xref: /kernel/linux/linux-6.6/arch/x86/include/asm/elf.h (revision 62306a36)
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_X86_ELF_H
3#define _ASM_X86_ELF_H
4
5/*
6 * ELF register definitions..
7 */
8#include <linux/thread_info.h>
9
10#include <asm/ptrace.h>
11#include <asm/user.h>
12#include <asm/auxvec.h>
13#include <asm/fsgsbase.h>
14
15typedef unsigned long elf_greg_t;
16
17#define ELF_NGREG (sizeof(struct user_regs_struct) / sizeof(elf_greg_t))
18typedef elf_greg_t elf_gregset_t[ELF_NGREG];
19
20typedef struct user_i387_struct elf_fpregset_t;
21
22#ifdef __i386__
23
24#define R_386_NONE	0
25#define R_386_32	1
26#define R_386_PC32	2
27#define R_386_GOT32	3
28#define R_386_PLT32	4
29#define R_386_COPY	5
30#define R_386_GLOB_DAT	6
31#define R_386_JMP_SLOT	7
32#define R_386_RELATIVE	8
33#define R_386_GOTOFF	9
34#define R_386_GOTPC	10
35#define R_386_NUM	11
36
37/*
38 * These are used to set parameters in the core dumps.
39 */
40#define ELF_CLASS	ELFCLASS32
41#define ELF_DATA	ELFDATA2LSB
42#define ELF_ARCH	EM_386
43
44#else
45
46/* x86-64 relocation types */
47#define R_X86_64_NONE		0	/* No reloc */
48#define R_X86_64_64		1	/* Direct 64 bit  */
49#define R_X86_64_PC32		2	/* PC relative 32 bit signed */
50#define R_X86_64_GOT32		3	/* 32 bit GOT entry */
51#define R_X86_64_PLT32		4	/* 32 bit PLT address */
52#define R_X86_64_COPY		5	/* Copy symbol at runtime */
53#define R_X86_64_GLOB_DAT	6	/* Create GOT entry */
54#define R_X86_64_JUMP_SLOT	7	/* Create PLT entry */
55#define R_X86_64_RELATIVE	8	/* Adjust by program base */
56#define R_X86_64_GOTPCREL	9	/* 32 bit signed pc relative
57					   offset to GOT */
58#define R_X86_64_32		10	/* Direct 32 bit zero extended */
59#define R_X86_64_32S		11	/* Direct 32 bit sign extended */
60#define R_X86_64_16		12	/* Direct 16 bit zero extended */
61#define R_X86_64_PC16		13	/* 16 bit sign extended pc relative */
62#define R_X86_64_8		14	/* Direct 8 bit sign extended  */
63#define R_X86_64_PC8		15	/* 8 bit sign extended pc relative */
64#define R_X86_64_PC64		24	/* Place relative 64-bit signed */
65
66/*
67 * These are used to set parameters in the core dumps.
68 */
69#define ELF_CLASS	ELFCLASS64
70#define ELF_DATA	ELFDATA2LSB
71#define ELF_ARCH	EM_X86_64
72
73#endif
74
75#include <asm/vdso.h>
76
77#ifdef CONFIG_X86_64
78extern unsigned int vdso64_enabled;
79#endif
80#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
81extern unsigned int vdso32_enabled;
82#endif
83
84/*
85 * This is used to ensure we don't load something for the wrong architecture.
86 */
87#define elf_check_arch_ia32(x) \
88	(((x)->e_machine == EM_386) || ((x)->e_machine == EM_486))
89
90#include <asm/processor.h>
91
92#ifdef CONFIG_X86_32
93#include <asm/desc.h>
94
95#define elf_check_arch(x)	elf_check_arch_ia32(x)
96
97/* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program starts %edx
98   contains a pointer to a function which might be registered using `atexit'.
99   This provides a mean for the dynamic linker to call DT_FINI functions for
100   shared libraries that have been loaded before the code runs.
101
102   A value of 0 tells we have no such handler.
103
104   We might as well make sure everything else is cleared too (except for %esp),
105   just to make things more deterministic.
