1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_PGTABLE_H
3#define _ASM_X86_PGTABLE_H
4
5#include <linux/mem_encrypt.h>
6#include <asm/page.h>
7#include <asm/pgtable_types.h>
8
9/*
10 * Macro to mark a page protection value as UC-
11 */
12#define pgprot_noncached(prot)						\
13	((boot_cpu_data.x86 > 3)					\
14	 ? (__pgprot(pgprot_val(prot) |					\
15		     cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS)))	\
16	 : (prot))
17
18#ifndef __ASSEMBLY__
19#include <linux/spinlock.h>
20#include <asm/x86_init.h>
21#include <asm/pkru.h>
22#include <asm/fpu/api.h>
23#include <asm/coco.h>
24#include <asm-generic/pgtable_uffd.h>
25#include <linux/page_table_check.h>
26
27extern pgd_t early_top_pgt[PTRS_PER_PGD];
28bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd);
29
30struct seq_file;
31void ptdump_walk_pgd_level(struct seq_file *m, struct mm_struct *mm);
32void ptdump_walk_pgd_level_debugfs(struct seq_file *m, struct mm_struct *mm,
33				   bool user);
34void ptdump_walk_pgd_level_checkwx(void);
35void ptdump_walk_user_pgd_level_checkwx(void);
36
37/*
38 * Macros to add or remove encryption attribute
39 */
40#define pgprot_encrypted(prot)	__pgprot(cc_mkenc(pgprot_val(prot)))
41#define pgprot_decrypted(prot)	__pgprot(cc_mkdec(pgprot_val(prot)))
42
43#ifdef CONFIG_DEBUG_WX
44#define debug_checkwx()		ptdump_walk_pgd_level_checkwx()
45#define debug_checkwx_user()	ptdump_walk_user_pgd_level_checkwx()
46#else
47#define debug_checkwx()		do { } while (0)
48#define debug_checkwx_user()	do { } while (0)
49#endif
50
51/*
52 * ZERO_PAGE is a global shared page that is always zero: used
53 * for zero-mapped memory areas etc..
54 */
55extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]
56	__visible;
57#define ZERO_PAGE(vaddr) ((void)(vaddr),virt_to_page(empty_zero_page))
58
59extern spinlock_t pgd_lock;
60extern struct list_head pgd_list;
61
62extern struct mm_struct *pgd_page_get_mm(struct page *page);
63
64extern pmdval_t early_pmd_flags;
65
66#ifdef CONFIG_PARAVIRT_XXL
67#include <asm/paravirt.h>
68#else  /* !CONFIG_PARAVIRT_XXL */
69#define set_pte(ptep, pte)		native_set_pte(ptep, pte)
70
71#define set_pte_atomic(ptep, pte)					\
72	native_set_pte_atomic(ptep, pte)
73
74#define set_pmd(pmdp, pmd)		native_set_pmd(pmdp, pmd)
75
76#ifndef __PAGETABLE_P4D_FOLDED
77#define set_pgd(pgdp, pgd)		native_set_pgd(pgdp, pgd)
78#define pgd_clear(pgd)			(pgtable_l5_enabled() ? native_pgd_clear(pgd) : 0)
79#endif
80
81#ifndef set_p4d
82# define set_p4d(p4dp, p4d)		native_set_p4d(p4dp, p4d)
83#endif
84
85#ifndef __PAGETABLE_PUD_FOLDED
86#define p4d_clear(p4d)			native_p4d_clear(p4d)
87#endif
88
89#ifndef set_pud
90# define set_pud(pudp, pud)		native_set_pud(pudp, pud)
91#endif
92
93#ifndef __PAGETABLE_PUD_FOLDED
94#define pud_clear(pud)			native_pud_clear(pud)
95#endif
96
97#define pte_clear(mm, addr, ptep)	native_pte_clear(mm, addr, ptep)
98#define pmd_clear(pmd)			native_pmd_clear(pmd)
99
100#define pgd_val(x)	native_pgd_val(x)
101#define __pgd(x)	native_make_pgd(x)
102
103#ifndef __PAGETABLE_P4D_FOLDED
104#define p4d_val(x)	native_p4d_val(x)
105#define __p4d(x)	native_make_p4d(x)
106#endif
107
108#ifndef __PAGETABLE_PUD_FOLDED
109#define pud_val(x)	native_pud_val(x)
110#define __pud(x)	native_make_pud(x)
111#endif
112
113#ifndef __PAGETABLE_PMD_FOLDED
114#define pmd_val(x)	native_pmd_val(x)
115#define __pmd(x)	native_make_pmd(x)
116#endif
117
118#define pte_val(x)	native_pte_val(x)
119#define __pte(x)	native_make_pte(x)
120
121#define arch_end_context_switch(prev)	do {} while(0)
122#endif	/* CONFIG_PARAVIRT_XXL */
123
124/*
125 * The following only work if pte_present() is true.
126 * Undefined behaviour if not..
127 */
128static inline bool pte_dirty(pte_t pte)
129{
130	return pte_flags(pte) & _PAGE_DIRTY_BITS;
131}
132
133static inline bool pte_shstk(pte_t pte)
134{
135	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
136	       (pte_flags(pte) & (_PAGE_RW | _PAGE_DIRTY)) == _PAGE_DIRTY;
137}
138
139static inline int pte_young(pte_t pte)
140{
141	return pte_flags(pte) & _PAGE_ACCESSED;
142}
143
144static inline bool pmd_dirty(pmd_t pmd)
145{
146	return pmd_flags(pmd) & _PAGE_DIRTY_BITS;
147}
148
149static inline bool pmd_shstk(pmd_t pmd)
150{
151	return cpu_feature_enabled(X86_FEATURE_SHSTK) &&
152	       (pmd_flags(pmd) & (_PAGE_RW | _PAGE_DIRTY | _PAGE_PSE)) ==
153	       (_PAGE_DIRTY | _PAGE_PSE);
154}
155
156#define pmd_young pmd_young
157static inline int pmd_young(pmd_t pmd)
158{
159	return pmd_flags(pmd) & _PAGE_ACCESSED;
160}
161
162static inline bool pud_dirty(pud_t pud)
163{
164	return pud_flags(pud) & _PAGE_DIRTY_BITS;
165}
166
167static inline int pud_young(pud_t pud)
168{
169	return pud_flags(pud) & _PAGE_ACCESSED;
170}
171
172static inline int pte_write(pte_t pte)
173{
174	/*
175	 * Shadow stack pages are logically writable, but do not have
176	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
177	 */
178	return (pte_flags(pte) & _PAGE_RW) || pte_shstk(pte);
179}
180
181#define pmd_write pmd_write
182static inline int pmd_write(pmd_t pmd)
183{
184	/*
185	 * Shadow stack pages are logically writable, but do not have
186	 * _PAGE_RW.  Check for them separately from _PAGE_RW itself.
