1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PROCESSOR_H
3#define _ASM_X86_PROCESSOR_H
4
5#include <asm/processor-flags.h>
6
7/* Forward declaration, a strange C thing */
8struct task_struct;
9struct mm_struct;
10struct io_bitmap;
11struct vm86;
12
13#include <asm/math_emu.h>
14#include <asm/segment.h>
15#include <asm/types.h>
16#include <uapi/asm/sigcontext.h>
17#include <asm/current.h>
18#include <asm/cpufeatures.h>
19#include <asm/cpuid.h>
20#include <asm/page.h>
21#include <asm/pgtable_types.h>
22#include <asm/percpu.h>
23#include <asm/msr.h>
24#include <asm/desc_defs.h>
25#include <asm/nops.h>
26#include <asm/special_insns.h>
27#include <asm/fpu/types.h>
28#include <asm/unwind_hints.h>
29#include <asm/vmxfeatures.h>
30#include <asm/vdso/processor.h>
31#include <asm/shstk.h>
32
33#include <linux/personality.h>
34#include <linux/cache.h>
35#include <linux/threads.h>
36#include <linux/math64.h>
37#include <linux/err.h>
38#include <linux/irqflags.h>
39#include <linux/mem_encrypt.h>
40
41/*
42 * We handle most unaligned accesses in hardware.  On the other hand
43 * unaligned DMA can be quite expensive on some Nehalem processors.
44 *
45 * Based on this we disable the IP header alignment in network drivers.
46 */
47#define NET_IP_ALIGN	0
48
49#define HBP_NUM 4
50
51/*
52 * These alignment constraints are for performance in the vSMP case,
53 * but in the task_struct case we must also meet hardware imposed
54 * alignment requirements of the FPU state:
55 */
56#ifdef CONFIG_X86_VSMP
57# define ARCH_MIN_TASKALIGN		(1 << INTERNODE_CACHE_SHIFT)
58# define ARCH_MIN_MMSTRUCT_ALIGN	(1 << INTERNODE_CACHE_SHIFT)
59#else
60# define ARCH_MIN_TASKALIGN		__alignof__(union fpregs_state)
61# define ARCH_MIN_MMSTRUCT_ALIGN	0
62#endif
63
64enum tlb_infos {
65	ENTRIES,
66	NR_INFO
67};
68
69extern u16 __read_mostly tlb_lli_4k[NR_INFO];
70extern u16 __read_mostly tlb_lli_2m[NR_INFO];
71extern u16 __read_mostly tlb_lli_4m[NR_INFO];
72extern u16 __read_mostly tlb_lld_4k[NR_INFO];
73extern u16 __read_mostly tlb_lld_2m[NR_INFO];
74extern u16 __read_mostly tlb_lld_4m[NR_INFO];
75extern u16 __read_mostly tlb_lld_1g[NR_INFO];
76
77/*
78 *  CPU type and hardware bug flags. Kept separately for each CPU.
79 *  Members of this structure are referenced in head_32.S, so think twice
80 *  before touching them. [mj]
81 */
82
83struct cpuinfo_x86 {
84	__u8			x86;		/* CPU family */
85	__u8			x86_vendor;	/* CPU vendor */
86	__u8			x86_model;
87	__u8			x86_stepping;
88#ifdef CONFIG_X86_64
89	/* Number of 4K pages in DTLB/ITLB combined(in pages): */
90	int			x86_tlbsize;
91#endif
92#ifdef CONFIG_X86_VMX_FEATURE_NAMES
93	__u32			vmx_capability[NVMXINTS];
94#endif
95	__u8			x86_virt_bits;
96	__u8			x86_phys_bits;
97	/* CPUID returned core id bits: */
98	__u8			x86_coreid_bits;
99	__u8			cu_id;
100	/* Max extended CPUID function supported: */
101	__u32			extended_cpuid_level;
102	/* Maximum supported CPUID level, -1=no CPUID: */
103	int			cpuid_level;
104	/*
105	 * Align to size of unsigned long because the x86_capability array
106	 * is passed to bitops which require the alignment. Use unnamed
107	 * union to enforce the array is aligned to size of unsigned long.
