xref: /kernel/linux/linux-6.6/arch/x86/events/intel/pt.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Intel(R) Processor Trace PMU driver for perf
4 * Copyright (c) 2013-2014, Intel Corporation.
5 *
6 * Intel PT is specified in the Intel Architecture Instruction Set Extensions
7 * Programming Reference:
8 * http://software.intel.com/en-us/intel-isa-extensions
9 */
10
11#undef DEBUG
12
13#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15#include <linux/types.h>
16#include <linux/bits.h>
17#include <linux/limits.h>
18#include <linux/slab.h>
19#include <linux/device.h>
20
21#include <asm/perf_event.h>
22#include <asm/insn.h>
23#include <asm/io.h>
24#include <asm/intel_pt.h>
25#include <asm/intel-family.h>
26
27#include "../perf_event.h"
28#include "pt.h"
29
30static DEFINE_PER_CPU(struct pt, pt_ctx);
31
32static struct pt_pmu pt_pmu;
33
34/*
35 * Capabilities of Intel PT hardware, such as number of address bits or
36 * supported output schemes, are cached and exported to userspace as "caps"
37 * attribute group of pt pmu device
38 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
39 * relevant bits together with intel_pt traces.
40 *
41 * These are necessary for both trace decoding (payloads_lip, contains address
42 * width encoded in IP-related packets), and event configuration (bitmasks with
43 * permitted values for certain bit fields).
44 */
45#define PT_CAP(_n, _l, _r, _m)						\
46	[PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,	\
47			    .reg = _r, .mask = _m }
48
49static struct pt_cap_desc {
50	const char	*name;
51	u32		leaf;
52	u8		reg;
53	u32		mask;
54} pt_caps[] = {
55	PT_CAP(max_subleaf,		0, CPUID_EAX, 0xffffffff),
56	PT_CAP(cr3_filtering,		0, CPUID_EBX, BIT(0)),
57	PT_CAP(psb_cyc,			0, CPUID_EBX, BIT(1)),
58	PT_CAP(ip_filtering,		0, CPUID_EBX, BIT(2)),
59	PT_CAP(mtc,			0, CPUID_EBX, BIT(3)),
60	PT_CAP(ptwrite,			0, CPUID_EBX, BIT(4)),
61	PT_CAP(power_event_trace,	0, CPUID_EBX, BIT(5)),
62	PT_CAP(event_trace,		0, CPUID_EBX, BIT(7)),
63	PT_CAP(tnt_disable,		0, CPUID_EBX, BIT(8)),
64	PT_CAP(topa_output,		0, CPUID_ECX, BIT(0)),
65	PT_CAP(topa_multiple_entries,	0, CPUID_ECX, BIT(1)),
66	PT_CAP(single_range_output,	0, CPUID_ECX, BIT(2)),
67	PT_CAP(output_subsys,		0, CPUID_ECX, BIT(3)),
68	PT_CAP(payloads_lip,		0, CPUID_ECX, BIT(31)),
69	PT_CAP(num_address_ranges,	1, CPUID_EAX, 0x7),
70	PT_CAP(mtc_periods,		1, CPUID_EAX, 0xffff0000),
71	PT_CAP(cycle_thresholds,	1, CPUID_EBX, 0xffff),
72	PT_CAP(psb_periods,		1, CPUID_EBX, 0xffff0000),
73};
74
75u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
76{
77	struct pt_cap_desc *cd = &pt_caps[capability];
78	u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
79	unsigned int shift = __ffs(cd->mask);
80
81	return (c & cd->mask) >> shift;
82}
83EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
84
85u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
86{
87	return intel_pt_validate_cap(pt_pmu.caps, cap);
88}
89EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
90
91static ssize_t pt_cap_show(struct device *cdev,
92			   struct device_attribute *attr,
93			   char *buf)
94{
95	struct dev_ext_attribute *ea =
96		container_of(attr, struct dev_ext_attribute, attr);
97	enum pt_capabilities cap = (long)ea->var;
98
99	return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
100}
101
102static struct attribute_group pt_cap_group __ro_after_init = {
103	.name	= "caps",
104};
105
106PMU_FORMAT_ATTR(pt,		"config:0"	);
107PMU_FORMAT_ATTR(cyc,		"config:1"	);
108PMU_FORMAT_ATTR(pwr_evt,	"config:4"	);
109PMU_FORMAT_ATTR(fup_on_ptw,	"config:5"	);
110PMU_FORMAT_ATTR(mtc,		"config:9"	);
111PMU_FORMAT_ATTR(tsc,		"config:10"	);
112PMU_FORMAT_ATTR(noretcomp,	"config:11"	);
113PMU_FORMAT_ATTR(ptw,		"config:12"	);
114PMU_FORMAT_ATTR(branch,		"config:13"	);
115PMU_FORMAT_ATTR(event,		"config:31"	);
116PMU_FORMAT_ATTR(notnt,		"config:55"	);
117PMU_FORMAT_ATTR(mtc_period,	"config:14-17"	);
118PMU_FORMAT_ATTR(cyc_thresh,	"config:19-22"	);
119PMU_FORMAT_ATTR(psb_period,	"config:24-27"	);
120
121static struct attribute *pt_formats_attr[] = {
122	&format_attr_pt.attr,
123	&format_attr_cyc.attr,
124	&format_attr_pwr_evt.attr,
125	&format_attr_event.attr,
126	&format_attr_notnt.attr,
127	&format_attr_fup_on_ptw.attr,
128	&format_attr_mtc.attr,
129	&format_attr_tsc.attr,
130	&format_attr_noretcomp.attr,
131	&format_attr_ptw.attr,
132	&format_attr_branch.attr,
133	&format_attr_mtc_period.attr,
134	&format_attr_cyc_thresh.attr,
135	&format_attr_psb_period.attr,
136	NULL,
137};
138
139static struct attribute_group pt_format_group = {
140	.name	= "format",
141	.attrs	= pt_formats_attr,
142};
143
144static ssize_t
145pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
146		    char *page)
147{
148	struct perf_pmu_events_attr *pmu_attr =
149		container_of(attr, struct perf_pmu_events_attr, attr);
150
151	switch (pmu_attr->id) {
152	case 0:
153		return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
154	case 1:
155		return sprintf(page, "%u:%u\n",
156			       pt_pmu.tsc_art_num,
157			       pt_pmu.tsc_art_den);
158	default:
159		break;
160	}
161
162	return -EINVAL;
163}
164
165PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
166	       pt_timing_attr_show);
167PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
168	       pt_timing_attr_show);
169
170static struct attribute *pt_timing_attr[] = {
171	&timing_attr_max_nonturbo_ratio.attr.attr,
172	&timing_attr_tsc_art_ratio.attr.attr,
173	NULL,
174};
175
176static struct attribute_group pt_timing_group = {
177	.attrs	= pt_timing_attr,
178};
179
180static const struct attribute_group *pt_attr_groups[] = {
181	&pt_cap_group,
182	&pt_format_group,
183	&pt_timing_group,
184	NULL,
185};
186
187static int __init pt_pmu_hw_init(void)
188{
189	struct dev_ext_attribute *de_attrs;
190	struct attribute **attrs;
191	size_t size;
192	u64 reg;
193	int ret;
194	long i;
195
196	rdmsrl(MSR_PLATFORM_INFO, reg);
197	pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
198
199	/*
200	 * if available, read in TSC to core crystal clock ratio,
201	 * otherwise, zero for numerator stands for "not enumerated"
202	 * as per SDM
203	 */
204	if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
205		u32 eax, ebx, ecx, edx;
206
207		cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
208
209		pt_pmu.tsc_art_num = ebx;
210		pt_pmu.tsc_art_den = eax;
211	}
212
213	/* model-specific quirks */
214	switch (boot_cpu_data.x86_model) {
215	case INTEL_FAM6_BROADWELL:
216	case INTEL_FAM6_BROADWELL_D:
217	case INTEL_FAM6_BROADWELL_G:
218	case INTEL_FAM6_BROADWELL_X:
219		/* not setting BRANCH_EN will #GP, erratum BDM106 */
220		pt_pmu.branch_en_always_on = true;
221		break;
222	default:
223		break;
224	}
225
226	if (boot_cpu_has(X86_FEATURE_VMX)) {
227		/*
228		 * Intel SDM, 36.5 "Tracing post-VMXON" says that
229		 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
230		 * post-VMXON.