187	 */
188	return (pmd_flags(pmd) & _PAGE_RW) || pmd_shstk(pmd);
189}
190
191#define pud_write pud_write
192static inline int pud_write(pud_t pud)
193{
194	return pud_flags(pud) & _PAGE_RW;
195}
196
197static inline int pte_huge(pte_t pte)
198{
199	return pte_flags(pte) & _PAGE_PSE;
200}
201
202static inline int pte_global(pte_t pte)
203{
204	return pte_flags(pte) & _PAGE_GLOBAL;
205}
206
207static inline int pte_exec(pte_t pte)
208{
209	return !(pte_flags(pte) & _PAGE_NX);
210}
211
212static inline int pte_special(pte_t pte)
213{
214	return pte_flags(pte) & _PAGE_SPECIAL;
215}
216
217/* Entries that were set to PROT_NONE are inverted */
218
219static inline u64 protnone_mask(u64 val);
220
221#define PFN_PTE_SHIFT	PAGE_SHIFT
222
223static inline unsigned long pte_pfn(pte_t pte)
224{
225	phys_addr_t pfn = pte_val(pte);
226	pfn ^= protnone_mask(pfn);
227	return (pfn & PTE_PFN_MASK) >> PAGE_SHIFT;
228}
229
230static inline unsigned long pmd_pfn(pmd_t pmd)
231{
232	phys_addr_t pfn = pmd_val(pmd);
233	pfn ^= protnone_mask(pfn);
234	return (pfn & pmd_pfn_mask(pmd)) >> PAGE_SHIFT;
235}
236
237static inline unsigned long pud_pfn(pud_t pud)
238{
239	phys_addr_t pfn = pud_val(pud);
240	pfn ^= protnone_mask(pfn);
241	return (pfn & pud_pfn_mask(pud)) >> PAGE_SHIFT;
242}
243
244static inline unsigned long p4d_pfn(p4d_t p4d)
245{
246	return (p4d_val(p4d) & p4d_pfn_mask(p4d)) >> PAGE_SHIFT;
247}
248
249static inline unsigned long pgd_pfn(pgd_t pgd)
250{
251	return (pgd_val(pgd) & PTE_PFN_MASK) >> PAGE_SHIFT;
252}
253
254#define p4d_leaf	p4d_large
255static inline int p4d_large(p4d_t p4d)
256{
257	/* No 512 GiB pages yet */
258	return 0;
259}
260
261#define pte_page(pte)	pfn_to_page(pte_pfn(pte))
262
263#define pmd_leaf	pmd_large
264static inline int pmd_large(pmd_t pte)
265{
266	return pmd_flags(pte) & _PAGE_PSE;
267}
268
269#ifdef CONFIG_TRANSPARENT_HUGEPAGE
270/* NOTE: when predicate huge page, consider also pmd_devmap, or use pmd_large */
271static inline int pmd_trans_huge(pmd_t pmd)
272{
273	return (pmd_val(pmd) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
274}
275
276#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
277static inline int pud_trans_huge(pud_t pud)
278{
279	return (pud_val(pud) & (_PAGE_PSE|_PAGE_DEVMAP)) == _PAGE_PSE;
280}
281#endif
282
283#define has_transparent_hugepage has_transparent_hugepage
284static inline int has_transparent_hugepage(void)
285{
286	return boot_cpu_has(X86_FEATURE_PSE);
287}
288
289#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
290static inline int pmd_devmap(pmd_t pmd)
291{
292	return !!(pmd_val(pmd) & _PAGE_DEVMAP);
293}
294
295#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
296static inline int pud_devmap(pud_t pud)
297{
298	return !!(pud_val(pud) & _PAGE_DEVMAP);
299}
300#else
301static inline int pud_devmap(pud_t pud)
302{
303	return 0;
304}
305#endif
306
307static inline int pgd_devmap(pgd_t pgd)
308{
309	return 0;
310}
311#endif
312#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
313
314static inline pte_t pte_set_flags(pte_t pte, pteval_t set)
315{
316	pteval_t v = native_pte_val(pte);
317
318	return native_make_pte(v | set);
319}
320
321static inline pte_t pte_clear_flags(pte_t pte, pteval_t clear)
322{
323	pteval_t v = native_pte_val(pte);
324
325	return native_make_pte(v & ~clear);
326}
327
328/*
329 * Write protection operations can result in Dirty=1,Write=0 PTEs. But in the
330 * case of X86_FEATURE_USER_SHSTK, these PTEs denote shadow stack memory. So
331 * when creating dirty, write-protected memory, a software bit is used:
332 * _PAGE_BIT_SAVED_DIRTY. The following functions take a PTE and transition the
333 * Dirty bit to SavedDirty, and vice-vesra.
334 *
335 * This shifting is only done if needed. In the case of shifting
336 * Dirty->SavedDirty, the condition is if the PTE is Write=0. In the case of
337 * shifting SavedDirty->Dirty, the condition is Write=1.
338 */
339static inline pgprotval_t mksaveddirty_shift(pgprotval_t v)
340{
341	pgprotval_t cond = (~v >> _PAGE_BIT_RW) & 1;
342
343	v |= ((v >> _PAGE_BIT_DIRTY) & cond) << _PAGE_BIT_SAVED_DIRTY;
344	v &= ~(cond << _PAGE_BIT_DIRTY);
345
346	return v;
347}
348
349static inline pgprotval_t clear_saveddirty_shift(pgprotval_t v)
350{
351	pgprotval_t cond = (v >> _PAGE_BIT_RW) & 1;
352
353	v |= ((v >> _PAGE_BIT_SAVED_DIRTY) & cond) << _PAGE_BIT_DIRTY;
354	v &= ~(cond << _PAGE_BIT_SAVED_DIRTY);
355
356	return v;
357}
358
359static inline pte_t pte_mksaveddirty(pte_t pte)
360{
361	pteval_t v = native_pte_val(pte);
362
363	v = mksaveddirty_shift(v);
364	return native_make_pte(v);
365}
366
367static inline pte_t pte_clear_saveddirty(pte_t pte)
368{
369	pteval_t v = native_pte_val(pte);
370
371	v = clear_saveddirty_shift(v);
372	return native_make_pte(v);
373}
374
375static inline pte_t pte_wrprotect(pte_t pte)
376{
377	pte = pte_clear_flags(pte, _PAGE_RW);
378
379	/*
380	 * Blindly clearing _PAGE_RW might accidentally create
381	 * a shadow stack PTE (Write=0,Dirty=1). Move the hardware
382	 * dirty value to the software bit, if present.
383	 */
384	return pte_mksaveddirty(pte);
385}
386
387#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
388static inline int pte_uffd_wp(pte_t pte)
389{
390	bool wp = pte_flags(pte) & _PAGE_UFFD_WP;
391
392#ifdef CONFIG_DEBUG_VM
393	/*
394	 * Having write bit for wr-protect-marked present ptes is fatal,
395	 * because it means the uffd-wp bit will be ignored and write will
396	 * just go through.
397	 *
398	 * Use any chance of pgtable walking to verify this (e.g., when
399	 * page swapped out or being migrated for all purposes). It means
400	 * something is already wrong.  Tell the admin even before the
401	 * process crashes. We also nail it with wrong pgtable setup.
