1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This header defines architecture specific interfaces, x86 version
6 */
7
8#ifndef _ASM_X86_KVM_HOST_H
9#define _ASM_X86_KVM_HOST_H
10
11#include <linux/types.h>
12#include <linux/mm.h>
13#include <linux/mmu_notifier.h>
14#include <linux/tracepoint.h>
15#include <linux/cpumask.h>
16#include <linux/irq_work.h>
17#include <linux/irq.h>
18#include <linux/workqueue.h>
19
20#include <linux/kvm.h>
21#include <linux/kvm_para.h>
22#include <linux/kvm_types.h>
23#include <linux/perf_event.h>
24#include <linux/pvclock_gtod.h>
25#include <linux/clocksource.h>
26#include <linux/irqbypass.h>
27#include <linux/hyperv.h>
28#include <linux/kfifo.h>
29
30#include <asm/apic.h>
31#include <asm/pvclock-abi.h>
32#include <asm/desc.h>
33#include <asm/mtrr.h>
34#include <asm/msr-index.h>
35#include <asm/asm.h>
36#include <asm/kvm_page_track.h>
37#include <asm/kvm_vcpu_regs.h>
38#include <asm/hyperv-tlfs.h>
39
40#define __KVM_HAVE_ARCH_VCPU_DEBUGFS
41
42#define KVM_MAX_VCPUS 1024
43
44/*
45 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
46 * might be larger than the actual number of VCPUs because the
47 * APIC ID encodes CPU topology information.
48 *
49 * In the worst case, we'll need less than one extra bit for the
50 * Core ID, and less than one extra bit for the Package (Die) ID,
51 * so ratio of 4 should be enough.
52 */
53#define KVM_VCPU_ID_RATIO 4
54#define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
55
56/* memory slots that are not exposed to userspace */
57#define KVM_INTERNAL_MEM_SLOTS 3
58
59#define KVM_HALT_POLL_NS_DEFAULT 200000
60
61#define KVM_IRQCHIP_NUM_PINS  KVM_IOAPIC_NUM_PINS
62
63#define KVM_DIRTY_LOG_MANUAL_CAPS   (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
64					KVM_DIRTY_LOG_INITIALLY_SET)
65
66#define KVM_BUS_LOCK_DETECTION_VALID_MODE	(KVM_BUS_LOCK_DETECTION_OFF | \
67						 KVM_BUS_LOCK_DETECTION_EXIT)
68
69#define KVM_X86_NOTIFY_VMEXIT_VALID_BITS	(KVM_X86_NOTIFY_VMEXIT_ENABLED | \
70						 KVM_X86_NOTIFY_VMEXIT_USER)
71
72/* x86-specific vcpu->requests bit members */
73#define KVM_REQ_MIGRATE_TIMER		KVM_ARCH_REQ(0)
74#define KVM_REQ_REPORT_TPR_ACCESS	KVM_ARCH_REQ(1)
75#define KVM_REQ_TRIPLE_FAULT		KVM_ARCH_REQ(2)
76#define KVM_REQ_MMU_SYNC		KVM_ARCH_REQ(3)
77#define KVM_REQ_CLOCK_UPDATE		KVM_ARCH_REQ(4)
78#define KVM_REQ_LOAD_MMU_PGD		KVM_ARCH_REQ(5)
79#define KVM_REQ_EVENT			KVM_ARCH_REQ(6)
80#define KVM_REQ_APF_HALT		KVM_ARCH_REQ(7)
81#define KVM_REQ_STEAL_UPDATE		KVM_ARCH_REQ(8)
82#define KVM_REQ_NMI			KVM_ARCH_REQ(9)
83#define KVM_REQ_PMU			KVM_ARCH_REQ(10)
84#define KVM_REQ_PMI			KVM_ARCH_REQ(11)
85#ifdef CONFIG_KVM_SMM
86#define KVM_REQ_SMI			KVM_ARCH_REQ(12)
87#endif
88#define KVM_REQ_MASTERCLOCK_UPDATE	KVM_ARCH_REQ(13)
89#define KVM_REQ_MCLOCK_INPROGRESS \
90	KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
91#define KVM_REQ_SCAN_IOAPIC \
92	KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
93#define KVM_REQ_GLOBAL_CLOCK_UPDATE	KVM_ARCH_REQ(16)
94#define KVM_REQ_APIC_PAGE_RELOAD \
95	KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
96#define KVM_REQ_HV_CRASH		KVM_ARCH_REQ(18)
97#define KVM_REQ_IOAPIC_EOI_EXIT		KVM_ARCH_REQ(19)
98#define KVM_REQ_HV_RESET		KVM_ARCH_REQ(20)
99#define KVM_REQ_HV_EXIT			KVM_ARCH_REQ(21)
100#define KVM_REQ_HV_STIMER		KVM_ARCH_REQ(22)
101#define KVM_REQ_LOAD_EOI_EXITMAP	KVM_ARCH_REQ(23)
102#define KVM_REQ_GET_NESTED_STATE_PAGES	KVM_ARCH_REQ(24)
103#define KVM_REQ_APICV_UPDATE \
104	KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105#define KVM_REQ_TLB_FLUSH_CURRENT	KVM_ARCH_REQ(26)
106#define KVM_REQ_TLB_FLUSH_GUEST \
107	KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
108#define KVM_REQ_APF_READY		KVM_ARCH_REQ(28)
109#define KVM_REQ_MSR_FILTER_CHANGED	KVM_ARCH_REQ(29)
110#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
111	KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
112#define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
113	KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
114#define KVM_REQ_HV_TLB_FLUSH \
115	KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
116
117#define CR0_RESERVED_BITS                                               \
118	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
119			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
120			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
121
122#define CR4_RESERVED_BITS                                               \
123	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
124			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
125			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
126			  | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
127			  | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
128			  | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
129
130#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
131
132
133
134#define INVALID_PAGE (~(hpa_t)0)
135#define VALID_PAGE(x) ((x) != INVALID_PAGE)
136
137/* KVM Hugepage definitions for x86 */
138#define KVM_MAX_HUGEPAGE_LEVEL	PG_LEVEL_1G
139#define KVM_NR_PAGE_SIZES	(KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
140#define KVM_HPAGE_GFN_SHIFT(x)	(((x) - 1) * 9)
141#define KVM_HPAGE_SHIFT(x)	(PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
142#define KVM_HPAGE_SIZE(x)	(1UL << KVM_HPAGE_SHIFT(x))
143#define KVM_HPAGE_MASK(x)	(~(KVM_HPAGE_SIZE(x) - 1))
144#define KVM_PAGES_PER_HPAGE(x)	(KVM_HPAGE_SIZE(x) / PAGE_SIZE)
145
146#define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
147#define KVM_MIN_ALLOC_MMU_PAGES 64UL
148#define KVM_MMU_HASH_SHIFT 12
149#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
150#define KVM_MIN_FREE_MMU_PAGES 5
151#define KVM_REFILL_PAGES 25
152#define KVM_MAX_CPUID_ENTRIES 256
153#define KVM_NR_FIXED_MTRR_REGION 88
154#define KVM_NR_VAR_MTRR 8
155
156#define ASYNC_PF_PER_VCPU 64
157
158enum kvm_reg {
159	VCPU_REGS_RAX = __VCPU_REGS_RAX,
160	VCPU_REGS_RCX = __VCPU_REGS_RCX,
161	VCPU_REGS_RDX = __VCPU_REGS_RDX,
162	VCPU_REGS_RBX = __VCPU_REGS_RBX,
163	VCPU_REGS_RSP = __VCPU_REGS_RSP,
164	VCPU_REGS_RBP = __VCPU_REGS_RBP,
165	VCPU_REGS_RSI = __VCPU_REGS_RSI,
166	VCPU_REGS_RDI = __VCPU_REGS_RDI,
167#ifdef CONFIG_X86_64
168	VCPU_REGS_R8  = __VCPU_REGS_R8,
169	VCPU_REGS_R9  = __VCPU_REGS_R9,
170	VCPU_REGS_R10 = __VCPU_REGS_R10,
171	VCPU_REGS_R11 = __VCPU_REGS_R11,
172	VCPU_REGS_R12 = __VCPU_REGS_R12,
173	VCPU_REGS_R13 = __VCPU_REGS_R13,
174	VCPU_REGS_R14 = __VCPU_REGS_R14,
175	VCPU_REGS_R15 = __VCPU_REGS_R15,
176#endif
177	VCPU_REGS_RIP,
178	NR_VCPU_REGS,
179
180	VCPU_EXREG_PDPTR = NR_VCPU_REGS,
181	VCPU_EXREG_CR0,
182	VCPU_EXREG_CR3,
183	VCPU_EXREG_CR4,
184	VCPU_EXREG_RFLAGS,
185	VCPU_EXREG_SEGMENTS,
186	VCPU_EXREG_EXIT_INFO_1,
187	VCPU_EXREG_EXIT_INFO_2,
188};
189
190enum {
191	VCPU_SREG_ES,
192	VCPU_SREG_CS,
193	VCPU_SREG_SS,
194	VCPU_SREG_DS,
195	VCPU_SREG_FS,
196	VCPU_SREG_GS,
197	VCPU_SREG_TR,
198	VCPU_SREG_LDTR,
199};
200
201enum exit_fastpath_completion {
202	EXIT_FASTPATH_NONE,
203	EXIT_FASTPATH_REENTER_GUEST,
204	EXIT_FASTPATH_EXIT_HANDLED,
205};
206typedef enum exit_fastpath_completion fastpath_t;
207
208struct x86_emulate_ctxt;
209struct x86_exception;
210union kvm_smram;
211enum x86_intercept;
212enum x86_intercept_stage;
213
214#define KVM_NR_DB_REGS	4
215
216#define DR6_BUS_LOCK   (1 << 11)
217#define DR6_BD		(1 << 13)
218#define DR6_BS		(1 << 14)
219#define DR6_BT		(1 << 15)
220#define DR6_RTM		(1 << 16)
221/*
222 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
223 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
224 * they will never be 0 for now, but when they are defined
225 * in the future it will require no code change.