231		 */
232		rdmsrl(MSR_IA32_VMX_MISC, reg);
233		if (reg & BIT(14))
234			pt_pmu.vmx = true;
235	}
236
237	for (i = 0; i < PT_CPUID_LEAVES; i++) {
238		cpuid_count(20, i,
239			    &pt_pmu.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM],
240			    &pt_pmu.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM],
241			    &pt_pmu.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM],
242			    &pt_pmu.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM]);
243	}
244
245	ret = -ENOMEM;
246	size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
247	attrs = kzalloc(size, GFP_KERNEL);
248	if (!attrs)
249		goto fail;
250
251	size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
252	de_attrs = kzalloc(size, GFP_KERNEL);
253	if (!de_attrs)
254		goto fail;
255
256	for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
257		struct dev_ext_attribute *de_attr = de_attrs + i;
258
259		de_attr->attr.attr.name = pt_caps[i].name;
260
261		sysfs_attr_init(&de_attr->attr.attr);
262
263		de_attr->attr.attr.mode		= S_IRUGO;
264		de_attr->attr.show		= pt_cap_show;
265		de_attr->var			= (void *)i;
266
267		attrs[i] = &de_attr->attr.attr;
268	}
269
270	pt_cap_group.attrs = attrs;
271
272	return 0;
273
274fail:
275	kfree(attrs);
276
277	return ret;
278}
279
280#define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC	| \
281			  RTIT_CTL_CYC_THRESH	| \
282			  RTIT_CTL_PSB_FREQ)
283
284#define RTIT_CTL_MTC	(RTIT_CTL_MTC_EN	| \
285			 RTIT_CTL_MTC_RANGE)
286
287#define RTIT_CTL_PTW	(RTIT_CTL_PTW_EN	| \
288			 RTIT_CTL_FUP_ON_PTW)
289
290/*
291 * Bit 0 (TraceEn) in the attr.config is meaningless as the
292 * corresponding bit in the RTIT_CTL can only be controlled
293 * by the driver; therefore, repurpose it to mean: pass
294 * through the bit that was previously assumed to be always
295 * on for PT, thereby allowing the user to *not* set it if
296 * they so wish. See also pt_event_valid() and pt_config().
297 */
298#define RTIT_CTL_PASSTHROUGH RTIT_CTL_TRACEEN
299
300#define PT_CONFIG_MASK (RTIT_CTL_TRACEEN	| \
301			RTIT_CTL_TSC_EN		| \
302			RTIT_CTL_DISRETC	| \
303			RTIT_CTL_BRANCH_EN	| \
304			RTIT_CTL_CYC_PSB	| \
305			RTIT_CTL_MTC		| \
306			RTIT_CTL_PWR_EVT_EN	| \
307			RTIT_CTL_EVENT_EN	| \
308			RTIT_CTL_NOTNT		| \
309			RTIT_CTL_FUP_ON_PTW	| \
310			RTIT_CTL_PTW_EN)
311
312static bool pt_event_valid(struct perf_event *event)
313{
314	u64 config = event->attr.config;
315	u64 allowed, requested;
316
317	if ((config & PT_CONFIG_MASK) != config)
318		return false;
319
320	if (config & RTIT_CTL_CYC_PSB) {
321		if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
322			return false;
323
324		allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
325		requested = (config & RTIT_CTL_PSB_FREQ) >>
326			RTIT_CTL_PSB_FREQ_OFFSET;
327		if (requested && (!(allowed & BIT(requested))))
328			return false;
329
330		allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
331		requested = (config & RTIT_CTL_CYC_THRESH) >>
332			RTIT_CTL_CYC_THRESH_OFFSET;
333		if (requested && (!(allowed & BIT(requested))))
334			return false;
335	}
336
337	if (config & RTIT_CTL_MTC) {
338		/*
339		 * In the unlikely case that CPUID lists valid mtc periods,
340		 * but not the mtc capability, drop out here.
341		 *
342		 * Spec says that setting mtc period bits while mtc bit in
343		 * CPUID is 0 will #GP, so better safe than sorry.
344		 */
345		if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
346			return false;
347
348		allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
349		if (!allowed)
350			return false;
351
352		requested = (config & RTIT_CTL_MTC_RANGE) >>
353			RTIT_CTL_MTC_RANGE_OFFSET;
354
355		if (!(allowed & BIT(requested)))
356			return false;
357	}
358
359	if (config & RTIT_CTL_PWR_EVT_EN &&
360	    !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
361		return false;
362
363	if (config & RTIT_CTL_EVENT_EN &&
364	    !intel_pt_validate_hw_cap(PT_CAP_event_trace))
365		return false;
366
367	if (config & RTIT_CTL_NOTNT &&
368	    !intel_pt_validate_hw_cap(PT_CAP_tnt_disable))
369		return false;
370
371	if (config & RTIT_CTL_PTW) {
372		if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
373			return false;
374
375		/* FUPonPTW without PTW doesn't make sense */
376		if ((config & RTIT_CTL_FUP_ON_PTW) &&
377		    !(config & RTIT_CTL_PTW_EN))
378			return false;
379	}
380
381	/*
382	 * Setting bit 0 (TraceEn in RTIT_CTL MSR) in the attr.config
383	 * clears the assumption that BranchEn must always be enabled,
384	 * as was the case with the first implementation of PT.
385	 * If this bit is not set, the legacy behavior is preserved
386	 * for compatibility with the older userspace.
387	 *
388	 * Re-using bit 0 for this purpose is fine because it is never
389	 * directly set by the user; previous attempts at setting it in
390	 * the attr.config resulted in -EINVAL.
391	 */
392	if (config & RTIT_CTL_PASSTHROUGH) {
393		/*
394		 * Disallow not setting BRANCH_EN where BRANCH_EN is
395		 * always required.
396		 */
397		if (pt_pmu.branch_en_always_on &&
398		    !(config & RTIT_CTL_BRANCH_EN))
399			return false;
400	} else {
401		/*
402		 * Disallow BRANCH_EN without the PASSTHROUGH.
