct kvm *kvm, struct tdp_iter *iter,
1210			 struct kvm_gfn_range *range)
1211{
1212	return is_accessed_spte(iter->old_spte);
1213}
1214
1215bool kvm_tdp_mmu_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1216{
1217	return kvm_tdp_mmu_handle_gfn(kvm, range, test_age_gfn);
1218}
1219
1220static bool set_spte_gfn(struct kvm *kvm, struct tdp_iter *iter,
1221			 struct kvm_gfn_range *range)
1222{
1223	u64 new_spte;
1224
1225	/* Huge pages aren't expected to be modified without first being zapped. */
1226	WARN_ON_ONCE(pte_huge(range->arg.pte) || range->start + 1 != range->end);
1227
1228	if (iter->level != PG_LEVEL_4K ||
1229	    !is_shadow_present_pte(iter->old_spte))
1230		return false;
1231
1232	/*
1233	 * Note, when changing a read-only SPTE, it's not strictly necessary to
1234	 * zero the SPTE before setting the new PFN, but doing so preserves the
1235	 * invariant that the PFN of a present * leaf SPTE can never change.
1236	 * See handle_changed_spte().
1237	 */
1238	tdp_mmu_iter_set_spte(kvm, iter, 0);
1239
1240	if (!pte_write(range->arg.pte)) {
1241		new_spte = kvm_mmu_changed_pte_notifier_make_spte(iter->old_spte,
1242								  pte_pfn(range->arg.pte));
1243
1244		tdp_mmu_iter_set_spte(kvm, iter, new_spte);
1245	}
1246
1247	return true;
1248}
1249
1250/*
1251 * Handle the changed_pte MMU notifier for the TDP MMU.
1252 * data is a pointer to the new pte_t mapping the HVA specified by the MMU
1253 * notifier.
1254 * Returns non-zero if a flush is needed before releasing the MMU lock.
1255 */
1256bool kvm_tdp_mmu_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
1257{
1258	/*
1259	 * No need to handle the remote TLB flush under RCU protection, the
1260	 * target SPTE _must_ be a leaf SPTE, i.e. cannot result in freeing a
1261	 * shadow page. See the WARN on pfn_changed in handle_changed_spte().
1262	 */
1263	return kvm_tdp_mmu_handle_gfn(kvm, range, set_spte_gfn);
1264}
1265
1266/*
1267 * Remove write access from all SPTEs at or above min_level that map GFNs
1268 * [start, end). Returns true if an SPTE has been changed and the TLBs need to
1269 * be flushed.
1270 */
1271static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1272			     gfn_t start, gfn_t end, int min_level)
1273{
1274	struct tdp_iter iter;
1275	u64 new_spte;
1276	bool spte_set = false;
1277
1278	rcu_read_lock();
1279
1280	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1281
1282	for_each_tdp_pte_min_level(iter, root, min_level, start, end) {
1283retry:
1284		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1285			continue;
1286
1287		if (!is_shadow_present_pte(iter.old_spte) ||
1288		    !is_last_spte(iter.old_spte, iter.level) ||
1289		    !(iter.old_spte & PT_WRITABLE_MASK))
1290			continue;
1291
1292		new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
1293
1294		if (tdp_mmu_set_spte_atomic(kvm, &iter, new_spte))
1295			goto retry;
1296
1297		spte_set = true;
1298	}
1299
1300	rcu_read_unlock();
1301	return spte_set;
1302}
1303
1304/*
1305 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
1306 * only affect leaf SPTEs down to min_level.
1307 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1308 */
1309bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm,
1310			     const struct kvm_memory_slot *slot, int min_level)
1311{
1312	struct kvm_mmu_page *root;
1313	bool spte_set = false;
1314
1315	lockdep_assert_held_read(&kvm->mmu_lock);
1316
1317	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1318		spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
1319			     slot->base_gfn + slot->npages, min_level);
1320
1321	return spte_set;
1322}
1323
1324static struct kvm_mmu_page *__tdp_mmu_alloc_sp_for_split(gfp_t gfp)
1325{
1326	struct kvm_mmu_page *sp;
1327
1328	gfp |= __GFP_ZERO;
1329
1330	sp = kmem_cache_alloc(mmu_page_header_cache, gfp);
1331	if (!sp)
1332		return NULL;
1333
1334	sp->spt = (void *)__get_free_page(gfp);
1335	if (!sp->spt) {
1336		kmem_cache_free(mmu_page_header_cache, sp);
1337		return NULL;
1338	}
1339
1340	return sp;
1341}
1342
1343static struct kvm_mmu_page *tdp_mmu_alloc_sp_for_split(struct kvm *kvm,
1344						       struct tdp_iter *iter,
1345						       bool shared)
1346{
1347	struct kvm_mmu_page *sp;
1348
1349	/*
1350	 * Since we are allocating while under the MMU lock we have to be
1351	 * careful about GFP flags. Use GFP_NOWAIT to avoid blocking on direct
1352	 * reclaim and to avoid making any filesystem callbacks (which can end
1353	 * up invoking KVM MMU notifiers, resulting in a deadlock).
