xref: /kernel/linux/linux-6.6/arch/x86/events/intel/lbr.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/perf_event.h>
3#include <linux/types.h>
4
5#include <asm/perf_event.h>
6#include <asm/msr.h>
7
8#include "../perf_event.h"
9
10/*
11 * Intel LBR_SELECT bits
12 * Intel Vol3a, April 2011, Section 16.7 Table 16-10
13 *
14 * Hardware branch filter (not available on all CPUs)
15 */
16#define LBR_KERNEL_BIT		0 /* do not capture at ring0 */
17#define LBR_USER_BIT		1 /* do not capture at ring > 0 */
18#define LBR_JCC_BIT		2 /* do not capture conditional branches */
19#define LBR_REL_CALL_BIT	3 /* do not capture relative calls */
20#define LBR_IND_CALL_BIT	4 /* do not capture indirect calls */
21#define LBR_RETURN_BIT		5 /* do not capture near returns */
22#define LBR_IND_JMP_BIT		6 /* do not capture indirect jumps */
23#define LBR_REL_JMP_BIT		7 /* do not capture relative jumps */
24#define LBR_FAR_BIT		8 /* do not capture far branches */
25#define LBR_CALL_STACK_BIT	9 /* enable call stack */
26
27/*
28 * Following bit only exists in Linux; we mask it out before writing it to
29 * the actual MSR. But it helps the constraint perf code to understand
30 * that this is a separate configuration.
31 */
32#define LBR_NO_INFO_BIT	       63 /* don't read LBR_INFO. */
33
34#define LBR_KERNEL	(1 << LBR_KERNEL_BIT)
35#define LBR_USER	(1 << LBR_USER_BIT)
36#define LBR_JCC		(1 << LBR_JCC_BIT)
37#define LBR_REL_CALL	(1 << LBR_REL_CALL_BIT)
38#define LBR_IND_CALL	(1 << LBR_IND_CALL_BIT)
39#define LBR_RETURN	(1 << LBR_RETURN_BIT)
40#define LBR_REL_JMP	(1 << LBR_REL_JMP_BIT)
41#define LBR_IND_JMP	(1 << LBR_IND_JMP_BIT)
42#define LBR_FAR		(1 << LBR_FAR_BIT)
43#define LBR_CALL_STACK	(1 << LBR_CALL_STACK_BIT)
44#define LBR_NO_INFO	(1ULL << LBR_NO_INFO_BIT)
45
46#define LBR_PLM (LBR_KERNEL | LBR_USER)
47
48#define LBR_SEL_MASK	0x3ff	/* valid bits in LBR_SELECT */
49#define LBR_NOT_SUPP	-1	/* LBR filter not supported */
50#define LBR_IGN		0	/* ignored */
51
52#define LBR_ANY		 \
53	(LBR_JCC	|\
54	 LBR_REL_CALL	|\
55	 LBR_IND_CALL	|\
56	 LBR_RETURN	|\
57	 LBR_REL_JMP	|\
58	 LBR_IND_JMP	|\
59	 LBR_FAR)
60
61#define LBR_FROM_FLAG_MISPRED	BIT_ULL(63)
62#define LBR_FROM_FLAG_IN_TX	BIT_ULL(62)
63#define LBR_FROM_FLAG_ABORT	BIT_ULL(61)
64
65#define LBR_FROM_SIGNEXT_2MSB	(BIT_ULL(60) | BIT_ULL(59))
66
67/*
68 * Intel LBR_CTL bits
69 *
70 * Hardware branch filter for Arch LBR
71 */
72#define ARCH_LBR_KERNEL_BIT		1  /* capture at ring0 */
73#define ARCH_LBR_USER_BIT		2  /* capture at ring > 0 */
74#define ARCH_LBR_CALL_STACK_BIT		3  /* enable call stack */
75#define ARCH_LBR_JCC_BIT		16 /* capture conditional branches */
76#define ARCH_LBR_REL_JMP_BIT		17 /* capture relative jumps */
77#define ARCH_LBR_IND_JMP_BIT		18 /* capture indirect jumps */
78#define ARCH_LBR_REL_CALL_BIT		19 /* capture relative calls */
79#define ARCH_LBR_IND_CALL_BIT		20 /* capture indirect calls */
80#define ARCH_LBR_RETURN_BIT		21 /* capture near returns */
81#define ARCH_LBR_OTHER_BRANCH_BIT	22 /* capture other branches */
82
83#define ARCH_LBR_KERNEL			(1ULL << ARCH_LBR_KERNEL_BIT)
84#define ARCH_LBR_USER			(1ULL << ARCH_LBR_USER_BIT)
85#define ARCH_LBR_CALL_STACK		(1ULL << ARCH_LBR_CALL_STACK_BIT)
86#define ARCH_LBR_JCC			(1ULL << ARCH_LBR_JCC_BIT)
87#define ARCH_LBR_REL_JMP		(1ULL << ARCH_LBR_REL_JMP_BIT)
88#define ARCH_LBR_IND_JMP		(1ULL << ARCH_LBR_IND_JMP_BIT)
89#define ARCH_LBR_REL_CALL		(1ULL << ARCH_LBR_REL_CALL_BIT)
90#define ARCH_LBR_IND_CALL		(1ULL << ARCH_LBR_IND_CALL_BIT)
91#define ARCH_LBR_RETURN			(1ULL << ARCH_LBR_RETURN_BIT)
92#define ARCH_LBR_OTHER_BRANCH		(1ULL << ARCH_LBR_OTHER_BRANCH_BIT)
93
94#define ARCH_LBR_ANY			 \
95	(ARCH_LBR_JCC			|\
96	 ARCH_LBR_REL_JMP		|\
97	 ARCH_LBR_IND_JMP		|\
98	 ARCH_LBR_REL_CALL		|\
99	 ARCH_LBR_IND_CALL		|\
100	 ARCH_LBR_RETURN		|\
101	 ARCH_LBR_OTHER_BRANCH)
102
103#define ARCH_LBR_CTL_MASK			0x7f000e
104
105static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
106
107static __always_inline bool is_lbr_call_stack_bit_set(u64 config)
108{
109	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
110		return !!(config & ARCH_LBR_CALL_STACK);
111
112	return !!(config & LBR_CALL_STACK);
113}
114
115/*
116 * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
117 * otherwise it becomes near impossible to get a reliable stack.
118 */
119
120static void __intel_pmu_lbr_enable(bool pmi)
121{
122	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
123	u64 debugctl, lbr_select = 0, orig_debugctl;
124
125	/*
126	 * No need to unfreeze manually, as v4 can do that as part
127	 * of the GLOBAL_STATUS ack.
128	 */
129	if (pmi && x86_pmu.version >= 4)
130		return;
131
132	/*
133	 * No need to reprogram LBR_SELECT in a PMI, as it
134	 * did not change.
135	 */
136	if (cpuc->lbr_sel)
137		lbr_select = cpuc->lbr_sel->config & x86_pmu.lbr_sel_mask;
138	if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && !pmi && cpuc->lbr_sel)
139		wrmsrl(MSR_LBR_SELECT, lbr_select);
140
141	rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
142	orig_debugctl = debugctl;
143
144	if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
145		debugctl |= DEBUGCTLMSR_LBR;
146	/*
147	 * LBR callstack does not work well with FREEZE_LBRS_ON_PMI.
148	 * If FREEZE_LBRS_ON_PMI is set, PMI near call/return instructions
149	 * may cause superfluous increase/decrease of LBR_TOS.