108	 */
109	union {
110		__u32		x86_capability[NCAPINTS + NBUGINTS];
111		unsigned long	x86_capability_alignment;
112	};
113	char			x86_vendor_id[16];
114	char			x86_model_id[64];
115	/* in KB - valid for CPUS which support this call: */
116	unsigned int		x86_cache_size;
117	int			x86_cache_alignment;	/* In bytes */
118	/* Cache QoS architectural values, valid only on the BSP: */
119	int			x86_cache_max_rmid;	/* max index */
120	int			x86_cache_occ_scale;	/* scale to bytes */
121	int			x86_cache_mbm_width_offset;
122	int			x86_power;
123	unsigned long		loops_per_jiffy;
124	/* protected processor identification number */
125	u64			ppin;
126	/* cpuid returned max cores value: */
127	u16			x86_max_cores;
128	u16			apicid;
129	u16			initial_apicid;
130	u16			x86_clflush_size;
131	/* number of cores as seen by the OS: */
132	u16			booted_cores;
133	/* Physical processor id: */
134	u16			phys_proc_id;
135	/* Logical processor id: */
136	u16			logical_proc_id;
137	/* Core id: */
138	u16			cpu_core_id;
139	u16			cpu_die_id;
140	u16			logical_die_id;
141	/* Index into per_cpu list: */
142	u16			cpu_index;
143	/*  Is SMT active on this core? */
144	bool			smt_active;
145	u32			microcode;
146	/* Address space bits used by the cache internally */
147	u8			x86_cache_bits;
148	unsigned		initialized : 1;
149} __randomize_layout;
150
151#define X86_VENDOR_INTEL	0
152#define X86_VENDOR_CYRIX	1
153#define X86_VENDOR_AMD		2
154#define X86_VENDOR_UMC		3
155#define X86_VENDOR_CENTAUR	5
156#define X86_VENDOR_TRANSMETA	7
157#define X86_VENDOR_NSC		8
158#define X86_VENDOR_HYGON	9
159#define X86_VENDOR_ZHAOXIN	10
160#define X86_VENDOR_VORTEX	11
161#define X86_VENDOR_NUM		12
162
163#define X86_VENDOR_UNKNOWN	0xff
164
165/*
166 * capabilities of CPUs
167 */
168extern struct cpuinfo_x86	boot_cpu_data;
169extern struct cpuinfo_x86	new_cpu_data;
170
171extern __u32			cpu_caps_cleared[NCAPINTS + NBUGINTS];
172extern __u32			cpu_caps_set[NCAPINTS + NBUGINTS];
173
174#ifdef CONFIG_SMP
175DECLARE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
176#define cpu_data(cpu)		per_cpu(cpu_info, cpu)
177#else
178#define cpu_info		boot_cpu_data
179#define cpu_data(cpu)		boot_cpu_data
180#endif
181
182extern const struct seq_operations cpuinfo_op;
183
184#define cache_line_size()	(boot_cpu_data.x86_cache_alignment)
185
186extern void cpu_detect(struct cpuinfo_x86 *c);
187
188static inline unsigned long long l1tf_pfn_limit(void)
189{
190	return BIT_ULL(boot_cpu_data.x86_cache_bits - 1 - PAGE_SHIFT);
191}
192
193extern void early_cpu_init(void);
194extern void identify_secondary_cpu(struct cpuinfo_x86 *);
195extern void print_cpu_info(struct cpuinfo_x86 *);
196void print_cpu_msr(struct cpuinfo_x86 *);
197
198/*
199 * Friendlier CR3 helpers.
