1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
2#ifndef _ASM_X86_BOOTPARAM_H
3#define _ASM_X86_BOOTPARAM_H
4
5/* setup_data/setup_indirect types */
6#define SETUP_NONE			0
7#define SETUP_E820_EXT			1
8#define SETUP_DTB			2
9#define SETUP_PCI			3
10#define SETUP_EFI			4
11#define SETUP_APPLE_PROPERTIES		5
12#define SETUP_JAILHOUSE			6
13#define SETUP_CC_BLOB			7
14#define SETUP_IMA			8
15#define SETUP_RNG_SEED			9
16#define SETUP_ENUM_MAX			SETUP_RNG_SEED
17
18#define SETUP_INDIRECT			(1<<31)
19#define SETUP_TYPE_MAX			(SETUP_ENUM_MAX | SETUP_INDIRECT)
20
21/* ram_size flags */
22#define RAMDISK_IMAGE_START_MASK	0x07FF
23#define RAMDISK_PROMPT_FLAG		0x8000
24#define RAMDISK_LOAD_FLAG		0x4000
25
26/* loadflags */
27#define LOADED_HIGH	(1<<0)
28#define KASLR_FLAG	(1<<1)
29#define QUIET_FLAG	(1<<5)
30#define KEEP_SEGMENTS	(1<<6)
31#define CAN_USE_HEAP	(1<<7)
32
33/* xloadflags */
34#define XLF_KERNEL_64			(1<<0)
35#define XLF_CAN_BE_LOADED_ABOVE_4G	(1<<1)
36#define XLF_EFI_HANDOVER_32		(1<<2)
37#define XLF_EFI_HANDOVER_64		(1<<3)
38#define XLF_EFI_KEXEC			(1<<4)
39#define XLF_5LEVEL			(1<<5)
40#define XLF_5LEVEL_ENABLED		(1<<6)
41
42#ifndef __ASSEMBLY__
43
44#include <linux/types.h>
45#include <linux/screen_info.h>
46#include <linux/apm_bios.h>
47#include <linux/edd.h>
48#include <asm/ist.h>
49#include <video/edid.h>
50
51/* extensible setup data list node */
52struct setup_data {
53	__u64 next;
54	__u32 type;
55	__u32 len;
56	__u8 data[];
57};
58
59/* extensible setup indirect data node */
60struct setup_indirect {
61	__u32 type;
62	__u32 reserved;  /* Reserved, must be set to zero. */
63	__u64 len;
64	__u64 addr;
65};
66
67struct setup_header {
68	__u8	setup_sects;
69	__u16	root_flags;
70	__u32	syssize;
71	__u16	ram_size;
72	__u16	vid_mode;
73	__u16	root_dev;
74	__u16	boot_flag;
75	__u16	jump;
76	__u32	header;
77	__u16	version;
78	__u32	realmode_swtch;
79	__u16	start_sys_seg;
80	__u16	kernel_version;
81	__u8	type_of_loader;
82	__u8	loadflags;
83	__u16	setup_move_size;
84	__u32	code32_start;
85	__u32	ramdisk_image;
86	__u32	ramdisk_size;
87	__u32	bootsect_kludge;
88	__u16	heap_end_ptr;
89	__u8	ext_loader_ver;
90	__u8	ext_loader_type;
91	__u32	cmd_line_ptr;
92	__u32	initrd_addr_max;
93	__u32	kernel_alignment;
94	__u8	relocatable_kernel;
95	__u8	min_alignment;
96	__u16	xloadflags;
97	__u32	cmdline_size;
98	__u32	hardware_subarch;
99	__u64	hardware_subarch_data;
100	__u32	payload_offset;
101	__u32	payload_length;
102	__u64	setup_data;
103	__u64	pref_address;
104	__u32	init_size;
105	__u32	handover_offset;
106	__u32	kernel_info_offset;
107} __attribute__((packed));
108
109struct sys_desc_table {
110	__u16 length;
111	__u8  table[14];
112};
113
114/* Gleaned from OFW's set-parameters in cpu/x86/pc/linux.fth */
115struct olpc_ofw_header {
116	__u32 ofw_magic;	/* OFW signature */
117	__u32 ofw_version;
118	__u32 cif_handler;	/* callback into OFW */
119	__u32 irq_desc_table;
120} __attribute__((packed));
121
122struct efi_info {
123	__u32 efi_loader_signature;
124	__u32 efi_systab;
125	__u32 efi_memdesc_size;
126	__u32 efi_memdesc_version;
127	__u32 efi_memmap;
128	__u32 efi_memmap_size;
129	__u32 efi_systab_hi;
130	__u32 efi_memmap_hi;
131};
132
133/*
134 * This is the maximum number of entries in struct boot_params::e820_table
135 * (the zeropage), which is part of the x86 boot protocol ABI:
136 */
137#define E820_MAX_ENTRIES_ZEROPAGE 128
138
139/*
140 * The E820 memory region entry of the boot protocol ABI:
141 */
142struct boot_e820_entry {
143	__u64 addr;
144	__u64 size;
145	__u32 type;
146} __attribute__((packed));
147
148/*
149 * Smallest compatible version of jailhouse_setup_data required by this kernel.