1354	 *
1355	 * If this allocation fails we drop the lock and retry with reclaim
1356	 * allowed.
1357	 */
1358	sp = __tdp_mmu_alloc_sp_for_split(GFP_NOWAIT | __GFP_ACCOUNT);
1359	if (sp)
1360		return sp;
1361
1362	rcu_read_unlock();
1363
1364	if (shared)
1365		read_unlock(&kvm->mmu_lock);
1366	else
1367		write_unlock(&kvm->mmu_lock);
1368
1369	iter->yielded = true;
1370	sp = __tdp_mmu_alloc_sp_for_split(GFP_KERNEL_ACCOUNT);
1371
1372	if (shared)
1373		read_lock(&kvm->mmu_lock);
1374	else
1375		write_lock(&kvm->mmu_lock);
1376
1377	rcu_read_lock();
1378
1379	return sp;
1380}
1381
1382/* Note, the caller is responsible for initializing @sp. */
1383static int tdp_mmu_split_huge_page(struct kvm *kvm, struct tdp_iter *iter,
1384				   struct kvm_mmu_page *sp, bool shared)
1385{
1386	const u64 huge_spte = iter->old_spte;
1387	const int level = iter->level;
1388	int ret, i;
1389
1390	/*
1391	 * No need for atomics when writing to sp->spt since the page table has
1392	 * not been linked in yet and thus is not reachable from any other CPU.
1393	 */
1394	for (i = 0; i < SPTE_ENT_PER_PAGE; i++)
1395		sp->spt[i] = make_huge_page_split_spte(kvm, huge_spte, sp->role, i);
1396
1397	/*
1398	 * Replace the huge spte with a pointer to the populated lower level
1399	 * page table. Since we are making this change without a TLB flush vCPUs
1400	 * will see a mix of the split mappings and the original huge mapping,
1401	 * depending on what's currently in their TLB. This is fine from a
1402	 * correctness standpoint since the translation will be the same either
1403	 * way.
1404	 */
1405	ret = tdp_mmu_link_sp(kvm, iter, sp, shared);
1406	if (ret)
1407		goto out;
1408
1409	/*
1410	 * tdp_mmu_link_sp_atomic() will handle subtracting the huge page we
1411	 * are overwriting from the page stats. But we have to manually update
1412	 * the page stats with the new present child pages.
1413	 */
1414	kvm_update_page_stats(kvm, level - 1, SPTE_ENT_PER_PAGE);
1415
1416out:
1417	trace_kvm_mmu_split_huge_page(iter->gfn, huge_spte, level, ret);
1418	return ret;
1419}
1420
1421static int tdp_mmu_split_huge_pages_root(struct kvm *kvm,
1422					 struct kvm_mmu_page *root,
1423					 gfn_t start, gfn_t end,
1424					 int target_level, bool shared)
1425{
1426	struct kvm_mmu_page *sp = NULL;
1427	struct tdp_iter iter;
1428	int ret = 0;
1429
1430	rcu_read_lock();
1431
1432	/*
1433	 * Traverse the page table splitting all huge pages above the target
1434	 * level into one lower level. For example, if we encounter a 1GB page
1435	 * we split it into 512 2MB pages.
1436	 *
1437	 * Since the TDP iterator uses a pre-order traversal, we are guaranteed
1438	 * to visit an SPTE before ever visiting its children, which means we
1439	 * will correctly recursively split huge pages that are more than one
1440	 * level above the target level (e.g. splitting a 1GB to 512 2MB pages,
1441	 * and then splitting each of those to 512 4KB pages).