402	 */
403	WARN_ON_ONCE(wp && pte_write(pte));
404#endif
405
406	return wp;
407}
408
409static inline pte_t pte_mkuffd_wp(pte_t pte)
410{
411	return pte_wrprotect(pte_set_flags(pte, _PAGE_UFFD_WP));
412}
413
414static inline pte_t pte_clear_uffd_wp(pte_t pte)
415{
416	return pte_clear_flags(pte, _PAGE_UFFD_WP);
417}
418#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
419
420static inline pte_t pte_mkclean(pte_t pte)
421{
422	return pte_clear_flags(pte, _PAGE_DIRTY_BITS);
423}
424
425static inline pte_t pte_mkold(pte_t pte)
426{
427	return pte_clear_flags(pte, _PAGE_ACCESSED);
428}
429
430static inline pte_t pte_mkexec(pte_t pte)
431{
432	return pte_clear_flags(pte, _PAGE_NX);
433}
434
435static inline pte_t pte_mkdirty(pte_t pte)
436{
437	pte = pte_set_flags(pte, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
438
439	return pte_mksaveddirty(pte);
440}
441
442static inline pte_t pte_mkwrite_shstk(pte_t pte)
443{
444	pte = pte_clear_flags(pte, _PAGE_RW);
445
446	return pte_set_flags(pte, _PAGE_DIRTY);
447}
448
449static inline pte_t pte_mkyoung(pte_t pte)
450{
451	return pte_set_flags(pte, _PAGE_ACCESSED);
452}
453
454static inline pte_t pte_mkwrite_novma(pte_t pte)
455{
456	return pte_set_flags(pte, _PAGE_RW);
457}
458
459struct vm_area_struct;
460pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma);
461#define pte_mkwrite pte_mkwrite
462
463static inline pte_t pte_mkhuge(pte_t pte)
464{
465	return pte_set_flags(pte, _PAGE_PSE);
466}
467
468static inline pte_t pte_clrhuge(pte_t pte)
469{
470	return pte_clear_flags(pte, _PAGE_PSE);
471}
472
473static inline pte_t pte_mkglobal(pte_t pte)
474{
475	return pte_set_flags(pte, _PAGE_GLOBAL);
476}
477
478static inline pte_t pte_clrglobal(pte_t pte)
479{
480	return pte_clear_flags(pte, _PAGE_GLOBAL);
481}
482
483static inline pte_t pte_mkspecial(pte_t pte)
484{
485	return pte_set_flags(pte, _PAGE_SPECIAL);
486}
487
488static inline pte_t pte_mkdevmap(pte_t pte)
489{
490	return pte_set_flags(pte, _PAGE_SPECIAL|_PAGE_DEVMAP);
491}
492
493static inline pmd_t pmd_set_flags(pmd_t pmd, pmdval_t set)
494{
495	pmdval_t v = native_pmd_val(pmd);
496
497	return native_make_pmd(v | set);
498}
499
500static inline pmd_t pmd_clear_flags(pmd_t pmd, pmdval_t clear)
501{
502	pmdval_t v = native_pmd_val(pmd);
503
504	return native_make_pmd(v & ~clear);
505}
506
507/* See comments above mksaveddirty_shift() */
508static inline pmd_t pmd_mksaveddirty(pmd_t pmd)
509{
510	pmdval_t v = native_pmd_val(pmd);
511
512	v = mksaveddirty_shift(v);
513	return native_make_pmd(v);
514}
515
516/* See comments above mksaveddirty_shift() */
517static inline pmd_t pmd_clear_saveddirty(pmd_t pmd)
518{
519	pmdval_t v = native_pmd_val(pmd);
520
521	v = clear_saveddirty_shift(v);
522	return native_make_pmd(v);
523}
524
525static inline pmd_t pmd_wrprotect(pmd_t pmd)
526{
527	pmd = pmd_clear_flags(pmd, _PAGE_RW);
528
529	/*
530	 * Blindly clearing _PAGE_RW might accidentally create
531	 * a shadow stack PMD (RW=0, Dirty=1). Move the hardware
532	 * dirty value to the software bit.
533	 */
534	return pmd_mksaveddirty(pmd);
535}
536
537#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
538static inline int pmd_uffd_wp(pmd_t pmd)
539{
540	return pmd_flags(pmd) & _PAGE_UFFD_WP;
541}
542
543static inline pmd_t pmd_mkuffd_wp(pmd_t pmd)
544{
545	return pmd_wrprotect(pmd_set_flags(pmd, _PAGE_UFFD_WP));
546}
547
548static inline pmd_t pmd_clear_uffd_wp(pmd_t pmd)
549{
550	return pmd_clear_flags(pmd, _PAGE_UFFD_WP);
551}
552#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
553
554static inline pmd_t pmd_mkold(pmd_t pmd)
555{
556	return pmd_clear_flags(pmd, _PAGE_ACCESSED);
557}
558
559static inline pmd_t pmd_mkclean(pmd_t pmd)
560{
561	return pmd_clear_flags(pmd, _PAGE_DIRTY_BITS);
562}
563
564static inline pmd_t pmd_mkdirty(pmd_t pmd)
565{
566	pmd = pmd_set_flags(pmd, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
567
568	return pmd_mksaveddirty(pmd);
569}
570
571static inline pmd_t pmd_mkwrite_shstk(pmd_t pmd)
572{
573	pmd = pmd_clear_flags(pmd, _PAGE_RW);
574
575	return pmd_set_flags(pmd, _PAGE_DIRTY);
576}
577
578static inline pmd_t pmd_mkdevmap(pmd_t pmd)
579{
580	return pmd_set_flags(pmd, _PAGE_DEVMAP);
581}
582
583static inline pmd_t pmd_mkhuge(pmd_t pmd)
584{
585	return pmd_set_flags(pmd, _PAGE_PSE);
586}
587
588static inline pmd_t pmd_mkyoung(pmd_t pmd)
589{
590	return pmd_set_flags(pmd, _PAGE_ACCESSED);
591}
592
593static inline pmd_t pmd_mkwrite_novma(pmd_t pmd)
594{
595	return pmd_set_flags(pmd, _PAGE_RW);
596}
597
598pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
599#define pmd_mkwrite pmd_mkwrite
600
601static inline pud_t pud_set_flags(pud_t pud, pudval_t set)
602{
603	pudval_t v = native_pud_val(pud);
604
605	return native_make_pud(v | set);
606}
607
608static inline pud_t pud_clear_flags(pud_t pud, pudval_t clear)
609{
610	pudval_t v = native_pud_val(pud);
611
612	return native_make_pud(v & ~clear);
613}
614
615/* See comments above mksaveddirty_shift() */
616static inline pud_t pud_mksaveddirty(pud_t pud)
617{
618	pudval_t v = native_pud_val(pud);
619
620	v = mksaveddirty_shift(v);
621	return native_make_pud(v);
622}
623
624/* See comments above mksaveddirty_shift() */
625static inline pud_t pud_clear_saveddirty(pud_t pud)
626{
627	pudval_t v = native_pud_val(pud);
628
629	v = clear_saveddirty_shift(v);
630	return native_make_pud(v);
631}
632
633static inline pud_t pud_mkold(pud_t pud)
634{
635	return pud_clear_flags(pud, _PAGE_ACCESSED);
636}
637
638static inline pud_t pud_mkclean(pud_t pud)
639{
640	return pud_clear_flags(pud, _PAGE_DIRTY_BITS);
641}
642
643static inline pud_t pud_wrprotect(pud_t pud)
644{
645	pud = pud_clear_flags(pud, _PAGE_RW);
646
647	/*
648	 * Blindly clearing _PAGE_RW might accidentally create
649	 * a shadow stack PUD (RW=0, Dirty=1). Move the hardware
650	 * dirty value to the software bit.
