xref: /kernel/linux/linux-6.6/arch/x86/kvm/cpuid.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 * cpuid support routines
5 *
6 * derived from arch/x86/kvm/x86.c
7 *
8 * Copyright 2011 Red Hat, Inc. and/or its affiliates.
9 * Copyright IBM Corporation, 2008
10 */
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/kvm_host.h>
14#include "linux/lockdep.h"
15#include <linux/export.h>
16#include <linux/vmalloc.h>
17#include <linux/uaccess.h>
18#include <linux/sched/stat.h>
19
20#include <asm/processor.h>
21#include <asm/user.h>
22#include <asm/fpu/xstate.h>
23#include <asm/sgx.h>
24#include <asm/cpuid.h>
25#include "cpuid.h"
26#include "lapic.h"
27#include "mmu.h"
28#include "trace.h"
29#include "pmu.h"
30#include "xen.h"
31
32/*
33 * Unlike "struct cpuinfo_x86.x86_capability", kvm_cpu_caps doesn't need to be
34 * aligned to sizeof(unsigned long) because it's not accessed via bitops.
35 */
36u32 kvm_cpu_caps[NR_KVM_CPU_CAPS] __read_mostly;
37EXPORT_SYMBOL_GPL(kvm_cpu_caps);
38
39u32 xstate_required_size(u64 xstate_bv, bool compacted)
40{
41	int feature_bit = 0;
42	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
43
44	xstate_bv &= XFEATURE_MASK_EXTEND;
45	while (xstate_bv) {
46		if (xstate_bv & 0x1) {
47		        u32 eax, ebx, ecx, edx, offset;
48		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
49			/* ECX[1]: 64B alignment in compacted form */
50			if (compacted)
51				offset = (ecx & 0x2) ? ALIGN(ret, 64) : ret;
52			else
53				offset = ebx;
54			ret = max(ret, offset + eax);
55		}
56
57		xstate_bv >>= 1;
58		feature_bit++;
59	}
60
61	return ret;
62}
63
64#define F feature_bit
65
66/* Scattered Flag - For features that are scattered by cpufeatures.h. */
67#define SF(name)						\
68({								\
69	BUILD_BUG_ON(X86_FEATURE_##name >= MAX_CPU_FEATURES);	\
70	(boot_cpu_has(X86_FEATURE_##name) ? F(name) : 0);	\
71})
72
73/*
74 * Magic value used by KVM when querying userspace-provided CPUID entries and
75 * doesn't care about the CPIUD index because the index of the function in
76 * question is not significant.  Note, this magic value must have at least one
77 * bit set in bits[63:32] and must be consumed as a u64 by cpuid_entry2_find()
78 * to avoid false positives when processing guest CPUID input.
79 */
80#define KVM_CPUID_INDEX_NOT_SIGNIFICANT -1ull
81
82static inline struct kvm_cpuid_entry2 *cpuid_entry2_find(
83	struct kvm_cpuid_entry2 *entries, int nent, u32 function, u64 index)
84{
85	struct kvm_cpuid_entry2 *e;
86	int i;
87
88	/*
89	 * KVM has a semi-arbitrary rule that querying the guest's CPUID model
90	 * with IRQs disabled is disallowed.  The CPUID model can legitimately
91	 * have over one hundred entries, i.e. the lookup is slow, and IRQs are
92	 * typically disabled in KVM only when KVM is in a performance critical
93	 * path, e.g. the core VM-Enter/VM-Exit run loop.  Nothing will break
94	 * if this rule is violated, this assertion is purely to flag potential
95	 * performance issues.  If this fires, consider moving the lookup out
96	 * of the hotpath, e.g. by caching information during CPUID updates.
97	 */
98	lockdep_assert_irqs_enabled();
99
100	for (i = 0; i < nent; i++) {
101		e = &entries[i];
102
103		if (e->function != function)
104			continue;
105
106		/*
107		 * If the index isn't significant, use the first entry with a
108		 * matching function.  It's userspace's responsibilty to not
109		 * provide "duplicate" entries in all cases.
110		 */
111		if (!(e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) || e->index == index)
112			return e;
113
114
115		/*
116		 * Similarly, use the first matching entry if KVM is doing a
117		 * lookup (as opposed to emulating CPUID) for a function that's
118		 * architecturally defined as not having a significant index.
119		 */
120		if (index == KVM_CPUID_INDEX_NOT_SIGNIFICANT) {
121			/*
122			 * Direct lookups from KVM should not diverge from what
123			 * KVM defines internally (the architectural behavior).
124			 */
125			WARN_ON_ONCE(cpuid_function_is_indexed(function));
126			return e;
127		}
128	}
129
130	return NULL;
131}
132
133static int kvm_check_cpuid(struct kvm_vcpu *vcpu,
134			   struct kvm_cpuid_entry2 *entries,
135			   int nent)
136{
137	struct kvm_cpuid_entry2 *best;
138	u64 xfeatures;
139
140	/*
141	 * The existing code assumes virtual address is 48-bit or 57-bit in the
142	 * canonical address checks; exit if it is ever changed.
143	 */
144	best = cpuid_entry2_find(entries, nent, 0x80000008,
145				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
146	if (best) {
147		int vaddr_bits = (best->eax & 0xff00) >> 8;
148
149		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
150			return -EINVAL;
151	}
152
153	/*
154	 * Exposing dynamic xfeatures to the guest requires additional
155	 * enabling in the FPU, e.g. to expand the guest XSAVE state size.
156	 */
157	best = cpuid_entry2_find(entries, nent, 0xd, 0);
158	if (!best)
159		return 0;
160
161	xfeatures = best->eax | ((u64)best->edx << 32);
162	xfeatures &= XFEATURE_MASK_USER_DYNAMIC;
163	if (!xfeatures)
164		return 0;
165
166	return fpu_enable_guest_xfd_features(&vcpu->arch.guest_fpu, xfeatures);
167}
168
169/* Check whether the supplied CPUID data is equal to what is already set for the vCPU. */
170static int kvm_cpuid_check_equal(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
171				 int nent)
172{
173	struct kvm_cpuid_entry2 *orig;
174	int i;
175
176	if (nent != vcpu->arch.cpuid_nent)
177		return -EINVAL;
178
179	for (i = 0; i < nent; i++) {
180		orig = &vcpu->arch.cpuid_entries[i];
181		if (e2[i].function != orig->function ||
182		    e2[i].index != orig->index ||
183		    e2[i].flags != orig->flags ||
184		    e2[i].eax != orig->eax || e2[i].ebx != orig->ebx ||
185		    e2[i].ecx != orig->ecx || e2[i].edx != orig->edx)
186			return -EINVAL;
187	}
188
189	return 0;
190}
191
192static struct kvm_hypervisor_cpuid kvm_get_hypervisor_cpuid(struct kvm_vcpu *vcpu,
193							    const char *sig)
194{
195	struct kvm_hypervisor_cpuid cpuid = {};
196	struct kvm_cpuid_entry2 *entry;
197	u32 base;
198
199	for_each_possible_hypervisor_cpuid_base(base) {
200		entry = kvm_find_cpuid_entry(vcpu, base);
201
202		if (entry) {
203			u32 signature[3];
204
205			signature[0] = entry->ebx;
206			signature[1] = entry->ecx;
207			signature[2] = entry->edx;
208
209			if (!memcmp(signature, sig, sizeof(signature))) {
210				cpuid.base = base;
211				cpuid.limit = entry->eax;
212				break;
213			}
214		}
215	}
216
217	return cpuid;
218}
219
220static struct kvm_cpuid_entry2 *__kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu,
221					      struct kvm_cpuid_entry2 *entries, int nent)
222{
223	u32 base = vcpu->arch.kvm_cpuid.base;
224
225	if (!base)
226		return NULL;
227
228	return cpuid_entry2_find(entries, nent, base | KVM_CPUID_FEATURES,
229				 KVM_CPUID_INDEX_NOT_SIGNIFICANT);
230}
231
232static struct kvm_cpuid_entry2 *kvm_find_kvm_cpuid_features(struct kvm_vcpu *vcpu)
233{
234	return __kvm_find_kvm_cpuid_features(vcpu, vcpu->arch.cpuid_entries,
235					     vcpu->arch.cpuid_nent);
236}
237
238void kvm_update_pv_runtime(struct kvm_vcpu *vcpu)
239{
240	struct kvm_cpuid_entry2 *best = kvm_find_kvm_cpuid_features(vcpu);
241
242	/*
243	 * save the feature bitmap to avoid cpuid lookup for every PV
244	 * operation
245	 */
246	if (best)
247		vcpu->arch.pv_cpuid.features = best->eax;
248}
249
250/*
251 * Calculate guest's supported XCR0 taking into account guest CPUID data and
252 * KVM's supported XCR0 (comprised of host's XCR0 and KVM_SUPPORTED_XCR0).