1442	 */
1443	for_each_tdp_pte_min_level(iter, root, target_level + 1, start, end) {
1444retry:
1445		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, shared))
1446			continue;
1447
1448		if (!is_shadow_present_pte(iter.old_spte) || !is_large_pte(iter.old_spte))
1449			continue;
1450
1451		if (!sp) {
1452			sp = tdp_mmu_alloc_sp_for_split(kvm, &iter, shared);
1453			if (!sp) {
1454				ret = -ENOMEM;
1455				trace_kvm_mmu_split_huge_page(iter.gfn,
1456							      iter.old_spte,
1457							      iter.level, ret);
1458				break;
1459			}
1460
1461			if (iter.yielded)
1462				continue;
1463		}
1464
1465		tdp_mmu_init_child_sp(sp, &iter);
1466
1467		if (tdp_mmu_split_huge_page(kvm, &iter, sp, shared))
1468			goto retry;
1469
1470		sp = NULL;
1471	}
1472
1473	rcu_read_unlock();
1474
1475	/*
1476	 * It's possible to exit the loop having never used the last sp if, for
1477	 * example, a vCPU doing HugePage NX splitting wins the race and
1478	 * installs its own sp in place of the last sp we tried to split.
1479	 */
1480	if (sp)
1481		tdp_mmu_free_sp(sp);
1482
1483	return ret;
1484}
1485
1486
1487/*
1488 * Try to split all huge pages mapped by the TDP MMU down to the target level.
1489 */
1490void kvm_tdp_mmu_try_split_huge_pages(struct kvm *kvm,
1491				      const struct kvm_memory_slot *slot,
1492				      gfn_t start, gfn_t end,
1493				      int target_level, bool shared)
1494{
1495	struct kvm_mmu_page *root;
1496	int r = 0;
1497
1498	kvm_lockdep_assert_mmu_lock_held(kvm, shared);
1499
1500	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, shared) {
1501		r = tdp_mmu_split_huge_pages_root(kvm, root, start, end, target_level, shared);
1502		if (r) {
1503			kvm_tdp_mmu_put_root(kvm, root, shared);
1504			break;
1505		}
1506	}
1507}
1508
1509/*
1510 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1511 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1512 * If AD bits are not enabled, this will require clearing the writable bit on
1513 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1514 * be flushed.
1515 */
1516static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1517			   gfn_t start, gfn_t end)
1518{
1519	u64 dbit = kvm_ad_enabled() ? shadow_dirty_mask : PT_WRITABLE_MASK;
1520	struct tdp_iter iter;
1521	bool spte_set = false;
1522
1523	rcu_read_lock();
1524
1525	tdp_root_for_each_leaf_pte(iter, root, start, end) {
1526retry:
1527		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1528			continue;
1529
1530		if (!is_shadow_present_pte(iter.old_spte))
1531			continue;
1532
1533		KVM_MMU_WARN_ON(kvm_ad_enabled() &&
1534				spte_ad_need_write_protect(iter.old_spte));
1535
1536		if (!(iter.old_spte & dbit))
1537			continue;
1538
1539		if (tdp_mmu_set_spte_atomic(kvm, &iter, iter.old_spte & ~dbit))
1540			goto retry;
1541
1542		spte_set = true;
1543	}
1544
1545	rcu_read_unlock();
1546	return spte_set;
1547}
1548
1549/*
1550 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
1551 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
1552 * If AD bits are not enabled, this will require clearing the writable bit on
1553 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
1554 * be flushed.