226 *
227 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
228 */
229#define DR6_ACTIVE_LOW	0xffff0ff0
230#define DR6_VOLATILE	0x0001e80f
231#define DR6_FIXED_1	(DR6_ACTIVE_LOW & ~DR6_VOLATILE)
232
233#define DR7_BP_EN_MASK	0x000000ff
234#define DR7_GE		(1 << 9)
235#define DR7_GD		(1 << 13)
236#define DR7_FIXED_1	0x00000400
237#define DR7_VOLATILE	0xffff2bff
238
239#define KVM_GUESTDBG_VALID_MASK \
240	(KVM_GUESTDBG_ENABLE | \
241	KVM_GUESTDBG_SINGLESTEP | \
242	KVM_GUESTDBG_USE_HW_BP | \
243	KVM_GUESTDBG_USE_SW_BP | \
244	KVM_GUESTDBG_INJECT_BP | \
245	KVM_GUESTDBG_INJECT_DB | \
246	KVM_GUESTDBG_BLOCKIRQ)
247
248
249#define PFERR_PRESENT_BIT 0
250#define PFERR_WRITE_BIT 1
251#define PFERR_USER_BIT 2
252#define PFERR_RSVD_BIT 3
253#define PFERR_FETCH_BIT 4
254#define PFERR_PK_BIT 5
255#define PFERR_SGX_BIT 15
256#define PFERR_GUEST_FINAL_BIT 32
257#define PFERR_GUEST_PAGE_BIT 33
258#define PFERR_IMPLICIT_ACCESS_BIT 48
259
260#define PFERR_PRESENT_MASK	BIT(PFERR_PRESENT_BIT)
261#define PFERR_WRITE_MASK	BIT(PFERR_WRITE_BIT)
262#define PFERR_USER_MASK		BIT(PFERR_USER_BIT)
263#define PFERR_RSVD_MASK		BIT(PFERR_RSVD_BIT)
264#define PFERR_FETCH_MASK	BIT(PFERR_FETCH_BIT)
265#define PFERR_PK_MASK		BIT(PFERR_PK_BIT)
266#define PFERR_SGX_MASK		BIT(PFERR_SGX_BIT)
267#define PFERR_GUEST_FINAL_MASK	BIT_ULL(PFERR_GUEST_FINAL_BIT)
268#define PFERR_GUEST_PAGE_MASK	BIT_ULL(PFERR_GUEST_PAGE_BIT)
269#define PFERR_IMPLICIT_ACCESS	BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
270
271#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK |	\
272				 PFERR_WRITE_MASK |		\
273				 PFERR_PRESENT_MASK)
274
275/* apic attention bits */
276#define KVM_APIC_CHECK_VAPIC	0
277/*
278 * The following bit is set with PV-EOI, unset on EOI.
279 * We detect PV-EOI changes by guest by comparing
280 * this bit with PV-EOI in guest memory.
281 * See the implementation in apic_update_pv_eoi.
282 */
283#define KVM_APIC_PV_EOI_PENDING	1
284
285struct kvm_kernel_irq_routing_entry;
286
287/*
288 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
289 * also includes TDP pages) to determine whether or not a page can be used in
290 * the given MMU context.  This is a subset of the overall kvm_cpu_role to
291 * minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
292 * allocating 2 bytes per gfn instead of 4 bytes per gfn.
293 *
294 * Upper-level shadow pages having gptes are tracked for write-protection via
295 * gfn_write_track.  As above, gfn_write_track is a 16 bit counter, so KVM must
296 * not create more than 2^16-1 upper-level shadow pages at a single gfn,
297 * otherwise gfn_write_track will overflow and explosions will ensue.
298 *
299 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
300 * cannot be reused.  The ability to reuse a SP is tracked by its role, which
301 * incorporates various mode bits and properties of the SP.  Roughly speaking,
302 * the number of unique SPs that can theoretically be created is 2^n, where n
303 * is the number of bits that are used to compute the role.
304 *
305 * But, even though there are 19 bits in the mask below, not all combinations
306 * of modes and flags are possible:
307 *
308 *   - invalid shadow pages are not accounted, so the bits are effectively 18
309 *
310 *   - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
311 *     execonly and ad_disabled are only used for nested EPT which has
312 *     has_4_byte_gpte=0.  Therefore, 2 bits are always unused.
313 *
314 *   - the 4 bits of level are effectively limited to the values 2/3/4/5,
315 *     as 4k SPs are not tracked (allowed to go unsync).  In addition non-PAE
316 *     paging has exactly one upper level, making level completely redundant
317 *     when has_4_byte_gpte=1.
318 *
319 *   - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
320 *     cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
321 *
322 * Therefore, the maximum number of possible upper-level shadow pages for a
323 * single gfn is a bit less than 2^13.
324 */
325union kvm_mmu_page_role {
326	u32 word;
327	struct {
328		unsigned level:4;
329		unsigned has_4_byte_gpte:1;
330		unsigned quadrant:2;
331		unsigned direct:1;
332		unsigned access:3;
333		unsigned invalid:1;
334		unsigned efer_nx:1;
335		unsigned cr0_wp:1;
336		unsigned smep_andnot_wp:1;
337		unsigned smap_andnot_wp:1;
338		unsigned ad_disabled:1;
339		unsigned guest_mode:1;
340		unsigned passthrough:1;
341		unsigned :5;
342
343		/*
344		 * This is left at the top of the word so that
345		 * kvm_memslots_for_spte_role can extract it with a
346		 * simple shift.  While there is room, give it a whole
347		 * byte so it is also faster to load it from memory.
348		 */
349		unsigned smm:8;
350	};
351};
352
353/*
354 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
355 * relevant to the current MMU configuration.   When loading CR0, CR4, or EFER,
356 * including on nested transitions, if nothing in the full role changes then
357 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
358 * don't treat all-zero structure as valid data.
359 *
360 * The properties that are tracked in the extended role but not the page role
361 * are for things that either (a) do not affect the validity of the shadow page
362 * or (b) are indirectly reflected in the shadow page's role.  For example,
363 * CR4.PKE only affects permission checks for software walks of the guest page
364 * tables (because KVM doesn't support Protection Keys with shadow paging), and
365 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
366 *
367 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
368 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
369 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
370 * SMAP aware regardless of CR0.WP.
371 */
372union kvm_mmu_extended_role {
373	u32 word;
374	struct {
375		unsigned int valid:1;
376		unsigned int execonly:1;
377		unsigned int cr4_pse:1;
378		unsigned int cr4_pke:1;
379		unsigned int cr4_smap:1;
380		unsigned int cr4_smep:1;
381		unsigned int cr4_la57:1;
382		unsigned int efer_lma:1;
383	};
384};
385
386union kvm_cpu_role {
387	u64 as_u64;
388	struct {
389		union kvm_mmu_page_role base;
390		union kvm_mmu_extended_role ext;
391	};
392};
393
394struct kvm_rmap_head {
395	unsigned long val;
396};
397
398struct kvm_pio_request {
399	unsigned long linear_rip;
400	unsigned long count;
401	int in;
402	int port;
403	int size;
404};
405
406#define PT64_ROOT_MAX_LEVEL 5
407
408struct rsvd_bits_validate {
409	u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
410	u64 bad_mt_xwr;
411};
412
413struct kvm_mmu_root_info {
414	gpa_t pgd;
415	hpa_t hpa;
416};
417
418#define KVM_MMU_ROOT_INFO_INVALID \
419	((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
420
421#define KVM_MMU_NUM_PREV_ROOTS 3
422
423#define KVM_MMU_ROOT_CURRENT		BIT(0)
424#define KVM_MMU_ROOT_PREVIOUS(i)	BIT(1+i)
425#define KVM_MMU_ROOTS_ALL		(BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
426
427#define KVM_HAVE_MMU_RWLOCK
428
429struct kvm_mmu_page;
430struct kvm_page_fault;
431
432/*
433 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
434 * and 2-level 32-bit).  The kvm_mmu structure abstracts the details of the
435 * current mmu mode.