253 */
254static u64 cpuid_get_supported_xcr0(struct kvm_cpuid_entry2 *entries, int nent)
255{
256	struct kvm_cpuid_entry2 *best;
257
258	best = cpuid_entry2_find(entries, nent, 0xd, 0);
259	if (!best)
260		return 0;
261
262	return (best->eax | ((u64)best->edx << 32)) & kvm_caps.supported_xcr0;
263}
264
265static void __kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *entries,
266				       int nent)
267{
268	struct kvm_cpuid_entry2 *best;
269
270	best = cpuid_entry2_find(entries, nent, 1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
271	if (best) {
272		/* Update OSXSAVE bit */
273		if (boot_cpu_has(X86_FEATURE_XSAVE))
274			cpuid_entry_change(best, X86_FEATURE_OSXSAVE,
275					   kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE));
276
277		cpuid_entry_change(best, X86_FEATURE_APIC,
278			   vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE);
279	}
280
281	best = cpuid_entry2_find(entries, nent, 7, 0);
282	if (best && boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7)
283		cpuid_entry_change(best, X86_FEATURE_OSPKE,
284				   kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE));
285
286	best = cpuid_entry2_find(entries, nent, 0xD, 0);
287	if (best)
288		best->ebx = xstate_required_size(vcpu->arch.xcr0, false);
289
290	best = cpuid_entry2_find(entries, nent, 0xD, 1);
291	if (best && (cpuid_entry_has(best, X86_FEATURE_XSAVES) ||
292		     cpuid_entry_has(best, X86_FEATURE_XSAVEC)))
293		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
294
295	best = __kvm_find_kvm_cpuid_features(vcpu, entries, nent);
296	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
297		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
298		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
299
300	if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) {
301		best = cpuid_entry2_find(entries, nent, 0x1, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
302		if (best)
303			cpuid_entry_change(best, X86_FEATURE_MWAIT,
304					   vcpu->arch.ia32_misc_enable_msr &
305					   MSR_IA32_MISC_ENABLE_MWAIT);
306	}
307}
308
309void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu)
310{
311	__kvm_update_cpuid_runtime(vcpu, vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
312}
313EXPORT_SYMBOL_GPL(kvm_update_cpuid_runtime);
314
315static bool kvm_cpuid_has_hyperv(struct kvm_cpuid_entry2 *entries, int nent)
316{
317	struct kvm_cpuid_entry2 *entry;
318
319	entry = cpuid_entry2_find(entries, nent, HYPERV_CPUID_INTERFACE,
320				  KVM_CPUID_INDEX_NOT_SIGNIFICANT);
321	return entry && entry->eax == HYPERV_CPUID_SIGNATURE_EAX;
322}
323
324static void kvm_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
325{
326	struct kvm_lapic *apic = vcpu->arch.apic;
327	struct kvm_cpuid_entry2 *best;
328	bool allow_gbpages;
329
330	BUILD_BUG_ON(KVM_NR_GOVERNED_FEATURES > KVM_MAX_NR_GOVERNED_FEATURES);
331	bitmap_zero(vcpu->arch.governed_features.enabled,
332		    KVM_MAX_NR_GOVERNED_FEATURES);
333
334	/*
335	 * If TDP is enabled, let the guest use GBPAGES if they're supported in
336	 * hardware.  The hardware page walker doesn't let KVM disable GBPAGES,
337	 * i.e. won't treat them as reserved, and KVM doesn't redo the GVA->GPA
338	 * walk for performance and complexity reasons.  Not to mention KVM
339	 * _can't_ solve the problem because GVA->GPA walks aren't visible to
340	 * KVM once a TDP translation is installed.  Mimic hardware behavior so
341	 * that KVM's is at least consistent, i.e. doesn't randomly inject #PF.
342	 * If TDP is disabled, honor *only* guest CPUID as KVM has full control
343	 * and can install smaller shadow pages if the host lacks 1GiB support.
344	 */
345	allow_gbpages = tdp_enabled ? boot_cpu_has(X86_FEATURE_GBPAGES) :
346				      guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES);
347	if (allow_gbpages)
348		kvm_governed_feature_set(vcpu, X86_FEATURE_GBPAGES);
349
350	best = kvm_find_cpuid_entry(vcpu, 1);
351	if (best && apic) {
352		if (cpuid_entry_has(best, X86_FEATURE_TSC_DEADLINE_TIMER))
353			apic->lapic_timer.timer_mode_mask = 3 << 17;
354		else
355			apic->lapic_timer.timer_mode_mask = 1 << 17;
356
357		kvm_apic_set_version(vcpu);
358	}
359
360	vcpu->arch.guest_supported_xcr0 =
361		cpuid_get_supported_xcr0(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent);
362
363	kvm_update_pv_runtime(vcpu);
364
365	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
366	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
367
368	kvm_pmu_refresh(vcpu);
369	vcpu->arch.cr4_guest_rsvd_bits =
370	    __cr4_reserved_bits(guest_cpuid_has, vcpu);
371
372	kvm_hv_set_cpuid(vcpu, kvm_cpuid_has_hyperv(vcpu->arch.cpuid_entries,
373						    vcpu->arch.cpuid_nent));
374
375	/* Invoke the vendor callback only after the above state is updated. */
376	static_call(kvm_x86_vcpu_after_set_cpuid)(vcpu);
377
378	/*
379	 * Except for the MMU, which needs to do its thing any vendor specific
380	 * adjustments to the reserved GPA bits.
381	 */
382	kvm_mmu_after_set_cpuid(vcpu);
383}
384
385int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
386{
387	struct kvm_cpuid_entry2 *best;
388
389	best = kvm_find_cpuid_entry(vcpu, 0x80000000);
390	if (!best || best->eax < 0x80000008)
391		goto not_found;
392	best = kvm_find_cpuid_entry(vcpu, 0x80000008);
393	if (best)
394		return best->eax & 0xff;
395not_found:
396	return 36;
397}
398
399/*
400 * This "raw" version returns the reserved GPA bits without any adjustments for
401 * encryption technologies that usurp bits.  The raw mask should be used if and
402 * only if hardware does _not_ strip the usurped bits, e.g. in virtual MTRRs.
