xref: /kernel/linux/linux-6.6/arch/x86/events/intel/ds.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/bitops.h>
3#include <linux/types.h>
4#include <linux/slab.h>
5#include <linux/sched/clock.h>
6
7#include <asm/cpu_entry_area.h>
8#include <asm/perf_event.h>
9#include <asm/tlbflush.h>
10#include <asm/insn.h>
11#include <asm/io.h>
12#include <asm/timer.h>
13
14#include "../perf_event.h"
15
16/* Waste a full page so it can be mapped into the cpu_entry_area */
17DEFINE_PER_CPU_PAGE_ALIGNED(struct debug_store, cpu_debug_store);
18
19/* The size of a BTS record in bytes: */
20#define BTS_RECORD_SIZE		24
21
22#define PEBS_FIXUP_SIZE		PAGE_SIZE
23
24/*
25 * pebs_record_32 for p4 and core not supported
26
27struct pebs_record_32 {
28	u32 flags, ip;
29	u32 ax, bc, cx, dx;
30	u32 si, di, bp, sp;
31};
32
33 */
34
35union intel_x86_pebs_dse {
36	u64 val;
37	struct {
38		unsigned int ld_dse:4;
39		unsigned int ld_stlb_miss:1;
40		unsigned int ld_locked:1;
41		unsigned int ld_data_blk:1;
42		unsigned int ld_addr_blk:1;
43		unsigned int ld_reserved:24;
44	};
45	struct {
46		unsigned int st_l1d_hit:1;
47		unsigned int st_reserved1:3;
48		unsigned int st_stlb_miss:1;
49		unsigned int st_locked:1;
50		unsigned int st_reserved2:26;
51	};
52	struct {
53		unsigned int st_lat_dse:4;
54		unsigned int st_lat_stlb_miss:1;
55		unsigned int st_lat_locked:1;
56		unsigned int ld_reserved3:26;
57	};
58	struct {
59		unsigned int mtl_dse:5;
60		unsigned int mtl_locked:1;
61		unsigned int mtl_stlb_miss:1;
62		unsigned int mtl_fwd_blk:1;
63		unsigned int ld_reserved4:24;
64	};
65};
66
67
68/*
69 * Map PEBS Load Latency Data Source encodings to generic
70 * memory data source information
71 */
72#define P(a, b) PERF_MEM_S(a, b)
73#define OP_LH (P(OP, LOAD) | P(LVL, HIT))
74#define LEVEL(x) P(LVLNUM, x)
75#define REM P(REMOTE, REMOTE)
76#define SNOOP_NONE_MISS (P(SNOOP, NONE) | P(SNOOP, MISS))
77
78/* Version for Sandy Bridge and later */
79static u64 pebs_data_source[] = {
80	P(OP, LOAD) | P(LVL, MISS) | LEVEL(L3) | P(SNOOP, NA),/* 0x00:ukn L3 */
81	OP_LH | P(LVL, L1)  | LEVEL(L1) | P(SNOOP, NONE),  /* 0x01: L1 local */
82	OP_LH | P(LVL, LFB) | LEVEL(LFB) | P(SNOOP, NONE), /* 0x02: LFB hit */
83	OP_LH | P(LVL, L2)  | LEVEL(L2) | P(SNOOP, NONE),  /* 0x03: L2 hit */
84	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, NONE),  /* 0x04: L3 hit */
85	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, MISS),  /* 0x05: L3 hit, snoop miss */
86	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HIT),   /* 0x06: L3 hit, snoop hit */
87	OP_LH | P(LVL, L3)  | LEVEL(L3) | P(SNOOP, HITM),  /* 0x07: L3 hit, snoop hitm */
88	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x08: L3 miss snoop hit */
89	OP_LH | P(LVL, REM_CCE1) | REM | LEVEL(L3) | P(SNOOP, HITM), /* 0x09: L3 miss snoop hitm*/
90	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, HIT),       /* 0x0a: L3 miss, shared */
91	OP_LH | P(LVL, REM_RAM1) | REM | LEVEL(L3) | P(SNOOP, HIT),  /* 0x0b: L3 miss, shared */
92	OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | SNOOP_NONE_MISS,     /* 0x0c: L3 miss, excl */
93	OP_LH | P(LVL, REM_RAM1) | LEVEL(RAM) | REM | SNOOP_NONE_MISS, /* 0x0d: L3 miss, excl */
94	OP_LH | P(LVL, IO)  | LEVEL(NA) | P(SNOOP, NONE), /* 0x0e: I/O */
95	OP_LH | P(LVL, UNC) | LEVEL(NA) | P(SNOOP, NONE), /* 0x0f: uncached */
