xref: /kernel/linux/linux-6.6/arch/x86/kernel/smp.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *	Intel SMP support routines.
4 *
5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 *	(c) 1998-99, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 *      (c) 2002,2003 Andi Kleen, SuSE Labs.
8 *
9 *	i386 and x86_64 integration by Glauber Costa <gcosta@redhat.com>
10 */
11
12#include <linux/init.h>
13
14#include <linux/mm.h>
15#include <linux/delay.h>
16#include <linux/spinlock.h>
17#include <linux/export.h>
18#include <linux/kernel_stat.h>
19#include <linux/mc146818rtc.h>
20#include <linux/cache.h>
21#include <linux/interrupt.h>
22#include <linux/cpu.h>
23#include <linux/gfp.h>
24#include <linux/kexec.h>
25
26#include <asm/mtrr.h>
27#include <asm/tlbflush.h>
28#include <asm/mmu_context.h>
29#include <asm/proto.h>
30#include <asm/apic.h>
31#include <asm/cpu.h>
32#include <asm/idtentry.h>
33#include <asm/nmi.h>
34#include <asm/mce.h>
35#include <asm/trace/irq_vectors.h>
36#include <asm/kexec.h>
37#include <asm/reboot.h>
38
39/*
40 *	Some notes on x86 processor bugs affecting SMP operation:
41 *
42 *	Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
43 *	The Linux implications for SMP are handled as follows:
44 *
45 *	Pentium III / [Xeon]
46 *		None of the E1AP-E3AP errata are visible to the user.
47 *
48 *	E1AP.	see PII A1AP
49 *	E2AP.	see PII A2AP
50 *	E3AP.	see PII A3AP
51 *
52 *	Pentium II / [Xeon]
53 *		None of the A1AP-A3AP errata are visible to the user.
54 *
55 *	A1AP.	see PPro 1AP
56 *	A2AP.	see PPro 2AP
57 *	A3AP.	see PPro 7AP
58 *
59 *	Pentium Pro
60 *		None of 1AP-9AP errata are visible to the normal user,
61 *	except occasional delivery of 'spurious interrupt' as trap #15.
62 *	This is very rare and a non-problem.
63 *
64 *	1AP.	Linux maps APIC as non-cacheable
65 *	2AP.	worked around in hardware
66 *	3AP.	fixed in C0 and above steppings microcode update.
67 *		Linux does not use excessive STARTUP_IPIs.
68 *	4AP.	worked around in hardware
69 *	5AP.	symmetric IO mode (normal Linux operation) not affected.
70 *		'noapic' mode has vector 0xf filled out properly.
71 *	6AP.	'noapic' mode might be affected - fixed in later steppings
72 *	7AP.	We do not assume writes to the LVT deasserting IRQs
73 *	8AP.	We do not enable low power mode (deep sleep) during MP bootup
74 *	9AP.	We do not use mixed mode
75 *
76 *	Pentium
77 *		There is a marginal case where REP MOVS on 100MHz SMP
78 *	machines with B stepping processors can fail. XXX should provide
79 *	an L1cache=Writethrough or L1cache=off option.
80 *
81 *		B stepping CPUs may hang. There are hardware work arounds
82 *	for this. We warn about it in case your board doesn't have the work
83 *	arounds. Basically that's so I can tell anyone with a B stepping
84 *	CPU and SMP problems "tough".
85 *
86 *	Specific items [From Pentium Processor Specification Update]
87 *
88 *	1AP.	Linux doesn't use remote read
89 *	2AP.	Linux doesn't trust APIC errors
90 *	3AP.	We work around this
91 *	4AP.	Linux never generated 3 interrupts of the same priority
92 *		to cause a lost local interrupt.
93 *	5AP.	Remote read is never used
94 *	6AP.	not affected - worked around in hardware
95 *	7AP.	not affected - worked around in hardware
96 *	8AP.	worked around in hardware - we get explicit CS errors if not
97 *	9AP.	only 'noapic' mode affected. Might generate spurious
98 *		interrupts, we log only the first one and count the
99 *		rest silently.