200 */
201static inline unsigned long read_cr3_pa(void)
202{
203	return __read_cr3() & CR3_ADDR_MASK;
204}
205
206static inline unsigned long native_read_cr3_pa(void)
207{
208	return __native_read_cr3() & CR3_ADDR_MASK;
209}
210
211static inline void load_cr3(pgd_t *pgdir)
212{
213	write_cr3(__sme_pa(pgdir));
214}
215
216/*
217 * Note that while the legacy 'TSS' name comes from 'Task State Segment',
218 * on modern x86 CPUs the TSS also holds information important to 64-bit mode,
219 * unrelated to the task-switch mechanism:
220 */
221#ifdef CONFIG_X86_32
222/* This is the TSS defined by the hardware. */
223struct x86_hw_tss {
224	unsigned short		back_link, __blh;
225	unsigned long		sp0;
226	unsigned short		ss0, __ss0h;
227	unsigned long		sp1;
228
229	/*
230	 * We don't use ring 1, so ss1 is a convenient scratch space in
231	 * the same cacheline as sp0.  We use ss1 to cache the value in
232	 * MSR_IA32_SYSENTER_CS.  When we context switch
233	 * MSR_IA32_SYSENTER_CS, we first check if the new value being
234	 * written matches ss1, and, if it's not, then we wrmsr the new
235	 * value and update ss1.
236	 *
237	 * The only reason we context switch MSR_IA32_SYSENTER_CS is
238	 * that we set it to zero in vm86 tasks to avoid corrupting the
239	 * stack if we were to go through the sysenter path from vm86
240	 * mode.
241	 */
242	unsigned short		ss1;	/* MSR_IA32_SYSENTER_CS */
243
244	unsigned short		__ss1h;
245	unsigned long		sp2;
246	unsigned short		ss2, __ss2h;
247	unsigned long		__cr3;
248	unsigned long		ip;
249	unsigned long		flags;
250	unsigned long		ax;
251	unsigned long		cx;
252	unsigned long		dx;
253	unsigned long		bx;
254	unsigned long		sp;
255	unsigned long		bp;
256	unsigned long		si;
257	unsigned long		di;
258	unsigned short		es, __esh;
259	unsigned short		cs, __csh;
260	unsigned short		ss, __ssh;
261	unsigned short		ds, __dsh;
262	unsigned short		fs, __fsh;
263	unsigned short		gs, __gsh;
264	unsigned short		ldt, __ldth;
265	unsigned short		trace;
266	unsigned short		io_bitmap_base;
267
268} __attribute__((packed));
269#else
270struct x86_hw_tss {
271	u32			reserved1;
272	u64			sp0;
273	u64			sp1;
274
275	/*
276	 * Since Linux does not use ring 2, the 'sp2' slot is unused by
277	 * hardware.  entry_SYSCALL_64 uses it as scratch space to stash
278	 * the user RSP value.
279	 */
280	u64			sp2;
281
282	u64			reserved2;
283	u64			ist[7];
284	u32			reserved3;
285	u32			reserved4;
286	u16			reserved5;
287	u16			io_bitmap_base;
288
289} __attribute__((packed));
290#endif
291
292/*
293 * IO-bitmap sizes:
294 */
295#define IO_BITMAP_BITS			65536
296#define IO_BITMAP_BYTES			(IO_BITMAP_BITS / BITS_PER_BYTE)
297#define IO_BITMAP_LONGS			(IO_BITMAP_BYTES / sizeof(long))
298
299#define IO_BITMAP_OFFSET_VALID_MAP				\
300	(offsetof(struct tss_struct, io_bitmap.bitmap) -	\
301	 offsetof(struct tss_struct, x86_tss))
302
303#define IO_BITMAP_OFFSET_VALID_ALL				\
304	(offsetof(struct tss_struct, io_bitmap.mapall) -	\
305	 offsetof(struct tss_struct, x86_tss))
306
307#ifdef CONFIG_X86_IOPL_IOPERM
308/*
309 * sizeof(unsigned long) coming from an extra "long" at the end of the
310 * iobitmap. The limit is inclusive, i.e. the last valid byte.