436 */
437struct kvm_mmu {
438	unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
439	u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
440	int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
441	void (*inject_page_fault)(struct kvm_vcpu *vcpu,
442				  struct x86_exception *fault);
443	gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
444			    gpa_t gva_or_gpa, u64 access,
445			    struct x86_exception *exception);
446	int (*sync_spte)(struct kvm_vcpu *vcpu,
447			 struct kvm_mmu_page *sp, int i);
448	struct kvm_mmu_root_info root;
449	union kvm_cpu_role cpu_role;
450	union kvm_mmu_page_role root_role;
451
452	/*
453	* The pkru_mask indicates if protection key checks are needed.  It
454	* consists of 16 domains indexed by page fault error code bits [4:1],
455	* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
456	* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
457	*/
458	u32 pkru_mask;
459
460	struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
461
462	/*
463	 * Bitmap; bit set = permission fault
464	 * Byte index: page fault error code [4:1]
465	 * Bit index: pte permissions in ACC_* format
466	 */
467	u8 permissions[16];
468
469	u64 *pae_root;
470	u64 *pml4_root;
471	u64 *pml5_root;
472
473	/*
474	 * check zero bits on shadow page table entries, these
475	 * bits include not only hardware reserved bits but also
476	 * the bits spte never used.
477	 */
478	struct rsvd_bits_validate shadow_zero_check;
479
480	struct rsvd_bits_validate guest_rsvd_check;
481
482	u64 pdptrs[4]; /* pae */
483};
484
485enum pmc_type {
486	KVM_PMC_GP = 0,
487	KVM_PMC_FIXED,
488};
489
490struct kvm_pmc {
491	enum pmc_type type;
492	u8 idx;
493	bool is_paused;
494	bool intr;
495	u64 counter;
496	u64 prev_counter;
497	u64 eventsel;
498	struct perf_event *perf_event;
499	struct kvm_vcpu *vcpu;
500	/*
501	 * only for creating or reusing perf_event,
502	 * eventsel value for general purpose counters,
503	 * ctrl value for fixed counters.
504	 */
505	u64 current_config;
506};
507
508/* More counters may conflict with other existing Architectural MSRs */
509#define KVM_INTEL_PMC_MAX_GENERIC	8
510#define MSR_ARCH_PERFMON_PERFCTR_MAX	(MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
511#define MSR_ARCH_PERFMON_EVENTSEL_MAX	(MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
512#define KVM_PMC_MAX_FIXED	3
513#define MSR_ARCH_PERFMON_FIXED_CTR_MAX	(MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_PMC_MAX_FIXED - 1)
514#define KVM_AMD_PMC_MAX_GENERIC	6
515struct kvm_pmu {
516	u8 version;
517	unsigned nr_arch_gp_counters;
518	unsigned nr_arch_fixed_counters;
519	unsigned available_event_types;
520	u64 fixed_ctr_ctrl;
521	u64 fixed_ctr_ctrl_mask;
522	u64 global_ctrl;
523	u64 global_status;
524	u64 counter_bitmask[2];
525	u64 global_ctrl_mask;
526	u64 global_status_mask;
527	u64 reserved_bits;
528	u64 raw_event_mask;
529	struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
530	struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
531
532	/*
533	 * Overlay the bitmap with a 64-bit atomic so that all bits can be
534	 * set in a single access, e.g. to reprogram all counters when the PMU
535	 * filter changes.
536	 */
537	union {
538		DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
539		atomic64_t __reprogram_pmi;
540	};
541	DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
542	DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
543
544	u64 ds_area;
545	u64 pebs_enable;
546	u64 pebs_enable_mask;
547	u64 pebs_data_cfg;
548	u64 pebs_data_cfg_mask;
549
550	/*
551	 * If a guest counter is cross-mapped to host counter with different
552	 * index, its PEBS capability will be temporarily disabled.
553	 *
554	 * The user should make sure that this mask is updated
555	 * after disabling interrupts and before perf_guest_get_msrs();
556	 */
557	u64 host_cross_mapped_mask;
558
559	/*
560	 * The gate to release perf_events not marked in
561	 * pmc_in_use only once in a vcpu time slice.
562	 */
563	bool need_cleanup;
564
565	/*
566	 * The total number of programmed perf_events and it helps to avoid
567	 * redundant check before cleanup if guest don't use vPMU at all.
568	 */
569	u8 event_count;
570};
571
572struct kvm_pmu_ops;
573
574enum {
575	KVM_DEBUGREG_BP_ENABLED = 1,
576	KVM_DEBUGREG_WONT_EXIT = 2,
577};
578
579struct kvm_mtrr_range {
580	u64 base;
581	u64 mask;
582	struct list_head node;
583};
584
585struct kvm_mtrr {
586	struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
587	mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
588	u64 deftype;
589
590	struct list_head head;
591};
592
593/* Hyper-V SynIC timer */
594struct kvm_vcpu_hv_stimer {
595	struct hrtimer timer;
596	int index;
597	union hv_stimer_config config;
598	u64 count;
599	u64 exp_time;
600	struct hv_message msg;
601	bool msg_pending;
602};
603
604/* Hyper-V synthetic interrupt controller (SynIC)*/
605struct kvm_vcpu_hv_synic {
606	u64 version;
607	u64 control;
608	u64 msg_page;
609	u64 evt_page;
610	atomic64_t sint[HV_SYNIC_SINT_COUNT];
611	atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
612	DECLARE_BITMAP(auto_eoi_bitmap, 256);
613	DECLARE_BITMAP(vec_bitmap, 256);
614	bool active;
615	bool dont_zero_synic_pages;
616};
617
618/* The maximum number of entries on the TLB flush fifo. */
619#define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
620/*
621 * Note: the following 'magic' entry is made up by KVM to avoid putting
622 * anything besides GVA on the TLB flush fifo. It is theoretically possible
623 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
624 * which will look identical. KVM's action to 'flush everything' instead of
625 * flushing these particular addresses is, however, fully legitimate as
626 * flushing more than requested is always OK.
627 */
628#define KVM_HV_TLB_FLUSHALL_ENTRY  ((u64)-1)
629
630enum hv_tlb_flush_fifos {
631	HV_L1_TLB_FLUSH_FIFO,
632	HV_L2_TLB_FLUSH_FIFO,
633	HV_NR_TLB_FLUSH_FIFOS,
634};
635
636struct kvm_vcpu_hv_tlb_flush_fifo {
637	spinlock_t write_lock;
638	DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
639};
640
641/* Hyper-V per vcpu emulation context */
642struct kvm_vcpu_hv {
643	struct kvm_vcpu *vcpu;
644	u32 vp_index;
645	u64 hv_vapic;
646	s64 runtime_offset;
647	struct kvm_vcpu_hv_synic synic;
648	struct kvm_hyperv_exit exit;
649	struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
650	DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
651	bool enforce_cpuid;
652	struct {
653		u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
654		u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
655		u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
656		u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
657		u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
658		u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
659		u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
660		u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
661	} cpuid_cache;
662
663	struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
664
665	/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
666	u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
667
668	struct hv_vp_assist_page vp_assist_page;
669
670	struct {
671		u64 pa_page_gpa;
672		u64 vm_id;
673		u32 vp_id;
674	} nested;
675};
676
677struct kvm_hypervisor_cpuid {
678	u32 base;
679	u32 limit;
680};
681
682/* Xen HVM per vcpu emulation context */
683struct kvm_vcpu_xen {
684	u64 hypercall_rip;
685	u32 current_runstate;
686	u8 upcall_vector;
687	struct gfn_to_pfn_cache vcpu_info_cache;
688	struct gfn_to_pfn_cache vcpu_time_info_cache;
689	struct gfn_to_pfn_cache runstate_cache;
690	struct gfn_to_pfn_cache runstate2_cache;
691	u64 last_steal;
692	u64 runstate_entry_time;
693	u64 runstate_times[4];
694	unsigned long evtchn_pending_sel;
695	u32 vcpu_id; /* The Xen / ACPI vCPU ID */
696	u32 timer_virq;
697	u64 timer_expires; /* In guest epoch */
698	atomic_t timer_pending;
699	struct hrtimer timer;
700	int poll_evtchn;
701	struct timer_list poll_timer;
702	struct kvm_hypervisor_cpuid cpuid;
703};
704
705struct kvm_queued_exception {
706	bool pending;
707	bool injected;
708	bool has_error_code;
709	u8 vector;
710	u32 error_code;
711	unsigned long payload;
712	bool has_payload;
713};
714
715struct kvm_vcpu_arch {
716	/*
717	 * rip and regs accesses must go through
718	 * kvm_{register,rip}_{read,write} functions.
719	 */
720	unsigned long regs[NR_VCPU_REGS];
721	u32 regs_avail;
722	u32 regs_dirty;
723
724	unsigned long cr0;
725	unsigned long cr0_guest_owned_bits;
726	unsigned long cr2;
727	unsigned long cr3;
728	unsigned long cr4;
729	unsigned long cr4_guest_owned_bits;
730	unsigned long cr4_guest_rsvd_bits;
731	unsigned long cr8;
732	u32 host_pkru;
733	u32 pkru;
734	u32 hflags;
735	u64 efer;
736	u64 apic_base;
737	struct kvm_lapic *apic;    /* kernel irqchip context */
738	bool load_eoi_exitmap_pending;
739	DECLARE_BITMAP(ioapic_handled_vectors, 256);
740	unsigned long apic_attention;
741	int32_t apic_arb_prio;
742	int mp_state;
743	u64 ia32_misc_enable_msr;
744	u64 smbase;
745	u64 smi_count;
746	bool at_instruction_boundary;
747	bool tpr_access_reporting;
748	bool xfd_no_write_intercept;
749	u64 ia32_xss;
750	u64 microcode_version;
751	u64 arch_capabilities;
752	u64 perf_capabilities;
753
754	/*
755	 * Paging state of the vcpu
756	 *
757	 * If the vcpu runs in guest mode with two level paging this still saves
758	 * the paging mode of the l1 guest. This context is always used to
759	 * handle faults.