651	 */
652	return pud_mksaveddirty(pud);
653}
654
655static inline pud_t pud_mkdirty(pud_t pud)
656{
657	pud = pud_set_flags(pud, _PAGE_DIRTY | _PAGE_SOFT_DIRTY);
658
659	return pud_mksaveddirty(pud);
660}
661
662static inline pud_t pud_mkdevmap(pud_t pud)
663{
664	return pud_set_flags(pud, _PAGE_DEVMAP);
665}
666
667static inline pud_t pud_mkhuge(pud_t pud)
668{
669	return pud_set_flags(pud, _PAGE_PSE);
670}
671
672static inline pud_t pud_mkyoung(pud_t pud)
673{
674	return pud_set_flags(pud, _PAGE_ACCESSED);
675}
676
677static inline pud_t pud_mkwrite(pud_t pud)
678{
679	pud = pud_set_flags(pud, _PAGE_RW);
680
681	return pud_clear_saveddirty(pud);
682}
683
684#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
685static inline int pte_soft_dirty(pte_t pte)
686{
687	return pte_flags(pte) & _PAGE_SOFT_DIRTY;
688}
689
690static inline int pmd_soft_dirty(pmd_t pmd)
691{
692	return pmd_flags(pmd) & _PAGE_SOFT_DIRTY;
693}
694
695static inline int pud_soft_dirty(pud_t pud)
696{
697	return pud_flags(pud) & _PAGE_SOFT_DIRTY;
698}
699
700static inline pte_t pte_mksoft_dirty(pte_t pte)
701{
702	return pte_set_flags(pte, _PAGE_SOFT_DIRTY);
703}
704
705static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
706{
707	return pmd_set_flags(pmd, _PAGE_SOFT_DIRTY);
708}
709
710static inline pud_t pud_mksoft_dirty(pud_t pud)
711{
712	return pud_set_flags(pud, _PAGE_SOFT_DIRTY);
713}
714
715static inline pte_t pte_clear_soft_dirty(pte_t pte)
716{
717	return pte_clear_flags(pte, _PAGE_SOFT_DIRTY);
718}
719
720static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
721{
722	return pmd_clear_flags(pmd, _PAGE_SOFT_DIRTY);
723}
724
725static inline pud_t pud_clear_soft_dirty(pud_t pud)
726{
727	return pud_clear_flags(pud, _PAGE_SOFT_DIRTY);
728}
729
730#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
731
732/*
733 * Mask out unsupported bits in a present pgprot.  Non-present pgprots
734 * can use those bits for other purposes, so leave them be.
735 */
736static inline pgprotval_t massage_pgprot(pgprot_t pgprot)
737{
738	pgprotval_t protval = pgprot_val(pgprot);
739
740	if (protval & _PAGE_PRESENT)
741		protval &= __supported_pte_mask;
742
743	return protval;
744}
745
746static inline pgprotval_t check_pgprot(pgprot_t pgprot)
747{
748	pgprotval_t massaged_val = massage_pgprot(pgprot);
749
750	/* mmdebug.h can not be included here because of dependencies */
751#ifdef CONFIG_DEBUG_VM
752	WARN_ONCE(pgprot_val(pgprot) != massaged_val,
753		  "attempted to set unsupported pgprot: %016llx "
754		  "bits: %016llx supported: %016llx\n",
755		  (u64)pgprot_val(pgprot),
756		  (u64)pgprot_val(pgprot) ^ massaged_val,
757		  (u64)__supported_pte_mask);
758#endif
759
760	return massaged_val;
761}
762
763static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
764{
765	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
766	pfn ^= protnone_mask(pgprot_val(pgprot));
767	pfn &= PTE_PFN_MASK;
768	return __pte(pfn | check_pgprot(pgprot));
769}
770
771static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
772{
773	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
774	pfn ^= protnone_mask(pgprot_val(pgprot));
775	pfn &= PHYSICAL_PMD_PAGE_MASK;
776	return __pmd(pfn | check_pgprot(pgprot));
777}
778
779static inline pud_t pfn_pud(unsigned long page_nr, pgprot_t pgprot)
780{
781	phys_addr_t pfn = (phys_addr_t)page_nr << PAGE_SHIFT;
782	pfn ^= protnone_mask(pgprot_val(pgprot));
783	pfn &= PHYSICAL_PUD_PAGE_MASK;
784	return __pud(pfn | check_pgprot(pgprot));
785}
786
787static inline pmd_t pmd_mkinvalid(pmd_t pmd)
788{
789	return pfn_pmd(pmd_pfn(pmd),
790		      __pgprot(pmd_flags(pmd) & ~(_PAGE_PRESENT|_PAGE_PROTNONE)));
791}
792
793static inline u64 flip_protnone_guard(u64 oldval, u64 val, u64 mask);
794
795static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
796{
797	pteval_t val = pte_val(pte), oldval = val;
798	pte_t pte_result;
799
800	/*
801	 * Chop off the NX bit (if present), and add the NX portion of
802	 * the newprot (if present):
803	 */
804	val &= _PAGE_CHG_MASK;
805	val |= check_pgprot(newprot) & ~_PAGE_CHG_MASK;
806	val = flip_protnone_guard(oldval, val, PTE_PFN_MASK);
807
808	pte_result = __pte(val);
809
810	/*
811	 * To avoid creating Write=0,Dirty=1 PTEs, pte_modify() needs to avoid:
812	 *  1. Marking Write=0 PTEs Dirty=1
813	 *  2. Marking Dirty=1 PTEs Write=0
814	 *
815	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
816	 * out any Dirty bit passed in newprot. Handle the second case by
817	 * going through the mksaveddirty exercise. Only do this if the old
818	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
819	 */
820	if (oldval & _PAGE_RW)
821		pte_result = pte_mksaveddirty(pte_result);
822	else
823		pte_result = pte_clear_saveddirty(pte_result);
824
825	return pte_result;
826}
827
828static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
829{
830	pmdval_t val = pmd_val(pmd), oldval = val;
831	pmd_t pmd_result;
832
833	val &= (_HPAGE_CHG_MASK & ~_PAGE_DIRTY);
834	val |= check_pgprot(newprot) & ~_HPAGE_CHG_MASK;
835	val = flip_protnone_guard(oldval, val, PHYSICAL_PMD_PAGE_MASK);
836
837	pmd_result = __pmd(val);
838
839	/*
840	 * To avoid creating Write=0,Dirty=1 PMDs, pte_modify() needs to avoid:
841	 *  1. Marking Write=0 PMDs Dirty=1
842	 *  2. Marking Dirty=1 PMDs Write=0
843	 *
844	 * The first case cannot happen because the _PAGE_CHG_MASK will filter
845	 * out any Dirty bit passed in newprot. Handle the second case by
846	 * going through the mksaveddirty exercise. Only do this if the old
847	 * value was Write=1 to avoid doing this on Shadow Stack PTEs.
848	 */
849	if (oldval & _PAGE_RW)
850		pmd_result = pmd_mksaveddirty(pmd_result);
851	else
852		pmd_result = pmd_clear_saveddirty(pmd_result);
853
854	return pmd_result;
855}
856
857/*
858 * mprotect needs to preserve PAT and encryption bits when updating
859 * vm_page_prot
860 */
861#define pgprot_modify pgprot_modify
862static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
863{
864	pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
865	pgprotval_t addbits = pgprot_val(newprot) & ~_PAGE_CHG_MASK;
866	return __pgprot(preservebits | addbits);
867}
868
869#define pte_pgprot(x) __pgprot(pte_flags(x))
870#define pmd_pgprot(x) __pgprot(pmd_flags(x))
871#define pud_pgprot(x) __pgprot(pud_flags(x))
872#define p4d_pgprot(x) __pgprot(p4d_flags(x))
873
874#define canon_pgprot(p) __pgprot(massage_pgprot(p))
875
876static inline int is_new_memtype_allowed(u64 paddr, unsigned long size,
877					 enum page_cache_mode pcm,
878					 enum page_cache_mode new_pcm)
879{
880	/*
881	 * PAT type is always WB for untracked ranges, so no need to check.