311 */
312# define __KERNEL_TSS_LIMIT	\
313	(IO_BITMAP_OFFSET_VALID_ALL + IO_BITMAP_BYTES + \
314	 sizeof(unsigned long) - 1)
315#else
316# define __KERNEL_TSS_LIMIT	\
317	(offsetof(struct tss_struct, x86_tss) + sizeof(struct x86_hw_tss) - 1)
318#endif
319
320/* Base offset outside of TSS_LIMIT so unpriviledged IO causes #GP */
321#define IO_BITMAP_OFFSET_INVALID	(__KERNEL_TSS_LIMIT + 1)
322
323struct entry_stack {
324	char	stack[PAGE_SIZE];
325};
326
327struct entry_stack_page {
328	struct entry_stack stack;
329} __aligned(PAGE_SIZE);
330
331/*
332 * All IO bitmap related data stored in the TSS:
333 */
334struct x86_io_bitmap {
335	/* The sequence number of the last active bitmap. */
336	u64			prev_sequence;
337
338	/*
339	 * Store the dirty size of the last io bitmap offender. The next
340	 * one will have to do the cleanup as the switch out to a non io
341	 * bitmap user will just set x86_tss.io_bitmap_base to a value
342	 * outside of the TSS limit. So for sane tasks there is no need to
343	 * actually touch the io_bitmap at all.
344	 */
345	unsigned int		prev_max;
346
347	/*
348	 * The extra 1 is there because the CPU will access an
349	 * additional byte beyond the end of the IO permission
350	 * bitmap. The extra byte must be all 1 bits, and must
351	 * be within the limit.
352	 */
353	unsigned long		bitmap[IO_BITMAP_LONGS + 1];
354
355	/*
356	 * Special I/O bitmap to emulate IOPL(3). All bytes zero,
357	 * except the additional byte at the end.
358	 */
359	unsigned long		mapall[IO_BITMAP_LONGS + 1];
360};
361
362struct tss_struct {
363	/*
364	 * The fixed hardware portion.  This must not cross a page boundary
365	 * at risk of violating the SDM's advice and potentially triggering
366	 * errata.
367	 */
368	struct x86_hw_tss	x86_tss;
369
370	struct x86_io_bitmap	io_bitmap;
371} __aligned(PAGE_SIZE);
372
373DECLARE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw);
374
375/* Per CPU interrupt stacks */
376struct irq_stack {
377	char		stack[IRQ_STACK_SIZE];
378} __aligned(IRQ_STACK_SIZE);
379
380#ifdef CONFIG_X86_64
381struct fixed_percpu_data {
382	/*
383	 * GCC hardcodes the stack canary as %gs:40.  Since the
384	 * irq_stack is the object at %gs:0, we reserve the bottom
385	 * 48 bytes of the irq stack for the canary.
386	 *
387	 * Once we are willing to require -mstack-protector-guard-symbol=
388	 * support for x86_64 stackprotector, we can get rid of this.
389	 */
390	char		gs_base[40];
391	unsigned long	stack_canary;
392};
393
394DECLARE_PER_CPU_FIRST(struct fixed_percpu_data, fixed_percpu_data) __visible;
395DECLARE_INIT_PER_CPU(fixed_percpu_data);
396
397static inline unsigned long cpu_kernelmode_gs_base(int cpu)
398{
399	return (unsigned long)per_cpu(fixed_percpu_data.gs_base, cpu);
400}
401
402extern asmlinkage void ignore_sysret(void);
403
404/* Save actual FS/GS selectors and bases to current->thread */
405void current_save_fsgs(void);
406#else	/* X86_64 */
407#ifdef CONFIG_STACKPROTECTOR
408DECLARE_PER_CPU(unsigned long, __stack_chk_guard);
409#endif
410#endif	/* !X86_64 */
411
412struct perf_event;
413
414struct thread_struct {
415	/* Cached TLS descriptors: */
416	struct desc_struct	tls_array[GDT_ENTRY_TLS_ENTRIES];
417#ifdef CONFIG_X86_32
418	unsigned long		sp0;
419#endif
420	unsigned long		sp;
421#ifdef CONFIG_X86_32
422	unsigned long		sysenter_cs;
423#else
424	unsigned short		es;
425	unsigned short		ds;
426	unsigned short		fsindex;
427	unsigned short		gsindex;
428#endif
429
430#ifdef CONFIG_X86_64
431	unsigned long		fsbase;
432	unsigned long		gsbase;
433#else
434	/*
435	 * XXX: this could presumably be unsigned short.  Alternatively,
436	 * 32-bit kernels could be taught to use fsindex instead.