403		 */
404		if (config & RTIT_CTL_BRANCH_EN)
405			return false;
406	}
407
408	return true;
409}
410
411/*
412 * PT configuration helpers
413 * These all are cpu affine and operate on a local PT
414 */
415
416static void pt_config_start(struct perf_event *event)
417{
418	struct pt *pt = this_cpu_ptr(&pt_ctx);
419	u64 ctl = event->hw.config;
420
421	ctl |= RTIT_CTL_TRACEEN;
422	if (READ_ONCE(pt->vmx_on))
423		perf_aux_output_flag(&pt->handle, PERF_AUX_FLAG_PARTIAL);
424	else
425		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
426
427	WRITE_ONCE(event->hw.config, ctl);
428}
429
430/* Address ranges and their corresponding msr configuration registers */
431static const struct pt_address_range {
432	unsigned long	msr_a;
433	unsigned long	msr_b;
434	unsigned int	reg_off;
435} pt_address_ranges[] = {
436	{
437		.msr_a	 = MSR_IA32_RTIT_ADDR0_A,
438		.msr_b	 = MSR_IA32_RTIT_ADDR0_B,
439		.reg_off = RTIT_CTL_ADDR0_OFFSET,
440	},
441	{
442		.msr_a	 = MSR_IA32_RTIT_ADDR1_A,
443		.msr_b	 = MSR_IA32_RTIT_ADDR1_B,
444		.reg_off = RTIT_CTL_ADDR1_OFFSET,
445	},
446	{
447		.msr_a	 = MSR_IA32_RTIT_ADDR2_A,
448		.msr_b	 = MSR_IA32_RTIT_ADDR2_B,
449		.reg_off = RTIT_CTL_ADDR2_OFFSET,
450	},
451	{
452		.msr_a	 = MSR_IA32_RTIT_ADDR3_A,
453		.msr_b	 = MSR_IA32_RTIT_ADDR3_B,
454		.reg_off = RTIT_CTL_ADDR3_OFFSET,
455	}
456};
457
458static u64 pt_config_filters(struct perf_event *event)
459{
460	struct pt_filters *filters = event->hw.addr_filters;
461	struct pt *pt = this_cpu_ptr(&pt_ctx);
462	unsigned int range = 0;
463	u64 rtit_ctl = 0;
464
465	if (!filters)
466		return 0;
467
468	perf_event_addr_filters_sync(event);
469
470	for (range = 0; range < filters->nr_filters; range++) {
471		struct pt_filter *filter = &filters->filter[range];
472
473		/*
474		 * Note, if the range has zero start/end addresses due
475		 * to its dynamic object not being loaded yet, we just
476		 * go ahead and program zeroed range, which will simply
477		 * produce no data. Note^2: if executable code at 0x0
478		 * is a concern, we can set up an "invalid" configuration
479		 * such as msr_b < msr_a.
480		 */
481
482		/* avoid redundant msr writes */
483		if (pt->filters.filter[range].msr_a != filter->msr_a) {
484			wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
485			pt->filters.filter[range].msr_a = filter->msr_a;
486		}
487
488		if (pt->filters.filter[range].msr_b != filter->msr_b) {
489			wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
490			pt->filters.filter[range].msr_b = filter->msr_b;
491		}
492
493		rtit_ctl |= (u64)filter->config << pt_address_ranges[range].reg_off;
494	}
495
496	return rtit_ctl;
497}
498
499static void pt_config(struct perf_event *event)
500{
501	struct pt *pt = this_cpu_ptr(&pt_ctx);
502	struct pt_buffer *buf = perf_get_aux(&pt->handle);
503	u64 reg;
504
505	/* First round: clear STATUS, in particular the PSB byte counter. */
506	if (!event->hw.config) {
507		perf_event_itrace_started(event);
508		wrmsrl(MSR_IA32_RTIT_STATUS, 0);
509	}
510
511	reg = pt_config_filters(event);
512	reg |= RTIT_CTL_TRACEEN;
513	if (!buf->single)
514		reg |= RTIT_CTL_TOPA;
515
516	/*
517	 * Previously, we had BRANCH_EN on by default, but now that PT has
518	 * grown features outside of branch tracing, it is useful to allow
519	 * the user to disable it. Setting bit 0 in the event's attr.config
520	 * allows BRANCH_EN to pass through instead of being always on. See
521	 * also the comment in pt_event_valid().
522	 */
523	if (event->attr.config & BIT(0)) {
524		reg |= event->attr.config & RTIT_CTL_BRANCH_EN;
525	} else {
526		reg |= RTIT_CTL_BRANCH_EN;
527	}
528
529	if (!event->attr.exclude_kernel)
530		reg |= RTIT_CTL_OS;
531	if (!event->attr.exclude_user)
532		reg |= RTIT_CTL_USR;
533
534	reg |= (event->attr.config & PT_CONFIG_MASK);
535
536	event->hw.config = reg;
537	pt_config_start(event);
538}
539
540static void pt_config_stop(struct perf_event *event)
541{
542	struct pt *pt = this_cpu_ptr(&pt_ctx);
543	u64 ctl = READ_ONCE(event->hw.config);
544
545	/* may be already stopped by a PMI */
546	if (!(ctl & RTIT_CTL_TRACEEN))
547		return;
548
549	ctl &= ~RTIT_CTL_TRACEEN;
550	if (!READ_ONCE(pt->vmx_on))
551		wrmsrl(MSR_IA32_RTIT_CTL, ctl);
552
553	WRITE_ONCE(event->hw.config, ctl);
554
555	/*
556	 * A wrmsr that disables trace generation serializes other PT
557	 * registers and causes all data packets to be written to memory,
558	 * but a fence is required for the data to become globally visible.
559	 *
560	 * The below WMB, separating data store and aux_head store matches
561	 * the consumer's RMB that separates aux_head load and data load.
562	 */
563	wmb();
564}
565
566/**
567 * struct topa - ToPA metadata
568 * @list:	linkage to struct pt_buffer's list of tables
569 * @offset:	offset of the first entry in this table in the buffer
570 * @size:	total size of all entries in this table
571 * @last:	index of the last initialized entry in this table
572 * @z_count:	how many times the first entry repeats
573 */
574struct topa {
575	struct list_head	list;
576	u64			offset;
577	size_t			size;
578	int			last;
579	unsigned int		z_count;
580};
581
582/*
583 * Keep ToPA table-related metadata on the same page as the actual table,
584 * taking up a few words from the top
585 */
586
587#define TENTS_PER_PAGE	\
588	((PAGE_SIZE - sizeof(struct topa)) / sizeof(struct topa_entry))
589
590/**
591 * struct topa_page - page-sized ToPA table with metadata at the top
592 * @table:	actual ToPA table entries, as understood by PT hardware
593 * @topa:	metadata
594 */
595struct topa_page {
596	struct topa_entry	table[TENTS_PER_PAGE];
597	struct topa		topa;
598};
599
600static inline struct topa_page *topa_to_page(struct topa *topa)
601{
602	return container_of(topa, struct topa_page, topa);
603}
604
605static inline struct topa_page *topa_entry_to_page(struct topa_entry *te)
606{
607	return (struct topa_page *)((unsigned long)te & PAGE_MASK);
608}
609
610static inline phys_addr_t topa_pfn(struct topa *topa)
611{
612	return PFN_DOWN(virt_to_phys(topa_to_page(topa)));
613}
614
615/* make -1 stand for the last table entry */
616#define TOPA_ENTRY(t, i)				\
617	((i) == -1					\
618		? &topa_to_page(t)->table[(t)->last]	\
619		: &topa_to_page(t)->table[(i)])
620#define TOPA_ENTRY_SIZE(t, i) (sizes(TOPA_ENTRY((t), (i))->size))
621#define TOPA_ENTRY_PAGES(t, i) (1 << TOPA_ENTRY((t), (i))->size)
622
623static void pt_config_buffer(struct pt_buffer *buf)
624{
625	struct pt *pt = this_cpu_ptr(&pt_ctx);
626	u64 reg, mask;
627	void *base;
628
629	if (buf->single) {
630		base = buf->data_pages[0];
631		mask = (buf->nr_pages * PAGE_SIZE - 1) >> 7;
632	} else {
633		base = topa_to_page(buf->cur)->table;
634		mask = (u64)buf->cur_idx;
635	}
636
637	reg = virt_to_phys(base);
638	if (pt->output_base != reg) {
639		pt->output_base = reg;
640		wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, reg);
641	}
642
643	reg = 0x7f | (mask << 7) | ((u64)buf->output_off << 32);
644	if (pt->output_mask != reg) {
645		pt->output_mask = reg;
646		wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
647	}
648}
649
650/**
651 * topa_alloc() - allocate page-sized ToPA table
652 * @cpu:	CPU on which to allocate.