100 *	10AP.	not affected - worked around in hardware
101 *	11AP.	Linux reads the APIC between writes to avoid this, as per
102 *		the documentation. Make sure you preserve this as it affects
103 *		the C stepping chips too.
104 *	12AP.	not affected - worked around in hardware
105 *	13AP.	not affected - worked around in hardware
106 *	14AP.	we always deassert INIT during bootup
107 *	15AP.	not affected - worked around in hardware
108 *	16AP.	not affected - worked around in hardware
109 *	17AP.	not affected - worked around in hardware
110 *	18AP.	not affected - worked around in hardware
111 *	19AP.	not affected - worked around in BIOS
112 *
113 *	If this sounds worrying believe me these bugs are either ___RARE___,
114 *	or are signal timing bugs worked around in hardware and there's
115 *	about nothing of note with C stepping upwards.
116 */
117
118static atomic_t stopping_cpu = ATOMIC_INIT(-1);
119static bool smp_no_nmi_ipi = false;
120
121static int smp_stop_nmi_callback(unsigned int val, struct pt_regs *regs)
122{
123	/* We are registered on stopping cpu too, avoid spurious NMI */
124	if (raw_smp_processor_id() == atomic_read(&stopping_cpu))
125		return NMI_HANDLED;
126
127	cpu_emergency_disable_virtualization();
128	stop_this_cpu(NULL);
129
130	return NMI_HANDLED;
131}
132
133/*
134 * this function calls the 'stop' function on all other CPUs in the system.
135 */
136DEFINE_IDTENTRY_SYSVEC(sysvec_reboot)
137{
138	apic_eoi();
139	cpu_emergency_disable_virtualization();
140	stop_this_cpu(NULL);
141}
142
143static int register_stop_handler(void)
144{
145	return register_nmi_handler(NMI_LOCAL, smp_stop_nmi_callback,
146				    NMI_FLAG_FIRST, "smp_stop");
147}
148
149static void native_stop_other_cpus(int wait)
150{
151	unsigned int cpu = smp_processor_id();
152	unsigned long flags, timeout;
153
154	if (reboot_force)
155		return;
156
157	/* Only proceed if this is the first CPU to reach this code */
158	if (atomic_cmpxchg(&stopping_cpu, -1, cpu) != -1)
159		return;
160
161	/* For kexec, ensure that offline CPUs are out of MWAIT and in HLT */
162	if (kexec_in_progress)
163		smp_kick_mwait_play_dead();
164
165	/*
166	 * 1) Send an IPI on the reboot vector to all other CPUs.
167	 *
168	 *    The other CPUs should react on it after leaving critical
169	 *    sections and re-enabling interrupts. They might still hold
170	 *    locks, but there is nothing which can be done about that.
171	 *
172	 * 2) Wait for all other CPUs to report that they reached the
173	 *    HLT loop in stop_this_cpu()
174	 *
175	 * 3) If #2 timed out send an NMI to the CPUs which did not
176	 *    yet report
177	 *
178	 * 4) Wait for all other CPUs to report that they reached the
179	 *    HLT loop in stop_this_cpu()
180	 *
181	 * #3 can obviously race against a CPU reaching the HLT loop late.
182	 * That CPU will have reported already and the "have all CPUs
183	 * reached HLT" condition will be true despite the fact that the
184	 * other CPU is still handling the NMI. Again, there is no
185	 * protection against that as "disabled" APICs still respond to
186	 * NMIs.
187	 */
188	cpumask_copy(&cpus_stop_mask, cpu_online_mask);
189	cpumask_clear_cpu(cpu, &cpus_stop_mask);
190
191	if (!cpumask_empty(&cpus_stop_mask)) {
192		apic_send_IPI_allbutself(REBOOT_VECTOR);
193
194		/*
195		 * Don't wait longer than a second for IPI completion. The
196		 * wait request is not checked here because that would
197		 * prevent an NMI shutdown attempt in case that not all
198		 * CPUs reach shutdown state.