106 */
107#define ELF_PLAT_INIT(_r, load_addr)		\
108	do {					\
109	_r->bx = 0; _r->cx = 0; _r->dx = 0;	\
110	_r->si = 0; _r->di = 0; _r->bp = 0;	\
111	_r->ax = 0;				\
112} while (0)
113
114/*
115 * regs is struct pt_regs, pr_reg is elf_gregset_t (which is
116 * now struct_user_regs, they are different)
117 */
118
119#define ELF_CORE_COPY_REGS(pr_reg, regs)	\
120do {						\
121	pr_reg[0] = regs->bx;			\
122	pr_reg[1] = regs->cx;			\
123	pr_reg[2] = regs->dx;			\
124	pr_reg[3] = regs->si;			\
125	pr_reg[4] = regs->di;			\
126	pr_reg[5] = regs->bp;			\
127	pr_reg[6] = regs->ax;			\
128	pr_reg[7] = regs->ds;			\
129	pr_reg[8] = regs->es;			\
130	pr_reg[9] = regs->fs;			\
131	savesegment(gs, pr_reg[10]);		\
132	pr_reg[11] = regs->orig_ax;		\
133	pr_reg[12] = regs->ip;			\
134	pr_reg[13] = regs->cs;			\
135	pr_reg[14] = regs->flags;		\
136	pr_reg[15] = regs->sp;			\
137	pr_reg[16] = regs->ss;			\
138} while (0);
139
140#define ELF_PLATFORM	(utsname()->machine)
141#define set_personality_64bit()	do { } while (0)
142
143#else /* CONFIG_X86_32 */
144
145/*
146 * This is used to ensure we don't load something for the wrong architecture.
147 */
148#define elf_check_arch(x)			\
149	((x)->e_machine == EM_X86_64)
150
151#define compat_elf_check_arch(x)					\
152	(elf_check_arch_ia32(x) ||					\
153	 (IS_ENABLED(CONFIG_X86_X32_ABI) && (x)->e_machine == EM_X86_64))
154
155static inline void elf_common_init(struct thread_struct *t,
156				   struct pt_regs *regs, const u16 ds)
157{
158	/* ax gets execve's return value. */
159	/*regs->ax = */ regs->bx = regs->cx = regs->dx = 0;
160	regs->si = regs->di = regs->bp = 0;
161	regs->r8 = regs->r9 = regs->r10 = regs->r11 = 0;
162	regs->r12 = regs->r13 = regs->r14 = regs->r15 = 0;
163	t->fsbase = t->gsbase = 0;
164	t->fsindex = t->gsindex = 0;
165	t->ds = t->es = ds;
166}
167
168#define ELF_PLAT_INIT(_r, load_addr)			\
169	elf_common_init(&current->thread, _r, 0)
170
171#define	COMPAT_ELF_PLAT_INIT(regs, load_addr)		\
172	elf_common_init(&current->thread, regs, __USER_DS)
173
174void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32);
175#define COMPAT_START_THREAD(ex, regs, new_ip, new_sp)	\
176	compat_start_thread(regs, new_ip, new_sp, ex->e_machine == EM_X86_64)
177
178void set_personality_ia32(bool);
179#define COMPAT_SET_PERSONALITY(ex)			\
180	set_personality_ia32((ex).e_machine == EM_X86_64)
181
182#define COMPAT_ELF_PLATFORM			("i686")
183
184/*
185 * regs is struct pt_regs, pr_reg is elf_gregset_t (which is
186 * now struct_user_regs, they are different). Assumes current is the process
187 * getting dumped.