150	 */
151	if (is_lbr_call_stack_bit_set(lbr_select))
152		debugctl &= ~DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
153	else
154		debugctl |= DEBUGCTLMSR_FREEZE_LBRS_ON_PMI;
155
156	if (orig_debugctl != debugctl)
157		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
158
159	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
160		wrmsrl(MSR_ARCH_LBR_CTL, lbr_select | ARCH_LBR_CTL_LBREN);
161}
162
163void intel_pmu_lbr_reset_32(void)
164{
165	int i;
166
167	for (i = 0; i < x86_pmu.lbr_nr; i++)
168		wrmsrl(x86_pmu.lbr_from + i, 0);
169}
170
171void intel_pmu_lbr_reset_64(void)
172{
173	int i;
174
175	for (i = 0; i < x86_pmu.lbr_nr; i++) {
176		wrmsrl(x86_pmu.lbr_from + i, 0);
177		wrmsrl(x86_pmu.lbr_to   + i, 0);
178		if (x86_pmu.lbr_has_info)
179			wrmsrl(x86_pmu.lbr_info + i, 0);
180	}
181}
182
183static void intel_pmu_arch_lbr_reset(void)
184{
185	/* Write to ARCH_LBR_DEPTH MSR, all LBR entries are reset to 0 */
186	wrmsrl(MSR_ARCH_LBR_DEPTH, x86_pmu.lbr_nr);
187}
188
189void intel_pmu_lbr_reset(void)
190{
191	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
192
193	if (!x86_pmu.lbr_nr)
194		return;
195
196	x86_pmu.lbr_reset();
197
198	cpuc->last_task_ctx = NULL;
199	cpuc->last_log_id = 0;
200	if (!static_cpu_has(X86_FEATURE_ARCH_LBR) && cpuc->lbr_select)
201		wrmsrl(MSR_LBR_SELECT, 0);
202}
203
204/*
205 * TOS = most recently recorded branch
206 */
207static inline u64 intel_pmu_lbr_tos(void)
208{
209	u64 tos;
210
211	rdmsrl(x86_pmu.lbr_tos, tos);
212	return tos;
213}
214
215enum {
216	LBR_NONE,
217	LBR_VALID,
218};
219
220/*
221 * For format LBR_FORMAT_EIP_FLAGS2, bits 61:62 in MSR_LAST_BRANCH_FROM_x
222 * are the TSX flags when TSX is supported, but when TSX is not supported
223 * they have no consistent behavior:
224 *
225 *   - For wrmsr(), bits 61:62 are considered part of the sign extension.
226 *   - For HW updates (branch captures) bits 61:62 are always OFF and are not
227 *     part of the sign extension.
228 *
229 * Therefore, if:
230 *
231 *   1) LBR format LBR_FORMAT_EIP_FLAGS2
232 *   2) CPU has no TSX support enabled
233 *
234 * ... then any value passed to wrmsr() must be sign extended to 63 bits and any
235 * value from rdmsr() must be converted to have a 61 bits sign extension,
236 * ignoring the TSX flags.
237 */
238static inline bool lbr_from_signext_quirk_needed(void)
239{
240	bool tsx_support = boot_cpu_has(X86_FEATURE_HLE) ||
241			   boot_cpu_has(X86_FEATURE_RTM);
242
243	return !tsx_support;
244}
245
246static DEFINE_STATIC_KEY_FALSE(lbr_from_quirk_key);
247
248/* If quirk is enabled, ensure sign extension is 63 bits: */
249inline u64 lbr_from_signext_quirk_wr(u64 val)
250{
251	if (static_branch_unlikely(&lbr_from_quirk_key)) {
252		/*
253		 * Sign extend into bits 61:62 while preserving bit 63.
254		 *
255		 * Quirk is enabled when TSX is disabled. Therefore TSX bits
256		 * in val are always OFF and must be changed to be sign
257		 * extension bits. Since bits 59:60 are guaranteed to be
258		 * part of the sign extension bits, we can just copy them
259		 * to 61:62.
260		 */
261		val |= (LBR_FROM_SIGNEXT_2MSB & val) << 2;
262	}
263	return val;
264}
265
266/*
267 * If quirk is needed, ensure sign extension is 61 bits:
268 */
269static u64 lbr_from_signext_quirk_rd(u64 val)
270{
271	if (static_branch_unlikely(&lbr_from_quirk_key)) {
272		/*
273		 * Quirk is on when TSX is not enabled. Therefore TSX
274		 * flags must be read as OFF.
275		 */
276		val &= ~(LBR_FROM_FLAG_IN_TX | LBR_FROM_FLAG_ABORT);
277	}
278	return val;
279}
280
281static __always_inline void wrlbr_from(unsigned int idx, u64 val)
282{
283	val = lbr_from_signext_quirk_wr(val);
284	wrmsrl(x86_pmu.lbr_from + idx, val);
285}
286
287static __always_inline void wrlbr_to(unsigned int idx, u64 val)
288{
289	wrmsrl(x86_pmu.lbr_to + idx, val);
290}
291
292static __always_inline void wrlbr_info(unsigned int idx, u64 val)
293{
294	wrmsrl(x86_pmu.lbr_info + idx, val);
295}
296
297static __always_inline u64 rdlbr_from(unsigned int idx, struct lbr_entry *lbr)
298{
299	u64 val;
300
301	if (lbr)
302		return lbr->from;
303
304	rdmsrl(x86_pmu.lbr_from + idx, val);
305
306	return lbr_from_signext_quirk_rd(val);
307}
308
309static __always_inline u64 rdlbr_to(unsigned int idx, struct lbr_entry *lbr)
310{
311	u64 val;
312
313	if (lbr)
314		return lbr->to;
315
316	rdmsrl(x86_pmu.lbr_to + idx, val);
317
318	return val;
319}
320
321static __always_inline u64 rdlbr_info(unsigned int idx, struct lbr_entry *lbr)
322{
323	u64 val;
324
325	if (lbr)
326		return lbr->info;
327
328	rdmsrl(x86_pmu.lbr_info + idx, val);
329
330	return val;
331}
332
333static inline void
334wrlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
335{
336	wrlbr_from(idx, lbr->from);
337	wrlbr_to(idx, lbr->to);
338	if (need_info)
339		wrlbr_info(idx, lbr->info);
340}
341
342static inline bool
343rdlbr_all(struct lbr_entry *lbr, unsigned int idx, bool need_info)
344{
345	u64 from = rdlbr_from(idx, NULL);
346
347	/* Don't read invalid entry */
348	if (!from)
349		return false;
350
351	lbr->from = from;
352	lbr->to = rdlbr_to(idx, NULL);
353	if (need_info)
354		lbr->info = rdlbr_info(idx, NULL);
355
356	return true;
357}
358
359void intel_pmu_lbr_restore(void *ctx)
360{
361	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
362	struct x86_perf_task_context *task_ctx = ctx;
363	bool need_info = x86_pmu.lbr_has_info;
364	u64 tos = task_ctx->tos;
365	unsigned lbr_idx, mask;
366	int i;
367
368	mask = x86_pmu.lbr_nr - 1;
369	for (i = 0; i < task_ctx->valid_lbrs; i++) {
370		lbr_idx = (tos - i) & mask;
371		wrlbr_all(&task_ctx->lbr[i], lbr_idx, need_info);
372	}
373
374	for (; i < x86_pmu.lbr_nr; i++) {
375		lbr_idx = (tos - i) & mask;
376		wrlbr_from(lbr_idx, 0);
377		wrlbr_to(lbr_idx, 0);
378		if (need_info)
379			wrlbr_info(lbr_idx, 0);
380	}
381
382	wrmsrl(x86_pmu.lbr_tos, tos);
383
384	if (cpuc->lbr_select)
385		wrmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
386}
387
388static void intel_pmu_arch_lbr_restore(void *ctx)
389{
390	struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
391	struct lbr_entry *entries = task_ctx->entries;
392	int i;
393
394	/* Fast reset the LBRs before restore if the call stack is not full. */
395	if (!entries[x86_pmu.lbr_nr - 1].from)
396		intel_pmu_arch_lbr_reset();
397
398	for (i = 0; i < x86_pmu.lbr_nr; i++) {
399		if (!entries[i].from)
400			break;
401		wrlbr_all(&entries[i], i, true);
402	}
403}
404
405/*
406 * Restore the Architecture LBR state from the xsave area in the perf
407 * context data for the task via the XRSTORS instruction.