653 * @gfp:	Allocation flags.
654 *
655 * Return:	On success, return the pointer to ToPA table page.
656 */
657static struct topa *topa_alloc(int cpu, gfp_t gfp)
658{
659	int node = cpu_to_node(cpu);
660	struct topa_page *tp;
661	struct page *p;
662
663	p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
664	if (!p)
665		return NULL;
666
667	tp = page_address(p);
668	tp->topa.last = 0;
669
670	/*
671	 * In case of singe-entry ToPA, always put the self-referencing END
672	 * link as the 2nd entry in the table
673	 */
674	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
675		TOPA_ENTRY(&tp->topa, 1)->base = page_to_phys(p) >> TOPA_SHIFT;
676		TOPA_ENTRY(&tp->topa, 1)->end = 1;
677	}
678
679	return &tp->topa;
680}
681
682/**
683 * topa_free() - free a page-sized ToPA table
684 * @topa:	Table to deallocate.
685 */
686static void topa_free(struct topa *topa)
687{
688	free_page((unsigned long)topa);
689}
690
691/**
692 * topa_insert_table() - insert a ToPA table into a buffer
693 * @buf:	 PT buffer that's being extended.
694 * @topa:	 New topa table to be inserted.
695 *
696 * If it's the first table in this buffer, set up buffer's pointers
697 * accordingly; otherwise, add a END=1 link entry to @topa to the current
698 * "last" table and adjust the last table pointer to @topa.
699 */
700static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
701{
702	struct topa *last = buf->last;
703
704	list_add_tail(&topa->list, &buf->tables);
705
706	if (!buf->first) {
707		buf->first = buf->last = buf->cur = topa;
708		return;
709	}
710
711	topa->offset = last->offset + last->size;
712	buf->last = topa;
713
714	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
715		return;
716
717	BUG_ON(last->last != TENTS_PER_PAGE - 1);
718
719	TOPA_ENTRY(last, -1)->base = topa_pfn(topa);
720	TOPA_ENTRY(last, -1)->end = 1;
721}
722
723/**
724 * topa_table_full() - check if a ToPA table is filled up
725 * @topa:	ToPA table.
726 */
727static bool topa_table_full(struct topa *topa)
728{
729	/* single-entry ToPA is a special case */
730	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
731		return !!topa->last;
732
733	return topa->last == TENTS_PER_PAGE - 1;
734}
735
736/**
737 * topa_insert_pages() - create a list of ToPA tables
738 * @buf:	PT buffer being initialized.
739 * @gfp:	Allocation flags.
740 *
741 * This initializes a list of ToPA tables with entries from
742 * the data_pages provided by rb_alloc_aux().
743 *
744 * Return:	0 on success or error code.
745 */
746static int topa_insert_pages(struct pt_buffer *buf, int cpu, gfp_t gfp)
747{
748	struct topa *topa = buf->last;
749	int order = 0;
750	struct page *p;
751
752	p = virt_to_page(buf->data_pages[buf->nr_pages]);
753	if (PagePrivate(p))
754		order = page_private(p);
755
756	if (topa_table_full(topa)) {
757		topa = topa_alloc(cpu, gfp);
758		if (!topa)
759			return -ENOMEM;
760
761		topa_insert_table(buf, topa);
762	}
763
764	if (topa->z_count == topa->last - 1) {
765		if (order == TOPA_ENTRY(topa, topa->last - 1)->size)
766			topa->z_count++;
767	}
768
769	TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
770	TOPA_ENTRY(topa, -1)->size = order;
771	if (!buf->snapshot &&
772	    !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
773		TOPA_ENTRY(topa, -1)->intr = 1;
774		TOPA_ENTRY(topa, -1)->stop = 1;
775	}
776
777	topa->last++;
778	topa->size += sizes(order);
779
780	buf->nr_pages += 1ul << order;
781
782	return 0;
783}
784
785/**
786 * pt_topa_dump() - print ToPA tables and their entries
787 * @buf:	PT buffer.
788 */
789static void pt_topa_dump(struct pt_buffer *buf)
790{
791	struct topa *topa;
792
793	list_for_each_entry(topa, &buf->tables, list) {
794		struct topa_page *tp = topa_to_page(topa);
795		int i;
796
797		pr_debug("# table @%p, off %llx size %zx\n", tp->table,
798			 topa->offset, topa->size);
799		for (i = 0; i < TENTS_PER_PAGE; i++) {
800			pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
801				 &tp->table[i],
802				 (unsigned long)tp->table[i].base << TOPA_SHIFT,
803				 sizes(tp->table[i].size),
804				 tp->table[i].end ?  'E' : ' ',
805				 tp->table[i].intr ? 'I' : ' ',
806				 tp->table[i].stop ? 'S' : ' ',
807				 *(u64 *)&tp->table[i]);
808			if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
809			     tp->table[i].stop) ||
810			    tp->table[i].end)
811				break;
812			if (!i && topa->z_count)
813				i += topa->z_count;
814		}
815	}
816}
817
818/**
819 * pt_buffer_advance() - advance to the next output region
820 * @buf:	PT buffer.
821 *
822 * Advance the current pointers in the buffer to the next ToPA entry.
823 */
824static void pt_buffer_advance(struct pt_buffer *buf)
825{
826	buf->output_off = 0;
827	buf->cur_idx++;
828
829	if (buf->cur_idx == buf->cur->last) {
830		if (buf->cur == buf->last)
831			buf->cur = buf->first;
832		else
833			buf->cur = list_entry(buf->cur->list.next, struct topa,
834					      list);
835		buf->cur_idx = 0;
836	}
837}
838
839/**
840 * pt_update_head() - calculate current offsets and sizes
841 * @pt:		Per-cpu pt context.
842 *
843 * Update buffer's current write pointer position and data size.
844 */
845static void pt_update_head(struct pt *pt)
846{
847	struct pt_buffer *buf = perf_get_aux(&pt->handle);
848	u64 topa_idx, base, old;
849
850	if (buf->single) {
851		local_set(&buf->data_size, buf->output_off);
852		return;
853	}
854
855	/* offset of the first region in this table from the beginning of buf */
856	base = buf->cur->offset + buf->output_off;
857
858	/* offset of the current output region within this table */
859	for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
860		base += TOPA_ENTRY_SIZE(buf->cur, topa_idx);
861
862	if (buf->snapshot) {
863		local_set(&buf->data_size, base);
864	} else {
865		old = (local64_xchg(&buf->head, base) &
866		       ((buf->nr_pages << PAGE_SHIFT) - 1));
867		if (base < old)
868			base += buf->nr_pages << PAGE_SHIFT;
869
870		local_add(base - old, &buf->data_size);
871	}
872}
873
874/**
875 * pt_buffer_region() - obtain current output region's address
876 * @buf:	PT buffer.
877 */
878static void *pt_buffer_region(struct pt_buffer *buf)
879{
880	return phys_to_virt(TOPA_ENTRY(buf->cur, buf->cur_idx)->base << TOPA_SHIFT);
881}
882
883/**
884 * pt_buffer_region_size() - obtain current output region's size
885 * @buf:	PT buffer.