882	 */
883	if (x86_platform.is_untracked_pat_range(paddr, paddr + size))
884		return 1;
885
886	/*
887	 * Certain new memtypes are not allowed with certain
888	 * requested memtype:
889	 * - request is uncached, return cannot be write-back
890	 * - request is write-combine, return cannot be write-back
891	 * - request is write-through, return cannot be write-back
892	 * - request is write-through, return cannot be write-combine
893	 */
894	if ((pcm == _PAGE_CACHE_MODE_UC_MINUS &&
895	     new_pcm == _PAGE_CACHE_MODE_WB) ||
896	    (pcm == _PAGE_CACHE_MODE_WC &&
897	     new_pcm == _PAGE_CACHE_MODE_WB) ||
898	    (pcm == _PAGE_CACHE_MODE_WT &&
899	     new_pcm == _PAGE_CACHE_MODE_WB) ||
900	    (pcm == _PAGE_CACHE_MODE_WT &&
901	     new_pcm == _PAGE_CACHE_MODE_WC)) {
902		return 0;
903	}
904
905	return 1;
906}
907
908pmd_t *populate_extra_pmd(unsigned long vaddr);
909pte_t *populate_extra_pte(unsigned long vaddr);
910
911#ifdef CONFIG_PAGE_TABLE_ISOLATION
912pgd_t __pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd);
913
914/*
915 * Take a PGD location (pgdp) and a pgd value that needs to be set there.
916 * Populates the user and returns the resulting PGD that must be set in
917 * the kernel copy of the page tables.
918 */
919static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
920{
921	if (!static_cpu_has(X86_FEATURE_PTI))
922		return pgd;
923	return __pti_set_user_pgtbl(pgdp, pgd);
924}
925#else   /* CONFIG_PAGE_TABLE_ISOLATION */
926static inline pgd_t pti_set_user_pgtbl(pgd_t *pgdp, pgd_t pgd)
927{
928	return pgd;
929}
930#endif  /* CONFIG_PAGE_TABLE_ISOLATION */
931
932#endif	/* __ASSEMBLY__ */
933
934
935#ifdef CONFIG_X86_32
936# include <asm/pgtable_32.h>
937#else
938# include <asm/pgtable_64.h>
939#endif
940
941#ifndef __ASSEMBLY__
942#include <linux/mm_types.h>
943#include <linux/mmdebug.h>
944#include <linux/log2.h>
945#include <asm/fixmap.h>
946
947static inline int pte_none(pte_t pte)
948{
949	return !(pte.pte & ~(_PAGE_KNL_ERRATUM_MASK));
950}
951
952#define __HAVE_ARCH_PTE_SAME
953static inline int pte_same(pte_t a, pte_t b)
954{
955	return a.pte == b.pte;
956}
957
958static inline pte_t pte_next_pfn(pte_t pte)
959{
960	if (__pte_needs_invert(pte_val(pte)))
961		return __pte(pte_val(pte) - (1UL << PFN_PTE_SHIFT));
962	return __pte(pte_val(pte) + (1UL << PFN_PTE_SHIFT));
963}
964#define pte_next_pfn	pte_next_pfn
965
966static inline int pte_present(pte_t a)
967{
968	return pte_flags(a) & (_PAGE_PRESENT | _PAGE_PROTNONE);
969}
970
971#ifdef CONFIG_ARCH_HAS_PTE_DEVMAP
972static inline int pte_devmap(pte_t a)
973{
974	return (pte_flags(a) & _PAGE_DEVMAP) == _PAGE_DEVMAP;
975}
976#endif
977
978#define pte_accessible pte_accessible
979static inline bool pte_accessible(struct mm_struct *mm, pte_t a)
980{
981	if (pte_flags(a) & _PAGE_PRESENT)
982		return true;
983
984	if ((pte_flags(a) & _PAGE_PROTNONE) &&
985			atomic_read(&mm->tlb_flush_pending))
986		return true;
987
988	return false;
989}
990
991static inline int pmd_present(pmd_t pmd)
992{
993	/*
994	 * Checking for _PAGE_PSE is needed too because
995	 * split_huge_page will temporarily clear the present bit (but
996	 * the _PAGE_PSE flag will remain set at all times while the
997	 * _PAGE_PRESENT bit is clear).
998	 */
999	return pmd_flags(pmd) & (_PAGE_PRESENT | _PAGE_PROTNONE | _PAGE_PSE);
1000}
1001
1002#ifdef CONFIG_NUMA_BALANCING
1003/*
1004 * These work without NUMA balancing but the kernel does not care. See the
1005 * comment in include/linux/pgtable.h
1006 */
1007static inline int pte_protnone(pte_t pte)
1008{
1009	return (pte_flags(pte) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1010		== _PAGE_PROTNONE;
1011}
1012
1013static inline int pmd_protnone(pmd_t pmd)
1014{
1015	return (pmd_flags(pmd) & (_PAGE_PROTNONE | _PAGE_PRESENT))
1016		== _PAGE_PROTNONE;
1017}
1018#endif /* CONFIG_NUMA_BALANCING */
1019
1020static inline int pmd_none(pmd_t pmd)
1021{
1022	/* Only check low word on 32-bit platforms, since it might be
1023	   out of sync with upper half. */
1024	unsigned long val = native_pmd_val(pmd);
1025	return (val & ~_PAGE_KNL_ERRATUM_MASK) == 0;
1026}
1027
1028static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1029{
1030	return (unsigned long)__va(pmd_val(pmd) & pmd_pfn_mask(pmd));
1031}
1032
1033/*
1034 * Currently stuck as a macro due to indirect forward reference to
1035 * linux/mmzone.h's __section_mem_map_addr() definition:
1036 */
1037#define pmd_page(pmd)	pfn_to_page(pmd_pfn(pmd))
1038
1039/*
1040 * Conversion functions: convert a page and protection to a page entry,
1041 * and a page entry and page directory to the page they refer to.