408 */
409static void intel_pmu_arch_lbr_xrstors(void *ctx)
410{
411	struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
412
413	xrstors(&task_ctx->xsave, XFEATURE_MASK_LBR);
414}
415
416static __always_inline bool lbr_is_reset_in_cstate(void *ctx)
417{
418	if (static_cpu_has(X86_FEATURE_ARCH_LBR))
419		return x86_pmu.lbr_deep_c_reset && !rdlbr_from(0, NULL);
420
421	return !rdlbr_from(((struct x86_perf_task_context *)ctx)->tos, NULL);
422}
423
424static void __intel_pmu_lbr_restore(void *ctx)
425{
426	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
427
428	if (task_context_opt(ctx)->lbr_callstack_users == 0 ||
429	    task_context_opt(ctx)->lbr_stack_state == LBR_NONE) {
430		intel_pmu_lbr_reset();
431		return;
432	}
433
434	/*
435	 * Does not restore the LBR registers, if
436	 * - No one else touched them, and
437	 * - Was not cleared in Cstate
438	 */
439	if ((ctx == cpuc->last_task_ctx) &&
440	    (task_context_opt(ctx)->log_id == cpuc->last_log_id) &&
441	    !lbr_is_reset_in_cstate(ctx)) {
442		task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
443		return;
444	}
445
446	x86_pmu.lbr_restore(ctx);
447
448	task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
449}
450
451void intel_pmu_lbr_save(void *ctx)
452{
453	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
454	struct x86_perf_task_context *task_ctx = ctx;
455	bool need_info = x86_pmu.lbr_has_info;
456	unsigned lbr_idx, mask;
457	u64 tos;
458	int i;
459
460	mask = x86_pmu.lbr_nr - 1;
461	tos = intel_pmu_lbr_tos();
462	for (i = 0; i < x86_pmu.lbr_nr; i++) {
463		lbr_idx = (tos - i) & mask;
464		if (!rdlbr_all(&task_ctx->lbr[i], lbr_idx, need_info))
465			break;
466	}
467	task_ctx->valid_lbrs = i;
468	task_ctx->tos = tos;
469
470	if (cpuc->lbr_select)
471		rdmsrl(MSR_LBR_SELECT, task_ctx->lbr_sel);
472}
473
474static void intel_pmu_arch_lbr_save(void *ctx)
475{
476	struct x86_perf_task_context_arch_lbr *task_ctx = ctx;
477	struct lbr_entry *entries = task_ctx->entries;
478	int i;
479
480	for (i = 0; i < x86_pmu.lbr_nr; i++) {
481		if (!rdlbr_all(&entries[i], i, true))
482			break;
483	}
484
485	/* LBR call stack is not full. Reset is required in restore. */
486	if (i < x86_pmu.lbr_nr)
487		entries[x86_pmu.lbr_nr - 1].from = 0;
488}
489
490/*
491 * Save the Architecture LBR state to the xsave area in the perf
492 * context data for the task via the XSAVES instruction.
493 */
494static void intel_pmu_arch_lbr_xsaves(void *ctx)
495{
496	struct x86_perf_task_context_arch_lbr_xsave *task_ctx = ctx;
497
498	xsaves(&task_ctx->xsave, XFEATURE_MASK_LBR);
499}
500
501static void __intel_pmu_lbr_save(void *ctx)
502{
503	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
504
505	if (task_context_opt(ctx)->lbr_callstack_users == 0) {
506		task_context_opt(ctx)->lbr_stack_state = LBR_NONE;
507		return;
508	}
509
510	x86_pmu.lbr_save(ctx);
511
512	task_context_opt(ctx)->lbr_stack_state = LBR_VALID;
513
514	cpuc->last_task_ctx = ctx;
515	cpuc->last_log_id = ++task_context_opt(ctx)->log_id;
516}
517
518void intel_pmu_lbr_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
519				 struct perf_event_pmu_context *next_epc)
520{
521	void *prev_ctx_data, *next_ctx_data;
522
523	swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
524
525	/*
526	 * Architecture specific synchronization makes sense in case
527	 * both prev_epc->task_ctx_data and next_epc->task_ctx_data
528	 * pointers are allocated.
529	 */
530
531	prev_ctx_data = next_epc->task_ctx_data;
532	next_ctx_data = prev_epc->task_ctx_data;
533
534	if (!prev_ctx_data || !next_ctx_data)
535		return;
536
537	swap(task_context_opt(prev_ctx_data)->lbr_callstack_users,
538	     task_context_opt(next_ctx_data)->lbr_callstack_users);
539}
540
541void intel_pmu_lbr_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
542{
543	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
544	void *task_ctx;
545
546	if (!cpuc->lbr_users)
547		return;
548
549	/*
550	 * If LBR callstack feature is enabled and the stack was saved when
551	 * the task was scheduled out, restore the stack. Otherwise flush
552	 * the LBR stack.
553	 */
554	task_ctx = pmu_ctx ? pmu_ctx->task_ctx_data : NULL;
555	if (task_ctx) {
556		if (sched_in)
557			__intel_pmu_lbr_restore(task_ctx);
558		else
559			__intel_pmu_lbr_save(task_ctx);
560		return;
561	}
562
563	/*
564	 * Since a context switch can flip the address space and LBR entries
565	 * are not tagged with an identifier, we need to wipe the LBR, even for
566	 * per-cpu events. You simply cannot resolve the branches from the old
567	 * address space.
568	 */
569	if (sched_in)
570		intel_pmu_lbr_reset();
571}
572
573static inline bool branch_user_callstack(unsigned br_sel)
574{
575	return (br_sel & X86_BR_USER) && (br_sel & X86_BR_CALL_STACK);
576}
577
578void intel_pmu_lbr_add(struct perf_event *event)
579{
580	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
581
582	if (!x86_pmu.lbr_nr)
583		return;
584
585	if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
586		cpuc->lbr_select = 1;
587
588	cpuc->br_sel = event->hw.branch_reg.reg;
589
590	if (branch_user_callstack(cpuc->br_sel) && event->pmu_ctx->task_ctx_data)
591		task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users++;
592
593	/*
594	 * Request pmu::sched_task() callback, which will fire inside the
595	 * regular perf event scheduling, so that call will:
596	 *
597	 *  - restore or wipe; when LBR-callstack,
598	 *  - wipe; otherwise,
599	 *
600	 * when this is from __perf_event_task_sched_in().
601	 *
602	 * However, if this is from perf_install_in_context(), no such callback
603	 * will follow and we'll need to reset the LBR here if this is the
604	 * first LBR event.
605	 *
606	 * The problem is, we cannot tell these cases apart... but we can
607	 * exclude the biggest chunk of cases by looking at
608	 * event->total_time_running. An event that has accrued runtime cannot
609	 * be 'new'. Conversely, a new event can get installed through the
610	 * context switch path for the first time.