188 */
189
190#define ELF_CORE_COPY_REGS(pr_reg, regs)			\
191do {								\
192	unsigned v;						\
193	(pr_reg)[0] = (regs)->r15;				\
194	(pr_reg)[1] = (regs)->r14;				\
195	(pr_reg)[2] = (regs)->r13;				\
196	(pr_reg)[3] = (regs)->r12;				\
197	(pr_reg)[4] = (regs)->bp;				\
198	(pr_reg)[5] = (regs)->bx;				\
199	(pr_reg)[6] = (regs)->r11;				\
200	(pr_reg)[7] = (regs)->r10;				\
201	(pr_reg)[8] = (regs)->r9;				\
202	(pr_reg)[9] = (regs)->r8;				\
203	(pr_reg)[10] = (regs)->ax;				\
204	(pr_reg)[11] = (regs)->cx;				\
205	(pr_reg)[12] = (regs)->dx;				\
206	(pr_reg)[13] = (regs)->si;				\
207	(pr_reg)[14] = (regs)->di;				\
208	(pr_reg)[15] = (regs)->orig_ax;				\
209	(pr_reg)[16] = (regs)->ip;				\
210	(pr_reg)[17] = (regs)->cs;				\
211	(pr_reg)[18] = (regs)->flags;				\
212	(pr_reg)[19] = (regs)->sp;				\
213	(pr_reg)[20] = (regs)->ss;				\
214	(pr_reg)[21] = x86_fsbase_read_cpu();			\
215	(pr_reg)[22] = x86_gsbase_read_cpu_inactive();		\
216	asm("movl %%ds,%0" : "=r" (v)); (pr_reg)[23] = v;	\
217	asm("movl %%es,%0" : "=r" (v)); (pr_reg)[24] = v;	\
218	asm("movl %%fs,%0" : "=r" (v)); (pr_reg)[25] = v;	\
219	asm("movl %%gs,%0" : "=r" (v)); (pr_reg)[26] = v;	\
220} while (0);
221
222/* I'm not sure if we can use '-' here */
223#define ELF_PLATFORM       ("x86_64")
224extern void set_personality_64bit(void);
225extern int force_personality32;
226
227#endif /* !CONFIG_X86_32 */
228
229#define CORE_DUMP_USE_REGSET
230#define ELF_EXEC_PAGESIZE	4096
231
232/*
233 * This is the base location for PIE (ET_DYN with INTERP) loads. On
234 * 64-bit, this is above 4GB to leave the entire 32-bit address
235 * space open for things that want to use the area for 32-bit pointers.
236 */
237#define ELF_ET_DYN_BASE		(mmap_is_ia32() ? 0x000400000UL : \
238						  (DEFAULT_MAP_WINDOW / 3 * 2))
239
240/* This yields a mask that user programs can use to figure out what
241   instruction set this CPU supports.  This could be done in user space,
242   but it's not easy, and we've already done it here.  */
243
244#define ELF_HWCAP		(boot_cpu_data.x86_capability[CPUID_1_EDX])
245
246extern u32 elf_hwcap2;
247
248/*
249 * HWCAP2 supplies mask with kernel enabled CPU features, so that
250 * the application can discover that it can safely use them.
251 * The bits are defined in uapi/asm/hwcap2.h.
252 */
253#define ELF_HWCAP2		(elf_hwcap2)
254
255/* This yields a string that ld.so will use to load implementation
256   specific libraries for optimization.  This is more specific in
257   intent than poking at uname or /proc/cpuinfo.
258
259   For the moment, we have only optimizations for the Intel generations,
260   but that could change... */
261
262#define SET_PERSONALITY(ex) set_personality_64bit()
263
264/*
265 * An executable for which elf_read_implies_exec() returns TRUE will
266 * have the READ_IMPLIES_EXEC personality flag set automatically.
267 *
268 * The decision process for determining the results are:
269 *
270 *                 CPU: | lacks NX*  | has NX, ia32     | has NX, x86_64 |
271 * ELF:                 |            |                  |                |
272 * ---------------------|------------|------------------|----------------|
273 * missing PT_GNU_STACK | exec-all   | exec-all         | exec-none      |
274 * PT_GNU_STACK == RWX  | exec-stack | exec-stack       | exec-stack     |
275 * PT_GNU_STACK == RW   | exec-none  | exec-none        | exec-none      |
276 *
277 *  exec-all  : all PROT_READ user mappings are executable, except when
278 *              backed by files on a noexec-filesystem.
279 *  exec-none : only PROT_EXEC user mappings are executable.
280 *  exec-stack: only the stack and PROT_EXEC user mappings are executable.