403 */
404u64 kvm_vcpu_reserved_gpa_bits_raw(struct kvm_vcpu *vcpu)
405{
406	return rsvd_bits(cpuid_maxphyaddr(vcpu), 63);
407}
408
409static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2,
410                        int nent)
411{
412	int r;
413
414	__kvm_update_cpuid_runtime(vcpu, e2, nent);
415
416	/*
417	 * KVM does not correctly handle changing guest CPUID after KVM_RUN, as
418	 * MAXPHYADDR, GBPAGES support, AMD reserved bit behavior, etc.. aren't
419	 * tracked in kvm_mmu_page_role.  As a result, KVM may miss guest page
420	 * faults due to reusing SPs/SPTEs. In practice no sane VMM mucks with
421	 * the core vCPU model on the fly. It would've been better to forbid any
422	 * KVM_SET_CPUID{,2} calls after KVM_RUN altogether but unfortunately
423	 * some VMMs (e.g. QEMU) reuse vCPU fds for CPU hotplug/unplug and do
424	 * KVM_SET_CPUID{,2} again. To support this legacy behavior, check
425	 * whether the supplied CPUID data is equal to what's already set.
426	 */
427	if (kvm_vcpu_has_run(vcpu)) {
428		r = kvm_cpuid_check_equal(vcpu, e2, nent);
429		if (r)
430			return r;
431
432		kvfree(e2);
433		return 0;
434	}
435
436	if (kvm_cpuid_has_hyperv(e2, nent)) {
437		r = kvm_hv_vcpu_init(vcpu);
438		if (r)
439			return r;
440	}
441
442	r = kvm_check_cpuid(vcpu, e2, nent);
443	if (r)
444		return r;
445
446	kvfree(vcpu->arch.cpuid_entries);
447	vcpu->arch.cpuid_entries = e2;
448	vcpu->arch.cpuid_nent = nent;
449
450	vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE);
451	vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE);
452	kvm_vcpu_after_set_cpuid(vcpu);
453
454	return 0;
455}
456
457/* when an old userspace process fills a new kernel module */
458int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
459			     struct kvm_cpuid *cpuid,
460			     struct kvm_cpuid_entry __user *entries)
461{
462	int r, i;
463	struct kvm_cpuid_entry *e = NULL;
464	struct kvm_cpuid_entry2 *e2 = NULL;
465
466	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
467		return -E2BIG;
468
469	if (cpuid->nent) {
470		e = vmemdup_user(entries, array_size(sizeof(*e), cpuid->nent));
471		if (IS_ERR(e))
472			return PTR_ERR(e);
473
474		e2 = kvmalloc_array(cpuid->nent, sizeof(*e2), GFP_KERNEL_ACCOUNT);
475		if (!e2) {
476			r = -ENOMEM;
477			goto out_free_cpuid;
478		}
479	}
480	for (i = 0; i < cpuid->nent; i++) {
481		e2[i].function = e[i].function;
482		e2[i].eax = e[i].eax;
483		e2[i].ebx = e[i].ebx;
484		e2[i].ecx = e[i].ecx;
485		e2[i].edx = e[i].edx;
486		e2[i].index = 0;
487		e2[i].flags = 0;
488		e2[i].padding[0] = 0;
489		e2[i].padding[1] = 0;
490		e2[i].padding[2] = 0;
491	}
492
493	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
494	if (r)
495		kvfree(e2);
496
497out_free_cpuid:
498	kvfree(e);
499
500	return r;
501}
502
503int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
504			      struct kvm_cpuid2 *cpuid,
505			      struct kvm_cpuid_entry2 __user *entries)
506{
507	struct kvm_cpuid_entry2 *e2 = NULL;
508	int r;
509
510	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
511		return -E2BIG;
512
513	if (cpuid->nent) {
514		e2 = vmemdup_user(entries, array_size(sizeof(*e2), cpuid->nent));
515		if (IS_ERR(e2))
516			return PTR_ERR(e2);
517	}
518
519	r = kvm_set_cpuid(vcpu, e2, cpuid->nent);
520	if (r)
521		kvfree(e2);
522
523	return r;
524}
525
526int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
527			      struct kvm_cpuid2 *cpuid,
528			      struct kvm_cpuid_entry2 __user *entries)
529{
530	if (cpuid->nent < vcpu->arch.cpuid_nent)
531		return -E2BIG;
532
533	if (copy_to_user(entries, vcpu->arch.cpuid_entries,
534			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
535		return -EFAULT;
536
537	cpuid->nent = vcpu->arch.cpuid_nent;
538	return 0;
539}
540
541/* Mask kvm_cpu_caps for @leaf with the raw CPUID capabilities of this CPU. */
542static __always_inline void __kvm_cpu_cap_mask(unsigned int leaf)
543{
544	const struct cpuid_reg cpuid = x86_feature_cpuid(leaf * 32);
545	struct kvm_cpuid_entry2 entry;
546
547	reverse_cpuid_check(leaf);
548
549	cpuid_count(cpuid.function, cpuid.index,
550		    &entry.eax, &entry.ebx, &entry.ecx, &entry.edx);
551
552	kvm_cpu_caps[leaf] &= *__cpuid_entry_get_reg(&entry, cpuid.reg);
553}
554
555static __always_inline
556void kvm_cpu_cap_init_kvm_defined(enum kvm_only_cpuid_leafs leaf, u32 mask)
557{
558	/* Use kvm_cpu_cap_mask for leafs that aren't KVM-only. */
559	BUILD_BUG_ON(leaf < NCAPINTS);
560
561	kvm_cpu_caps[leaf] = mask;
562
563	__kvm_cpu_cap_mask(leaf);
564}
565
566static __always_inline void kvm_cpu_cap_mask(enum cpuid_leafs leaf, u32 mask)
567{
568	/* Use kvm_cpu_cap_init_kvm_defined for KVM-only leafs. */
569	BUILD_BUG_ON(leaf >= NCAPINTS);
570
571	kvm_cpu_caps[leaf] &= mask;
572
573	__kvm_cpu_cap_mask(leaf);
574}
575
576void kvm_set_cpu_caps(void)
577{
578#ifdef CONFIG_X86_64
579	unsigned int f_gbpages = F(GBPAGES);
580	unsigned int f_lm = F(LM);
581	unsigned int f_xfd = F(XFD);
582#else
583	unsigned int f_gbpages = 0;
584	unsigned int f_lm = 0;
585	unsigned int f_xfd = 0;
586#endif
587	memset(kvm_cpu_caps, 0, sizeof(kvm_cpu_caps));
588
589	BUILD_BUG_ON(sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)) >
590		     sizeof(boot_cpu_data.x86_capability));
591
592	memcpy(&kvm_cpu_caps, &boot_cpu_data.x86_capability,
593	       sizeof(kvm_cpu_caps) - (NKVMCAPINTS * sizeof(*kvm_cpu_caps)));
594
595	kvm_cpu_cap_mask(CPUID_1_ECX,
596		/*
597		 * NOTE: MONITOR (and MWAIT) are emulated as NOP, but *not*
598		 * advertised to guests via CPUID!