150 */
151#define JAILHOUSE_SETUP_REQUIRED_VERSION	1
152
153/*
154 * The boot loader is passing platform information via this Jailhouse-specific
155 * setup data structure.
156 */
157struct jailhouse_setup_data {
158	struct {
159		__u16	version;
160		__u16	compatible_version;
161	} __attribute__((packed)) hdr;
162	struct {
163		__u16	pm_timer_address;
164		__u16	num_cpus;
165		__u64	pci_mmconfig_base;
166		__u32	tsc_khz;
167		__u32	apic_khz;
168		__u8	standard_ioapic;
169		__u8	cpu_ids[255];
170	} __attribute__((packed)) v1;
171	struct {
172		__u32	flags;
173	} __attribute__((packed)) v2;
174} __attribute__((packed));
175
176/*
177 * IMA buffer setup data information from the previous kernel during kexec
178 */
179struct ima_setup_data {
180	__u64 addr;
181	__u64 size;
182} __attribute__((packed));
183
184/* The so-called "zeropage" */
185struct boot_params {
186	struct screen_info screen_info;			/* 0x000 */
187	struct apm_bios_info apm_bios_info;		/* 0x040 */
188	__u8  _pad2[4];					/* 0x054 */
189	__u64  tboot_addr;				/* 0x058 */
190	struct ist_info ist_info;			/* 0x060 */
191	__u64 acpi_rsdp_addr;				/* 0x070 */
192	__u8  _pad3[8];					/* 0x078 */
193	__u8  hd0_info[16];	/* obsolete! */		/* 0x080 */
194	__u8  hd1_info[16];	/* obsolete! */		/* 0x090 */
195	struct sys_desc_table sys_desc_table; /* obsolete! */	/* 0x0a0 */
196	struct olpc_ofw_header olpc_ofw_header;		/* 0x0b0 */
197	__u32 ext_ramdisk_image;			/* 0x0c0 */
198	__u32 ext_ramdisk_size;				/* 0x0c4 */
199	__u32 ext_cmd_line_ptr;				/* 0x0c8 */
200	__u8  _pad4[112];				/* 0x0cc */
201	__u32 cc_blob_address;				/* 0x13c */
202	struct edid_info edid_info;			/* 0x140 */
203	struct efi_info efi_info;			/* 0x1c0 */
204	__u32 alt_mem_k;				/* 0x1e0 */
205	__u32 scratch;		/* Scratch field! */	/* 0x1e4 */
206	__u8  e820_entries;				/* 0x1e8 */
207	__u8  eddbuf_entries;				/* 0x1e9 */
208	__u8  edd_mbr_sig_buf_entries;			/* 0x1ea */
209	__u8  kbd_status;				/* 0x1eb */
210	__u8  secure_boot;				/* 0x1ec */
211	__u8  _pad5[2];					/* 0x1ed */
212	/*
213	 * The sentinel is set to a nonzero value (0xff) in header.S.