760	 */
761	struct kvm_mmu *mmu;
762
763	/* Non-nested MMU for L1 */
764	struct kvm_mmu root_mmu;
765
766	/* L1 MMU when running nested */
767	struct kvm_mmu guest_mmu;
768
769	/*
770	 * Paging state of an L2 guest (used for nested npt)
771	 *
772	 * This context will save all necessary information to walk page tables
773	 * of an L2 guest. This context is only initialized for page table
774	 * walking and not for faulting since we never handle l2 page faults on
775	 * the host.
776	 */
777	struct kvm_mmu nested_mmu;
778
779	/*
780	 * Pointer to the mmu context currently used for
781	 * gva_to_gpa translations.
782	 */
783	struct kvm_mmu *walk_mmu;
784
785	struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
786	struct kvm_mmu_memory_cache mmu_shadow_page_cache;
787	struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
788	struct kvm_mmu_memory_cache mmu_page_header_cache;
789
790	/*
791	 * QEMU userspace and the guest each have their own FPU state.
792	 * In vcpu_run, we switch between the user and guest FPU contexts.
793	 * While running a VCPU, the VCPU thread will have the guest FPU
794	 * context.
795	 *
796	 * Note that while the PKRU state lives inside the fpu registers,
797	 * it is switched out separately at VMENTER and VMEXIT time. The
798	 * "guest_fpstate" state here contains the guest FPU context, with the
799	 * host PRKU bits.
800	 */
801	struct fpu_guest guest_fpu;
802
803	u64 xcr0;
804	u64 guest_supported_xcr0;
805
806	struct kvm_pio_request pio;
807	void *pio_data;
808	void *sev_pio_data;
809	unsigned sev_pio_count;
810
811	u8 event_exit_inst_len;
812
813	bool exception_from_userspace;
814
815	/* Exceptions to be injected to the guest. */
816	struct kvm_queued_exception exception;
817	/* Exception VM-Exits to be synthesized to L1. */
818	struct kvm_queued_exception exception_vmexit;
819
820	struct kvm_queued_interrupt {
821		bool injected;
822		bool soft;
823		u8 nr;
824	} interrupt;
825
826	int halt_request; /* real mode on Intel only */
827
828	int cpuid_nent;
829	struct kvm_cpuid_entry2 *cpuid_entries;
830	struct kvm_hypervisor_cpuid kvm_cpuid;
831
832	/*
833	 * FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
834	 * when "struct kvm_vcpu_arch" is no longer defined in an
835	 * arch/x86/include/asm header.  The max is mostly arbitrary, i.e.
836	 * can be increased as necessary.
837	 */
838#define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
839
840	/*
841	 * Track whether or not the guest is allowed to use features that are
842	 * governed by KVM, where "governed" means KVM needs to manage state
843	 * and/or explicitly enable the feature in hardware.  Typically, but
844	 * not always, governed features can be used by the guest if and only
845	 * if both KVM and userspace want to expose the feature to the guest.
846	 */
847	struct {
848		DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
849	} governed_features;
850
851	u64 reserved_gpa_bits;
852	int maxphyaddr;
853
854	/* emulate context */
855
856	struct x86_emulate_ctxt *emulate_ctxt;
857	bool emulate_regs_need_sync_to_vcpu;
858	bool emulate_regs_need_sync_from_vcpu;
859	int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
860
861	gpa_t time;
862	struct pvclock_vcpu_time_info hv_clock;
863	unsigned int hw_tsc_khz;
864	struct gfn_to_pfn_cache pv_time;
865	/* set guest stopped flag in pvclock flags field */
866	bool pvclock_set_guest_stopped_request;
867
868	struct {
869		u8 preempted;
870		u64 msr_val;
871		u64 last_steal;
872		struct gfn_to_hva_cache cache;
873	} st;
874
875	u64 l1_tsc_offset;
876	u64 tsc_offset; /* current tsc offset */
877	u64 last_guest_tsc;
878	u64 last_host_tsc;
879	u64 tsc_offset_adjustment;
880	u64 this_tsc_nsec;
881	u64 this_tsc_write;
882	u64 this_tsc_generation;
883	bool tsc_catchup;
884	bool tsc_always_catchup;
885	s8 virtual_tsc_shift;
886	u32 virtual_tsc_mult;
887	u32 virtual_tsc_khz;
888	s64 ia32_tsc_adjust_msr;
889	u64 msr_ia32_power_ctl;
890	u64 l1_tsc_scaling_ratio;
891	u64 tsc_scaling_ratio; /* current scaling ratio */
892
893	atomic_t nmi_queued;  /* unprocessed asynchronous NMIs */
894	/* Number of NMIs pending injection, not including hardware vNMIs. */
895	unsigned int nmi_pending;
896	bool nmi_injected;    /* Trying to inject an NMI this entry */
897	bool smi_pending;    /* SMI queued after currently running handler */
898	u8 handling_intr_from_guest;
899
900	struct kvm_mtrr mtrr_state;
901	u64 pat;
902
903	unsigned switch_db_regs;
904	unsigned long db[KVM_NR_DB_REGS];
905	unsigned long dr6;
906	unsigned long dr7;
907	unsigned long eff_db[KVM_NR_DB_REGS];
908	unsigned long guest_debug_dr7;
909	u64 msr_platform_info;
910	u64 msr_misc_features_enables;
911
912	u64 mcg_cap;
913	u64 mcg_status;
914	u64 mcg_ctl;
915	u64 mcg_ext_ctl;
916	u64 *mce_banks;
917	u64 *mci_ctl2_banks;
918
919	/* Cache MMIO info */
920	u64 mmio_gva;
921	unsigned mmio_access;
922	gfn_t mmio_gfn;
923	u64 mmio_gen;
924
925	struct kvm_pmu pmu;
926
927	/* used for guest single stepping over the given code position */
928	unsigned long singlestep_rip;
929
930	bool hyperv_enabled;
931	struct kvm_vcpu_hv *hyperv;
932	struct kvm_vcpu_xen xen;
933
934	cpumask_var_t wbinvd_dirty_mask;
935
936	unsigned long last_retry_eip;
937	unsigned long last_retry_addr;
938
939	struct {
940		bool halted;
941		gfn_t gfns[ASYNC_PF_PER_VCPU];
942		struct gfn_to_hva_cache data;
943		u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
944		u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
945		u16 vec;
946		u32 id;
947		bool send_user_only;
948		u32 host_apf_flags;
949		bool delivery_as_pf_vmexit;
950		bool pageready_pending;
951	} apf;
952
953	/* OSVW MSRs (AMD only) */
954	struct {
955		u64 length;
956		u64 status;
957	} osvw;
958
959	struct {
960		u64 msr_val;
961		struct gfn_to_hva_cache data;
962	} pv_eoi;
963
964	u64 msr_kvm_poll_control;
965
966	/* set at EPT violation at this point */
967	unsigned long exit_qualification;
968
969	/* pv related host specific info */
970	struct {
971		bool pv_unhalted;
972	} pv;
973
974	int pending_ioapic_eoi;
975	int pending_external_vector;
976
977	/* be preempted when it's in kernel-mode(cpl=0) */
978	bool preempted_in_kernel;
979
980	/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
981	bool l1tf_flush_l1d;
982
983	/* Host CPU on which VM-entry was most recently attempted */
984	int last_vmentry_cpu;
985
986	/* AMD MSRC001_0015 Hardware Configuration */
987	u64 msr_hwcr;
988
989	/* pv related cpuid info */
990	struct {
991		/*
992		 * value of the eax register in the KVM_CPUID_FEATURES CPUID
993		 * leaf.
994		 */
995		u32 features;
996
997		/*
998		 * indicates whether pv emulation should be disabled if features
999		 * are not present in the guest's cpuid
1000		 */
1001		bool enforce;
1002	} pv_cpuid;
1003
1004	/* Protected Guests */
1005	bool guest_state_protected;
1006
1007	/*
1008	 * Set when PDPTS were loaded directly by the userspace without
1009	 * reading the guest memory
1010	 */
1011	bool pdptrs_from_userspace;
1012
1013#if IS_ENABLED(CONFIG_HYPERV)
1014	hpa_t hv_root_tdp;
1015#endif
1016};
1017
1018struct kvm_lpage_info {
1019	int disallow_lpage;
1020};
1021
1022struct kvm_arch_memory_slot {
1023	struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1024	struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1025	unsigned short *gfn_write_track;
1026};
1027
1028/*
1029 * Track the mode of the optimized logical map, as the rules for decoding the
1030 * destination vary per mode.  Enabling the optimized logical map requires all
1031 * software-enabled local APIs to be in the same mode, each addressable APIC to
1032 * be mapped to only one MDA, and each MDA to map to at most one APIC.
1033 */
1034enum kvm_apic_logical_mode {
1035	/* All local APICs are software disabled. */
1036	KVM_APIC_MODE_SW_DISABLED,
1037	/* All software enabled local APICs in xAPIC cluster addressing mode. */
1038	KVM_APIC_MODE_XAPIC_CLUSTER,
1039	/* All software enabled local APICs in xAPIC flat addressing mode. */
1040	KVM_APIC_MODE_XAPIC_FLAT,
1041	/* All software enabled local APICs in x2APIC mode. */
1042	KVM_APIC_MODE_X2APIC,
1043	/*
1044	 * Optimized map disabled, e.g. not all local APICs in the same logical
1045	 * mode, same logical ID assigned to multiple APICs, etc.