1555 */
1556bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm,
1557				  const struct kvm_memory_slot *slot)
1558{
1559	struct kvm_mmu_page *root;
1560	bool spte_set = false;
1561
1562	lockdep_assert_held_read(&kvm->mmu_lock);
1563
1564	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1565		spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
1566				slot->base_gfn + slot->npages);
1567
1568	return spte_set;
1569}
1570
1571/*
1572 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1573 * set in mask, starting at gfn. The given memslot is expected to contain all
1574 * the GFNs represented by set bits in the mask. If AD bits are enabled,
1575 * clearing the dirty status will involve clearing the dirty bit on each SPTE
1576 * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1577 */
1578static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
1579				  gfn_t gfn, unsigned long mask, bool wrprot)
1580{
1581	u64 dbit = (wrprot || !kvm_ad_enabled()) ? PT_WRITABLE_MASK :
1582						   shadow_dirty_mask;
1583	struct tdp_iter iter;
1584
1585	lockdep_assert_held_write(&kvm->mmu_lock);
1586
1587	rcu_read_lock();
1588
1589	tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
1590				    gfn + BITS_PER_LONG) {
1591		if (!mask)
1592			break;
1593
1594		KVM_MMU_WARN_ON(kvm_ad_enabled() &&
1595				spte_ad_need_write_protect(iter.old_spte));
1596
1597		if (iter.level > PG_LEVEL_4K ||
1598		    !(mask & (1UL << (iter.gfn - gfn))))
1599			continue;
1600
1601		mask &= ~(1UL << (iter.gfn - gfn));
1602
1603		if (!(iter.old_spte & dbit))
1604			continue;
1605
1606		iter.old_spte = tdp_mmu_clear_spte_bits(iter.sptep,
1607							iter.old_spte, dbit,
1608							iter.level);
1609
1610		trace_kvm_tdp_mmu_spte_changed(iter.as_id, iter.gfn, iter.level,
1611					       iter.old_spte,
1612					       iter.old_spte & ~dbit);
1613		kvm_set_pfn_dirty(spte_to_pfn(iter.old_spte));
1614	}
1615
1616	rcu_read_unlock();
1617}
1618
1619/*
1620 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1621 * set in mask, starting at gfn. The given memslot is expected to contain all
1622 * the GFNs represented by set bits in the mask. If AD bits are enabled,
1623 * clearing the dirty status will involve clearing the dirty bit on each SPTE
1624 * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1625 */
1626void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1627				       struct kvm_memory_slot *slot,
1628				       gfn_t gfn, unsigned long mask,
1629				       bool wrprot)
1630{
1631	struct kvm_mmu_page *root;
1632
1633	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1634		clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1635}
1636
1637static void zap_collapsible_spte_range(struct kvm *kvm,
1638				       struct kvm_mmu_page *root,
1639				       const struct kvm_memory_slot *slot)
1640{
1641	gfn_t start = slot->base_gfn;
1642	gfn_t end = start + slot->npages;
1643	struct tdp_iter iter;
1644	int max_mapping_level;
1645
1646	rcu_read_lock();
1647
1648	for_each_tdp_pte_min_level(iter, root, PG_LEVEL_2M, start, end) {
1649retry:
1650		if (tdp_mmu_iter_cond_resched(kvm, &iter, false, true))
1651			continue;
1652
1653		if (iter.level > KVM_MAX_HUGEPAGE_LEVEL ||
1654		    !is_shadow_present_pte(iter.old_spte))
1655			continue;
1656
1657		/*
1658		 * Don't zap leaf SPTEs, if a leaf SPTE could be replaced with
1659		 * a large page size, then its parent would have been zapped
1660		 * instead of stepping down.
1661		 */
1662		if (is_last_spte(iter.old_spte, iter.level))
1663			continue;
1664
1665		/*
1666		 * If iter.gfn resides outside of the slot, i.e. the page for
1667		 * the current level overlaps but is not contained by the slot,
1668		 * then the SPTE can't be made huge.  More importantly, trying
1669		 * to query that info from slot->arch.lpage_info will cause an
1670		 * out-of-bounds access.
1671		 */
1672		if (iter.gfn < start || iter.gfn >= end)
1673			continue;
1674
1675		max_mapping_level = kvm_mmu_max_mapping_level(kvm, slot,
1676							      iter.gfn, PG_LEVEL_NUM);
1677		if (max_mapping_level < iter.level)
1678			continue;
1679
1680		/* Note, a successful atomic zap also does a remote TLB flush. */
1681		if (tdp_mmu_zap_spte_atomic(kvm, &iter))
1682			goto retry;
1683	}
1684
1685	rcu_read_unlock();
1686}
1687
1688/*
1689 * Zap non-leaf SPTEs (and free their associated page tables) which could
1690 * be replaced by huge pages, for GFNs within the slot.