611	 */
612	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
613		cpuc->lbr_pebs_users++;
614	perf_sched_cb_inc(event->pmu);
615	if (!cpuc->lbr_users++ && !event->total_time_running)
616		intel_pmu_lbr_reset();
617}
618
619void release_lbr_buffers(void)
620{
621	struct kmem_cache *kmem_cache;
622	struct cpu_hw_events *cpuc;
623	int cpu;
624
625	if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
626		return;
627
628	for_each_possible_cpu(cpu) {
629		cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
630		kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
631		if (kmem_cache && cpuc->lbr_xsave) {
632			kmem_cache_free(kmem_cache, cpuc->lbr_xsave);
633			cpuc->lbr_xsave = NULL;
634		}
635	}
636}
637
638void reserve_lbr_buffers(void)
639{
640	struct kmem_cache *kmem_cache;
641	struct cpu_hw_events *cpuc;
642	int cpu;
643
644	if (!static_cpu_has(X86_FEATURE_ARCH_LBR))
645		return;
646
647	for_each_possible_cpu(cpu) {
648		cpuc = per_cpu_ptr(&cpu_hw_events, cpu);
649		kmem_cache = x86_get_pmu(cpu)->task_ctx_cache;
650		if (!kmem_cache || cpuc->lbr_xsave)
651			continue;
652
653		cpuc->lbr_xsave = kmem_cache_alloc_node(kmem_cache,
654							GFP_KERNEL | __GFP_ZERO,
655							cpu_to_node(cpu));
656	}
657}
658
659void intel_pmu_lbr_del(struct perf_event *event)
660{
661	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
662
663	if (!x86_pmu.lbr_nr)
664		return;
665
666	if (branch_user_callstack(cpuc->br_sel) &&
667	    event->pmu_ctx->task_ctx_data)
668		task_context_opt(event->pmu_ctx->task_ctx_data)->lbr_callstack_users--;
669
670	if (event->hw.flags & PERF_X86_EVENT_LBR_SELECT)
671		cpuc->lbr_select = 0;
672
673	if (x86_pmu.intel_cap.pebs_baseline && event->attr.precise_ip > 0)
674		cpuc->lbr_pebs_users--;
675	cpuc->lbr_users--;
676	WARN_ON_ONCE(cpuc->lbr_users < 0);
677	WARN_ON_ONCE(cpuc->lbr_pebs_users < 0);
678	perf_sched_cb_dec(event->pmu);
679}
680
681static inline bool vlbr_exclude_host(void)
682{
683	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
684
685	return test_bit(INTEL_PMC_IDX_FIXED_VLBR,
686		(unsigned long *)&cpuc->intel_ctrl_guest_mask);
687}
688
689void intel_pmu_lbr_enable_all(bool pmi)
690{
691	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
692
693	if (cpuc->lbr_users && !vlbr_exclude_host())
694		__intel_pmu_lbr_enable(pmi);
695}
696
697void intel_pmu_lbr_disable_all(void)
698{
699	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
700
701	if (cpuc->lbr_users && !vlbr_exclude_host()) {
702		if (static_cpu_has(X86_FEATURE_ARCH_LBR))
703			return __intel_pmu_arch_lbr_disable();
704
705		__intel_pmu_lbr_disable();
706	}
707}
708
709void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
710{
711	unsigned long mask = x86_pmu.lbr_nr - 1;
712	struct perf_branch_entry *br = cpuc->lbr_entries;
713	u64 tos = intel_pmu_lbr_tos();
714	int i;
715
716	for (i = 0; i < x86_pmu.lbr_nr; i++) {
717		unsigned long lbr_idx = (tos - i) & mask;
718		union {
719			struct {
720				u32 from;
721				u32 to;
722			};
723			u64     lbr;
724		} msr_lastbranch;
725
726		rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
727
728		perf_clear_branch_entry_bitfields(br);
729
730		br->from	= msr_lastbranch.from;
731		br->to		= msr_lastbranch.to;
732		br++;
733	}
734	cpuc->lbr_stack.nr = i;
735	cpuc->lbr_stack.hw_idx = tos;
736}
737
738/*
739 * Due to lack of segmentation in Linux the effective address (offset)
740 * is the same as the linear address, allowing us to merge the LIP and EIP
741 * LBR formats.
742 */
743void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
744{
745	bool need_info = false, call_stack = false;
746	unsigned long mask = x86_pmu.lbr_nr - 1;
747	struct perf_branch_entry *br = cpuc->lbr_entries;
748	u64 tos = intel_pmu_lbr_tos();
749	int i;
750	int out = 0;
751	int num = x86_pmu.lbr_nr;
752
753	if (cpuc->lbr_sel) {
754		need_info = !(cpuc->lbr_sel->config & LBR_NO_INFO);
755		if (cpuc->lbr_sel->config & LBR_CALL_STACK)
756			call_stack = true;
757	}
758
759	for (i = 0; i < num; i++) {
760		unsigned long lbr_idx = (tos - i) & mask;
761		u64 from, to, mis = 0, pred = 0, in_tx = 0, abort = 0;
762		u16 cycles = 0;
763
764		from = rdlbr_from(lbr_idx, NULL);
765		to   = rdlbr_to(lbr_idx, NULL);
766
767		/*
768		 * Read LBR call stack entries
769		 * until invalid entry (0s) is detected.
770		 */
771		if (call_stack && !from)
772			break;
773
774		if (x86_pmu.lbr_has_info) {
775			if (need_info) {
776				u64 info;
777
778				info = rdlbr_info(lbr_idx, NULL);
779				mis = !!(info & LBR_INFO_MISPRED);
780				pred = !mis;
781				cycles = (info & LBR_INFO_CYCLES);
782				if (x86_pmu.lbr_has_tsx) {
783					in_tx = !!(info & LBR_INFO_IN_TX);
784					abort = !!(info & LBR_INFO_ABORT);
785				}
786			}
787		} else {
788			int skip = 0;
789
790			if (x86_pmu.lbr_from_flags) {
791				mis = !!(from & LBR_FROM_FLAG_MISPRED);
792				pred = !mis;
793				skip = 1;
794			}
795			if (x86_pmu.lbr_has_tsx) {
796				in_tx = !!(from & LBR_FROM_FLAG_IN_TX);
797				abort = !!(from & LBR_FROM_FLAG_ABORT);
798				skip = 3;
799			}
800			from = (u64)((((s64)from) << skip) >> skip);
801
802			if (x86_pmu.lbr_to_cycles) {
803				cycles = ((to >> 48) & LBR_INFO_CYCLES);
804				to = (u64)((((s64)to) << 16) >> 16);
805			}
806		}
807
808		/*
809		 * Some CPUs report duplicated abort records,
810		 * with the second entry not having an abort bit set.
811		 * Skip them here. This loop runs backwards,
812		 * so we need to undo the previous record.
813		 * If the abort just happened outside the window
814		 * the extra entry cannot be removed.