599		 */
600		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
601		0 /* DS-CPL, VMX, SMX, EST */ |
602		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
603		F(FMA) | F(CX16) | 0 /* xTPR Update */ | F(PDCM) |
604		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
605		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
606		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
607		F(F16C) | F(RDRAND)
608	);
609	/* KVM emulates x2apic in software irrespective of host support. */
610	kvm_cpu_cap_set(X86_FEATURE_X2APIC);
611
612	kvm_cpu_cap_mask(CPUID_1_EDX,
613		F(FPU) | F(VME) | F(DE) | F(PSE) |
614		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
615		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
616		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
617		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
618		0 /* Reserved, DS, ACPI */ | F(MMX) |
619		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
620		0 /* HTT, TM, Reserved, PBE */
621	);
622
623	kvm_cpu_cap_mask(CPUID_7_0_EBX,
624		F(FSGSBASE) | F(SGX) | F(BMI1) | F(HLE) | F(AVX2) |
625		F(FDP_EXCPTN_ONLY) | F(SMEP) | F(BMI2) | F(ERMS) | F(INVPCID) |
626		F(RTM) | F(ZERO_FCS_FDS) | 0 /*MPX*/ | F(AVX512F) |
627		F(AVX512DQ) | F(RDSEED) | F(ADX) | F(SMAP) | F(AVX512IFMA) |
628		F(CLFLUSHOPT) | F(CLWB) | 0 /*INTEL_PT*/ | F(AVX512PF) |
629		F(AVX512ER) | F(AVX512CD) | F(SHA_NI) | F(AVX512BW) |
630		F(AVX512VL));
631
632	kvm_cpu_cap_mask(CPUID_7_ECX,
633		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ | F(RDPID) |
634		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
635		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
636		F(CLDEMOTE) | F(MOVDIRI) | F(MOVDIR64B) | 0 /*WAITPKG*/ |
637		F(SGX_LC) | F(BUS_LOCK_DETECT)
638	);
639	/* Set LA57 based on hardware capability. */
640	if (cpuid_ecx(7) & F(LA57))
641		kvm_cpu_cap_set(X86_FEATURE_LA57);
642
643	/*
644	 * PKU not yet implemented for shadow paging and requires OSPKE
645	 * to be set on the host. Clear it if that is not the case
646	 */
647	if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
648		kvm_cpu_cap_clear(X86_FEATURE_PKU);
649
650	kvm_cpu_cap_mask(CPUID_7_EDX,
651		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
652		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
653		F(MD_CLEAR) | F(AVX512_VP2INTERSECT) | F(FSRM) |
654		F(SERIALIZE) | F(TSXLDTRK) | F(AVX512_FP16) |
655		F(AMX_TILE) | F(AMX_INT8) | F(AMX_BF16) | F(FLUSH_L1D)
656	);
657
658	/* TSC_ADJUST and ARCH_CAPABILITIES are emulated in software. */
659	kvm_cpu_cap_set(X86_FEATURE_TSC_ADJUST);
660	kvm_cpu_cap_set(X86_FEATURE_ARCH_CAPABILITIES);
661
662	if (boot_cpu_has(X86_FEATURE_IBPB) && boot_cpu_has(X86_FEATURE_IBRS))
663		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL);
664	if (boot_cpu_has(X86_FEATURE_STIBP))
665		kvm_cpu_cap_set(X86_FEATURE_INTEL_STIBP);
666	if (boot_cpu_has(X86_FEATURE_AMD_SSBD))
667		kvm_cpu_cap_set(X86_FEATURE_SPEC_CTRL_SSBD);
668
669	kvm_cpu_cap_mask(CPUID_7_1_EAX,
670		F(AVX_VNNI) | F(AVX512_BF16) | F(CMPCCXADD) |
671		F(FZRM) | F(FSRS) | F(FSRC) |
672		F(AMX_FP16) | F(AVX_IFMA)
673	);
674
675	kvm_cpu_cap_init_kvm_defined(CPUID_7_1_EDX,
676		F(AVX_VNNI_INT8) | F(AVX_NE_CONVERT) | F(PREFETCHITI) |
677		F(AMX_COMPLEX)
678	);
679
680	kvm_cpu_cap_init_kvm_defined(CPUID_7_2_EDX,
681		F(INTEL_PSFD) | F(IPRED_CTRL) | F(RRSBA_CTRL) | F(DDPD_U) |
682		F(BHI_CTRL) | F(MCDT_NO)
683	);
684
685	kvm_cpu_cap_mask(CPUID_D_1_EAX,
686		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | F(XSAVES) | f_xfd
687	);
688
689	kvm_cpu_cap_init_kvm_defined(CPUID_12_EAX,
690		SF(SGX1) | SF(SGX2) | SF(SGX_EDECCSSA)
691	);
692
693	kvm_cpu_cap_mask(CPUID_8000_0001_ECX,
694		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
695		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
696		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
697		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
698		F(TOPOEXT) | 0 /* PERFCTR_CORE */
699	);
700
701	kvm_cpu_cap_mask(CPUID_8000_0001_EDX,
702		F(FPU) | F(VME) | F(DE) | F(PSE) |
703		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
704		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
705		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
706		F(PAT) | F(PSE36) | 0 /* Reserved */ |
707		F(NX) | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
708		F(FXSR) | F(FXSR_OPT) | f_gbpages | F(RDTSCP) |
709		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW)
710	);
711
712	if (!tdp_enabled && IS_ENABLED(CONFIG_X86_64))
713		kvm_cpu_cap_set(X86_FEATURE_GBPAGES);
714
715	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0007_EDX,
716		SF(CONSTANT_TSC)
717	);
718
719	kvm_cpu_cap_mask(CPUID_8000_0008_EBX,
720		F(CLZERO) | F(XSAVEERPTR) |
721		F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
722		F(AMD_SSB_NO) | F(AMD_STIBP) | F(AMD_STIBP_ALWAYS_ON) |
723		F(AMD_PSFD)
724	);
725
726	/*
727	 * AMD has separate bits for each SPEC_CTRL bit.
728	 * arch/x86/kernel/cpu/bugs.c is kind enough to
729	 * record that in cpufeatures so use them.
730	 */
731	if (boot_cpu_has(X86_FEATURE_IBPB))
732		kvm_cpu_cap_set(X86_FEATURE_AMD_IBPB);
733	if (boot_cpu_has(X86_FEATURE_IBRS))
734		kvm_cpu_cap_set(X86_FEATURE_AMD_IBRS);
735	if (boot_cpu_has(X86_FEATURE_STIBP))
736		kvm_cpu_cap_set(X86_FEATURE_AMD_STIBP);
737	if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD))
738		kvm_cpu_cap_set(X86_FEATURE_AMD_SSBD);
739	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
740		kvm_cpu_cap_set(X86_FEATURE_AMD_SSB_NO);
741	/*
742	 * The preference is to use SPEC CTRL MSR instead of the
743	 * VIRT_SPEC MSR.
744	 */
745	if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
746	    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
747		kvm_cpu_cap_set(X86_FEATURE_VIRT_SSBD);
748
749	/*
750	 * Hide all SVM features by default, SVM will set the cap bits for
751	 * features it emulates and/or exposes for L1.
752	 */
753	kvm_cpu_cap_mask(CPUID_8000_000A_EDX, 0);
754
755	kvm_cpu_cap_mask(CPUID_8000_001F_EAX,
756		0 /* SME */ | F(SEV) | 0 /* VM_PAGE_FLUSH */ | F(SEV_ES) |
757		F(SME_COHERENT));
758
759	kvm_cpu_cap_mask(CPUID_8000_0021_EAX,
760		F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ |
761		F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */
762	);
763
764	if (cpu_feature_enabled(X86_FEATURE_SRSO_NO))
765		kvm_cpu_cap_set(X86_FEATURE_SRSO_NO);
766
767	kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX,
768		F(PERFMON_V2)
769	);
770
771	/*
772	 * Synthesize "LFENCE is serializing" into the AMD-defined entry in
773	 * KVM's supported CPUID if the feature is reported as supported by the
774	 * kernel.  LFENCE_RDTSC was a Linux-defined synthetic feature long
775	 * before AMD joined the bandwagon, e.g. LFENCE is serializing on most
776	 * CPUs that support SSE2.  On CPUs that don't support AMD's leaf,
777	 * kvm_cpu_cap_mask() will unfortunately drop the flag due to ANDing
778	 * the mask with the raw host CPUID, and reporting support in AMD's
779	 * leaf can make it easier for userspace to detect the feature.