886 */
887static size_t pt_buffer_region_size(struct pt_buffer *buf)
888{
889	return TOPA_ENTRY_SIZE(buf->cur, buf->cur_idx);
890}
891
892/**
893 * pt_handle_status() - take care of possible status conditions
894 * @pt:		Per-cpu pt context.
895 */
896static void pt_handle_status(struct pt *pt)
897{
898	struct pt_buffer *buf = perf_get_aux(&pt->handle);
899	int advance = 0;
900	u64 status;
901
902	rdmsrl(MSR_IA32_RTIT_STATUS, status);
903
904	if (status & RTIT_STATUS_ERROR) {
905		pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
906		pt_topa_dump(buf);
907		status &= ~RTIT_STATUS_ERROR;
908	}
909
910	if (status & RTIT_STATUS_STOPPED) {
911		status &= ~RTIT_STATUS_STOPPED;
912
913		/*
914		 * On systems that only do single-entry ToPA, hitting STOP
915		 * means we are already losing data; need to let the decoder
916		 * know.
917		 */
918		if (!buf->single &&
919		    (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
920		     buf->output_off == pt_buffer_region_size(buf))) {
921			perf_aux_output_flag(&pt->handle,
922			                     PERF_AUX_FLAG_TRUNCATED);
923			advance++;
924		}
925	}
926
927	/*
928	 * Also on single-entry ToPA implementations, interrupt will come
929	 * before the output reaches its output region's boundary.
930	 */
931	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
932	    !buf->snapshot &&
933	    pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
934		void *head = pt_buffer_region(buf);
935
936		/* everything within this margin needs to be zeroed out */
937		memset(head + buf->output_off, 0,
938		       pt_buffer_region_size(buf) -
939		       buf->output_off);
940		advance++;
941	}
942
943	if (advance)
944		pt_buffer_advance(buf);
945
946	wrmsrl(MSR_IA32_RTIT_STATUS, status);
947}
948
949/**
950 * pt_read_offset() - translate registers into buffer pointers
951 * @buf:	PT buffer.
952 *
953 * Set buffer's output pointers from MSR values.
954 */
955static void pt_read_offset(struct pt_buffer *buf)
956{
957	struct pt *pt = this_cpu_ptr(&pt_ctx);
958	struct topa_page *tp;
959
960	if (!buf->single) {
961		rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, pt->output_base);
962		tp = phys_to_virt(pt->output_base);
963		buf->cur = &tp->topa;
964	}
965
966	rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, pt->output_mask);
967	/* offset within current output region */
968	buf->output_off = pt->output_mask >> 32;
969	/* index of current output region within this table */
970	if (!buf->single)
971		buf->cur_idx = (pt->output_mask & 0xffffff80) >> 7;
972}
973
974static struct topa_entry *
975pt_topa_entry_for_page(struct pt_buffer *buf, unsigned int pg)
976{
977	struct topa_page *tp;
978	struct topa *topa;
979	unsigned int idx, cur_pg = 0, z_pg = 0, start_idx = 0;
980
981	/*
982	 * Indicates a bug in the caller.
983	 */
984	if (WARN_ON_ONCE(pg >= buf->nr_pages))
985		return NULL;
986
987	/*
988	 * First, find the ToPA table where @pg fits. With high
989	 * order allocations, there shouldn't be many of these.
990	 */
991	list_for_each_entry(topa, &buf->tables, list) {
992		if (topa->offset + topa->size > pg << PAGE_SHIFT)
993			goto found;
994	}
995
996	/*
997	 * Hitting this means we have a problem in the ToPA
998	 * allocation code.
999	 */
1000	WARN_ON_ONCE(1);
1001
1002	return NULL;
1003
1004found:
1005	/*
1006	 * Indicates a problem in the ToPA allocation code.
1007	 */
1008	if (WARN_ON_ONCE(topa->last == -1))
1009		return NULL;
1010
1011	tp = topa_to_page(topa);
1012	cur_pg = PFN_DOWN(topa->offset);
1013	if (topa->z_count) {
1014		z_pg = TOPA_ENTRY_PAGES(topa, 0) * (topa->z_count + 1);
1015		start_idx = topa->z_count + 1;
1016	}
1017
1018	/*
1019	 * Multiple entries at the beginning of the table have the same size,
1020	 * ideally all of them; if @pg falls there, the search is done.
1021	 */
1022	if (pg >= cur_pg && pg < cur_pg + z_pg) {
1023		idx = (pg - cur_pg) / TOPA_ENTRY_PAGES(topa, 0);
1024		return &tp->table[idx];
1025	}
1026
1027	/*
1028	 * Otherwise, slow path: iterate through the remaining entries.
1029	 */
1030	for (idx = start_idx, cur_pg += z_pg; idx < topa->last; idx++) {
1031		if (cur_pg + TOPA_ENTRY_PAGES(topa, idx) > pg)
1032			return &tp->table[idx];
1033
1034		cur_pg += TOPA_ENTRY_PAGES(topa, idx);
1035	}
1036
1037	/*
1038	 * Means we couldn't find a ToPA entry in the table that does match.
1039	 */
1040	WARN_ON_ONCE(1);
1041
1042	return NULL;
1043}
1044
1045static struct topa_entry *
1046pt_topa_prev_entry(struct pt_buffer *buf, struct topa_entry *te)
1047{
1048	unsigned long table = (unsigned long)te & ~(PAGE_SIZE - 1);
1049	struct topa_page *tp;
1050	struct topa *topa;
1051
1052	tp = (struct topa_page *)table;
1053	if (tp->table != te)
1054		return --te;
1055
1056	topa = &tp->topa;
1057	if (topa == buf->first)
1058		topa = buf->last;
1059	else
1060		topa = list_prev_entry(topa, list);
1061
1062	tp = topa_to_page(topa);
1063
1064	return &tp->table[topa->last - 1];
1065}
1066
1067/**
1068 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
1069 * @buf:	PT buffer.
1070 * @handle:	Current output handle.
1071 *
1072 * Place INT and STOP marks to prevent overwriting old data that the consumer
1073 * hasn't yet collected and waking up the consumer after a certain fraction of
1074 * the buffer has filled up. Only needed and sensible for non-snapshot counters.
1075 *
1076 * This obviously relies on buf::head to figure out buffer markers, so it has
1077 * to be called after pt_buffer_reset_offsets() and before the hardware tracing
1078 * is enabled.