815		 */
816		if (abort && x86_pmu.lbr_double_abort && out > 0)
817			out--;
818
819		perf_clear_branch_entry_bitfields(br+out);
820		br[out].from	 = from;
821		br[out].to	 = to;
822		br[out].mispred	 = mis;
823		br[out].predicted = pred;
824		br[out].in_tx	 = in_tx;
825		br[out].abort	 = abort;
826		br[out].cycles	 = cycles;
827		out++;
828	}
829	cpuc->lbr_stack.nr = out;
830	cpuc->lbr_stack.hw_idx = tos;
831}
832
833static DEFINE_STATIC_KEY_FALSE(x86_lbr_mispred);
834static DEFINE_STATIC_KEY_FALSE(x86_lbr_cycles);
835static DEFINE_STATIC_KEY_FALSE(x86_lbr_type);
836
837static __always_inline int get_lbr_br_type(u64 info)
838{
839	int type = 0;
840
841	if (static_branch_likely(&x86_lbr_type))
842		type = (info & LBR_INFO_BR_TYPE) >> LBR_INFO_BR_TYPE_OFFSET;
843
844	return type;
845}
846
847static __always_inline bool get_lbr_mispred(u64 info)
848{
849	bool mispred = 0;
850
851	if (static_branch_likely(&x86_lbr_mispred))
852		mispred = !!(info & LBR_INFO_MISPRED);
853
854	return mispred;
855}
856
857static __always_inline u16 get_lbr_cycles(u64 info)
858{
859	u16 cycles = info & LBR_INFO_CYCLES;
860
861	if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
862	    (!static_branch_likely(&x86_lbr_cycles) ||
863	     !(info & LBR_INFO_CYC_CNT_VALID)))
864		cycles = 0;
865
866	return cycles;
867}
868
869static void intel_pmu_store_lbr(struct cpu_hw_events *cpuc,
870				struct lbr_entry *entries)
871{
872	struct perf_branch_entry *e;
873	struct lbr_entry *lbr;
874	u64 from, to, info;
875	int i;
876
877	for (i = 0; i < x86_pmu.lbr_nr; i++) {
878		lbr = entries ? &entries[i] : NULL;
879		e = &cpuc->lbr_entries[i];
880
881		from = rdlbr_from(i, lbr);
882		/*
883		 * Read LBR entries until invalid entry (0s) is detected.
884		 */
885		if (!from)
886			break;
887
888		to = rdlbr_to(i, lbr);
889		info = rdlbr_info(i, lbr);
890
891		perf_clear_branch_entry_bitfields(e);
892
893		e->from		= from;
894		e->to		= to;
895		e->mispred	= get_lbr_mispred(info);
896		e->predicted	= !e->mispred;
897		e->in_tx	= !!(info & LBR_INFO_IN_TX);
898		e->abort	= !!(info & LBR_INFO_ABORT);
899		e->cycles	= get_lbr_cycles(info);
900		e->type		= get_lbr_br_type(info);
901	}
902
903	cpuc->lbr_stack.nr = i;
904}
905
906static void intel_pmu_arch_lbr_read(struct cpu_hw_events *cpuc)
907{
908	intel_pmu_store_lbr(cpuc, NULL);
909}
910
911static void intel_pmu_arch_lbr_read_xsave(struct cpu_hw_events *cpuc)
912{
913	struct x86_perf_task_context_arch_lbr_xsave *xsave = cpuc->lbr_xsave;
914
915	if (!xsave) {
916		intel_pmu_store_lbr(cpuc, NULL);
917		return;
918	}
919	xsaves(&xsave->xsave, XFEATURE_MASK_LBR);
920
921	intel_pmu_store_lbr(cpuc, xsave->lbr.entries);
922}
923
924void intel_pmu_lbr_read(void)
925{
926	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
927
928	/*
929	 * Don't read when all LBRs users are using adaptive PEBS.
930	 *
931	 * This could be smarter and actually check the event,
932	 * but this simple approach seems to work for now.
933	 */
934	if (!cpuc->lbr_users || vlbr_exclude_host() ||
935	    cpuc->lbr_users == cpuc->lbr_pebs_users)
936		return;
937
938	x86_pmu.lbr_read(cpuc);
939
940	intel_pmu_lbr_filter(cpuc);
941}
942
943/*
944 * SW filter is used:
945 * - in case there is no HW filter
946 * - in case the HW filter has errata or limitations
947 */
948static int intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
949{
950	u64 br_type = event->attr.branch_sample_type;
951	int mask = 0;
952
953	if (br_type & PERF_SAMPLE_BRANCH_USER)
954		mask |= X86_BR_USER;
955
956	if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
957		mask |= X86_BR_KERNEL;
958
959	/* we ignore BRANCH_HV here */
960
961	if (br_type & PERF_SAMPLE_BRANCH_ANY)
962		mask |= X86_BR_ANY;
963
964	if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
965		mask |= X86_BR_ANY_CALL;
966
967	if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
968		mask |= X86_BR_RET | X86_BR_IRET | X86_BR_SYSRET;
969
970	if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
971		mask |= X86_BR_IND_CALL;
972
973	if (br_type & PERF_SAMPLE_BRANCH_ABORT_TX)
974		mask |= X86_BR_ABORT;
975
976	if (br_type & PERF_SAMPLE_BRANCH_IN_TX)
977		mask |= X86_BR_IN_TX;
978
979	if (br_type & PERF_SAMPLE_BRANCH_NO_TX)
980		mask |= X86_BR_NO_TX;
981
982	if (br_type & PERF_SAMPLE_BRANCH_COND)
983		mask |= X86_BR_JCC;
984
985	if (br_type & PERF_SAMPLE_BRANCH_CALL_STACK) {
986		if (!x86_pmu_has_lbr_callstack())
987			return -EOPNOTSUPP;
988		if (mask & ~(X86_BR_USER | X86_BR_KERNEL))
989			return -EINVAL;
990		mask |= X86_BR_CALL | X86_BR_IND_CALL | X86_BR_RET |
991			X86_BR_CALL_STACK;
992	}
993
994	if (br_type & PERF_SAMPLE_BRANCH_IND_JUMP)
995		mask |= X86_BR_IND_JMP;
996
997	if (br_type & PERF_SAMPLE_BRANCH_CALL)
998		mask |= X86_BR_CALL | X86_BR_ZERO_CALL;
999
1000	if (br_type & PERF_SAMPLE_BRANCH_TYPE_SAVE)
1001		mask |= X86_BR_TYPE_SAVE;
1002
1003	/*
1004	 * stash actual user request into reg, it may
1005	 * be used by fixup code for some CPU
1006	 */
1007	event->hw.branch_reg.reg = mask;
1008	return 0;
1009}
1010
1011/*
1012 * setup the HW LBR filter
1013 * Used only when available, may not be enough to disambiguate
1014 * all branches, may need the help of the SW filter
1015 */
1016static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
1017{
1018	struct hw_perf_event_extra *reg;
1019	u64 br_type = event->attr.branch_sample_type;
1020	u64 mask = 0, v;
1021	int i;
1022
1023	for (i = 0; i < PERF_SAMPLE_BRANCH_MAX_SHIFT; i++) {
1024		if (!(br_type & (1ULL << i)))
1025			continue;
1026
1027		v = x86_pmu.lbr_sel_map[i];
1028		if (v == LBR_NOT_SUPP)
1029			return -EOPNOTSUPP;
1030
1031		if (v != LBR_IGN)
1032			mask |= v;
1033	}
1034
1035	reg = &event->hw.branch_reg;
1036	reg->idx = EXTRA_REG_LBR;
1037
1038	if (static_cpu_has(X86_FEATURE_ARCH_LBR)) {
1039		reg->config = mask;
1040
1041		/*
1042		 * The Arch LBR HW can retrieve the common branch types
1043		 * from the LBR_INFO. It doesn't require the high overhead
1044		 * SW disassemble.
1045		 * Enable the branch type by default for the Arch LBR.
1046		 */
1047		reg->reg |= X86_BR_TYPE_SAVE;
1048		return 0;
1049	}
1050
1051	/*
1052	 * The first 9 bits (LBR_SEL_MASK) in LBR_SELECT operate
1053	 * in suppress mode. So LBR_SELECT should be set to
1054	 * (~mask & LBR_SEL_MASK) | (mask & ~LBR_SEL_MASK)
1055	 * But the 10th bit LBR_CALL_STACK does not operate
1056	 * in suppress mode.