96};
97
98/* Patch up minor differences in the bits */
99void __init intel_pmu_pebs_data_source_nhm(void)
100{
101	pebs_data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
102	pebs_data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
103	pebs_data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
104}
105
106static void __init __intel_pmu_pebs_data_source_skl(bool pmem, u64 *data_source)
107{
108	u64 pmem_or_l4 = pmem ? LEVEL(PMEM) : LEVEL(L4);
109
110	data_source[0x08] = OP_LH | pmem_or_l4 | P(SNOOP, HIT);
111	data_source[0x09] = OP_LH | pmem_or_l4 | REM | P(SNOOP, HIT);
112	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
113	data_source[0x0c] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOPX, FWD);
114	data_source[0x0d] = OP_LH | LEVEL(ANY_CACHE) | REM | P(SNOOP, HITM);
115}
116
117void __init intel_pmu_pebs_data_source_skl(bool pmem)
118{
119	__intel_pmu_pebs_data_source_skl(pmem, pebs_data_source);
120}
121
122static void __init __intel_pmu_pebs_data_source_grt(u64 *data_source)
123{
124	data_source[0x05] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HIT);
125	data_source[0x06] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
126	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
127}
128
129void __init intel_pmu_pebs_data_source_grt(void)
130{
131	__intel_pmu_pebs_data_source_grt(pebs_data_source);
132}
133
134void __init intel_pmu_pebs_data_source_adl(void)
135{
136	u64 *data_source;
137
138	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
139	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
140	__intel_pmu_pebs_data_source_skl(false, data_source);
141
142	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
143	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
144	__intel_pmu_pebs_data_source_grt(data_source);
145}
146
147static void __init __intel_pmu_pebs_data_source_cmt(u64 *data_source)
148{
149	data_source[0x07] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOPX, FWD);
150	data_source[0x08] = OP_LH | P(LVL, L3) | LEVEL(L3) | P(SNOOP, HITM);
151	data_source[0x0a] = OP_LH | P(LVL, LOC_RAM)  | LEVEL(RAM) | P(SNOOP, NONE);
152	data_source[0x0b] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, NONE);
153	data_source[0x0c] = OP_LH | LEVEL(RAM) | REM | P(SNOOPX, FWD);
154	data_source[0x0d] = OP_LH | LEVEL(RAM) | REM | P(SNOOP, HITM);
155}
156
157void __init intel_pmu_pebs_data_source_mtl(void)
158{
159	u64 *data_source;
160
161	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_CORE_IDX].pebs_data_source;
162	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
163	__intel_pmu_pebs_data_source_skl(false, data_source);
164
165	data_source = x86_pmu.hybrid_pmu[X86_HYBRID_PMU_ATOM_IDX].pebs_data_source;
166	memcpy(data_source, pebs_data_source, sizeof(pebs_data_source));
167	__intel_pmu_pebs_data_source_cmt(data_source);
168}
169
170void __init intel_pmu_pebs_data_source_cmt(void)
171{
172	__intel_pmu_pebs_data_source_cmt(pebs_data_source);
173}
174
175static u64 precise_store_data(u64 status)
176{
177	union intel_x86_pebs_dse dse;
178	u64 val = P(OP, STORE) | P(SNOOP, NA) | P(LVL, L1) | P(TLB, L2);
179
180	dse.val = status;
181
182	/*
183	 * bit 4: TLB access
184	 * 1 = stored missed 2nd level TLB
185	 *
186	 * so it either hit the walker or the OS