780	 */
781	if (cpu_feature_enabled(X86_FEATURE_LFENCE_RDTSC))
782		kvm_cpu_cap_set(X86_FEATURE_LFENCE_RDTSC);
783	if (!static_cpu_has_bug(X86_BUG_NULL_SEG))
784		kvm_cpu_cap_set(X86_FEATURE_NULL_SEL_CLR_BASE);
785	kvm_cpu_cap_set(X86_FEATURE_NO_SMM_CTL_MSR);
786
787	kvm_cpu_cap_mask(CPUID_C000_0001_EDX,
788		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
789		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
790		F(PMM) | F(PMM_EN)
791	);
792
793	/*
794	 * Hide RDTSCP and RDPID if either feature is reported as supported but
795	 * probing MSR_TSC_AUX failed.  This is purely a sanity check and
796	 * should never happen, but the guest will likely crash if RDTSCP or
797	 * RDPID is misreported, and KVM has botched MSR_TSC_AUX emulation in
798	 * the past.  For example, the sanity check may fire if this instance of
799	 * KVM is running as L1 on top of an older, broken KVM.
800	 */
801	if (WARN_ON((kvm_cpu_cap_has(X86_FEATURE_RDTSCP) ||
802		     kvm_cpu_cap_has(X86_FEATURE_RDPID)) &&
803		     !kvm_is_supported_user_return_msr(MSR_TSC_AUX))) {
804		kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
805		kvm_cpu_cap_clear(X86_FEATURE_RDPID);
806	}
807}
808EXPORT_SYMBOL_GPL(kvm_set_cpu_caps);
809
810struct kvm_cpuid_array {
811	struct kvm_cpuid_entry2 *entries;
812	int maxnent;
813	int nent;
814};
815
816static struct kvm_cpuid_entry2 *get_next_cpuid(struct kvm_cpuid_array *array)
817{
818	if (array->nent >= array->maxnent)
819		return NULL;
820
821	return &array->entries[array->nent++];
822}
823
824static struct kvm_cpuid_entry2 *do_host_cpuid(struct kvm_cpuid_array *array,
825					      u32 function, u32 index)
826{
827	struct kvm_cpuid_entry2 *entry = get_next_cpuid(array);
828
829	if (!entry)
830		return NULL;
831
832	memset(entry, 0, sizeof(*entry));
833	entry->function = function;
834	entry->index = index;
835	switch (function & 0xC0000000) {
836	case 0x40000000:
837		/* Hypervisor leaves are always synthesized by __do_cpuid_func.  */
838		return entry;
839
840	case 0x80000000:
841		/*
842		 * 0x80000021 is sometimes synthesized by __do_cpuid_func, which
843		 * would result in out-of-bounds calls to do_host_cpuid.
844		 */
845		{
846			static int max_cpuid_80000000;
847			if (!READ_ONCE(max_cpuid_80000000))
848				WRITE_ONCE(max_cpuid_80000000, cpuid_eax(0x80000000));
849			if (function > READ_ONCE(max_cpuid_80000000))
850				return entry;
851		}
852		break;
853
854	default:
855		break;
856	}
857
858	cpuid_count(entry->function, entry->index,
859		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
860
861	if (cpuid_function_is_indexed(function))
862		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
863
864	return entry;
865}
866
867static int __do_cpuid_func_emulated(struct kvm_cpuid_array *array, u32 func)
868{
869	struct kvm_cpuid_entry2 *entry;
870
871	if (array->nent >= array->maxnent)
872		return -E2BIG;
873
874	entry = &array->entries[array->nent];
875	entry->function = func;
876	entry->index = 0;
877	entry->flags = 0;
878
879	switch (func) {
880	case 0:
881		entry->eax = 7;
882		++array->nent;
883		break;
884	case 1:
885		entry->ecx = F(MOVBE);
886		++array->nent;
887		break;
888	case 7:
889		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
890		entry->eax = 0;
891		if (kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
892			entry->ecx = F(RDPID);
893		++array->nent;
894		break;
895	default:
896		break;
897	}
898
899	return 0;
900}
901
902static inline int __do_cpuid_func(struct kvm_cpuid_array *array, u32 function)
903{
904	struct kvm_cpuid_entry2 *entry;
905	int r, i, max_idx;
906
907	/* all calls to cpuid_count() should be made on the same cpu */
908	get_cpu();
909
910	r = -E2BIG;
911
912	entry = do_host_cpuid(array, function, 0);
913	if (!entry)
914		goto out;
915
916	switch (function) {
917	case 0:
918		/* Limited to the highest leaf implemented in KVM. */
919		entry->eax = min(entry->eax, 0x1fU);
920		break;
921	case 1:
922		cpuid_entry_override(entry, CPUID_1_EDX);
923		cpuid_entry_override(entry, CPUID_1_ECX);
924		break;
925	case 2:
926		/*
927		 * On ancient CPUs, function 2 entries are STATEFUL.  That is,
928		 * CPUID(function=2, index=0) may return different results each
929		 * time, with the least-significant byte in EAX enumerating the
930		 * number of times software should do CPUID(2, 0).
931		 *
932		 * Modern CPUs, i.e. every CPU KVM has *ever* run on are less
933		 * idiotic.  Intel's SDM states that EAX & 0xff "will always
934		 * return 01H. Software should ignore this value and not
935		 * interpret it as an informational descriptor", while AMD's
936		 * APM states that CPUID(2) is reserved.
937		 *
938		 * WARN if a frankenstein CPU that supports virtualization and
939		 * a stateful CPUID.0x2 is encountered.
940		 */
941		WARN_ON_ONCE((entry->eax & 0xff) > 1);
942		break;
943	/* functions 4 and 0x8000001d have additional index. */
944	case 4:
945	case 0x8000001d:
946		/*
947		 * Read entries until the cache type in the previous entry is
948		 * zero, i.e. indicates an invalid entry.
949		 */
950		for (i = 1; entry->eax & 0x1f; ++i) {
951			entry = do_host_cpuid(array, function, i);
952			if (!entry)
953				goto out;
954		}
955		break;
956	case 6: /* Thermal management */
957		entry->eax = 0x4; /* allow ARAT */
958		entry->ebx = 0;
959		entry->ecx = 0;
960		entry->edx = 0;
961		break;
962	/* function 7 has additional index. */
963	case 7:
964		max_idx = entry->eax = min(entry->eax, 2u);
965		cpuid_entry_override(entry, CPUID_7_0_EBX);
966		cpuid_entry_override(entry, CPUID_7_ECX);
967		cpuid_entry_override(entry, CPUID_7_EDX);
968
969		/* KVM only supports up to 0x7.2, capped above via min(). */
970		if (max_idx >= 1) {
971			entry = do_host_cpuid(array, function, 1);
972			if (!entry)
973				goto out;
974
975			cpuid_entry_override(entry, CPUID_7_1_EAX);
976			cpuid_entry_override(entry, CPUID_7_1_EDX);
977			entry->ebx = 0;
978			entry->ecx = 0;
979		}
980		if (max_idx >= 2) {
981			entry = do_host_cpuid(array, function, 2);
982			if (!entry)
983				goto out;
984
985			cpuid_entry_override(entry, CPUID_7_2_EDX);
986			entry->ecx = 0;
987			entry->ebx = 0;
988			entry->eax = 0;
989		}
990		break;
991	case 0xa: { /* Architectural Performance Monitoring */
992		union cpuid10_eax eax;
993		union cpuid10_edx edx;
994
995		if (!enable_pmu || !static_cpu_has(X86_FEATURE_ARCH_PERFMON)) {
996			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
997			break;
998		}
999
1000		eax.split.version_id = kvm_pmu_cap.version;
1001		eax.split.num_counters = kvm_pmu_cap.num_counters_gp;
1002		eax.split.bit_width = kvm_pmu_cap.bit_width_gp;
1003		eax.split.mask_length = kvm_pmu_cap.events_mask_len;
1004		edx.split.num_counters_fixed = kvm_pmu_cap.num_counters_fixed;
1005		edx.split.bit_width_fixed = kvm_pmu_cap.bit_width_fixed;
1006
1007		if (kvm_pmu_cap.version)
1008			edx.split.anythread_deprecated = 1;
1009		edx.split.reserved1 = 0;
1010		edx.split.reserved2 = 0;
1011
1012		entry->eax = eax.full;
1013		entry->ebx = kvm_pmu_cap.events_mask;
1014		entry->ecx = 0;
1015		entry->edx = edx.full;
1016		break;
1017	}
1018	case 0x1f:
1019	case 0xb:
1020		/*
1021		 * No topology; a valid topology is indicated by the presence
1022		 * of subleaf 1.