1057	 */
1058	reg->config = mask ^ (x86_pmu.lbr_sel_mask & ~LBR_CALL_STACK);
1059
1060	if ((br_type & PERF_SAMPLE_BRANCH_NO_CYCLES) &&
1061	    (br_type & PERF_SAMPLE_BRANCH_NO_FLAGS) &&
1062	    x86_pmu.lbr_has_info)
1063		reg->config |= LBR_NO_INFO;
1064
1065	return 0;
1066}
1067
1068int intel_pmu_setup_lbr_filter(struct perf_event *event)
1069{
1070	int ret = 0;
1071
1072	/*
1073	 * no LBR on this PMU
1074	 */
1075	if (!x86_pmu.lbr_nr)
1076		return -EOPNOTSUPP;
1077
1078	/*
1079	 * setup SW LBR filter
1080	 */
1081	ret = intel_pmu_setup_sw_lbr_filter(event);
1082	if (ret)
1083		return ret;
1084
1085	/*
1086	 * setup HW LBR filter, if any
1087	 */
1088	if (x86_pmu.lbr_sel_map)
1089		ret = intel_pmu_setup_hw_lbr_filter(event);
1090
1091	return ret;
1092}
1093
1094enum {
1095	ARCH_LBR_BR_TYPE_JCC			= 0,
1096	ARCH_LBR_BR_TYPE_NEAR_IND_JMP		= 1,
1097	ARCH_LBR_BR_TYPE_NEAR_REL_JMP		= 2,
1098	ARCH_LBR_BR_TYPE_NEAR_IND_CALL		= 3,
1099	ARCH_LBR_BR_TYPE_NEAR_REL_CALL		= 4,
1100	ARCH_LBR_BR_TYPE_NEAR_RET		= 5,
1101	ARCH_LBR_BR_TYPE_KNOWN_MAX		= ARCH_LBR_BR_TYPE_NEAR_RET,
1102
1103	ARCH_LBR_BR_TYPE_MAP_MAX		= 16,
1104};
1105
1106static const int arch_lbr_br_type_map[ARCH_LBR_BR_TYPE_MAP_MAX] = {
1107	[ARCH_LBR_BR_TYPE_JCC]			= X86_BR_JCC,
1108	[ARCH_LBR_BR_TYPE_NEAR_IND_JMP]		= X86_BR_IND_JMP,
1109	[ARCH_LBR_BR_TYPE_NEAR_REL_JMP]		= X86_BR_JMP,
1110	[ARCH_LBR_BR_TYPE_NEAR_IND_CALL]	= X86_BR_IND_CALL,
1111	[ARCH_LBR_BR_TYPE_NEAR_REL_CALL]	= X86_BR_CALL,
1112	[ARCH_LBR_BR_TYPE_NEAR_RET]		= X86_BR_RET,
1113};
1114
1115/*
1116 * implement actual branch filter based on user demand.
1117 * Hardware may not exactly satisfy that request, thus
1118 * we need to inspect opcodes. Mismatched branches are
1119 * discarded. Therefore, the number of branches returned
1120 * in PERF_SAMPLE_BRANCH_STACK sample may vary.
1121 */
1122static void
1123intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
1124{
1125	u64 from, to;
1126	int br_sel = cpuc->br_sel;
1127	int i, j, type, to_plm;
1128	bool compress = false;
1129
1130	/* if sampling all branches, then nothing to filter */
1131	if (((br_sel & X86_BR_ALL) == X86_BR_ALL) &&
1132	    ((br_sel & X86_BR_TYPE_SAVE) != X86_BR_TYPE_SAVE))
1133		return;
1134
1135	for (i = 0; i < cpuc->lbr_stack.nr; i++) {
1136
1137		from = cpuc->lbr_entries[i].from;
1138		to = cpuc->lbr_entries[i].to;
1139		type = cpuc->lbr_entries[i].type;
1140
1141		/*
1142		 * Parse the branch type recorded in LBR_x_INFO MSR.
1143		 * Doesn't support OTHER_BRANCH decoding for now.
1144		 * OTHER_BRANCH branch type still rely on software decoding.
1145		 */
1146		if (static_cpu_has(X86_FEATURE_ARCH_LBR) &&
1147		    type <= ARCH_LBR_BR_TYPE_KNOWN_MAX) {
1148			to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
1149			type = arch_lbr_br_type_map[type] | to_plm;
1150		} else
1151			type = branch_type(from, to, cpuc->lbr_entries[i].abort);
1152		if (type != X86_BR_NONE && (br_sel & X86_BR_ANYTX)) {
1153			if (cpuc->lbr_entries[i].in_tx)
1154				type |= X86_BR_IN_TX;
1155			else
1156				type |= X86_BR_NO_TX;
1157		}
1158
1159		/* if type does not correspond, then discard */
1160		if (type == X86_BR_NONE || (br_sel & type) != type) {
1161			cpuc->lbr_entries[i].from = 0;
1162			compress = true;
1163		}
1164
1165		if ((br_sel & X86_BR_TYPE_SAVE) == X86_BR_TYPE_SAVE)
1166			cpuc->lbr_entries[i].type = common_branch_type(type);
1167	}
1168
1169	if (!compress)
1170		return;
1171
1172	/* remove all entries with from=0 */
1173	for (i = 0; i < cpuc->lbr_stack.nr; ) {
1174		if (!cpuc->lbr_entries[i].from) {
1175			j = i;
1176			while (++j < cpuc->lbr_stack.nr)
1177				cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
1178			cpuc->lbr_stack.nr--;
1179			if (!cpuc->lbr_entries[i].from)
1180				continue;
1181		}
1182		i++;
1183	}
1184}
1185
1186void intel_pmu_store_pebs_lbrs(struct lbr_entry *lbr)
1187{
1188	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1189
1190	/* Cannot get TOS for large PEBS and Arch LBR */
1191	if (static_cpu_has(X86_FEATURE_ARCH_LBR) ||
1192	    (cpuc->n_pebs == cpuc->n_large_pebs))
1193		cpuc->lbr_stack.hw_idx = -1ULL;
1194	else
1195		cpuc->lbr_stack.hw_idx = intel_pmu_lbr_tos();
1196
1197	intel_pmu_store_lbr(cpuc, lbr);
1198	intel_pmu_lbr_filter(cpuc);
1199}
1200
1201/*
1202 * Map interface branch filters onto LBR filters
1203 */
1204static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1205	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1206	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1207	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1208	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1209	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_REL_JMP
1210						| LBR_IND_JMP | LBR_FAR,
1211	/*
1212	 * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
1213	 */
1214	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] =
1215	 LBR_REL_CALL | LBR_IND_CALL | LBR_REL_JMP | LBR_IND_JMP | LBR_FAR,
1216	/*
1217	 * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
1218	 */
1219	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_IND_CALL | LBR_IND_JMP,
1220	[PERF_SAMPLE_BRANCH_COND_SHIFT]     = LBR_JCC,
1221	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_IND_JMP,
1222};
1223
1224static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1225	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1226	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1227	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1228	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1229	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1230	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1231						| LBR_FAR,
1232	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1233	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1234	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1235	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1236};
1237
1238static const int hsw_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1239	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= LBR_ANY,
1240	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= LBR_USER,
1241	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= LBR_KERNEL,
1242	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1243	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= LBR_RETURN | LBR_FAR,
1244	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1245						| LBR_FAR,
1246	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]	= LBR_IND_CALL,
1247	[PERF_SAMPLE_BRANCH_COND_SHIFT]		= LBR_JCC,
1248	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]	= LBR_REL_CALL | LBR_IND_CALL
1249						| LBR_RETURN | LBR_CALL_STACK,
1250	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= LBR_IND_JMP,
1251	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= LBR_REL_CALL,
1252};
1253
1254static int arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_MAX_SHIFT] = {
1255	[PERF_SAMPLE_BRANCH_ANY_SHIFT]		= ARCH_LBR_ANY,
1256	[PERF_SAMPLE_BRANCH_USER_SHIFT]		= ARCH_LBR_USER,
1257	[PERF_SAMPLE_BRANCH_KERNEL_SHIFT]	= ARCH_LBR_KERNEL,
1258	[PERF_SAMPLE_BRANCH_HV_SHIFT]		= LBR_IGN,
1259	[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT]	= ARCH_LBR_RETURN |
1260						  ARCH_LBR_OTHER_BRANCH,
1261	[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT]     = ARCH_LBR_REL_CALL |
1262						  ARCH_LBR_IND_CALL |
1263						  ARCH_LBR_OTHER_BRANCH,
1264	[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT]     = ARCH_LBR_IND_CALL,
1265	[PERF_SAMPLE_BRANCH_COND_SHIFT]         = ARCH_LBR_JCC,
1266	[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT]   = ARCH_LBR_REL_CALL |
1267						  ARCH_LBR_IND_CALL |
1268						  ARCH_LBR_RETURN |
1269						  ARCH_LBR_CALL_STACK,
1270	[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT]	= ARCH_LBR_IND_JMP,
1271	[PERF_SAMPLE_BRANCH_CALL_SHIFT]		= ARCH_LBR_REL_CALL,
1272};
1273
1274/* core */
1275void __init intel_pmu_lbr_init_core(void)
1276{
1277	x86_pmu.lbr_nr     = 4;
1278	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1279	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1280	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1281
1282	/*
1283	 * SW branch filter usage:
1284	 * - compensate for lack of HW filter
1285	 */
1286}
1287
1288/* nehalem/westmere */
1289void __init intel_pmu_lbr_init_nhm(void)
1290{
1291	x86_pmu.lbr_nr     = 16;
1292	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1293	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1294	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1295
1296	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1297	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1298
1299	/*
1300	 * SW branch filter usage:
1301	 * - workaround LBR_SEL errata (see above)
1302	 * - support syscall, sysret capture.