1042 *
1043 * (Currently stuck as a macro because of indirect forward reference
1044 * to linux/mm.h:page_to_nid())
1045 */
1046#define mk_pte(page, pgprot)						  \
1047({									  \
1048	pgprot_t __pgprot = pgprot;					  \
1049									  \
1050	WARN_ON_ONCE((pgprot_val(__pgprot) & (_PAGE_DIRTY | _PAGE_RW)) == \
1051		    _PAGE_DIRTY);					  \
1052	pfn_pte(page_to_pfn(page), __pgprot);				  \
1053})
1054
1055static inline int pmd_bad(pmd_t pmd)
1056{
1057	return (pmd_flags(pmd) & ~(_PAGE_USER | _PAGE_ACCESSED)) !=
1058	       (_KERNPG_TABLE & ~_PAGE_ACCESSED);
1059}
1060
1061static inline unsigned long pages_to_mb(unsigned long npg)
1062{
1063	return npg >> (20 - PAGE_SHIFT);
1064}
1065
1066#if CONFIG_PGTABLE_LEVELS > 2
1067static inline int pud_none(pud_t pud)
1068{
1069	return (native_pud_val(pud) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1070}
1071
1072static inline int pud_present(pud_t pud)
1073{
1074	return pud_flags(pud) & _PAGE_PRESENT;
1075}
1076
1077static inline pmd_t *pud_pgtable(pud_t pud)
1078{
1079	return (pmd_t *)__va(pud_val(pud) & pud_pfn_mask(pud));
1080}
1081
1082/*
1083 * Currently stuck as a macro due to indirect forward reference to
1084 * linux/mmzone.h's __section_mem_map_addr() definition:
1085 */
1086#define pud_page(pud)	pfn_to_page(pud_pfn(pud))
1087
1088#define pud_leaf	pud_large
1089static inline int pud_large(pud_t pud)
1090{
1091	return (pud_val(pud) & (_PAGE_PSE | _PAGE_PRESENT)) ==
1092		(_PAGE_PSE | _PAGE_PRESENT);
1093}
1094
1095static inline int pud_bad(pud_t pud)
1096{
1097	return (pud_flags(pud) & ~(_KERNPG_TABLE | _PAGE_USER)) != 0;
1098}
1099#else
1100#define pud_leaf	pud_large
1101static inline int pud_large(pud_t pud)
1102{
1103	return 0;
1104}
1105#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
1106
1107#if CONFIG_PGTABLE_LEVELS > 3
1108static inline int p4d_none(p4d_t p4d)
1109{
1110	return (native_p4d_val(p4d) & ~(_PAGE_KNL_ERRATUM_MASK)) == 0;
1111}
1112
1113static inline int p4d_present(p4d_t p4d)
1114{
1115	return p4d_flags(p4d) & _PAGE_PRESENT;
1116}
1117
1118static inline pud_t *p4d_pgtable(p4d_t p4d)
1119{
1120	return (pud_t *)__va(p4d_val(p4d) & p4d_pfn_mask(p4d));
1121}
1122
1123/*
1124 * Currently stuck as a macro due to indirect forward reference to
1125 * linux/mmzone.h's __section_mem_map_addr() definition:
1126 */
1127#define p4d_page(p4d)	pfn_to_page(p4d_pfn(p4d))
1128
1129static inline int p4d_bad(p4d_t p4d)
1130{
1131	unsigned long ignore_flags = _KERNPG_TABLE | _PAGE_USER;
1132
1133	if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
1134		ignore_flags |= _PAGE_NX;
1135
1136	return (p4d_flags(p4d) & ~ignore_flags) != 0;
1137}
1138#endif  /* CONFIG_PGTABLE_LEVELS > 3 */
1139
1140static inline unsigned long p4d_index(unsigned long address)
1141{
1142	return (address >> P4D_SHIFT) & (PTRS_PER_P4D - 1);
1143}
1144
1145#if CONFIG_PGTABLE_LEVELS > 4
1146static inline int pgd_present(pgd_t pgd)
1147{
1148	if (!pgtable_l5_enabled())
1149		return 1;
1150	return pgd_flags(pgd) & _PAGE_PRESENT;
1151}
1152
1153static inline unsigned long pgd_page_vaddr(pgd_t pgd)
1154{
1155	return (unsigned long)__va((unsigned long)pgd_val(pgd) & PTE_PFN_MASK);
1156}
1157
1158/*
1159 * Currently stuck as a macro due to indirect forward reference to
1160 * linux/mmzone.h's __section_mem_map_addr() definition:
1161 */
1162#define pgd_page(pgd)	pfn_to_page(pgd_pfn(pgd))
1163
1164/* to find an entry in a page-table-directory. */
1165static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1166{
1167	if (!pgtable_l5_enabled())
1168		return (p4d_t *)pgd;
1169	return (p4d_t *)pgd_page_vaddr(*pgd) + p4d_index(address);
1170}
1171
1172static inline int pgd_bad(pgd_t pgd)
1173{
1174	unsigned long ignore_flags = _PAGE_USER;
1175
1176	if (!pgtable_l5_enabled())
1177		return 0;
1178
1179	if (IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
1180		ignore_flags |= _PAGE_NX;
1181
1182	return (pgd_flags(pgd) & ~ignore_flags) != _KERNPG_TABLE;
1183}
1184
1185static inline int pgd_none(pgd_t pgd)
1186{
1187	if (!pgtable_l5_enabled())
1188		return 0;
1189	/*
1190	 * There is no need to do a workaround for the KNL stray
1191	 * A/D bit erratum here.  PGDs only point to page tables
1192	 * except on 32-bit non-PAE which is not supported on
1193	 * KNL.
1194	 */
1195	return !native_pgd_val(pgd);
1196}
1197#endif	/* CONFIG_PGTABLE_LEVELS > 4 */
1198
1199#endif	/* __ASSEMBLY__ */
1200
1201#define KERNEL_PGD_BOUNDARY	pgd_index(PAGE_OFFSET)
1202#define KERNEL_PGD_PTRS		(PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
1203
1204#ifndef __ASSEMBLY__
1205
1206extern int direct_gbpages;
1207void init_mem_mapping(void);
1208void early_alloc_pgt_buf(void);
1209extern void memblock_find_dma_reserve(void);
1210void __init poking_init(void);
1211unsigned long init_memory_mapping(unsigned long start,
1212				  unsigned long end, pgprot_t prot);
1213
1214#ifdef CONFIG_X86_64
1215extern pgd_t trampoline_pgd_entry;
1216#endif
1217
1218/* local pte updates need not use xchg for locking */
1219static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
1220{
1221	pte_t res = *ptep;
1222
1223	/* Pure native function needs no input for mm, addr */
1224	native_pte_clear(NULL, 0, ptep);
1225	return res;
1226}
1227
1228static inline pmd_t native_local_pmdp_get_and_clear(pmd_t *pmdp)
1229{
1230	pmd_t res = *pmdp;
1231
1232	native_pmd_clear(pmdp);
1233	return res;
1234}
1235
1236static inline pud_t native_local_pudp_get_and_clear(pud_t *pudp)
1237{
1238	pud_t res = *pudp;
1239
1240	native_pud_clear(pudp);
1241	return res;
1242}
1243
1244static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1245			      pmd_t *pmdp, pmd_t pmd)
1246{
1247	page_table_check_pmd_set(mm, pmdp, pmd);
1248	set_pmd(pmdp, pmd);
1249}
1250
1251static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
1252			      pud_t *pudp, pud_t pud)
1253{
1254	page_table_check_pud_set(mm, pudp, pud);
1255	native_set_pud(pudp, pud);
1256}
1257
1258/*
1259 * We only update the dirty/accessed state if we set
1260 * the dirty bit by hand in the kernel, since the hardware
1261 * will do the accessed bit for us, and we don't want to
1262 * race with other CPU's that might be updating the dirty
1263 * bit at the same time.
1264 */
1265struct vm_area_struct;
1266
1267#define  __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1268extern int ptep_set_access_flags(struct vm_area_struct *vma,
1269				 unsigned long address, pte_t *ptep,
1270				 pte_t entry, int dirty);
1271
1272#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1273extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
1274				     unsigned long addr, pte_t *ptep);
1275
1276#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1277extern int ptep_clear_flush_young(struct vm_area_struct *vma,
1278				  unsigned long address, pte_t *ptep);
1279
1280#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1281static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
1282				       pte_t *ptep)
1283{
1284	pte_t pte = native_ptep_get_and_clear(ptep);
1285	page_table_check_pte_clear(mm, pte);
1286	return pte;
1287}
1288
1289#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1290static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1291					    unsigned long addr, pte_t *ptep,
1292					    int full)
1293{
1294	pte_t pte;
1295	if (full) {
1296		/*
1297		 * Full address destruction in progress; paravirt does not
1298		 * care about updates and native needs no locking
1299		 */
1300		pte = native_local_ptep_get_and_clear(ptep);
1301		page_table_check_pte_clear(mm, pte);
1302	} else {
1303		pte = ptep_get_and_clear(mm, addr, ptep);
1304	}
1305	return pte;
1306}
1307
1308#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1309static inline void ptep_set_wrprotect(struct mm_struct *mm,
1310				      unsigned long addr, pte_t *ptep)
1311{
1312	/*
1313	 * Avoid accidentally creating shadow stack PTEs
1314	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1315	 * the hardware setting Dirty=1.