1023		 */
1024		entry->eax = entry->ebx = entry->ecx = 0;
1025		break;
1026	case 0xd: {
1027		u64 permitted_xcr0 = kvm_get_filtered_xcr0();
1028		u64 permitted_xss = kvm_caps.supported_xss;
1029
1030		entry->eax &= permitted_xcr0;
1031		entry->ebx = xstate_required_size(permitted_xcr0, false);
1032		entry->ecx = entry->ebx;
1033		entry->edx &= permitted_xcr0 >> 32;
1034		if (!permitted_xcr0)
1035			break;
1036
1037		entry = do_host_cpuid(array, function, 1);
1038		if (!entry)
1039			goto out;
1040
1041		cpuid_entry_override(entry, CPUID_D_1_EAX);
1042		if (entry->eax & (F(XSAVES)|F(XSAVEC)))
1043			entry->ebx = xstate_required_size(permitted_xcr0 | permitted_xss,
1044							  true);
1045		else {
1046			WARN_ON_ONCE(permitted_xss != 0);
1047			entry->ebx = 0;
1048		}
1049		entry->ecx &= permitted_xss;
1050		entry->edx &= permitted_xss >> 32;
1051
1052		for (i = 2; i < 64; ++i) {
1053			bool s_state;
1054			if (permitted_xcr0 & BIT_ULL(i))
1055				s_state = false;
1056			else if (permitted_xss & BIT_ULL(i))
1057				s_state = true;
1058			else
1059				continue;
1060
1061			entry = do_host_cpuid(array, function, i);
1062			if (!entry)
1063				goto out;
1064
1065			/*
1066			 * The supported check above should have filtered out
1067			 * invalid sub-leafs.  Only valid sub-leafs should
1068			 * reach this point, and they should have a non-zero
1069			 * save state size.  Furthermore, check whether the
1070			 * processor agrees with permitted_xcr0/permitted_xss
1071			 * on whether this is an XCR0- or IA32_XSS-managed area.
1072			 */
1073			if (WARN_ON_ONCE(!entry->eax || (entry->ecx & 0x1) != s_state)) {
1074				--array->nent;
1075				continue;
1076			}
1077
1078			if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
1079				entry->ecx &= ~BIT_ULL(2);
1080			entry->edx = 0;
1081		}
1082		break;
1083	}
1084	case 0x12:
1085		/* Intel SGX */
1086		if (!kvm_cpu_cap_has(X86_FEATURE_SGX)) {
1087			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1088			break;
1089		}
1090
1091		/*
1092		 * Index 0: Sub-features, MISCSELECT (a.k.a extended features)
1093		 * and max enclave sizes.   The SGX sub-features and MISCSELECT
1094		 * are restricted by kernel and KVM capabilities (like most
1095		 * feature flags), while enclave size is unrestricted.
1096		 */
1097		cpuid_entry_override(entry, CPUID_12_EAX);
1098		entry->ebx &= SGX_MISC_EXINFO;
1099
1100		entry = do_host_cpuid(array, function, 1);
1101		if (!entry)
1102			goto out;
1103
1104		/*
1105		 * Index 1: SECS.ATTRIBUTES.  ATTRIBUTES are restricted a la
1106		 * feature flags.  Advertise all supported flags, including
1107		 * privileged attributes that require explicit opt-in from
1108		 * userspace.  ATTRIBUTES.XFRM is not adjusted as userspace is
1109		 * expected to derive it from supported XCR0.
1110		 */
1111		entry->eax &= SGX_ATTR_PRIV_MASK | SGX_ATTR_UNPRIV_MASK;
1112		entry->ebx &= 0;
1113		break;
1114	/* Intel PT */
1115	case 0x14:
1116		if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) {
1117			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1118			break;
1119		}
1120
1121		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1122			if (!do_host_cpuid(array, function, i))
1123				goto out;
1124		}
1125		break;
1126	/* Intel AMX TILE */
1127	case 0x1d:
1128		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1129			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1130			break;
1131		}
1132
1133		for (i = 1, max_idx = entry->eax; i <= max_idx; ++i) {
1134			if (!do_host_cpuid(array, function, i))
1135				goto out;
1136		}
1137		break;
1138	case 0x1e: /* TMUL information */
1139		if (!kvm_cpu_cap_has(X86_FEATURE_AMX_TILE)) {
1140			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1141			break;
1142		}
1143		break;
1144	case KVM_CPUID_SIGNATURE: {
1145		const u32 *sigptr = (const u32 *)KVM_SIGNATURE;
1146		entry->eax = KVM_CPUID_FEATURES;
1147		entry->ebx = sigptr[0];
1148		entry->ecx = sigptr[1];
1149		entry->edx = sigptr[2];
1150		break;
1151	}
1152	case KVM_CPUID_FEATURES:
1153		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
1154			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
1155			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
1156			     (1 << KVM_FEATURE_ASYNC_PF) |
1157			     (1 << KVM_FEATURE_PV_EOI) |
1158			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
1159			     (1 << KVM_FEATURE_PV_UNHALT) |
1160			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
1161			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
1162			     (1 << KVM_FEATURE_PV_SEND_IPI) |
1163			     (1 << KVM_FEATURE_POLL_CONTROL) |
1164			     (1 << KVM_FEATURE_PV_SCHED_YIELD) |
1165			     (1 << KVM_FEATURE_ASYNC_PF_INT);
1166
1167		if (sched_info_on())
1168			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
1169
1170		entry->ebx = 0;
1171		entry->ecx = 0;
1172		entry->edx = 0;
1173		break;
1174	case 0x80000000:
1175		entry->eax = min(entry->eax, 0x80000022);
1176		/*
1177		 * Serializing LFENCE is reported in a multitude of ways, and
1178		 * NullSegClearsBase is not reported in CPUID on Zen2; help
1179		 * userspace by providing the CPUID leaf ourselves.
1180		 *
1181		 * However, only do it if the host has CPUID leaf 0x8000001d.
1182		 * QEMU thinks that it can query the host blindly for that
1183		 * CPUID leaf if KVM reports that it supports 0x8000001d or
1184		 * above.  The processor merrily returns values from the
1185		 * highest Intel leaf which QEMU tries to use as the guest's
1186		 * 0x8000001d.  Even worse, this can result in an infinite
1187		 * loop if said highest leaf has no subleaves indexed by ECX.