1046	 */
1047	KVM_APIC_MODE_MAP_DISABLED,
1048};
1049
1050struct kvm_apic_map {
1051	struct rcu_head rcu;
1052	enum kvm_apic_logical_mode logical_mode;
1053	u32 max_apic_id;
1054	union {
1055		struct kvm_lapic *xapic_flat_map[8];
1056		struct kvm_lapic *xapic_cluster_map[16][4];
1057	};
1058	struct kvm_lapic *phys_map[];
1059};
1060
1061/* Hyper-V synthetic debugger (SynDbg)*/
1062struct kvm_hv_syndbg {
1063	struct {
1064		u64 control;
1065		u64 status;
1066		u64 send_page;
1067		u64 recv_page;
1068		u64 pending_page;
1069	} control;
1070	u64 options;
1071};
1072
1073/* Current state of Hyper-V TSC page clocksource */
1074enum hv_tsc_page_status {
1075	/* TSC page was not set up or disabled */
1076	HV_TSC_PAGE_UNSET = 0,
1077	/* TSC page MSR was written by the guest, update pending */
1078	HV_TSC_PAGE_GUEST_CHANGED,
1079	/* TSC page update was triggered from the host side */
1080	HV_TSC_PAGE_HOST_CHANGED,
1081	/* TSC page was properly set up and is currently active  */
1082	HV_TSC_PAGE_SET,
1083	/* TSC page was set up with an inaccessible GPA */
1084	HV_TSC_PAGE_BROKEN,
1085};
1086
1087/* Hyper-V emulation context */
1088struct kvm_hv {
1089	struct mutex hv_lock;
1090	u64 hv_guest_os_id;
1091	u64 hv_hypercall;
1092	u64 hv_tsc_page;
1093	enum hv_tsc_page_status hv_tsc_page_status;
1094
1095	/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1096	u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1097	u64 hv_crash_ctl;
1098
1099	struct ms_hyperv_tsc_page tsc_ref;
1100
1101	struct idr conn_to_evt;
1102
1103	u64 hv_reenlightenment_control;
1104	u64 hv_tsc_emulation_control;
1105	u64 hv_tsc_emulation_status;
1106	u64 hv_invtsc_control;
1107
1108	/* How many vCPUs have VP index != vCPU index */
1109	atomic_t num_mismatched_vp_indexes;
1110
1111	/*
1112	 * How many SynICs use 'AutoEOI' feature
1113	 * (protected by arch.apicv_update_lock)
1114	 */
1115	unsigned int synic_auto_eoi_used;
1116
1117	struct hv_partition_assist_pg *hv_pa_pg;
1118	struct kvm_hv_syndbg hv_syndbg;
1119};
1120
1121struct msr_bitmap_range {
1122	u32 flags;
1123	u32 nmsrs;
1124	u32 base;
1125	unsigned long *bitmap;
1126};
1127
1128/* Xen emulation context */
1129struct kvm_xen {
1130	struct mutex xen_lock;
1131	u32 xen_version;
1132	bool long_mode;
1133	bool runstate_update_flag;
1134	u8 upcall_vector;
1135	struct gfn_to_pfn_cache shinfo_cache;
1136	struct idr evtchn_ports;
1137	unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1138};
1139
1140enum kvm_irqchip_mode {
1141	KVM_IRQCHIP_NONE,
1142	KVM_IRQCHIP_KERNEL,       /* created with KVM_CREATE_IRQCHIP */
1143	KVM_IRQCHIP_SPLIT,        /* created with KVM_CAP_SPLIT_IRQCHIP */
1144};
1145
1146struct kvm_x86_msr_filter {
1147	u8 count;
1148	bool default_allow:1;
1149	struct msr_bitmap_range ranges[16];
1150};
1151
1152struct kvm_x86_pmu_event_filter {
1153	__u32 action;
1154	__u32 nevents;
1155	__u32 fixed_counter_bitmap;
1156	__u32 flags;
1157	__u32 nr_includes;
1158	__u32 nr_excludes;
1159	__u64 *includes;
1160	__u64 *excludes;
1161	__u64 events[];
1162};
1163
1164enum kvm_apicv_inhibit {
1165
1166	/********************************************************************/
1167	/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1168	/********************************************************************/
1169
1170	/*
1171	 * APIC acceleration is disabled by a module parameter
1172	 * and/or not supported in hardware.
1173	 */
1174	APICV_INHIBIT_REASON_DISABLE,
1175
1176	/*
1177	 * APIC acceleration is inhibited because AutoEOI feature is
1178	 * being used by a HyperV guest.
1179	 */
1180	APICV_INHIBIT_REASON_HYPERV,
1181
1182	/*
1183	 * APIC acceleration is inhibited because the userspace didn't yet
1184	 * enable the kernel/split irqchip.
1185	 */
1186	APICV_INHIBIT_REASON_ABSENT,
1187
1188	/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1189	 * (out of band, debug measure of blocking all interrupts on this vCPU)
1190	 * was enabled, to avoid AVIC/APICv bypassing it.
1191	 */
1192	APICV_INHIBIT_REASON_BLOCKIRQ,
1193
1194	/*
1195	 * APICv is disabled because not all vCPUs have a 1:1 mapping between
1196	 * APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
1197	 */
1198	APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
1199
1200	/*
1201	 * For simplicity, the APIC acceleration is inhibited
1202	 * first time either APIC ID or APIC base are changed by the guest
1203	 * from their reset values.
1204	 */
1205	APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1206	APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1207
1208	/******************************************************/
1209	/* INHIBITs that are relevant only to the AMD's AVIC. */
1210	/******************************************************/
1211
1212	/*
1213	 * AVIC is inhibited on a vCPU because it runs a nested guest.
1214	 *
1215	 * This is needed because unlike APICv, the peers of this vCPU
1216	 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1217	 * a vCPU runs nested.
1218	 */
1219	APICV_INHIBIT_REASON_NESTED,
1220
1221	/*
1222	 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1223	 * which cannot be injected when the AVIC is enabled, thus AVIC
1224	 * is inhibited while KVM waits for IRQ window.
1225	 */
1226	APICV_INHIBIT_REASON_IRQWIN,
1227
1228	/*
1229	 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1230	 * which AVIC doesn't support for edge triggered interrupts.
1231	 */
1232	APICV_INHIBIT_REASON_PIT_REINJ,
1233
1234	/*
1235	 * AVIC is disabled because SEV doesn't support it.
1236	 */
1237	APICV_INHIBIT_REASON_SEV,
1238
1239	/*
1240	 * AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
1241	 * mapping between logical ID and vCPU.
1242	 */
1243	APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
1244};
1245
1246struct kvm_arch {
1247	unsigned long n_used_mmu_pages;
1248	unsigned long n_requested_mmu_pages;
1249	unsigned long n_max_mmu_pages;
1250	unsigned int indirect_shadow_pages;
1251	u8 mmu_valid_gen;
1252	struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1253	struct list_head active_mmu_pages;
1254	struct list_head zapped_obsolete_pages;
1255	/*
1256	 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1257	 * replaced by an NX huge page.  A shadow page is on this list if its
1258	 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1259	 * and there are no other conditions that prevent a huge page, e.g.
1260	 * the backing host page is huge, dirtly logging is not enabled for its
1261	 * memslot, etc...  Note, zapping shadow pages on this list doesn't
1262	 * guarantee an NX huge page will be created in its stead, e.g. if the
1263	 * guest attempts to execute from the region then KVM obviously can't
1264	 * create an NX huge page (without hanging the guest).
1265	 */
1266	struct list_head possible_nx_huge_pages;
1267#ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
1268	struct kvm_page_track_notifier_head track_notifier_head;
1269#endif
1270	/*
1271	 * Protects marking pages unsync during page faults, as TDP MMU page
1272	 * faults only take mmu_lock for read.  For simplicity, the unsync
1273	 * pages lock is always taken when marking pages unsync regardless of
1274	 * whether mmu_lock is held for read or write.
1275	 */
1276	spinlock_t mmu_unsync_pages_lock;
1277
1278	struct list_head assigned_dev_head;
1279	struct iommu_domain *iommu_domain;
1280	bool iommu_noncoherent;
1281#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1282	atomic_t noncoherent_dma_count;
1283#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1284	atomic_t assigned_device_count;
1285	struct kvm_pic *vpic;
1286	struct kvm_ioapic *vioapic;
1287	struct kvm_pit *vpit;
1288	atomic_t vapics_in_nmi_mode;
1289	struct mutex apic_map_lock;
1290	struct kvm_apic_map __rcu *apic_map;
1291	atomic_t apic_map_dirty;
1292
1293	bool apic_access_memslot_enabled;
1294	bool apic_access_memslot_inhibited;
1295
1296	/* Protects apicv_inhibit_reasons */
1297	struct rw_semaphore apicv_update_lock;
1298	unsigned long apicv_inhibit_reasons;
1299
1300	gpa_t wall_clock;
1301
1302	bool mwait_in_guest;
1303	bool hlt_in_guest;
1304	bool pause_in_guest;
1305	bool cstate_in_guest;
1306
1307	unsigned long irq_sources_bitmap;
1308	s64 kvmclock_offset;
1309
1310	/*
1311	 * This also protects nr_vcpus_matched_tsc which is read from a
1312	 * preemption-disabled region, so it must be a raw spinlock.