1691 */
1692void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1693				       const struct kvm_memory_slot *slot)
1694{
1695	struct kvm_mmu_page *root;
1696
1697	lockdep_assert_held_read(&kvm->mmu_lock);
1698
1699	for_each_valid_tdp_mmu_root_yield_safe(kvm, root, slot->as_id, true)
1700		zap_collapsible_spte_range(kvm, root, slot);
1701}
1702
1703/*
1704 * Removes write access on the last level SPTE mapping this GFN and unsets the
1705 * MMU-writable bit to ensure future writes continue to be intercepted.
1706 * Returns true if an SPTE was set and a TLB flush is needed.
1707 */
1708static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1709			      gfn_t gfn, int min_level)
1710{
1711	struct tdp_iter iter;
1712	u64 new_spte;
1713	bool spte_set = false;
1714
1715	BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
1716
1717	rcu_read_lock();
1718
1719	for_each_tdp_pte_min_level(iter, root, min_level, gfn, gfn + 1) {
1720		if (!is_shadow_present_pte(iter.old_spte) ||
1721		    !is_last_spte(iter.old_spte, iter.level))
1722			continue;
1723
1724		new_spte = iter.old_spte &
1725			~(PT_WRITABLE_MASK | shadow_mmu_writable_mask);
1726
1727		if (new_spte == iter.old_spte)
1728			break;
1729
1730		tdp_mmu_iter_set_spte(kvm, &iter, new_spte);
1731		spte_set = true;
1732	}
1733
1734	rcu_read_unlock();
1735
1736	return spte_set;
1737}
1738
1739/*
1740 * Removes write access on the last level SPTE mapping this GFN and unsets the
1741 * MMU-writable bit to ensure future writes continue to be intercepted.
1742 * Returns true if an SPTE was set and a TLB flush is needed.
1743 */
1744bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1745				   struct kvm_memory_slot *slot, gfn_t gfn,
1746				   int min_level)
1747{
1748	struct kvm_mmu_page *root;
1749	bool spte_set = false;
1750
1751	lockdep_assert_held_write(&kvm->mmu_lock);
1752	for_each_tdp_mmu_root(kvm, root, slot->as_id)
1753		spte_set |= write_protect_gfn(kvm, root, gfn, min_level);
1754
1755	return spte_set;
1756}
1757
1758/*
1759 * Return the level of the lowest level SPTE added to sptes.
1760 * That SPTE may be non-present.
1761 *
1762 * Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1763 */
1764int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1765			 int *root_level)
1766{
1767	struct tdp_iter iter;
1768	struct kvm_mmu *mmu = vcpu->arch.mmu;
1769	gfn_t gfn = addr >> PAGE_SHIFT;
1770	int leaf = -1;
1771
1772	*root_level = vcpu->arch.mmu->root_role.level;
1773
1774	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1775		leaf = iter.level;
1776		sptes[leaf] = iter.old_spte;
1777	}
1778
1779	return leaf;
1780}
1781
1782/*
1783 * Returns the last level spte pointer of the shadow page walk for the given
1784 * gpa, and sets *spte to the spte value. This spte may be non-preset. If no
1785 * walk could be performed, returns NULL and *spte does not contain valid data.
1786 *
1787 * Contract:
1788 *  - Must be called between kvm_tdp_mmu_walk_lockless_{begin,end}.
1789 *  - The returned sptep must not be used after kvm_tdp_mmu_walk_lockless_end.
1790 *
1791 * WARNING: This function is only intended to be called during fast_page_fault.
1792 */
1793u64 *kvm_tdp_mmu_fast_pf_get_last_sptep(struct kvm_vcpu *vcpu, u64 addr,
1794					u64 *spte)
1795{
1796	struct tdp_iter iter;
1797	struct kvm_mmu *mmu = vcpu->arch.mmu;
1798	gfn_t gfn = addr >> PAGE_SHIFT;
1799	tdp_ptep_t sptep = NULL;
1800
1801	tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1802		*spte = iter.old_spte;
1803		sptep = iter.sptep;
1804	}
1805
1806	/*
1807	 * Perform the rcu_dereference to get the raw spte pointer value since
1808	 * we are passing it up to fast_page_fault, which is shared with the
1809	 * legacy MMU and thus does not retain the TDP MMU-specific __rcu
1810	 * annotation.
1811	 *
1812	 * This is safe since fast_page_fault obeys the contracts of this
1813	 * function as well as all TDP MMU contracts around modifying SPTEs
1814	 * outside of mmu_lock.
1815	 */
1816	return rcu_dereference(sptep);
1817}
1818