187	 * otherwise hit 2nd level TLB
188	 */
189	if (dse.st_stlb_miss)
190		val |= P(TLB, MISS);
191	else
192		val |= P(TLB, HIT);
193
194	/*
195	 * bit 0: hit L1 data cache
196	 * if not set, then all we know is that
197	 * it missed L1D
198	 */
199	if (dse.st_l1d_hit)
200		val |= P(LVL, HIT);
201	else
202		val |= P(LVL, MISS);
203
204	/*
205	 * bit 5: Locked prefix
206	 */
207	if (dse.st_locked)
208		val |= P(LOCK, LOCKED);
209
210	return val;
211}
212
213static u64 precise_datala_hsw(struct perf_event *event, u64 status)
214{
215	union perf_mem_data_src dse;
216
217	dse.val = PERF_MEM_NA;
218
219	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW)
220		dse.mem_op = PERF_MEM_OP_STORE;
221	else if (event->hw.flags & PERF_X86_EVENT_PEBS_LD_HSW)
222		dse.mem_op = PERF_MEM_OP_LOAD;
223
224	/*
225	 * L1 info only valid for following events:
226	 *
227	 * MEM_UOPS_RETIRED.STLB_MISS_STORES
228	 * MEM_UOPS_RETIRED.LOCK_STORES
229	 * MEM_UOPS_RETIRED.SPLIT_STORES
230	 * MEM_UOPS_RETIRED.ALL_STORES
231	 */
232	if (event->hw.flags & PERF_X86_EVENT_PEBS_ST_HSW) {
233		if (status & 1)
234			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_HIT;
235		else
236			dse.mem_lvl = PERF_MEM_LVL_L1 | PERF_MEM_LVL_MISS;
237	}
238	return dse.val;
239}
240
241static inline void pebs_set_tlb_lock(u64 *val, bool tlb, bool lock)
242{
243	/*
244	 * TLB access
245	 * 0 = did not miss 2nd level TLB
246	 * 1 = missed 2nd level TLB
247	 */
248	if (tlb)
249		*val |= P(TLB, MISS) | P(TLB, L2);
250	else
251		*val |= P(TLB, HIT) | P(TLB, L1) | P(TLB, L2);
252
253	/* locked prefix */
254	if (lock)
255		*val |= P(LOCK, LOCKED);
256}
257
258/* Retrieve the latency data for e-core of ADL */
259static u64 __adl_latency_data_small(struct perf_event *event, u64 status,
260				     u8 dse, bool tlb, bool lock, bool blk)
261{
262	u64 val;
263
264	WARN_ON_ONCE(hybrid_pmu(event->pmu)->cpu_type == hybrid_big);
265
266	dse &= PERF_PEBS_DATA_SOURCE_MASK;
267	val = hybrid_var(event->pmu, pebs_data_source)[dse];
268
269	pebs_set_tlb_lock(&val, tlb, lock);
270
271	if (blk)
272		val |= P(BLK, DATA);
273	else
274		val |= P(BLK, NA);
275
276	return val;
277}
278
279u64 adl_latency_data_small(struct perf_event *event, u64 status)
280{
281	union intel_x86_pebs_dse dse;
282
283	dse.val = status;
284
285	return __adl_latency_data_small(event, status, dse.ld_dse,
286					dse.ld_locked, dse.ld_stlb_miss,
287					dse.ld_data_blk);
288}
289
290/* Retrieve the latency data for e-core of MTL */
291u64 mtl_latency_data_small(struct perf_event *event, u64 status)
292{
293	union intel_x86_pebs_dse dse;
294
295	dse.val = status;
296
297	return __adl_latency_data_small(event, status, dse.mtl_dse,
298					dse.mtl_stlb_miss, dse.mtl_locked,
299					dse.mtl_fwd_blk);
300}
301
302static u64 load_latency_data(struct perf_event *event, u64 status)
303{
304	union intel_x86_pebs_dse dse;
305	u64 val;
306
307	dse.val = status;
308
309	/*
310	 * use the mapping table for bit 0-3
311	 */
312	val = hybrid_var(event->pmu, pebs_data_source)[dse.ld_dse];
313
314	/*
315	 * Nehalem models do not support TLB, Lock infos
316	 */
317	if (x86_pmu.pebs_no_tlb) {
318		val |= P(TLB, NA) | P(LOCK, NA);
319		return val;
320	}
321
322	pebs_set_tlb_lock(&val, dse.ld_stlb_miss, dse.ld_locked);
323
324	/*
325	 * Ice Lake and earlier models do not support block infos.