437	 */
438	unsigned long fs;
439	unsigned long gs;
440#endif
441
442	/* Save middle states of ptrace breakpoints */
443	struct perf_event	*ptrace_bps[HBP_NUM];
444	/* Debug status used for traps, single steps, etc... */
445	unsigned long           virtual_dr6;
446	/* Keep track of the exact dr7 value set by the user */
447	unsigned long           ptrace_dr7;
448	/* Fault info: */
449	unsigned long		cr2;
450	unsigned long		trap_nr;
451	unsigned long		error_code;
452#ifdef CONFIG_VM86
453	/* Virtual 86 mode info */
454	struct vm86		*vm86;
455#endif
456	/* IO permissions: */
457	struct io_bitmap	*io_bitmap;
458
459	/*
460	 * IOPL. Privilege level dependent I/O permission which is
461	 * emulated via the I/O bitmap to prevent user space from disabling
462	 * interrupts.
463	 */
464	unsigned long		iopl_emul;
465
466	unsigned int		iopl_warn:1;
467	unsigned int		sig_on_uaccess_err:1;
468
469	/*
470	 * Protection Keys Register for Userspace.  Loaded immediately on
471	 * context switch. Store it in thread_struct to avoid a lookup in
472	 * the tasks's FPU xstate buffer. This value is only valid when a
473	 * task is scheduled out. For 'current' the authoritative source of
474	 * PKRU is the hardware itself.
475	 */
476	u32			pkru;
477
478#ifdef CONFIG_X86_USER_SHADOW_STACK
479	unsigned long		features;
480	unsigned long		features_locked;
481
482	struct thread_shstk	shstk;
483#endif
484
485	/* Floating point and extended processor state */
486	struct fpu		fpu;
487	/*
488	 * WARNING: 'fpu' is dynamically-sized.  It *MUST* be at
489	 * the end.
490	 */
491};
492
493extern void fpu_thread_struct_whitelist(unsigned long *offset, unsigned long *size);
494
495static inline void arch_thread_struct_whitelist(unsigned long *offset,
496						unsigned long *size)
497{
498	fpu_thread_struct_whitelist(offset, size);
499}
500
501static inline void
502native_load_sp0(unsigned long sp0)
503{
504	this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
505}
506
507static __always_inline void native_swapgs(void)
508{
509#ifdef CONFIG_X86_64
510	asm volatile("swapgs" ::: "memory");
511#endif
512}
513
514static __always_inline unsigned long current_top_of_stack(void)
515{
516	/*
517	 *  We can't read directly from tss.sp0: sp0 on x86_32 is special in
518	 *  and around vm86 mode and sp0 on x86_64 is special because of the
519	 *  entry trampoline.