1188		 */
1189		if (entry->eax >= 0x8000001d &&
1190		    (static_cpu_has(X86_FEATURE_LFENCE_RDTSC)
1191		     || !static_cpu_has_bug(X86_BUG_NULL_SEG)))
1192			entry->eax = max(entry->eax, 0x80000021);
1193		break;
1194	case 0x80000001:
1195		entry->ebx &= ~GENMASK(27, 16);
1196		cpuid_entry_override(entry, CPUID_8000_0001_EDX);
1197		cpuid_entry_override(entry, CPUID_8000_0001_ECX);
1198		break;
1199	case 0x80000005:
1200		/*  Pass host L1 cache and TLB info. */
1201		break;
1202	case 0x80000006:
1203		/* Drop reserved bits, pass host L2 cache and TLB info. */
1204		entry->edx &= ~GENMASK(17, 16);
1205		break;
1206	case 0x80000007: /* Advanced power management */
1207		cpuid_entry_override(entry, CPUID_8000_0007_EDX);
1208
1209		/* mask against host */
1210		entry->edx &= boot_cpu_data.x86_power;
1211		entry->eax = entry->ebx = entry->ecx = 0;
1212		break;
1213	case 0x80000008: {
1214		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
1215		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
1216		unsigned phys_as = entry->eax & 0xff;
1217
1218		/*
1219		 * If TDP (NPT) is disabled use the adjusted host MAXPHYADDR as
1220		 * the guest operates in the same PA space as the host, i.e.
1221		 * reductions in MAXPHYADDR for memory encryption affect shadow
1222		 * paging, too.
1223		 *
1224		 * If TDP is enabled but an explicit guest MAXPHYADDR is not
1225		 * provided, use the raw bare metal MAXPHYADDR as reductions to
1226		 * the HPAs do not affect GPAs.
1227		 */
1228		if (!tdp_enabled)
1229			g_phys_as = boot_cpu_data.x86_phys_bits;
1230		else if (!g_phys_as)
1231			g_phys_as = phys_as;
1232
1233		entry->eax = g_phys_as | (virt_as << 8);
1234		entry->ecx &= ~(GENMASK(31, 16) | GENMASK(11, 8));
1235		entry->edx = 0;
1236		cpuid_entry_override(entry, CPUID_8000_0008_EBX);
1237		break;
1238	}
1239	case 0x8000000A:
1240		if (!kvm_cpu_cap_has(X86_FEATURE_SVM)) {
1241			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1242			break;
1243		}
1244		entry->eax = 1; /* SVM revision 1 */
1245		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
1246				   ASID emulation to nested SVM */
1247		entry->ecx = 0; /* Reserved */
1248		cpuid_entry_override(entry, CPUID_8000_000A_EDX);
1249		break;
1250	case 0x80000019:
1251		entry->ecx = entry->edx = 0;
1252		break;
1253	case 0x8000001a:
1254		entry->eax &= GENMASK(2, 0);
1255		entry->ebx = entry->ecx = entry->edx = 0;
1256		break;
1257	case 0x8000001e:
1258		/* Do not return host topology information.  */
1259		entry->eax = entry->ebx = entry->ecx = 0;
1260		entry->edx = 0; /* reserved */
1261		break;
1262	case 0x8000001F:
1263		if (!kvm_cpu_cap_has(X86_FEATURE_SEV)) {
1264			entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1265		} else {
1266			cpuid_entry_override(entry, CPUID_8000_001F_EAX);
1267			/* Clear NumVMPL since KVM does not support VMPL.  */
1268			entry->ebx &= ~GENMASK(31, 12);
1269			/*
1270			 * Enumerate '0' for "PA bits reduction", the adjusted
1271			 * MAXPHYADDR is enumerated directly (see 0x80000008).
1272			 */
1273			entry->ebx &= ~GENMASK(11, 6);
1274		}
1275		break;
1276	case 0x80000020:
1277		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1278		break;
1279	case 0x80000021:
1280		entry->ebx = entry->ecx = entry->edx = 0;
1281		cpuid_entry_override(entry, CPUID_8000_0021_EAX);
1282		break;
1283	/* AMD Extended Performance Monitoring and Debug */
1284	case 0x80000022: {
1285		union cpuid_0x80000022_ebx ebx;
1286
1287		entry->ecx = entry->edx = 0;
1288		if (!enable_pmu || !kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) {
1289			entry->eax = entry->ebx;
1290			break;
1291		}
1292
1293		cpuid_entry_override(entry, CPUID_8000_0022_EAX);
1294
1295		if (kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
1296			ebx.split.num_core_pmc = kvm_pmu_cap.num_counters_gp;
1297		else if (kvm_cpu_cap_has(X86_FEATURE_PERFCTR_CORE))
1298			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS_CORE;
1299		else
1300			ebx.split.num_core_pmc = AMD64_NUM_COUNTERS;
1301
1302		entry->ebx = ebx.full;
1303		break;
1304	}
1305	/*Add support for Centaur's CPUID instruction*/
1306	case 0xC0000000:
1307		/*Just support up to 0xC0000004 now*/
1308		entry->eax = min(entry->eax, 0xC0000004);
1309		break;
1310	case 0xC0000001:
1311		cpuid_entry_override(entry, CPUID_C000_0001_EDX);
1312		break;
1313	case 3: /* Processor serial number */
1314	case 5: /* MONITOR/MWAIT */
1315	case 0xC0000002:
1316	case 0xC0000003:
1317	case 0xC0000004:
1318	default:
1319		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
1320		break;
1321	}
1322
1323	r = 0;
1324
1325out:
1326	put_cpu();
1327
1328	return r;
1329}
1330
1331static int do_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1332			 unsigned int type)
1333{
1334	if (type == KVM_GET_EMULATED_CPUID)
1335		return __do_cpuid_func_emulated(array, func);
1336
1337	return __do_cpuid_func(array, func);
1338}
1339
1340#define CENTAUR_CPUID_SIGNATURE 0xC0000000
1341
1342static int get_cpuid_func(struct kvm_cpuid_array *array, u32 func,
1343			  unsigned int type)
1344{
1345	u32 limit;
1346	int r;
1347
1348	if (func == CENTAUR_CPUID_SIGNATURE &&
1349	    boot_cpu_data.x86_vendor != X86_VENDOR_CENTAUR)
1350		return 0;
1351
1352	r = do_cpuid_func(array, func, type);
1353	if (r)
1354		return r;
1355
1356	limit = array->entries[array->nent - 1].eax;
1357	for (func = func + 1; func <= limit; ++func) {
1358		r = do_cpuid_func(array, func, type);
1359		if (r)
1360			break;
1361	}
1362
1363	return r;
1364}
1365
1366static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
1367				 __u32 num_entries, unsigned int ioctl_type)
1368{
1369	int i;
1370	__u32 pad[3];
1371
1372	if (ioctl_type != KVM_GET_EMULATED_CPUID)
1373		return false;
1374
1375	/*
1376	 * We want to make sure that ->padding is being passed clean from
1377	 * userspace in case we want to use it for something in the future.
1378	 *
1379	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
1380	 * have to give ourselves satisfied only with the emulated side. /me
1381	 * sheds a tear.