214	 *
215	 * A bootloader is supposed to only take setup_header and put
216	 * it into a clean boot_params buffer. If it turns out that
217	 * it is clumsy or too generous with the buffer, it most
218	 * probably will pick up the sentinel variable too. The fact
219	 * that this variable then is still 0xff will let kernel
220	 * know that some variables in boot_params are invalid and
221	 * kernel should zero out certain portions of boot_params.
222	 */
223	__u8  sentinel;					/* 0x1ef */
224	__u8  _pad6[1];					/* 0x1f0 */
225	struct setup_header hdr;    /* setup header */	/* 0x1f1 */
226	__u8  _pad7[0x290-0x1f1-sizeof(struct setup_header)];
227	__u32 edd_mbr_sig_buffer[EDD_MBR_SIG_MAX];	/* 0x290 */
228	struct boot_e820_entry e820_table[E820_MAX_ENTRIES_ZEROPAGE]; /* 0x2d0 */
229	__u8  _pad8[48];				/* 0xcd0 */
230	struct edd_info eddbuf[EDDMAXNR];		/* 0xd00 */
231	__u8  _pad9[276];				/* 0xeec */
232} __attribute__((packed));
233
234/**
235 * enum x86_hardware_subarch - x86 hardware subarchitecture
236 *
237 * The x86 hardware_subarch and hardware_subarch_data were added as of the x86
238 * boot protocol 2.07 to help distinguish and support custom x86 boot
239 * sequences. This enum represents accepted values for the x86
240 * hardware_subarch.  Custom x86 boot sequences (not X86_SUBARCH_PC) do not
241 * have or simply *cannot* make use of natural stubs like BIOS or EFI, the
242 * hardware_subarch can be used on the Linux entry path to revector to a
243 * subarchitecture stub when needed. This subarchitecture stub can be used to
244 * set up Linux boot parameters or for special care to account for nonstandard
245 * handling of page tables.
246 *
247 * These enums should only ever be used by x86 code, and the code that uses
248 * it should be well contained and compartmentalized.
249 *
250 * KVM and Xen HVM do not have a subarch as these are expected to follow
251 * standard x86 boot entries. If there is a genuine need for "hypervisor" type
252 * that should be considered separately in the future. Future guest types
253 * should seriously consider working with standard x86 boot stubs such as
254 * the BIOS or EFI boot stubs.
255 *
256 * WARNING: this enum is only used for legacy hacks, for platform features that
257 *	    are not easily enumerated or discoverable. You should not ever use
258 *	    this for new features.
259 *
260 * @X86_SUBARCH_PC: Should be used if the hardware is enumerable using standard
261 *	PC mechanisms (PCI, ACPI) and doesn't need a special boot flow.
262 * @X86_SUBARCH_LGUEST: Used for x86 hypervisor demo, lguest, deprecated
263 * @X86_SUBARCH_XEN: Used for Xen guest types which follow the PV boot path,
264 * 	which start at asm startup_xen() entry point and later jump to the C
265 * 	xen_start_kernel() entry point. Both domU and dom0 type of guests are
266 * 	currently supported through this PV boot path.
267 * @X86_SUBARCH_INTEL_MID: Used for Intel MID (Mobile Internet Device) platform
268 *	systems which do not have the PCI legacy interfaces.
269 * @X86_SUBARCH_CE4100: Used for Intel CE media processor (CE4100) SoC
270 * 	for settop boxes and media devices, the use of a subarch for CE4100
271 * 	is more of a hack...
272 */
273enum x86_hardware_subarch {
274	X86_SUBARCH_PC = 0,
275	X86_SUBARCH_LGUEST,
276	X86_SUBARCH_XEN,
277	X86_SUBARCH_INTEL_MID,
278	X86_SUBARCH_CE4100,
279	X86_NR_SUBARCHS,
280};
281
282#endif /* __ASSEMBLY__ */
283
284#endif /* _ASM_X86_BOOTPARAM_H */
285