520	 */
521	return this_cpu_read_stable(pcpu_hot.top_of_stack);
522}
523
524static __always_inline bool on_thread_stack(void)
525{
526	return (unsigned long)(current_top_of_stack() -
527			       current_stack_pointer) < THREAD_SIZE;
528}
529
530#ifdef CONFIG_PARAVIRT_XXL
531#include <asm/paravirt.h>
532#else
533
534static inline void load_sp0(unsigned long sp0)
535{
536	native_load_sp0(sp0);
537}
538
539#endif /* CONFIG_PARAVIRT_XXL */
540
541unsigned long __get_wchan(struct task_struct *p);
542
543extern void select_idle_routine(const struct cpuinfo_x86 *c);
544extern void amd_e400_c1e_apic_setup(void);
545
546extern unsigned long		boot_option_idle_override;
547
548enum idle_boot_override {IDLE_NO_OVERRIDE=0, IDLE_HALT, IDLE_NOMWAIT,
549			 IDLE_POLL};
550
551extern void enable_sep_cpu(void);
552
553
554/* Defined in head.S */
555extern struct desc_ptr		early_gdt_descr;
556
557extern void switch_gdt_and_percpu_base(int);
558extern void load_direct_gdt(int);
559extern void load_fixmap_gdt(int);
560extern void cpu_init(void);
561extern void cpu_init_exception_handling(void);
562extern void cr4_init(void);
563
564static inline unsigned long get_debugctlmsr(void)
565{
566	unsigned long debugctlmsr = 0;
567
568#ifndef CONFIG_X86_DEBUGCTLMSR
569	if (boot_cpu_data.x86 < 6)
570		return 0;
571#endif
572	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
573
574	return debugctlmsr;
575}
576
577static inline void update_debugctlmsr(unsigned long debugctlmsr)
578{
579#ifndef CONFIG_X86_DEBUGCTLMSR
580	if (boot_cpu_data.x86 < 6)
581		return;
582#endif
583	wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctlmsr);
584}
585
586extern void set_task_blockstep(struct task_struct *task, bool on);
587
588/* Boot loader type from the setup header: */
589extern int			bootloader_type;
590extern int			bootloader_version;
591
592extern char			ignore_fpu_irq;
593
594#define HAVE_ARCH_PICK_MMAP_LAYOUT 1
595#define ARCH_HAS_PREFETCHW
596
597#ifdef CONFIG_X86_32
598# define BASE_PREFETCH		""
599# define ARCH_HAS_PREFETCH
600#else
601# define BASE_PREFETCH		"prefetcht0 %P1"
602#endif
603
604/*
605 * Prefetch instructions for Pentium III (+) and AMD Athlon (+)
606 *
607 * It's not worth to care about 3dnow prefetches for the K6
608 * because they are microcoded there and very slow.
609 */
610static inline void prefetch(const void *x)
611{
612	alternative_input(BASE_PREFETCH, "prefetchnta %P1",
613			  X86_FEATURE_XMM,
614			  "m" (*(const char *)x));
615}
616
617/*
618 * 3dnow prefetch to get an exclusive cache line.
619 * Useful for spinlocks to avoid one state transition in the
620 * cache coherency protocol:
621 */
622static __always_inline void prefetchw(const void *x)
623{
624	alternative_input(BASE_PREFETCH, "prefetchw %P1",
625			  X86_FEATURE_3DNOWPREFETCH,
626			  "m" (*(const char *)x));
627}
628
629#define TOP_OF_INIT_STACK ((unsigned long)&init_stack + sizeof(init_stack) - \
630			   TOP_OF_KERNEL_STACK_PADDING)
631
632#define task_top_of_stack(task) ((unsigned long)(task_pt_regs(task) + 1))
633
634#define task_pt_regs(task) \
635({									\
636	unsigned long __ptr = (unsigned long)task_stack_page(task);	\
637	__ptr += THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;		\
638	((struct pt_regs *)__ptr) - 1;					\
639})
640
641#ifdef CONFIG_X86_32
642#define INIT_THREAD  {							  \
643	.sp0			= TOP_OF_INIT_STACK,			  \
644	.sysenter_cs		= __KERNEL_CS,				  \
645}
646
647#define KSTK_ESP(task)		(task_pt_regs(task)->sp)
648
649#else
650extern unsigned long __end_init_task[];
651
652#define INIT_THREAD {							    \
653	.sp	= (unsigned long)&__end_init_task - sizeof(struct pt_regs), \
654}
655
656extern unsigned long KSTK_ESP(struct task_struct *task);
657
658#endif /* CONFIG_X86_64 */
659
660extern void start_thread(struct pt_regs *regs, unsigned long new_ip,
661					       unsigned long new_sp);
662
663/*
664 * This decides where the kernel will search for a free chunk of vm
665 * space during mmap's.