199		 */
200		timeout = USEC_PER_SEC;
201		while (!cpumask_empty(&cpus_stop_mask) && timeout--)
202			udelay(1);
203	}
204
205	/* if the REBOOT_VECTOR didn't work, try with the NMI */
206	if (!cpumask_empty(&cpus_stop_mask)) {
207		/*
208		 * If NMI IPI is enabled, try to register the stop handler
209		 * and send the IPI. In any case try to wait for the other
210		 * CPUs to stop.
211		 */
212		if (!smp_no_nmi_ipi && !register_stop_handler()) {
213			pr_emerg("Shutting down cpus with NMI\n");
214
215			for_each_cpu(cpu, &cpus_stop_mask)
216				__apic_send_IPI(cpu, NMI_VECTOR);
217		}
218		/*
219		 * Don't wait longer than 10 ms if the caller didn't
220		 * request it. If wait is true, the machine hangs here if
221		 * one or more CPUs do not reach shutdown state.
222		 */
223		timeout = USEC_PER_MSEC * 10;
224		while (!cpumask_empty(&cpus_stop_mask) && (wait || timeout--))
225			udelay(1);
226	}
227
228	local_irq_save(flags);
229	disable_local_APIC();
230	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
231	local_irq_restore(flags);
232
233	/*
234	 * Ensure that the cpus_stop_mask cache lines are invalidated on
235	 * the other CPUs. See comment vs. SME in stop_this_cpu().
236	 */
237	cpumask_clear(&cpus_stop_mask);
238}
239
240/*
241 * Reschedule call back. KVM uses this interrupt to force a cpu out of
242 * guest mode.
243 */
244DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_reschedule_ipi)
245{
246	apic_eoi();
247	trace_reschedule_entry(RESCHEDULE_VECTOR);
248	inc_irq_stat(irq_resched_count);
249	scheduler_ipi();
250	trace_reschedule_exit(RESCHEDULE_VECTOR);
251}
252
253DEFINE_IDTENTRY_SYSVEC(sysvec_call_function)
254{
255	apic_eoi();
256	trace_call_function_entry(CALL_FUNCTION_VECTOR);
257	inc_irq_stat(irq_call_count);
258	generic_smp_call_function_interrupt();
259	trace_call_function_exit(CALL_FUNCTION_VECTOR);
260}
261
262DEFINE_IDTENTRY_SYSVEC(sysvec_call_function_single)
263{
264	apic_eoi();
265	trace_call_function_single_entry(CALL_FUNCTION_SINGLE_VECTOR);
266	inc_irq_stat(irq_call_count);
267	generic_smp_call_function_single_interrupt();
268	trace_call_function_single_exit(CALL_FUNCTION_SINGLE_VECTOR);
269}
270
271static int __init nonmi_ipi_setup(char *str)
272{
273	smp_no_nmi_ipi = true;
274	return 1;
275}
276
277__setup("nonmi_ipi", nonmi_ipi_setup);
278
279struct smp_ops smp_ops = {
280	.smp_prepare_boot_cpu	= native_smp_prepare_boot_cpu,
281	.smp_prepare_cpus	= native_smp_prepare_cpus,
282	.smp_cpus_done		= native_smp_cpus_done,
283
284	.stop_other_cpus	= native_stop_other_cpus,
285#if defined(CONFIG_KEXEC_CORE)
286	.crash_stop_other_cpus	= kdump_nmi_shootdown_cpus,
287#endif
288	.smp_send_reschedule	= native_smp_send_reschedule,
289
290	.kick_ap_alive		= native_kick_ap,
291	.cpu_disable		= native_cpu_disable,
292	.play_dead		= native_play_dead,
293
294	.send_call_func_ipi	= native_send_call_func_ipi,
295	.send_call_func_single_ipi = native_send_call_func_single_ipi,
296};
297EXPORT_SYMBOL_GPL(smp_ops);
298