1079 */
1080static int pt_buffer_reset_markers(struct pt_buffer *buf,
1081				   struct perf_output_handle *handle)
1082
1083{
1084	unsigned long head = local64_read(&buf->head);
1085	unsigned long idx, npages, wakeup;
1086
1087	if (buf->single)
1088		return 0;
1089
1090	/* can't stop in the middle of an output region */
1091	if (buf->output_off + handle->size + 1 < pt_buffer_region_size(buf)) {
1092		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
1093		return -EINVAL;
1094	}
1095
1096
1097	/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
1098	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1099		return 0;
1100
1101	/* clear STOP and INT from current entry */
1102	if (buf->stop_te) {
1103		buf->stop_te->stop = 0;
1104		buf->stop_te->intr = 0;
1105	}
1106
1107	if (buf->intr_te)
1108		buf->intr_te->intr = 0;
1109
1110	/* how many pages till the STOP marker */
1111	npages = handle->size >> PAGE_SHIFT;
1112
1113	/* if it's on a page boundary, fill up one more page */
1114	if (!offset_in_page(head + handle->size + 1))
1115		npages++;
1116
1117	idx = (head >> PAGE_SHIFT) + npages;
1118	idx &= buf->nr_pages - 1;
1119
1120	if (idx != buf->stop_pos) {
1121		buf->stop_pos = idx;
1122		buf->stop_te = pt_topa_entry_for_page(buf, idx);
1123		buf->stop_te = pt_topa_prev_entry(buf, buf->stop_te);
1124	}
1125
1126	wakeup = handle->wakeup >> PAGE_SHIFT;
1127
1128	/* in the worst case, wake up the consumer one page before hard stop */
1129	idx = (head >> PAGE_SHIFT) + npages - 1;
1130	if (idx > wakeup)
1131		idx = wakeup;
1132
1133	idx &= buf->nr_pages - 1;
1134	if (idx != buf->intr_pos) {
1135		buf->intr_pos = idx;
1136		buf->intr_te = pt_topa_entry_for_page(buf, idx);
1137		buf->intr_te = pt_topa_prev_entry(buf, buf->intr_te);
1138	}
1139
1140	buf->stop_te->stop = 1;
1141	buf->stop_te->intr = 1;
1142	buf->intr_te->intr = 1;
1143
1144	return 0;
1145}
1146
1147/**
1148 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
1149 * @buf:	PT buffer.
1150 * @head:	Write pointer (aux_head) from AUX buffer.
1151 *
1152 * Find the ToPA table and entry corresponding to given @head and set buffer's
1153 * "current" pointers accordingly. This is done after we have obtained the
1154 * current aux_head position from a successful call to perf_aux_output_begin()
1155 * to make sure the hardware is writing to the right place.
1156 *
1157 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
1158 * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
1159 * which are used to determine INT and STOP markers' locations by a subsequent
1160 * call to pt_buffer_reset_markers().
1161 */
1162static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
1163{
1164	struct topa_page *cur_tp;
1165	struct topa_entry *te;
1166	int pg;
1167
1168	if (buf->snapshot)
1169		head &= (buf->nr_pages << PAGE_SHIFT) - 1;
1170
1171	if (!buf->single) {
1172		pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
1173		te = pt_topa_entry_for_page(buf, pg);
1174
1175		cur_tp = topa_entry_to_page(te);
1176		buf->cur = &cur_tp->topa;
1177		buf->cur_idx = te - TOPA_ENTRY(buf->cur, 0);
1178		buf->output_off = head & (pt_buffer_region_size(buf) - 1);
1179	} else {
1180		buf->output_off = head;
1181	}
1182
1183	local64_set(&buf->head, head);
1184	local_set(&buf->data_size, 0);
1185}
1186
1187/**
1188 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
1189 * @buf:	PT buffer.
1190 */
1191static void pt_buffer_fini_topa(struct pt_buffer *buf)
1192{
1193	struct topa *topa, *iter;
1194
1195	if (buf->single)
1196		return;
1197
1198	list_for_each_entry_safe(topa, iter, &buf->tables, list) {
1199		/*
1200		 * right now, this is in free_aux() path only, so
1201		 * no need to unlink this table from the list
1202		 */
1203		topa_free(topa);
1204	}
1205}
1206
1207/**
1208 * pt_buffer_init_topa() - initialize ToPA table for pt buffer
1209 * @buf:	PT buffer.
1210 * @size:	Total size of all regions within this ToPA.
1211 * @gfp:	Allocation flags.
1212 */
1213static int pt_buffer_init_topa(struct pt_buffer *buf, int cpu,
1214			       unsigned long nr_pages, gfp_t gfp)
1215{
1216	struct topa *topa;
1217	int err;
1218
1219	topa = topa_alloc(cpu, gfp);
1220	if (!topa)
1221		return -ENOMEM;
1222
1223	topa_insert_table(buf, topa);
1224
1225	while (buf->nr_pages < nr_pages) {
1226		err = topa_insert_pages(buf, cpu, gfp);
1227		if (err) {
1228			pt_buffer_fini_topa(buf);
1229			return -ENOMEM;
1230		}
1231	}
1232
1233	/* link last table to the first one, unless we're double buffering */
1234	if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
1235		TOPA_ENTRY(buf->last, -1)->base = topa_pfn(buf->first);
1236		TOPA_ENTRY(buf->last, -1)->end = 1;
1237	}
1238
1239	pt_topa_dump(buf);
1240	return 0;
1241}
1242
1243static int pt_buffer_try_single(struct pt_buffer *buf, int nr_pages)
1244{
1245	struct page *p = virt_to_page(buf->data_pages[0]);
1246	int ret = -ENOTSUPP, order = 0;
1247
1248	/*
1249	 * We can use single range output mode
1250	 * + in snapshot mode, where we don't need interrupts;
1251	 * + if the hardware supports it;
1252	 * + if the entire buffer is one contiguous allocation.
1253	 */
1254	if (!buf->snapshot)
1255		goto out;
1256
1257	if (!intel_pt_validate_hw_cap(PT_CAP_single_range_output))
1258		goto out;
1259
1260	if (PagePrivate(p))
1261		order = page_private(p);
1262
1263	if (1 << order != nr_pages)
1264		goto out;
1265
1266	/*
1267	 * Some processors cannot always support single range for more than
1268	 * 4KB - refer errata TGL052, ADL037 and RPL017. Future processors might
1269	 * also be affected, so for now rather than trying to keep track of
1270	 * which ones, just disable it for all.
1271	 */
1272	if (nr_pages > 1)
1273		goto out;
1274
1275	buf->single = true;
1276	buf->nr_pages = nr_pages;
1277	ret = 0;
1278out:
1279	return ret;
1280}
1281
1282/**
1283 * pt_buffer_setup_aux() - set up topa tables for a PT buffer
1284 * @cpu:	Cpu on which to allocate, -1 means current.
1285 * @pages:	Array of pointers to buffer pages passed from perf core.
1286 * @nr_pages:	Number of pages in the buffer.
1287 * @snapshot:	If this is a snapshot/overwrite counter.
1288 *
1289 * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1290 * bookkeeping for an AUX buffer.
1291 *
1292 * Return:	Our private PT buffer structure.
1293 */
1294static void *
1295pt_buffer_setup_aux(struct perf_event *event, void **pages,
1296		    int nr_pages, bool snapshot)
1297{
1298	struct pt_buffer *buf;
1299	int node, ret, cpu = event->cpu;
1300
1301	if (!nr_pages)
1302		return NULL;
1303
1304	/*
1305	 * Only support AUX sampling in snapshot mode, where we don't
1306	 * generate NMIs.
1307	 */
1308	if (event->attr.aux_sample_size && !snapshot)
1309		return NULL;
1310
1311	if (cpu == -1)
1312		cpu = raw_smp_processor_id();
1313	node = cpu_to_node(cpu);
1314
1315	buf = kzalloc_node(sizeof(struct pt_buffer), GFP_KERNEL, node);
1316	if (!buf)
1317		return NULL;
1318
1319	buf->snapshot = snapshot;
1320	buf->data_pages = pages;
1321	buf->stop_pos = -1;
1322	buf->intr_pos = -1;
1323
1324	INIT_LIST_HEAD(&buf->tables);
1325
1326	ret = pt_buffer_try_single(buf, nr_pages);
1327	if (!ret)
1328		return buf;
1329
1330	ret = pt_buffer_init_topa(buf, cpu, nr_pages, GFP_KERNEL);
1331	if (ret) {
1332		kfree(buf);
1333		return NULL;
1334	}
1335
1336	return buf;
1337}
1338
1339/**
1340 * pt_buffer_free_aux() - perf AUX deallocation path callback
1341 * @data:	PT buffer.