666 */
667#define __TASK_UNMAPPED_BASE(task_size)	(PAGE_ALIGN(task_size / 3))
668#define TASK_UNMAPPED_BASE		__TASK_UNMAPPED_BASE(TASK_SIZE_LOW)
669
670#define KSTK_EIP(task)		(task_pt_regs(task)->ip)
671
672/* Get/set a process' ability to use the timestamp counter instruction */
673#define GET_TSC_CTL(adr)	get_tsc_mode((adr))
674#define SET_TSC_CTL(val)	set_tsc_mode((val))
675
676extern int get_tsc_mode(unsigned long adr);
677extern int set_tsc_mode(unsigned int val);
678
679DECLARE_PER_CPU(u64, msr_misc_features_shadow);
680
681extern u16 get_llc_id(unsigned int cpu);
682
683#ifdef CONFIG_CPU_SUP_AMD
684extern u32 amd_get_nodes_per_socket(void);
685extern u32 amd_get_highest_perf(void);
686extern void amd_clear_divider(void);
687extern void amd_check_microcode(void);
688#else
689static inline u32 amd_get_nodes_per_socket(void)	{ return 0; }
690static inline u32 amd_get_highest_perf(void)		{ return 0; }
691static inline void amd_clear_divider(void)		{ }
692static inline void amd_check_microcode(void)		{ }
693#endif
694
695extern unsigned long arch_align_stack(unsigned long sp);
696void free_init_pages(const char *what, unsigned long begin, unsigned long end);
697extern void free_kernel_image_pages(const char *what, void *begin, void *end);
698
699void default_idle(void);
700#ifdef	CONFIG_XEN
701bool xen_set_default_idle(void);
702#else
703#define xen_set_default_idle 0
704#endif
705
706void __noreturn stop_this_cpu(void *dummy);
707void microcode_check(struct cpuinfo_x86 *prev_info);
708void store_cpu_caps(struct cpuinfo_x86 *info);
709
710enum l1tf_mitigations {
711	L1TF_MITIGATION_OFF,
712	L1TF_MITIGATION_FLUSH_NOWARN,
713	L1TF_MITIGATION_FLUSH,
714	L1TF_MITIGATION_FLUSH_NOSMT,
715	L1TF_MITIGATION_FULL,
716	L1TF_MITIGATION_FULL_FORCE
717};
718
719extern enum l1tf_mitigations l1tf_mitigation;
720
721enum mds_mitigations {
722	MDS_MITIGATION_OFF,
723	MDS_MITIGATION_FULL,
724	MDS_MITIGATION_VMWERV,
725};
726
727#ifdef CONFIG_X86_SGX
728int arch_memory_failure(unsigned long pfn, int flags);
729#define arch_memory_failure arch_memory_failure
730
731bool arch_is_platform_page(u64 paddr);
732#define arch_is_platform_page arch_is_platform_page
733#endif
734
735extern bool gds_ucode_mitigated(void);
736
737/*
738 * Make previous memory operations globally visible before
739 * a WRMSR.
740 *
741 * MFENCE makes writes visible, but only affects load/store
742 * instructions.  WRMSR is unfortunately not a load/store
743 * instruction and is unaffected by MFENCE.  The LFENCE ensures
744 * that the WRMSR is not reordered.
745 *
746 * Most WRMSRs are full serializing instructions themselves and
747 * do not require this barrier.  This is only required for the
748 * IA32_TSC_DEADLINE and X2APIC MSRs.
749 */
750static inline void weak_wrmsr_fence(void)
751{
752	alternative("mfence; lfence", "", ALT_NOT(X86_FEATURE_APIC_MSRS_FENCE));
753}
754
755#endif /* _ASM_X86_PROCESSOR_H */
756