1382	 */
1383	for (i = 0; i < num_entries; i++) {
1384		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
1385			return true;
1386
1387		if (pad[0] || pad[1] || pad[2])
1388			return true;
1389	}
1390	return false;
1391}
1392
1393int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
1394			    struct kvm_cpuid_entry2 __user *entries,
1395			    unsigned int type)
1396{
1397	static const u32 funcs[] = {
1398		0, 0x80000000, CENTAUR_CPUID_SIGNATURE, KVM_CPUID_SIGNATURE,
1399	};
1400
1401	struct kvm_cpuid_array array = {
1402		.nent = 0,
1403	};
1404	int r, i;
1405
1406	if (cpuid->nent < 1)
1407		return -E2BIG;
1408	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1409		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
1410
1411	if (sanity_check_entries(entries, cpuid->nent, type))
1412		return -EINVAL;
1413
1414	array.entries = kvcalloc(cpuid->nent, sizeof(struct kvm_cpuid_entry2), GFP_KERNEL);
1415	if (!array.entries)
1416		return -ENOMEM;
1417
1418	array.maxnent = cpuid->nent;
1419
1420	for (i = 0; i < ARRAY_SIZE(funcs); i++) {
1421		r = get_cpuid_func(&array, funcs[i], type);
1422		if (r)
1423			goto out_free;
1424	}
1425	cpuid->nent = array.nent;
1426
1427	if (copy_to_user(entries, array.entries,
1428			 array.nent * sizeof(struct kvm_cpuid_entry2)))
1429		r = -EFAULT;
1430
1431out_free:
1432	kvfree(array.entries);
1433	return r;
1434}
1435
1436struct kvm_cpuid_entry2 *kvm_find_cpuid_entry_index(struct kvm_vcpu *vcpu,
1437						    u32 function, u32 index)
1438{
1439	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1440				 function, index);
1441}
1442EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry_index);
1443
1444struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
1445					      u32 function)
1446{
1447	return cpuid_entry2_find(vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent,
1448				 function, KVM_CPUID_INDEX_NOT_SIGNIFICANT);
1449}
1450EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
1451
1452/*
1453 * Intel CPUID semantics treats any query for an out-of-range leaf as if the
1454 * highest basic leaf (i.e. CPUID.0H:EAX) were requested.  AMD CPUID semantics
1455 * returns all zeroes for any undefined leaf, whether or not the leaf is in
1456 * range.  Centaur/VIA follows Intel semantics.
1457 *
1458 * A leaf is considered out-of-range if its function is higher than the maximum
1459 * supported leaf of its associated class or if its associated class does not
1460 * exist.
1461 *
1462 * There are three primary classes to be considered, with their respective
1463 * ranges described as "<base> - <top>[,<base2> - <top2>] inclusive.  A primary
1464 * class exists if a guest CPUID entry for its <base> leaf exists.  For a given
1465 * class, CPUID.<base>.EAX contains the max supported leaf for the class.
1466 *
1467 *  - Basic:      0x00000000 - 0x3fffffff, 0x50000000 - 0x7fffffff
1468 *  - Hypervisor: 0x40000000 - 0x4fffffff
1469 *  - Extended:   0x80000000 - 0xbfffffff
1470 *  - Centaur:    0xc0000000 - 0xcfffffff
1471 *
1472 * The Hypervisor class is further subdivided into sub-classes that each act as
1473 * their own independent class associated with a 0x100 byte range.  E.g. if Qemu
1474 * is advertising support for both HyperV and KVM, the resulting Hypervisor
1475 * CPUID sub-classes are:
1476 *
1477 *  - HyperV:     0x40000000 - 0x400000ff
1478 *  - KVM:        0x40000100 - 0x400001ff
1479 */
1480static struct kvm_cpuid_entry2 *
1481get_out_of_range_cpuid_entry(struct kvm_vcpu *vcpu, u32 *fn_ptr, u32 index)
1482{
1483	struct kvm_cpuid_entry2 *basic, *class;
1484	u32 function = *fn_ptr;
1485
1486	basic = kvm_find_cpuid_entry(vcpu, 0);
1487	if (!basic)
1488		return NULL;
1489
1490	if (is_guest_vendor_amd(basic->ebx, basic->ecx, basic->edx) ||
1491	    is_guest_vendor_hygon(basic->ebx, basic->ecx, basic->edx))
1492		return NULL;
1493
1494	if (function >= 0x40000000 && function <= 0x4fffffff)
1495		class = kvm_find_cpuid_entry(vcpu, function & 0xffffff00);
1496	else if (function >= 0xc0000000)
1497		class = kvm_find_cpuid_entry(vcpu, 0xc0000000);
1498	else
1499		class = kvm_find_cpuid_entry(vcpu, function & 0x80000000);
1500
1501	if (class && function <= class->eax)
1502		return NULL;
1503
1504	/*
1505	 * Leaf specific adjustments are also applied when redirecting to the
1506	 * max basic entry, e.g. if the max basic leaf is 0xb but there is no
1507	 * entry for CPUID.0xb.index (see below), then the output value for EDX
1508	 * needs to be pulled from CPUID.0xb.1.
1509	 */
1510	*fn_ptr = basic->eax;
1511
1512	/*
1513	 * The class does not exist or the requested function is out of range;
1514	 * the effective CPUID entry is the max basic leaf.  Note, the index of
1515	 * the original requested leaf is observed!
1516	 */
1517	return kvm_find_cpuid_entry_index(vcpu, basic->eax, index);
1518}
1519
1520bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
1521	       u32 *ecx, u32 *edx, bool exact_only)
1522{
1523	u32 orig_function = *eax, function = *eax, index = *ecx;
1524	struct kvm_cpuid_entry2 *entry;
1525	bool exact, used_max_basic = false;
1526
1527	entry = kvm_find_cpuid_entry_index(vcpu, function, index);
1528	exact = !!entry;
1529
1530	if (!entry && !exact_only) {
1531		entry = get_out_of_range_cpuid_entry(vcpu, &function, index);
1532		used_max_basic = !!entry;
1533	}
1534
1535	if (entry) {
1536		*eax = entry->eax;
1537		*ebx = entry->ebx;
1538		*ecx = entry->ecx;
1539		*edx = entry->edx;
1540		if (function == 7 && index == 0) {
1541			u64 data;
1542		        if (!__kvm_get_msr(vcpu, MSR_IA32_TSX_CTRL, &data, true) &&
1543			    (data & TSX_CTRL_CPUID_CLEAR))
1544				*ebx &= ~(F(RTM) | F(HLE));
1545		} else if (function == 0x80000007) {
1546			if (kvm_hv_invtsc_suppressed(vcpu))
1547				*edx &= ~SF(CONSTANT_TSC);
1548		}
1549	} else {
1550		*eax = *ebx = *ecx = *edx = 0;
1551		/*
1552		 * When leaf 0BH or 1FH is defined, CL is pass-through
1553		 * and EDX is always the x2APIC ID, even for undefined
1554		 * subleaves. Index 1 will exist iff the leaf is
1555		 * implemented, so we pass through CL iff leaf 1
1556		 * exists. EDX can be copied from any existing index.
1557		 */
1558		if (function == 0xb || function == 0x1f) {
1559			entry = kvm_find_cpuid_entry_index(vcpu, function, 1);
1560			if (entry) {
1561				*ecx = index & 0xff;
1562				*edx = entry->edx;
1563			}
1564		}
1565	}
1566	trace_kvm_cpuid(orig_function, index, *eax, *ebx, *ecx, *edx, exact,
1567			used_max_basic);
1568	return exact;
1569}
1570EXPORT_SYMBOL_GPL(kvm_cpuid);
1571
1572int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
1573{
1574	u32 eax, ebx, ecx, edx;
1575
1576	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
1577		return 1;
1578
1579	eax = kvm_rax_read(vcpu);
1580	ecx = kvm_rcx_read(vcpu);
1581	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, false);
1582	kvm_rax_write(vcpu, eax);
1583	kvm_rbx_write(vcpu, ebx);
1584	kvm_rcx_write(vcpu, ecx);
1585	kvm_rdx_write(vcpu, edx);
1586	return kvm_skip_emulated_instruction(vcpu);
1587}
1588EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
1589