1342 */
1343static void pt_buffer_free_aux(void *data)
1344{
1345	struct pt_buffer *buf = data;
1346
1347	pt_buffer_fini_topa(buf);
1348	kfree(buf);
1349}
1350
1351static int pt_addr_filters_init(struct perf_event *event)
1352{
1353	struct pt_filters *filters;
1354	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1355
1356	if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1357		return 0;
1358
1359	filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1360	if (!filters)
1361		return -ENOMEM;
1362
1363	if (event->parent)
1364		memcpy(filters, event->parent->hw.addr_filters,
1365		       sizeof(*filters));
1366
1367	event->hw.addr_filters = filters;
1368
1369	return 0;
1370}
1371
1372static void pt_addr_filters_fini(struct perf_event *event)
1373{
1374	kfree(event->hw.addr_filters);
1375	event->hw.addr_filters = NULL;
1376}
1377
1378#ifdef CONFIG_X86_64
1379/* Clamp to a canonical address greater-than-or-equal-to the address given */
1380static u64 clamp_to_ge_canonical_addr(u64 vaddr, u8 vaddr_bits)
1381{
1382	return __is_canonical_address(vaddr, vaddr_bits) ?
1383	       vaddr :
1384	       -BIT_ULL(vaddr_bits - 1);
1385}
1386
1387/* Clamp to a canonical address less-than-or-equal-to the address given */
1388static u64 clamp_to_le_canonical_addr(u64 vaddr, u8 vaddr_bits)
1389{
1390	return __is_canonical_address(vaddr, vaddr_bits) ?
1391	       vaddr :
1392	       BIT_ULL(vaddr_bits - 1) - 1;
1393}
1394#else
1395#define clamp_to_ge_canonical_addr(x, y) (x)
1396#define clamp_to_le_canonical_addr(x, y) (x)
1397#endif
1398
1399static int pt_event_addr_filters_validate(struct list_head *filters)
1400{
1401	struct perf_addr_filter *filter;
1402	int range = 0;
1403
1404	list_for_each_entry(filter, filters, entry) {
1405		/*
1406		 * PT doesn't support single address triggers and
1407		 * 'start' filters.
1408		 */
1409		if (!filter->size ||
1410		    filter->action == PERF_ADDR_FILTER_ACTION_START)
1411			return -EOPNOTSUPP;
1412
1413		if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
1414			return -EOPNOTSUPP;
1415	}
1416
1417	return 0;
1418}
1419
1420static void pt_event_addr_filters_sync(struct perf_event *event)
1421{
1422	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1423	unsigned long msr_a, msr_b;
1424	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
1425	struct pt_filters *filters = event->hw.addr_filters;
1426	struct perf_addr_filter *filter;
1427	int range = 0;
1428
1429	if (!filters)
1430		return;
1431
1432	list_for_each_entry(filter, &head->list, entry) {
1433		if (filter->path.dentry && !fr[range].start) {
1434			msr_a = msr_b = 0;
1435		} else {
1436			unsigned long n = fr[range].size - 1;
1437			unsigned long a = fr[range].start;
1438			unsigned long b;
1439
1440			if (a > ULONG_MAX - n)
1441				b = ULONG_MAX;
1442			else
1443				b = a + n;
1444			/*
1445			 * Apply the offset. 64-bit addresses written to the
1446			 * MSRs must be canonical, but the range can encompass
1447			 * non-canonical addresses. Since software cannot
1448			 * execute at non-canonical addresses, adjusting to
1449			 * canonical addresses does not affect the result of the
1450			 * address filter.
1451			 */
1452			msr_a = clamp_to_ge_canonical_addr(a, boot_cpu_data.x86_virt_bits);
1453			msr_b = clamp_to_le_canonical_addr(b, boot_cpu_data.x86_virt_bits);
1454			if (msr_b < msr_a)
1455				msr_a = msr_b = 0;
1456		}
1457
1458		filters->filter[range].msr_a  = msr_a;
1459		filters->filter[range].msr_b  = msr_b;
1460		if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER)
1461			filters->filter[range].config = 1;
1462		else
1463			filters->filter[range].config = 2;
1464		range++;
1465	}
1466
1467	filters->nr_filters = range;
1468}
1469
1470/**
1471 * intel_pt_interrupt() - PT PMI handler
1472 */
1473void intel_pt_interrupt(void)
1474{
1475	struct pt *pt = this_cpu_ptr(&pt_ctx);
1476	struct pt_buffer *buf;
1477	struct perf_event *event = pt->handle.event;
1478
1479	/*
1480	 * There may be a dangling PT bit in the interrupt status register
1481	 * after PT has been disabled by pt_event_stop(). Make sure we don't
1482	 * do anything (particularly, re-enable) for this event here.
1483	 */
1484	if (!READ_ONCE(pt->handle_nmi))
1485		return;
1486
1487	if (!event)
1488		return;
1489
1490	pt_config_stop(event);
1491
1492	buf = perf_get_aux(&pt->handle);
1493	if (!buf)
1494		return;
1495
1496	pt_read_offset(buf);
1497
1498	pt_handle_status(pt);
1499
1500	pt_update_head(pt);
1501
1502	perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1503
1504	if (!event->hw.state) {
1505		int ret;
1506
1507		buf = perf_aux_output_begin(&pt->handle, event);
1508		if (!buf) {
1509			event->hw.state = PERF_HES_STOPPED;
1510			return;
1511		}
1512
1513		pt_buffer_reset_offsets(buf, pt->handle.head);
1514		/* snapshot counters don't use PMI, so it's safe */
1515		ret = pt_buffer_reset_markers(buf, &pt->handle);
1516		if (ret) {
1517			perf_aux_output_end(&pt->handle, 0);
1518			return;
1519		}
1520
1521		pt_config_buffer(buf);
1522		pt_config_start(event);
1523	}
1524}
1525
1526void intel_pt_handle_vmx(int on)
1527{
1528	struct pt *pt = this_cpu_ptr(&pt_ctx);
1529	struct perf_event *event;
1530	unsigned long flags;
1531
1532	/* PT plays nice with VMX, do nothing */
1533	if (pt_pmu.vmx)
1534		return;
1535
1536	/*
1537	 * VMXON will clear RTIT_CTL.TraceEn; we need to make
1538	 * sure to not try to set it while VMX is on. Disable
1539	 * interrupts to avoid racing with pmu callbacks;
1540	 * concurrent PMI should be handled fine.
1541	 */
1542	local_irq_save(flags);
1543	WRITE_ONCE(pt->vmx_on, on);
1544
1545	/*
1546	 * If an AUX transaction is in progress, it will contain
1547	 * gap(s), so flag it PARTIAL to inform the user.
1548	 */
1549	event = pt->handle.event;
1550	if (event)
1551		perf_aux_output_flag(&pt->handle,
1552		                     PERF_AUX_FLAG_PARTIAL);
1553
1554	/* Turn PTs back on */
1555	if (!on && event)
1556		wrmsrl(MSR_IA32_RTIT_CTL, event->hw.config);
1557
1558	local_irq_restore(flags);
1559}
1560EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1561
1562/*
1563 * PMU callbacks
1564 */
1565
1566static void pt_event_start(struct perf_event *event, int mode)
1567{
1568	struct hw_perf_event *hwc = &event->hw;
1569	struct pt *pt = this_cpu_ptr(&pt_ctx);
1570	struct pt_buffer *buf;
1571
1572	buf = perf_aux_output_begin(&pt->handle, event);
1573	if (!buf)
1574		goto fail_stop;
1575
1576	pt_buffer_reset_offsets(buf, pt->handle.head);
1577	if (!buf->snapshot) {
1578		if (pt_buffer_reset_markers(buf, &pt->handle))
1579			goto fail_end_stop;
1580	}
1581
1582	WRITE_ONCE(pt->handle_nmi, 1);
1583	hwc->state = 0;
1584
1585	pt_config_buffer(buf);
1586	pt_config(event);
1587
1588	return;
1589
1590fail_end_stop:
1591	perf_aux_output_end(&pt->handle, 0);
1592fail_stop:
1593	hwc->state = PERF_HES_STOPPED;
1594}
1595
1596static void pt_event_stop(struct perf_event *event, int mode)
1597{
1598	struct pt *pt = this_cpu_ptr(&pt_ctx);
1599
1600	/*
1601	 * Protect against the PMI racing with disabling wrmsr,
1602	 * see comment in intel_pt_interrupt().