1316	 */
1317	pte_t old_pte, new_pte;
1318
1319	old_pte = READ_ONCE(*ptep);
1320	do {
1321		new_pte = pte_wrprotect(old_pte);
1322	} while (!try_cmpxchg((long *)&ptep->pte, (long *)&old_pte, *(long *)&new_pte));
1323}
1324
1325#define flush_tlb_fix_spurious_fault(vma, address, ptep) do { } while (0)
1326
1327#define mk_pmd(page, pgprot)   pfn_pmd(page_to_pfn(page), (pgprot))
1328
1329#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1330extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1331				 unsigned long address, pmd_t *pmdp,
1332				 pmd_t entry, int dirty);
1333extern int pudp_set_access_flags(struct vm_area_struct *vma,
1334				 unsigned long address, pud_t *pudp,
1335				 pud_t entry, int dirty);
1336
1337#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1338extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1339				     unsigned long addr, pmd_t *pmdp);
1340extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1341				     unsigned long addr, pud_t *pudp);
1342
1343#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1344extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
1345				  unsigned long address, pmd_t *pmdp);
1346
1347
1348#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1349static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr,
1350				       pmd_t *pmdp)
1351{
1352	pmd_t pmd = native_pmdp_get_and_clear(pmdp);
1353
1354	page_table_check_pmd_clear(mm, pmd);
1355
1356	return pmd;
1357}
1358
1359#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1360static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1361					unsigned long addr, pud_t *pudp)
1362{
1363	pud_t pud = native_pudp_get_and_clear(pudp);
1364
1365	page_table_check_pud_clear(mm, pud);
1366
1367	return pud;
1368}
1369
1370#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1371static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1372				      unsigned long addr, pmd_t *pmdp)
1373{
1374	/*
1375	 * Avoid accidentally creating shadow stack PTEs
1376	 * (Write=0,Dirty=1).  Use cmpxchg() to prevent races with
1377	 * the hardware setting Dirty=1.
1378	 */
1379	pmd_t old_pmd, new_pmd;
1380
1381	old_pmd = READ_ONCE(*pmdp);
1382	do {
1383		new_pmd = pmd_wrprotect(old_pmd);
1384	} while (!try_cmpxchg((long *)pmdp, (long *)&old_pmd, *(long *)&new_pmd));
1385}
1386
1387#ifndef pmdp_establish
1388#define pmdp_establish pmdp_establish
1389static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
1390		unsigned long address, pmd_t *pmdp, pmd_t pmd)
1391{
1392	page_table_check_pmd_set(vma->vm_mm, pmdp, pmd);
1393	if (IS_ENABLED(CONFIG_SMP)) {
1394		return xchg(pmdp, pmd);
1395	} else {
1396		pmd_t old = *pmdp;
1397		WRITE_ONCE(*pmdp, pmd);
1398		return old;
1399	}
1400}
1401#endif
1402
1403#define __HAVE_ARCH_PMDP_INVALIDATE_AD
1404extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1405				unsigned long address, pmd_t *pmdp);
1406
1407/*
1408 * Page table pages are page-aligned.  The lower half of the top
1409 * level is used for userspace and the top half for the kernel.
1410 *
1411 * Returns true for parts of the PGD that map userspace and
1412 * false for the parts that map the kernel.
1413 */
1414static inline bool pgdp_maps_userspace(void *__ptr)
1415{
1416	unsigned long ptr = (unsigned long)__ptr;
1417
1418	return (((ptr & ~PAGE_MASK) / sizeof(pgd_t)) < PGD_KERNEL_START);
1419}
1420
1421#define pgd_leaf	pgd_large
1422static inline int pgd_large(pgd_t pgd) { return 0; }
1423
1424#ifdef CONFIG_PAGE_TABLE_ISOLATION
1425/*
1426 * All top-level PAGE_TABLE_ISOLATION page tables are order-1 pages
1427 * (8k-aligned and 8k in size).  The kernel one is at the beginning 4k and
1428 * the user one is in the last 4k.  To switch between them, you
1429 * just need to flip the 12th bit in their addresses.
1430 */
1431#define PTI_PGTABLE_SWITCH_BIT	PAGE_SHIFT
1432
1433/*
1434 * This generates better code than the inline assembly in
1435 * __set_bit().
1436 */
1437static inline void *ptr_set_bit(void *ptr, int bit)
1438{
1439	unsigned long __ptr = (unsigned long)ptr;
1440
1441	__ptr |= BIT(bit);
1442	return (void *)__ptr;
1443}
1444static inline void *ptr_clear_bit(void *ptr, int bit)
1445{
1446	unsigned long __ptr = (unsigned long)ptr;
1447
1448	__ptr &= ~BIT(bit);
1449	return (void *)__ptr;
1450}
1451
1452static inline pgd_t *kernel_to_user_pgdp(pgd_t *pgdp)
1453{
1454	return ptr_set_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1455}
1456
1457static inline pgd_t *user_to_kernel_pgdp(pgd_t *pgdp)
1458{
1459	return ptr_clear_bit(pgdp, PTI_PGTABLE_SWITCH_BIT);
1460}
1461
1462static inline p4d_t *kernel_to_user_p4dp(p4d_t *p4dp)
1463{
1464	return ptr_set_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1465}
1466
1467static inline p4d_t *user_to_kernel_p4dp(p4d_t *p4dp)
1468{
1469	return ptr_clear_bit(p4dp, PTI_PGTABLE_SWITCH_BIT);
1470}
1471#endif /* CONFIG_PAGE_TABLE_ISOLATION */
1472
1473/*
1474 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
1475 *
1476 *  dst - pointer to pgd range anywhere on a pgd page
1477 *  src - ""
1478 *  count - the number of pgds to copy.
1479 *
1480 * dst and src can be on the same page, but the range must not overlap,
1481 * and must not cross a page boundary.
1482 */
1483static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
1484{
1485	memcpy(dst, src, count * sizeof(pgd_t));
1486#ifdef CONFIG_PAGE_TABLE_ISOLATION
1487	if (!static_cpu_has(X86_FEATURE_PTI))
1488		return;
1489	/* Clone the user space pgd as well */
1490	memcpy(kernel_to_user_pgdp(dst), kernel_to_user_pgdp(src),
1491	       count * sizeof(pgd_t));
1492#endif
1493}
1494
1495#define PTE_SHIFT ilog2(PTRS_PER_PTE)
1496static inline int page_level_shift(enum pg_level level)
1497{
1498	return (PAGE_SHIFT - PTE_SHIFT) + level * PTE_SHIFT;
1499}
1500static inline unsigned long page_level_size(enum pg_level level)
1501{
1502	return 1UL << page_level_shift(level);
1503}
1504static inline unsigned long page_level_mask(enum pg_level level)
1505{
1506	return ~(page_level_size(level) - 1);
1507}
1508
1509/*
1510 * The x86 doesn't have any external MMU info: the kernel page
1511 * tables contain all the necessary information.