1313	 */
1314	raw_spinlock_t tsc_write_lock;
1315	u64 last_tsc_nsec;
1316	u64 last_tsc_write;
1317	u32 last_tsc_khz;
1318	u64 last_tsc_offset;
1319	u64 cur_tsc_nsec;
1320	u64 cur_tsc_write;
1321	u64 cur_tsc_offset;
1322	u64 cur_tsc_generation;
1323	int nr_vcpus_matched_tsc;
1324
1325	u32 default_tsc_khz;
1326
1327	seqcount_raw_spinlock_t pvclock_sc;
1328	bool use_master_clock;
1329	u64 master_kernel_ns;
1330	u64 master_cycle_now;
1331	struct delayed_work kvmclock_update_work;
1332	struct delayed_work kvmclock_sync_work;
1333
1334	struct kvm_xen_hvm_config xen_hvm_config;
1335
1336	/* reads protected by irq_srcu, writes by irq_lock */
1337	struct hlist_head mask_notifier_list;
1338
1339	struct kvm_hv hyperv;
1340	struct kvm_xen xen;
1341
1342	bool backwards_tsc_observed;
1343	bool boot_vcpu_runs_old_kvmclock;
1344	u32 bsp_vcpu_id;
1345
1346	u64 disabled_quirks;
1347
1348	enum kvm_irqchip_mode irqchip_mode;
1349	u8 nr_reserved_ioapic_pins;
1350
1351	bool disabled_lapic_found;
1352
1353	bool x2apic_format;
1354	bool x2apic_broadcast_quirk_disabled;
1355
1356	bool guest_can_read_msr_platform_info;
1357	bool exception_payload_enabled;
1358
1359	bool triple_fault_event;
1360
1361	bool bus_lock_detection_enabled;
1362	bool enable_pmu;
1363
1364	u32 notify_window;
1365	u32 notify_vmexit_flags;
1366	/*
1367	 * If exit_on_emulation_error is set, and the in-kernel instruction
1368	 * emulator fails to emulate an instruction, allow userspace
1369	 * the opportunity to look at it.
1370	 */
1371	bool exit_on_emulation_error;
1372
1373	/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1374	u32 user_space_msr_mask;
1375	struct kvm_x86_msr_filter __rcu *msr_filter;
1376
1377	u32 hypercall_exit_enabled;
1378
1379	/* Guest can access the SGX PROVISIONKEY. */
1380	bool sgx_provisioning_allowed;
1381
1382	struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
1383	struct task_struct *nx_huge_page_recovery_thread;
1384
1385#ifdef CONFIG_X86_64
1386	/* The number of TDP MMU pages across all roots. */
1387	atomic64_t tdp_mmu_pages;
1388
1389	/*
1390	 * List of struct kvm_mmu_pages being used as roots.
1391	 * All struct kvm_mmu_pages in the list should have
1392	 * tdp_mmu_page set.
1393	 *
1394	 * For reads, this list is protected by:
1395	 *	the MMU lock in read mode + RCU or
1396	 *	the MMU lock in write mode
1397	 *
1398	 * For writes, this list is protected by:
1399	 *	the MMU lock in read mode + the tdp_mmu_pages_lock or
1400	 *	the MMU lock in write mode
1401	 *
1402	 * Roots will remain in the list until their tdp_mmu_root_count
1403	 * drops to zero, at which point the thread that decremented the
1404	 * count to zero should removed the root from the list and clean
1405	 * it up, freeing the root after an RCU grace period.
1406	 */
1407	struct list_head tdp_mmu_roots;
1408
1409	/*
1410	 * Protects accesses to the following fields when the MMU lock
1411	 * is held in read mode:
1412	 *  - tdp_mmu_roots (above)
1413	 *  - the link field of kvm_mmu_page structs used by the TDP MMU
1414	 *  - possible_nx_huge_pages;
1415	 *  - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1416	 *    by the TDP MMU
1417	 * It is acceptable, but not necessary, to acquire this lock when
1418	 * the thread holds the MMU lock in write mode.
1419	 */
1420	spinlock_t tdp_mmu_pages_lock;
1421#endif /* CONFIG_X86_64 */
1422
1423	/*
1424	 * If set, at least one shadow root has been allocated. This flag
1425	 * is used as one input when determining whether certain memslot
1426	 * related allocations are necessary.
1427	 */
1428	bool shadow_root_allocated;
1429
1430#if IS_ENABLED(CONFIG_HYPERV)
1431	hpa_t	hv_root_tdp;
1432	spinlock_t hv_root_tdp_lock;
1433#endif
1434	/*
1435	 * VM-scope maximum vCPU ID. Used to determine the size of structures
1436	 * that increase along with the maximum vCPU ID, in which case, using
1437	 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1438	 */
1439	u32 max_vcpu_ids;
1440
1441	bool disable_nx_huge_pages;
1442
1443	/*
1444	 * Memory caches used to allocate shadow pages when performing eager
1445	 * page splitting. No need for a shadowed_info_cache since eager page
1446	 * splitting only allocates direct shadow pages.
1447	 *
1448	 * Protected by kvm->slots_lock.
1449	 */
1450	struct kvm_mmu_memory_cache split_shadow_page_cache;
1451	struct kvm_mmu_memory_cache split_page_header_cache;
1452
1453	/*
1454	 * Memory cache used to allocate pte_list_desc structs while splitting
1455	 * huge pages. In the worst case, to split one huge page, 512
1456	 * pte_list_desc structs are needed to add each lower level leaf sptep
1457	 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1458	 * page table.
1459	 *
1460	 * Protected by kvm->slots_lock.
1461	 */
1462#define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1463	struct kvm_mmu_memory_cache split_desc_cache;
1464};
1465
1466struct kvm_vm_stat {
1467	struct kvm_vm_stat_generic generic;
1468	u64 mmu_shadow_zapped;
1469	u64 mmu_pte_write;
1470	u64 mmu_pde_zapped;
1471	u64 mmu_flooded;
1472	u64 mmu_recycled;
1473	u64 mmu_cache_miss;
1474	u64 mmu_unsync;
1475	union {
1476		struct {
1477			atomic64_t pages_4k;
1478			atomic64_t pages_2m;
1479			atomic64_t pages_1g;
1480		};
1481		atomic64_t pages[KVM_NR_PAGE_SIZES];
1482	};
1483	u64 nx_lpage_splits;
1484	u64 max_mmu_page_hash_collisions;
1485	u64 max_mmu_rmap_size;
1486};
1487
1488struct kvm_vcpu_stat {
1489	struct kvm_vcpu_stat_generic generic;
1490	u64 pf_taken;
1491	u64 pf_fixed;
1492	u64 pf_emulate;
1493	u64 pf_spurious;
1494	u64 pf_fast;
1495	u64 pf_mmio_spte_created;
1496	u64 pf_guest;
1497	u64 tlb_flush;
1498	u64 invlpg;
1499
1500	u64 exits;
1501	u64 io_exits;
1502	u64 mmio_exits;
1503	u64 signal_exits;
1504	u64 irq_window_exits;
1505	u64 nmi_window_exits;
1506	u64 l1d_flush;
1507	u64 halt_exits;
1508	u64 request_irq_exits;
1509	u64 irq_exits;
1510	u64 host_state_reload;
1511	u64 fpu_reload;
1512	u64 insn_emulation;
1513	u64 insn_emulation_fail;
1514	u64 hypercalls;
1515	u64 irq_injections;
1516	u64 nmi_injections;
1517	u64 req_event;
1518	u64 nested_run;
1519	u64 directed_yield_attempted;
1520	u64 directed_yield_successful;
1521	u64 preemption_reported;
1522	u64 preemption_other;
1523	u64 guest_mode;
1524	u64 notify_window_exits;
1525};
1526
1527struct x86_instruction_info;
1528
1529struct msr_data {
1530	bool host_initiated;
1531	u32 index;
1532	u64 data;
1533};
1534
1535struct kvm_lapic_irq {
1536	u32 vector;
1537	u16 delivery_mode;
1538	u16 dest_mode;
1539	bool level;
1540	u16 trig_mode;
1541	u32 shorthand;
1542	u32 dest_id;
1543	bool msi_redir_hint;
1544};
1545
1546static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1547{
1548	return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1549}
1550
1551struct kvm_x86_ops {
1552	const char *name;
1553
1554	int (*check_processor_compatibility)(void);
1555
1556	int (*hardware_enable)(void);
1557	void (*hardware_disable)(void);
1558	void (*hardware_unsetup)(void);
1559	bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1560	void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1561
1562	unsigned int vm_size;
1563	int (*vm_init)(struct kvm *kvm);
1564	void (*vm_destroy)(struct kvm *kvm);
1565
1566	/* Create, but do not attach this VCPU */
1567	int (*vcpu_precreate)(struct kvm *kvm);
1568	int (*vcpu_create)(struct kvm_vcpu *vcpu);
1569	void (*vcpu_free)(struct kvm_vcpu *vcpu);
1570	void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1571
1572	void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1573	void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1574	void (*vcpu_put)(struct kvm_vcpu *vcpu);
1575
1576	void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1577	int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1578	int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1579	u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1580	void (*get_segment)(struct kvm_vcpu *vcpu,
1581			    struct kvm_segment *var, int seg);
1582	int (*get_cpl)(struct kvm_vcpu *vcpu);
1583	void (*set_segment)(struct kvm_vcpu *vcpu,
1584			    struct kvm_segment *var, int seg);
1585	void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1586	bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1587	void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1588	void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1589	bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1590	void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1591	int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1592	void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1593	void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1594	void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1595	void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1596	void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1597	void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1598	void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1599	unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1600	void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1601	bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1602
1603	void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1604	void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1605	int  (*flush_remote_tlbs)(struct kvm *kvm);
1606	int  (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
1607					gfn_t nr_pages);
1608
1609	/*
1610	 * Flush any TLB entries associated with the given GVA.