1303	 *   That requires LBR_FAR but that means far
1304	 *   jmp need to be filtered out
1305	 */
1306}
1307
1308/* sandy bridge */
1309void __init intel_pmu_lbr_init_snb(void)
1310{
1311	x86_pmu.lbr_nr	 = 16;
1312	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1313	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1314	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1315
1316	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1317	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1318
1319	/*
1320	 * SW branch filter usage:
1321	 * - support syscall, sysret capture.
1322	 *   That requires LBR_FAR but that means far
1323	 *   jmp need to be filtered out
1324	 */
1325}
1326
1327static inline struct kmem_cache *
1328create_lbr_kmem_cache(size_t size, size_t align)
1329{
1330	return kmem_cache_create("x86_lbr", size, align, 0, NULL);
1331}
1332
1333/* haswell */
1334void intel_pmu_lbr_init_hsw(void)
1335{
1336	size_t size = sizeof(struct x86_perf_task_context);
1337
1338	x86_pmu.lbr_nr	 = 16;
1339	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1340	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1341	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1342
1343	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1344	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1345
1346	x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1347}
1348
1349/* skylake */
1350__init void intel_pmu_lbr_init_skl(void)
1351{
1352	size_t size = sizeof(struct x86_perf_task_context);
1353
1354	x86_pmu.lbr_nr	 = 32;
1355	x86_pmu.lbr_tos	 = MSR_LBR_TOS;
1356	x86_pmu.lbr_from = MSR_LBR_NHM_FROM;
1357	x86_pmu.lbr_to   = MSR_LBR_NHM_TO;
1358	x86_pmu.lbr_info = MSR_LBR_INFO_0;
1359
1360	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1361	x86_pmu.lbr_sel_map  = hsw_lbr_sel_map;
1362
1363	x86_get_pmu(smp_processor_id())->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1364
1365	/*
1366	 * SW branch filter usage:
1367	 * - support syscall, sysret capture.
1368	 *   That requires LBR_FAR but that means far
1369	 *   jmp need to be filtered out
1370	 */
1371}
1372
1373/* atom */
1374void __init intel_pmu_lbr_init_atom(void)
1375{
1376	/*
1377	 * only models starting at stepping 10 seems
1378	 * to have an operational LBR which can freeze
1379	 * on PMU interrupt
1380	 */
1381	if (boot_cpu_data.x86_model == 28
1382	    && boot_cpu_data.x86_stepping < 10) {
1383		pr_cont("LBR disabled due to erratum");
1384		return;
1385	}
1386
1387	x86_pmu.lbr_nr	   = 8;
1388	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1389	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1390	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1391
1392	/*
1393	 * SW branch filter usage:
1394	 * - compensate for lack of HW filter
1395	 */
1396}
1397
1398/* slm */
1399void __init intel_pmu_lbr_init_slm(void)
1400{
1401	x86_pmu.lbr_nr	   = 8;
1402	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1403	x86_pmu.lbr_from   = MSR_LBR_CORE_FROM;
1404	x86_pmu.lbr_to     = MSR_LBR_CORE_TO;
1405
1406	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1407	x86_pmu.lbr_sel_map  = nhm_lbr_sel_map;
1408
1409	/*
1410	 * SW branch filter usage:
1411	 * - compensate for lack of HW filter
1412	 */
1413	pr_cont("8-deep LBR, ");
1414}
1415
1416/* Knights Landing */
1417void intel_pmu_lbr_init_knl(void)
1418{
1419	x86_pmu.lbr_nr	   = 8;
1420	x86_pmu.lbr_tos    = MSR_LBR_TOS;
1421	x86_pmu.lbr_from   = MSR_LBR_NHM_FROM;
1422	x86_pmu.lbr_to     = MSR_LBR_NHM_TO;
1423
1424	x86_pmu.lbr_sel_mask = LBR_SEL_MASK;
1425	x86_pmu.lbr_sel_map  = snb_lbr_sel_map;
1426
1427	/* Knights Landing does have MISPREDICT bit */
1428	if (x86_pmu.intel_cap.lbr_format == LBR_FORMAT_LIP)
1429		x86_pmu.intel_cap.lbr_format = LBR_FORMAT_EIP_FLAGS;
1430}
1431
1432void intel_pmu_lbr_init(void)
1433{
1434	switch (x86_pmu.intel_cap.lbr_format) {
1435	case LBR_FORMAT_EIP_FLAGS2:
1436		x86_pmu.lbr_has_tsx = 1;
1437		x86_pmu.lbr_from_flags = 1;
1438		if (lbr_from_signext_quirk_needed())
1439			static_branch_enable(&lbr_from_quirk_key);
1440		break;
1441
1442	case LBR_FORMAT_EIP_FLAGS:
1443		x86_pmu.lbr_from_flags = 1;
1444		break;
1445
1446	case LBR_FORMAT_INFO:
1447		x86_pmu.lbr_has_tsx = 1;
1448		fallthrough;
1449	case LBR_FORMAT_INFO2:
1450		x86_pmu.lbr_has_info = 1;
1451		break;
1452
1453	case LBR_FORMAT_TIME:
1454		x86_pmu.lbr_from_flags = 1;
1455		x86_pmu.lbr_to_cycles = 1;
1456		break;
1457	}
1458
1459	if (x86_pmu.lbr_has_info) {
1460		/*
1461		 * Only used in combination with baseline pebs.