1512 */
1513static inline void update_mmu_cache(struct vm_area_struct *vma,
1514		unsigned long addr, pte_t *ptep)
1515{
1516}
1517static inline void update_mmu_cache_range(struct vm_fault *vmf,
1518		struct vm_area_struct *vma, unsigned long addr,
1519		pte_t *ptep, unsigned int nr)
1520{
1521}
1522static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1523		unsigned long addr, pmd_t *pmd)
1524{
1525}
1526static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1527		unsigned long addr, pud_t *pud)
1528{
1529}
1530static inline pte_t pte_swp_mkexclusive(pte_t pte)
1531{
1532	return pte_set_flags(pte, _PAGE_SWP_EXCLUSIVE);
1533}
1534
1535static inline int pte_swp_exclusive(pte_t pte)
1536{
1537	return pte_flags(pte) & _PAGE_SWP_EXCLUSIVE;
1538}
1539
1540static inline pte_t pte_swp_clear_exclusive(pte_t pte)
1541{
1542	return pte_clear_flags(pte, _PAGE_SWP_EXCLUSIVE);
1543}
1544
1545#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1546static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1547{
1548	return pte_set_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1549}
1550
1551static inline int pte_swp_soft_dirty(pte_t pte)
1552{
1553	return pte_flags(pte) & _PAGE_SWP_SOFT_DIRTY;
1554}
1555
1556static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1557{
1558	return pte_clear_flags(pte, _PAGE_SWP_SOFT_DIRTY);
1559}
1560
1561#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1562static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1563{
1564	return pmd_set_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1565}
1566
1567static inline int pmd_swp_soft_dirty(pmd_t pmd)
1568{
1569	return pmd_flags(pmd) & _PAGE_SWP_SOFT_DIRTY;
1570}
1571
1572static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1573{
1574	return pmd_clear_flags(pmd, _PAGE_SWP_SOFT_DIRTY);
1575}
1576#endif
1577#endif
1578
1579#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1580static inline pte_t pte_swp_mkuffd_wp(pte_t pte)
1581{
1582	return pte_set_flags(pte, _PAGE_SWP_UFFD_WP);
1583}
1584
1585static inline int pte_swp_uffd_wp(pte_t pte)
1586{
1587	return pte_flags(pte) & _PAGE_SWP_UFFD_WP;
1588}
1589
1590static inline pte_t pte_swp_clear_uffd_wp(pte_t pte)
1591{
1592	return pte_clear_flags(pte, _PAGE_SWP_UFFD_WP);
1593}
1594
1595static inline pmd_t pmd_swp_mkuffd_wp(pmd_t pmd)
1596{
1597	return pmd_set_flags(pmd, _PAGE_SWP_UFFD_WP);
1598}
1599
1600static inline int pmd_swp_uffd_wp(pmd_t pmd)
1601{
1602	return pmd_flags(pmd) & _PAGE_SWP_UFFD_WP;
1603}
1604
1605static inline pmd_t pmd_swp_clear_uffd_wp(pmd_t pmd)
1606{
1607	return pmd_clear_flags(pmd, _PAGE_SWP_UFFD_WP);
1608}
1609#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_WP */
1610
1611static inline u16 pte_flags_pkey(unsigned long pte_flags)
1612{
1613#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1614	/* ifdef to avoid doing 59-bit shift on 32-bit values */
1615	return (pte_flags & _PAGE_PKEY_MASK) >> _PAGE_BIT_PKEY_BIT0;
1616#else
1617	return 0;
1618#endif
1619}
1620
1621static inline bool __pkru_allows_pkey(u16 pkey, bool write)
1622{
1623	u32 pkru = read_pkru();
1624
1625	if (!__pkru_allows_read(pkru, pkey))
1626		return false;
1627	if (write && !__pkru_allows_write(pkru, pkey))
1628		return false;
1629
1630	return true;
1631}
1632
1633/*
1634 * 'pteval' can come from a PTE, PMD or PUD.  We only check
1635 * _PAGE_PRESENT, _PAGE_USER, and _PAGE_RW in here which are the
1636 * same value on all 3 types.
1637 */
1638static inline bool __pte_access_permitted(unsigned long pteval, bool write)
1639{
1640	unsigned long need_pte_bits = _PAGE_PRESENT|_PAGE_USER;
1641
1642	/*
1643	 * Write=0,Dirty=1 PTEs are shadow stack, which the kernel
1644	 * shouldn't generally allow access to, but since they
1645	 * are already Write=0, the below logic covers both cases.
1646	 */
1647	if (write)
1648		need_pte_bits |= _PAGE_RW;
1649
1650	if ((pteval & need_pte_bits) != need_pte_bits)
1651		return 0;
1652
1653	return __pkru_allows_pkey(pte_flags_pkey(pteval), write);
1654}
1655
1656#define pte_access_permitted pte_access_permitted
1657static inline bool pte_access_permitted(pte_t pte, bool write)
1658{
1659	return __pte_access_permitted(pte_val(pte), write);
1660}
1661
1662#define pmd_access_permitted pmd_access_permitted
1663static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1664{
1665	return __pte_access_permitted(pmd_val(pmd), write);
1666}
1667
1668#define pud_access_permitted pud_access_permitted
1669static inline bool pud_access_permitted(pud_t pud, bool write)
1670{
1671	return __pte_access_permitted(pud_val(pud), write);
1672}
1673
1674#define __HAVE_ARCH_PFN_MODIFY_ALLOWED 1
1675extern bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot);
1676
1677static inline bool arch_has_pfn_modify_check(void)
1678{
1679	return boot_cpu_has_bug(X86_BUG_L1TF);
1680}
1681
1682#define arch_has_hw_pte_young arch_has_hw_pte_young
1683static inline bool arch_has_hw_pte_young(void)
1684{
1685	return true;
1686}
1687
1688#define arch_check_zapped_pte arch_check_zapped_pte
1689void arch_check_zapped_pte(struct vm_area_struct *vma, pte_t pte);
1690
1691#define arch_check_zapped_pmd arch_check_zapped_pmd
1692void arch_check_zapped_pmd(struct vm_area_struct *vma, pmd_t pmd);
1693
1694#ifdef CONFIG_XEN_PV
1695#define arch_has_hw_nonleaf_pmd_young arch_has_hw_nonleaf_pmd_young
1696static inline bool arch_has_hw_nonleaf_pmd_young(void)
1697{
1698	return !cpu_feature_enabled(X86_FEATURE_XENPV);
1699}
1700#endif
1701
1702#ifdef CONFIG_PAGE_TABLE_CHECK
1703static inline bool pte_user_accessible_page(pte_t pte)
1704{
1705	return (pte_val(pte) & _PAGE_PRESENT) && (pte_val(pte) & _PAGE_USER);
1706}
1707
1708static inline bool pmd_user_accessible_page(pmd_t pmd)
1709{
1710	return pmd_leaf(pmd) && (pmd_val(pmd) & _PAGE_PRESENT) && (pmd_val(pmd) & _PAGE_USER);
1711}
1712
1713static inline bool pud_user_accessible_page(pud_t pud)
1714{
1715	return pud_leaf(pud) && (pud_val(pud) & _PAGE_PRESENT) && (pud_val(pud) & _PAGE_USER);
1716}
1717#endif
1718
1719#endif	/* __ASSEMBLY__ */
1720
1721#endif /* _ASM_X86_PGTABLE_H */
1722