1611	 * Does not need to flush GPA->HPA mappings.
1612	 * Can potentially get non-canonical addresses through INVLPGs, which
1613	 * the implementation may choose to ignore if appropriate.
1614	 */
1615	void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1616
1617	/*
1618	 * Flush any TLB entries created by the guest.  Like tlb_flush_gva(),
1619	 * does not need to flush GPA->HPA mappings.
1620	 */
1621	void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1622
1623	int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1624	enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1625	int (*handle_exit)(struct kvm_vcpu *vcpu,
1626		enum exit_fastpath_completion exit_fastpath);
1627	int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1628	void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1629	void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1630	u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1631	void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1632				unsigned char *hypercall_addr);
1633	void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1634	void (*inject_nmi)(struct kvm_vcpu *vcpu);
1635	void (*inject_exception)(struct kvm_vcpu *vcpu);
1636	void (*cancel_injection)(struct kvm_vcpu *vcpu);
1637	int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1638	int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1639	bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1640	void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1641	/* Whether or not a virtual NMI is pending in hardware. */
1642	bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
1643	/*
1644	 * Attempt to pend a virtual NMI in harware.  Returns %true on success
1645	 * to allow using static_call_ret0 as the fallback.
1646	 */
1647	bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
1648	void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1649	void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1650	void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1651	bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1652	const unsigned long required_apicv_inhibits;
1653	bool allow_apicv_in_x2apic_without_x2apic_virtualization;
1654	void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1655	void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1656	void (*hwapic_isr_update)(int isr);
1657	bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1658	void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1659	void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1660	void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1661	void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1662				  int trig_mode, int vector);
1663	int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1664	int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1665	int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1666	u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1667
1668	void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1669			     int root_level);
1670
1671	bool (*has_wbinvd_exit)(void);
1672
1673	u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1674	u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1675	void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
1676	void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
1677
1678	/*
1679	 * Retrieve somewhat arbitrary exit information.  Intended to
1680	 * be used only from within tracepoints or error paths.
1681	 */
1682	void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1683			      u64 *info1, u64 *info2,
1684			      u32 *exit_int_info, u32 *exit_int_info_err_code);
1685
1686	int (*check_intercept)(struct kvm_vcpu *vcpu,
1687			       struct x86_instruction_info *info,
1688			       enum x86_intercept_stage stage,
1689			       struct x86_exception *exception);
1690	void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1691
1692	void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1693
1694	void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1695
1696	/*
1697	 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer.  A zero
1698	 * value indicates CPU dirty logging is unsupported or disabled.
1699	 */
1700	int cpu_dirty_log_size;
1701	void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1702
1703	const struct kvm_x86_nested_ops *nested_ops;
1704
1705	void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1706	void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1707
1708	int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1709			      uint32_t guest_irq, bool set);
1710	void (*pi_start_assignment)(struct kvm *kvm);
1711	void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
1712	void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1713	bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1714
1715	int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1716			    bool *expired);
1717	void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1718
1719	void (*setup_mce)(struct kvm_vcpu *vcpu);
1720
1721#ifdef CONFIG_KVM_SMM
1722	int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1723	int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1724	int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1725	void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1726#endif
1727
1728	int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1729	int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1730	int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1731	int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1732	int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1733	void (*guest_memory_reclaimed)(struct kvm *kvm);
1734
1735	int (*get_msr_feature)(struct kvm_msr_entry *entry);
1736
1737	bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1738					void *insn, int insn_len);
1739
1740	bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1741	int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1742
1743	void (*migrate_timers)(struct kvm_vcpu *vcpu);
1744	void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1745	int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1746
1747	void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1748
1749	/*
1750	 * Returns vCPU specific APICv inhibit reasons
1751	 */
1752	unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1753};
1754
1755struct kvm_x86_nested_ops {
1756	void (*leave_nested)(struct kvm_vcpu *vcpu);
1757	bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1758				    u32 error_code);
1759	int (*check_events)(struct kvm_vcpu *vcpu);
1760	bool (*has_events)(struct kvm_vcpu *vcpu);
1761	void (*triple_fault)(struct kvm_vcpu *vcpu);
1762	int (*get_state)(struct kvm_vcpu *vcpu,
1763			 struct kvm_nested_state __user *user_kvm_nested_state,
1764			 unsigned user_data_size);
1765	int (*set_state)(struct kvm_vcpu *vcpu,
1766			 struct kvm_nested_state __user *user_kvm_nested_state,
1767			 struct kvm_nested_state *kvm_state);
1768	bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1769	int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1770
1771	int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1772			    uint16_t *vmcs_version);
1773	uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1774	void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1775};
1776
1777struct kvm_x86_init_ops {
1778	int (*hardware_setup)(void);
1779	unsigned int (*handle_intel_pt_intr)(void);
1780
1781	struct kvm_x86_ops *runtime_ops;
1782	struct kvm_pmu_ops *pmu_ops;
1783};
1784
1785struct kvm_arch_async_pf {
1786	u32 token;
1787	gfn_t gfn;
1788	unsigned long cr3;
1789	bool direct_map;
1790};
1791
1792extern u32 __read_mostly kvm_nr_uret_msrs;
1793extern u64 __read_mostly host_efer;
1794extern bool __read_mostly allow_smaller_maxphyaddr;
1795extern bool __read_mostly enable_apicv;
1796extern struct kvm_x86_ops kvm_x86_ops;
1797
1798#define KVM_X86_OP(func) \
1799	DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1800#define KVM_X86_OP_OPTIONAL KVM_X86_OP
1801#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1802#include <asm/kvm-x86-ops.h>
1803
1804int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
1805void kvm_x86_vendor_exit(void);
1806
1807#define __KVM_HAVE_ARCH_VM_ALLOC
1808static inline struct kvm *kvm_arch_alloc_vm(void)
1809{
1810	return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1811}
1812
1813#define __KVM_HAVE_ARCH_VM_FREE
1814void kvm_arch_free_vm(struct kvm *kvm);
1815
1816#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1817static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
1818{
1819	if (kvm_x86_ops.flush_remote_tlbs &&
1820	    !static_call(kvm_x86_flush_remote_tlbs)(kvm))
1821		return 0;
1822	else
1823		return -ENOTSUPP;
1824}
1825
1826#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1827
1828#define kvm_arch_pmi_in_guest(vcpu) \
1829	((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1830
1831void __init kvm_mmu_x86_module_init(void);
1832int kvm_mmu_vendor_module_init(void);
1833void kvm_mmu_vendor_module_exit(void);
1834
1835void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1836int kvm_mmu_create(struct kvm_vcpu *vcpu);
1837void kvm_mmu_init_vm(struct kvm *kvm);
1838void kvm_mmu_uninit_vm(struct kvm *kvm);
1839
1840void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1841void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1842void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1843				      const struct kvm_memory_slot *memslot,
1844				      int start_level);
1845void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1846				       const struct kvm_memory_slot *memslot,
1847				       int target_level);
1848void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1849				  const struct kvm_memory_slot *memslot,
1850				  u64 start, u64 end,
1851				  int target_level);
1852void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1853				   const struct kvm_memory_slot *memslot);
1854void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1855				   const struct kvm_memory_slot *memslot);
1856void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1857void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1858
1859int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1860
1861int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1862			  const void *val, int bytes);
1863
1864struct kvm_irq_mask_notifier {
1865	void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1866	int irq;
1867	struct hlist_node link;
1868};
1869
1870void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1871				    struct kvm_irq_mask_notifier *kimn);
1872void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1873				      struct kvm_irq_mask_notifier *kimn);
1874void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1875			     bool mask);
1876
1877extern bool tdp_enabled;
1878
1879u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1880
1881/*
1882 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1883 *			userspace I/O) to indicate that the emulation context
1884 *			should be reused as is, i.e. skip initialization of
1885 *			emulation context, instruction fetch and decode.
1886 *
1887 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1888 *		      Indicates that only select instructions (tagged with
1889 *		      EmulateOnUD) should be emulated (to minimize the emulator
1890 *		      attack surface).  See also EMULTYPE_TRAP_UD_FORCED.
1891 *
1892 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1893 *		   decode the instruction length.  For use *only* by
1894 *		   kvm_x86_ops.skip_emulated_instruction() implementations if
1895 *		   EMULTYPE_COMPLETE_USER_EXIT is not set.