281 *
282 *  *this column has no architectural effect: NX markings are ignored by
283 *   hardware, but may have behavioral effects when "wants X" collides with
284 *   "cannot be X" constraints in memory permission flags, as in
285 *   https://lkml.kernel.org/r/20190418055759.GA3155@mellanox.com
286 *
287 */
288#define elf_read_implies_exec(ex, executable_stack)	\
289	(mmap_is_ia32() && executable_stack == EXSTACK_DEFAULT)
290
291struct task_struct;
292
293#define	ARCH_DLINFO_IA32						\
294do {									\
295	if (VDSO_CURRENT_BASE) {					\
296		NEW_AUX_ENT(AT_SYSINFO,	VDSO_ENTRY);			\
297		NEW_AUX_ENT(AT_SYSINFO_EHDR, VDSO_CURRENT_BASE);	\
298	}								\
299	NEW_AUX_ENT(AT_MINSIGSTKSZ, get_sigframe_size());		\
300} while (0)
301
302/*
303 * True on X86_32 or when emulating IA32 on X86_64
304 */
305static inline int mmap_is_ia32(void)
306{
307	return IS_ENABLED(CONFIG_X86_32) ||
308	       (IS_ENABLED(CONFIG_COMPAT) &&
309		test_thread_flag(TIF_ADDR32));
310}
311
312extern unsigned long task_size_32bit(void);
313extern unsigned long task_size_64bit(int full_addr_space);
314extern unsigned long get_mmap_base(int is_legacy);
315extern bool mmap_address_hint_valid(unsigned long addr, unsigned long len);
316extern unsigned long get_sigframe_size(void);
317
318#ifdef CONFIG_X86_32
319
320#define __STACK_RND_MASK(is32bit) (0x7ff)
321#define STACK_RND_MASK (0x7ff)
322
323#define ARCH_DLINFO		ARCH_DLINFO_IA32
324
325/* update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT entries changes */
326
327#else /* CONFIG_X86_32 */
328
329/* 1GB for 64bit, 8MB for 32bit */
330#define __STACK_RND_MASK(is32bit) ((is32bit) ? 0x7ff : 0x3fffff)
331#define STACK_RND_MASK __STACK_RND_MASK(mmap_is_ia32())
332
333#define ARCH_DLINFO							\
334do {									\
335	if (vdso64_enabled)						\
336		NEW_AUX_ENT(AT_SYSINFO_EHDR,				\
337			    (unsigned long __force)current->mm->context.vdso); \
338	NEW_AUX_ENT(AT_MINSIGSTKSZ, get_sigframe_size());		\
339} while (0)
340
341/* As a historical oddity, the x32 and x86_64 vDSOs are controlled together. */
342#define ARCH_DLINFO_X32							\
343do {									\
344	if (vdso64_enabled)						\
345		NEW_AUX_ENT(AT_SYSINFO_EHDR,				\
346			    (unsigned long __force)current->mm->context.vdso); \
347	NEW_AUX_ENT(AT_MINSIGSTKSZ, get_sigframe_size());		\
348} while (0)
349
350#define AT_SYSINFO		32
351
352#define COMPAT_ARCH_DLINFO						\
353if (exec->e_machine == EM_X86_64)					\
354	ARCH_DLINFO_X32;						\
355else if (IS_ENABLED(CONFIG_IA32_EMULATION))				\
356	ARCH_DLINFO_IA32
357
358#define COMPAT_ELF_ET_DYN_BASE	(TASK_UNMAPPED_BASE + 0x1000000)
359
360#endif /* !CONFIG_X86_32 */
361
362#define VDSO_CURRENT_BASE	((unsigned long)current->mm->context.vdso)
363
364#define VDSO_ENTRY							\
365	((unsigned long)current->mm->context.vdso +			\
366	 vdso_image_32.sym___kernel_vsyscall)
367
368struct linux_binprm;
369
370#define ARCH_HAS_SETUP_ADDITIONAL_PAGES 1
371extern int arch_setup_additional_pages(struct linux_binprm *bprm,
372				       int uses_interp);
373extern int compat_arch_setup_additional_pages(struct linux_binprm *bprm,
374					      int uses_interp, bool x32);
375#define COMPAT_ARCH_SETUP_ADDITIONAL_PAGES(bprm, ex, interpreter)	\
376	compat_arch_setup_additional_pages(bprm, interpreter,		\
377					   (ex->e_machine == EM_X86_64))
378
379extern bool arch_syscall_is_vdso_sigreturn(struct pt_regs *regs);
380
381/* Do not change the values. See get_align_mask() */
382enum align_flags {
383	ALIGN_VA_32	= BIT(0),
384	ALIGN_VA_64	= BIT(1),
385};
386
387struct va_alignment {
388	int flags;
389	unsigned long mask;
390	unsigned long bits;
391} ____cacheline_aligned;
392
393extern struct va_alignment va_align;
394extern unsigned long align_vdso_addr(unsigned long);
395#endif /* _ASM_X86_ELF_H */
396