1462		 */
1463		static_branch_enable(&x86_lbr_mispred);
1464		static_branch_enable(&x86_lbr_cycles);
1465	}
1466}
1467
1468/*
1469 * LBR state size is variable based on the max number of registers.
1470 * This calculates the expected state size, which should match
1471 * what the hardware enumerates for the size of XFEATURE_LBR.
1472 */
1473static inline unsigned int get_lbr_state_size(void)
1474{
1475	return sizeof(struct arch_lbr_state) +
1476	       x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1477}
1478
1479static bool is_arch_lbr_xsave_available(void)
1480{
1481	if (!boot_cpu_has(X86_FEATURE_XSAVES))
1482		return false;
1483
1484	/*
1485	 * Check the LBR state with the corresponding software structure.
1486	 * Disable LBR XSAVES support if the size doesn't match.
1487	 */
1488	if (xfeature_size(XFEATURE_LBR) == 0)
1489		return false;
1490
1491	if (WARN_ON(xfeature_size(XFEATURE_LBR) != get_lbr_state_size()))
1492		return false;
1493
1494	return true;
1495}
1496
1497void __init intel_pmu_arch_lbr_init(void)
1498{
1499	struct pmu *pmu = x86_get_pmu(smp_processor_id());
1500	union cpuid28_eax eax;
1501	union cpuid28_ebx ebx;
1502	union cpuid28_ecx ecx;
1503	unsigned int unused_edx;
1504	bool arch_lbr_xsave;
1505	size_t size;
1506	u64 lbr_nr;
1507
1508	/* Arch LBR Capabilities */
1509	cpuid(28, &eax.full, &ebx.full, &ecx.full, &unused_edx);
1510
1511	lbr_nr = fls(eax.split.lbr_depth_mask) * 8;
1512	if (!lbr_nr)
1513		goto clear_arch_lbr;
1514
1515	/* Apply the max depth of Arch LBR */
1516	if (wrmsrl_safe(MSR_ARCH_LBR_DEPTH, lbr_nr))
1517		goto clear_arch_lbr;
1518
1519	x86_pmu.lbr_depth_mask = eax.split.lbr_depth_mask;
1520	x86_pmu.lbr_deep_c_reset = eax.split.lbr_deep_c_reset;
1521	x86_pmu.lbr_lip = eax.split.lbr_lip;
1522	x86_pmu.lbr_cpl = ebx.split.lbr_cpl;
1523	x86_pmu.lbr_filter = ebx.split.lbr_filter;
1524	x86_pmu.lbr_call_stack = ebx.split.lbr_call_stack;
1525	x86_pmu.lbr_mispred = ecx.split.lbr_mispred;
1526	x86_pmu.lbr_timed_lbr = ecx.split.lbr_timed_lbr;
1527	x86_pmu.lbr_br_type = ecx.split.lbr_br_type;
1528	x86_pmu.lbr_nr = lbr_nr;
1529
1530	if (x86_pmu.lbr_mispred)
1531		static_branch_enable(&x86_lbr_mispred);
1532	if (x86_pmu.lbr_timed_lbr)
1533		static_branch_enable(&x86_lbr_cycles);
1534	if (x86_pmu.lbr_br_type)
1535		static_branch_enable(&x86_lbr_type);
1536
1537	arch_lbr_xsave = is_arch_lbr_xsave_available();
1538	if (arch_lbr_xsave) {
1539		size = sizeof(struct x86_perf_task_context_arch_lbr_xsave) +
1540		       get_lbr_state_size();
1541		pmu->task_ctx_cache = create_lbr_kmem_cache(size,
1542							    XSAVE_ALIGNMENT);
1543	}
1544
1545	if (!pmu->task_ctx_cache) {
1546		arch_lbr_xsave = false;
1547
1548		size = sizeof(struct x86_perf_task_context_arch_lbr) +
1549		       lbr_nr * sizeof(struct lbr_entry);
1550		pmu->task_ctx_cache = create_lbr_kmem_cache(size, 0);
1551	}
1552
1553	x86_pmu.lbr_from = MSR_ARCH_LBR_FROM_0;
1554	x86_pmu.lbr_to = MSR_ARCH_LBR_TO_0;
1555	x86_pmu.lbr_info = MSR_ARCH_LBR_INFO_0;
1556
1557	/* LBR callstack requires both CPL and Branch Filtering support */
1558	if (!x86_pmu.lbr_cpl ||
1559	    !x86_pmu.lbr_filter ||
1560	    !x86_pmu.lbr_call_stack)
1561		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_STACK_SHIFT] = LBR_NOT_SUPP;
1562
1563	if (!x86_pmu.lbr_cpl) {
1564		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_USER_SHIFT] = LBR_NOT_SUPP;
1565		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_KERNEL_SHIFT] = LBR_NOT_SUPP;
1566	} else if (!x86_pmu.lbr_filter) {
1567		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_SHIFT] = LBR_NOT_SUPP;
1568		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_RETURN_SHIFT] = LBR_NOT_SUPP;
1569		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_ANY_CALL_SHIFT] = LBR_NOT_SUPP;
1570		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_CALL_SHIFT] = LBR_NOT_SUPP;
1571		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_COND_SHIFT] = LBR_NOT_SUPP;
1572		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_IND_JUMP_SHIFT] = LBR_NOT_SUPP;
1573		arch_lbr_ctl_map[PERF_SAMPLE_BRANCH_CALL_SHIFT] = LBR_NOT_SUPP;
1574	}
1575
1576	x86_pmu.lbr_ctl_mask = ARCH_LBR_CTL_MASK;
1577	x86_pmu.lbr_ctl_map  = arch_lbr_ctl_map;
1578
1579	if (!x86_pmu.lbr_cpl && !x86_pmu.lbr_filter)
1580		x86_pmu.lbr_ctl_map = NULL;
1581
1582	x86_pmu.lbr_reset = intel_pmu_arch_lbr_reset;
1583	if (arch_lbr_xsave) {
1584		x86_pmu.lbr_save = intel_pmu_arch_lbr_xsaves;
1585		x86_pmu.lbr_restore = intel_pmu_arch_lbr_xrstors;
1586		x86_pmu.lbr_read = intel_pmu_arch_lbr_read_xsave;
1587		pr_cont("XSAVE ");
1588	} else {
1589		x86_pmu.lbr_save = intel_pmu_arch_lbr_save;
1590		x86_pmu.lbr_restore = intel_pmu_arch_lbr_restore;
1591		x86_pmu.lbr_read = intel_pmu_arch_lbr_read;
1592	}
1593
1594	pr_cont("Architectural LBR, ");
1595
1596	return;
1597
1598clear_arch_lbr:
1599	setup_clear_cpu_cap(X86_FEATURE_ARCH_LBR);
1600}
1601
1602/**
1603 * x86_perf_get_lbr - get the LBR records information
1604 *
1605 * @lbr: the caller's memory to store the LBR records information
1606 */
1607void x86_perf_get_lbr(struct x86_pmu_lbr *lbr)
1608{
1609	lbr->nr = x86_pmu.lbr_nr;
1610	lbr->from = x86_pmu.lbr_from;
1611	lbr->to = x86_pmu.lbr_to;
1612	lbr->info = x86_pmu.lbr_info;
1613}
1614EXPORT_SYMBOL_GPL(x86_perf_get_lbr);
1615
1616struct event_constraint vlbr_constraint =
1617	__EVENT_CONSTRAINT(INTEL_FIXED_VLBR_EVENT, (1ULL << INTEL_PMC_IDX_FIXED_VLBR),
1618			  FIXED_EVENT_FLAGS, 1, 0, PERF_X86_EVENT_LBR_SELECT);
1619