1896 *
1897 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1898 *			     retry native execution under certain conditions,
1899 *			     Can only be set in conjunction with EMULTYPE_PF.
1900 *
1901 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1902 *			     triggered by KVM's magic "force emulation" prefix,
1903 *			     which is opt in via module param (off by default).
1904 *			     Bypasses EmulateOnUD restriction despite emulating
1905 *			     due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1906 *			     Used to test the full emulator from userspace.
1907 *
1908 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1909 *			backdoor emulation, which is opt in via module param.
1910 *			VMware backdoor emulation handles select instructions
1911 *			and reinjects the #GP for all other cases.
1912 *
1913 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1914 *		 case the CR2/GPA value pass on the stack is valid.
1915 *
1916 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1917 *				 state and inject single-step #DBs after skipping
1918 *				 an instruction (after completing userspace I/O).
1919 *
1920 * EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
1921 *			     is attempting to write a gfn that contains one or
1922 *			     more of the PTEs used to translate the write itself,
1923 *			     and the owning page table is being shadowed by KVM.
1924 *			     If emulation of the faulting instruction fails and
1925 *			     this flag is set, KVM will exit to userspace instead
1926 *			     of retrying emulation as KVM cannot make forward
1927 *			     progress.
1928 *
1929 *			     If emulation fails for a write to guest page tables,
1930 *			     KVM unprotects (zaps) the shadow page for the target
1931 *			     gfn and resumes the guest to retry the non-emulatable
1932 *			     instruction (on hardware).  Unprotecting the gfn
1933 *			     doesn't allow forward progress for a self-changing
1934 *			     access because doing so also zaps the translation for
1935 *			     the gfn, i.e. retrying the instruction will hit a
1936 *			     !PRESENT fault, which results in a new shadow page
1937 *			     and sends KVM back to square one.
1938 */
1939#define EMULTYPE_NO_DECODE	    (1 << 0)
1940#define EMULTYPE_TRAP_UD	    (1 << 1)
1941#define EMULTYPE_SKIP		    (1 << 2)
1942#define EMULTYPE_ALLOW_RETRY_PF	    (1 << 3)
1943#define EMULTYPE_TRAP_UD_FORCED	    (1 << 4)
1944#define EMULTYPE_VMWARE_GP	    (1 << 5)
1945#define EMULTYPE_PF		    (1 << 6)
1946#define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1947#define EMULTYPE_WRITE_PF_TO_SP	    (1 << 8)
1948
1949int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1950int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1951					void *insn, int insn_len);
1952void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1953					  u64 *data, u8 ndata);
1954void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1955
1956void kvm_enable_efer_bits(u64);
1957bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1958int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1959int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1960int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1961int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1962int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1963int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1964int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1965int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1966int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1967int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1968
1969int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1970int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1971int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1972int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1973int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1974int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1975
1976void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1977void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1978int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1979void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1980
1981int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1982		    int reason, bool has_error_code, u32 error_code);
1983
1984void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1985void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1986int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1987int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1988int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1989int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1990int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1991void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1992unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1993void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1994int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1995
1996int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1997int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1998
1999unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
2000void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
2001int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
2002
2003void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2004void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2005void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
2006void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
2007void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
2008void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
2009void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
2010				    struct x86_exception *fault);
2011bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
2012bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
2013
2014static inline int __kvm_irq_line_state(unsigned long *irq_state,
2015				       int irq_source_id, int level)
2016{
2017	/* Logical OR for level trig interrupt */
2018	if (level)
2019		__set_bit(irq_source_id, irq_state);
2020	else
2021		__clear_bit(irq_source_id, irq_state);
2022
2023	return !!(*irq_state);
2024}
2025
2026int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
2027void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
2028
2029void kvm_inject_nmi(struct kvm_vcpu *vcpu);
2030int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
2031
2032void kvm_update_dr7(struct kvm_vcpu *vcpu);
2033
2034int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
2035void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
2036			ulong roots_to_free);
2037void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
2038gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
2039			      struct x86_exception *exception);
2040gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
2041			       struct x86_exception *exception);
2042gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
2043				struct x86_exception *exception);
2044
2045bool kvm_apicv_activated(struct kvm *kvm);
2046bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
2047void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
2048void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2049				      enum kvm_apicv_inhibit reason, bool set);
2050void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
2051				    enum kvm_apicv_inhibit reason, bool set);
2052
2053static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
2054					 enum kvm_apicv_inhibit reason)
2055{
2056	kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
2057}
2058
2059static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
2060					   enum kvm_apicv_inhibit reason)
2061{
2062	kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2063}
2064
2065int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2066
2067int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2068		       void *insn, int insn_len);
2069void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2070void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2071			     u64 addr, unsigned long roots);
2072void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2073void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2074
2075void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2076		       int tdp_max_root_level, int tdp_huge_page_level);
2077
2078static inline u16 kvm_read_ldt(void)
2079{
2080	u16 ldt;
2081	asm("sldt %0" : "=g"(ldt));
2082	return ldt;
2083}
2084
2085static inline void kvm_load_ldt(u16 sel)
2086{
2087	asm("lldt %0" : : "rm"(sel));
2088}
2089
2090#ifdef CONFIG_X86_64
2091static inline unsigned long read_msr(unsigned long msr)
2092{
2093	u64 value;
2094
2095	rdmsrl(msr, value);
2096	return value;
2097}
2098#endif
2099
2100static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2101{
2102	kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2103}
2104
2105#define TSS_IOPB_BASE_OFFSET 0x66
2106#define TSS_BASE_SIZE 0x68
2107#define TSS_IOPB_SIZE (65536 / 8)
2108#define TSS_REDIRECTION_SIZE (256 / 8)
2109#define RMODE_TSS_SIZE							\
2110	(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2111
2112enum {
2113	TASK_SWITCH_CALL = 0,
2114	TASK_SWITCH_IRET = 1,
2115	TASK_SWITCH_JMP = 2,
2116	TASK_SWITCH_GATE = 3,
2117};
2118
2119#define HF_GUEST_MASK		(1 << 0) /* VCPU is in guest-mode */
2120
2121#ifdef CONFIG_KVM_SMM
2122#define HF_SMM_MASK		(1 << 1)
2123#define HF_SMM_INSIDE_NMI_MASK	(1 << 2)
2124
2125# define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
2126# define KVM_ADDRESS_SPACE_NUM 2
2127# define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2128# define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2129#else
2130# define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2131#endif
2132
2133#define KVM_ARCH_WANT_MMU_NOTIFIER
2134
2135int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2136int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2137int kvm_cpu_has_extint(struct kvm_vcpu *v);
2138int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2139int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2140void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2141
2142int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2143		    unsigned long ipi_bitmap_high, u32 min,
2144		    unsigned long icr, int op_64_bit);
2145
2146int kvm_add_user_return_msr(u32 msr);
2147int kvm_find_user_return_msr(u32 msr);
2148int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2149
2150static inline bool kvm_is_supported_user_return_msr(u32 msr)
2151{
2152	return kvm_find_user_return_msr(msr) >= 0;
2153}
2154
2155u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2156u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2157u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2158u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2159
2160unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2161bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2162
2163void kvm_make_scan_ioapic_request(struct kvm *kvm);
2164void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2165				       unsigned long *vcpu_bitmap);
2166
2167bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2168				     struct kvm_async_pf *work);
2169void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2170				 struct kvm_async_pf *work);
2171void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2172			       struct kvm_async_pf *work);
2173void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2174bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2175extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2176
2177int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2178int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2179void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2180
2181void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2182				     u32 size);
2183bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2184bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2185
2186bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2187			     struct kvm_vcpu **dest_vcpu);
2188
2189void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2190		     struct kvm_lapic_irq *irq);
2191
2192static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2193{
2194	/* We can only post Fixed and LowPrio IRQs */
2195	return (irq->delivery_mode == APIC_DM_FIXED ||
2196		irq->delivery_mode == APIC_DM_LOWEST);
2197}
2198
2199static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2200{
2201	static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2202}
2203
2204static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2205{
2206	static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2207}
2208
2209static inline int kvm_cpu_get_apicid(int mps_cpu)
2210{
2211#ifdef CONFIG_X86_LOCAL_APIC
2212	return default_cpu_present_to_apicid(mps_cpu);
2213#else
2214	WARN_ON_ONCE(1);
2215	return BAD_APICID;
2216#endif
2217}
2218
2219int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2220
2221#define KVM_CLOCK_VALID_FLAGS						\
2222	(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2223
2224#define KVM_X86_VALID_QUIRKS			\
2225	(KVM_X86_QUIRK_LINT0_REENABLED |	\
2226	 KVM_X86_QUIRK_CD_NW_CLEARED |		\
2227	 KVM_X86_QUIRK_LAPIC_MMIO_HOLE |	\
2228	 KVM_X86_QUIRK_OUT_7E_INC_RIP |		\
2229	 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT |	\
2230	 KVM_X86_QUIRK_FIX_HYPERCALL_INSN |	\
2231	 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2232
2233/*
2234 * KVM previously used a u32 field in kvm_run to indicate the hypercall was
2235 * initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
2236 * remaining 31 lower bits must be 0 to preserve ABI.
2237 */
2238#define KVM_EXIT_HYPERCALL_MBZ		GENMASK_ULL(31, 1)
2239
2240#endif /* _ASM_X86_KVM_HOST_H */
2241