1603	 */
1604	WRITE_ONCE(pt->handle_nmi, 0);
1605
1606	pt_config_stop(event);
1607
1608	if (event->hw.state == PERF_HES_STOPPED)
1609		return;
1610
1611	event->hw.state = PERF_HES_STOPPED;
1612
1613	if (mode & PERF_EF_UPDATE) {
1614		struct pt_buffer *buf = perf_get_aux(&pt->handle);
1615
1616		if (!buf)
1617			return;
1618
1619		if (WARN_ON_ONCE(pt->handle.event != event))
1620			return;
1621
1622		pt_read_offset(buf);
1623
1624		pt_handle_status(pt);
1625
1626		pt_update_head(pt);
1627
1628		if (buf->snapshot)
1629			pt->handle.head =
1630				local_xchg(&buf->data_size,
1631					   buf->nr_pages << PAGE_SHIFT);
1632		perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0));
1633	}
1634}
1635
1636static long pt_event_snapshot_aux(struct perf_event *event,
1637				  struct perf_output_handle *handle,
1638				  unsigned long size)
1639{
1640	struct pt *pt = this_cpu_ptr(&pt_ctx);
1641	struct pt_buffer *buf = perf_get_aux(&pt->handle);
1642	unsigned long from = 0, to;
1643	long ret;
1644
1645	if (WARN_ON_ONCE(!buf))
1646		return 0;
1647
1648	/*
1649	 * Sampling is only allowed on snapshot events;
1650	 * see pt_buffer_setup_aux().
1651	 */
1652	if (WARN_ON_ONCE(!buf->snapshot))
1653		return 0;
1654
1655	/*
1656	 * Here, handle_nmi tells us if the tracing is on
1657	 */
1658	if (READ_ONCE(pt->handle_nmi))
1659		pt_config_stop(event);
1660
1661	pt_read_offset(buf);
1662	pt_update_head(pt);
1663
1664	to = local_read(&buf->data_size);
1665	if (to < size)
1666		from = buf->nr_pages << PAGE_SHIFT;
1667	from += to - size;
1668
1669	ret = perf_output_copy_aux(&pt->handle, handle, from, to);
1670
1671	/*
1672	 * If the tracing was on when we turned up, restart it.
1673	 * Compiler barrier not needed as we couldn't have been
1674	 * preempted by anything that touches pt->handle_nmi.
1675	 */
1676	if (pt->handle_nmi)
1677		pt_config_start(event);
1678
1679	return ret;
1680}
1681
1682static void pt_event_del(struct perf_event *event, int mode)
1683{
1684	pt_event_stop(event, PERF_EF_UPDATE);
1685}
1686
1687static int pt_event_add(struct perf_event *event, int mode)
1688{
1689	struct pt *pt = this_cpu_ptr(&pt_ctx);
1690	struct hw_perf_event *hwc = &event->hw;
1691	int ret = -EBUSY;
1692
1693	if (pt->handle.event)
1694		goto fail;
1695
1696	if (mode & PERF_EF_START) {
1697		pt_event_start(event, 0);
1698		ret = -EINVAL;
1699		if (hwc->state == PERF_HES_STOPPED)
1700			goto fail;
1701	} else {
1702		hwc->state = PERF_HES_STOPPED;
1703	}
1704
1705	ret = 0;
1706fail:
1707
1708	return ret;
1709}
1710
1711static void pt_event_read(struct perf_event *event)
1712{
1713}
1714
1715static void pt_event_destroy(struct perf_event *event)
1716{
1717	pt_addr_filters_fini(event);
1718	x86_del_exclusive(x86_lbr_exclusive_pt);
1719}
1720
1721static int pt_event_init(struct perf_event *event)
1722{
1723	if (event->attr.type != pt_pmu.pmu.type)
1724		return -ENOENT;
1725
1726	if (!pt_event_valid(event))
1727		return -EINVAL;
1728
1729	if (x86_add_exclusive(x86_lbr_exclusive_pt))
1730		return -EBUSY;
1731
1732	if (pt_addr_filters_init(event)) {
1733		x86_del_exclusive(x86_lbr_exclusive_pt);
1734		return -ENOMEM;
1735	}
1736
1737	event->destroy = pt_event_destroy;
1738
1739	return 0;
1740}
1741
1742void cpu_emergency_stop_pt(void)
1743{
1744	struct pt *pt = this_cpu_ptr(&pt_ctx);
1745
1746	if (pt->handle.event)
1747		pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1748}
1749
1750int is_intel_pt_event(struct perf_event *event)
1751{
1752	return event->pmu == &pt_pmu.pmu;
1753}
1754
1755static __init int pt_init(void)
1756{
1757	int ret, cpu, prior_warn = 0;
1758
1759	BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1760
1761	if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1762		return -ENODEV;
1763
1764	cpus_read_lock();
1765	for_each_online_cpu(cpu) {
1766		u64 ctl;
1767
1768		ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1769		if (!ret && (ctl & RTIT_CTL_TRACEEN))
1770			prior_warn++;
1771	}
1772	cpus_read_unlock();
1773
1774	if (prior_warn) {
1775		x86_add_exclusive(x86_lbr_exclusive_pt);
1776		pr_warn("PT is enabled at boot time, doing nothing\n");
1777
1778		return -EBUSY;
1779	}
1780
1781	ret = pt_pmu_hw_init();
1782	if (ret)
1783		return ret;
1784
1785	if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
1786		pr_warn("ToPA output is not supported on this CPU\n");
1787		return -ENODEV;
1788	}
1789
1790	if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
1791		pt_pmu.pmu.capabilities = PERF_PMU_CAP_AUX_NO_SG;
1792
1793	pt_pmu.pmu.capabilities	|= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1794	pt_pmu.pmu.attr_groups		 = pt_attr_groups;
1795	pt_pmu.pmu.task_ctx_nr		 = perf_sw_context;
1796	pt_pmu.pmu.event_init		 = pt_event_init;
1797	pt_pmu.pmu.add			 = pt_event_add;
1798	pt_pmu.pmu.del			 = pt_event_del;
1799	pt_pmu.pmu.start		 = pt_event_start;
1800	pt_pmu.pmu.stop			 = pt_event_stop;
1801	pt_pmu.pmu.snapshot_aux		 = pt_event_snapshot_aux;
1802	pt_pmu.pmu.read			 = pt_event_read;
1803	pt_pmu.pmu.setup_aux		 = pt_buffer_setup_aux;
1804	pt_pmu.pmu.free_aux		 = pt_buffer_free_aux;
1805	pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1806	pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1807	pt_pmu.pmu.nr_addr_filters       =
1808		intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
1809
1810	ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1811
1812	return ret;
1813}
1814arch_initcall(pt_init);
1815