326	 */
327	if (!x86_pmu.pebs_block) {
328		val |= P(BLK, NA);
329		return val;
330	}
331	/*
332	 * bit 6: load was blocked since its data could not be forwarded
333	 *        from a preceding store
334	 */
335	if (dse.ld_data_blk)
336		val |= P(BLK, DATA);
337
338	/*
339	 * bit 7: load was blocked due to potential address conflict with
340	 *        a preceding store
341	 */
342	if (dse.ld_addr_blk)
343		val |= P(BLK, ADDR);
344
345	if (!dse.ld_data_blk && !dse.ld_addr_blk)
346		val |= P(BLK, NA);
347
348	return val;
349}
350
351static u64 store_latency_data(struct perf_event *event, u64 status)
352{
353	union intel_x86_pebs_dse dse;
354	union perf_mem_data_src src;
355	u64 val;
356
357	dse.val = status;
358
359	/*
360	 * use the mapping table for bit 0-3
361	 */
362	val = hybrid_var(event->pmu, pebs_data_source)[dse.st_lat_dse];
363
364	pebs_set_tlb_lock(&val, dse.st_lat_stlb_miss, dse.st_lat_locked);
365
366	val |= P(BLK, NA);
367
368	/*
369	 * the pebs_data_source table is only for loads
370	 * so override the mem_op to say STORE instead
371	 */
372	src.val = val;
373	src.mem_op = P(OP,STORE);
374
375	return src.val;
376}
377
378struct pebs_record_core {
379	u64 flags, ip;
380	u64 ax, bx, cx, dx;
381	u64 si, di, bp, sp;
382	u64 r8,  r9,  r10, r11;
383	u64 r12, r13, r14, r15;
384};
385
386struct pebs_record_nhm {
387	u64 flags, ip;
388	u64 ax, bx, cx, dx;
389	u64 si, di, bp, sp;
390	u64 r8,  r9,  r10, r11;
391	u64 r12, r13, r14, r15;
392	u64 status, dla, dse, lat;
393};
394
395/*
396 * Same as pebs_record_nhm, with two additional fields.
397 */
398struct pebs_record_hsw {
399	u64 flags, ip;
400	u64 ax, bx, cx, dx;
401	u64 si, di, bp, sp;
402	u64 r8,  r9,  r10, r11;
403	u64 r12, r13, r14, r15;
404	u64 status, dla, dse, lat;
405	u64 real_ip, tsx_tuning;
406};
407
408union hsw_tsx_tuning {
409	struct {
410		u32 cycles_last_block     : 32,
411		    hle_abort		  : 1,
412		    rtm_abort		  : 1,
413		    instruction_abort     : 1,
414		    non_instruction_abort : 1,
415		    retry		  : 1,
416		    data_conflict	  : 1,
417		    capacity_writes	  : 1,
418		    capacity_reads	  : 1;
419	};
420	u64	    value;
421};
422
423#define PEBS_HSW_TSX_FLAGS	0xff00000000ULL
424
425/* Same as HSW, plus TSC */
426
427struct pebs_record_skl {
428	u64 flags, ip;
429	u64 ax, bx, cx, dx;
430	u64 si, di, bp, sp;
431	u64 r8,  r9,  r10, r11;
432	u64 r12, r13, r14, r15;
433	u64 status, dla, dse, lat;
434	u64 real_ip, tsx_tuning;
435	u64 tsc;
436};
437
438void init_debug_store_on_cpu(int cpu)
439{
440	struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
441
442	if (!ds)
443		return;
444
445	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
446		     (u32)((u64)(unsigned long)ds),
447		     (u32)((u64)(unsigned long)ds >> 32));
448}
449
450void fini_debug_store_on_cpu(int cpu)
451{
452	if (!per_cpu(cpu_hw_events, cpu).ds)
453		return;
454
455	wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
456}
457
458static DEFINE_PER_CPU(void *, insn_buffer);
459
460static void ds_update_cea(void *cea, void *addr, size_t size, pgprot_t prot)
461{
462	unsigned long start = (unsigned long)cea;
463	phys_addr_t pa;
464	size_t msz = 0;
465
466	pa = virt_to_phys(addr);
467
468	preempt_disable();
469	for (; msz < size; msz += PAGE_SIZE, pa += PAGE_SIZE, cea += PAGE_SIZE)
470		cea_set_pte(cea, pa, prot);
471
472	/*
473	 * This is a cross-CPU update of the cpu_entry_area, we must shoot down
474	 * all TLB entries for it.
475	 */
476	flush_tlb_kernel_range(start, start + size);
477	preempt_enable();
478}
479
480static void ds_clear_cea(void *cea, size_t size)
481{
482	unsigned long start = (unsigned long)cea;
483	size_t msz = 0;
484
485	preempt_disable();
486	for (; msz < size; msz += PAGE_SIZE, cea += PAGE_SIZE)
487		cea_set_pte(cea, 0, PAGE_NONE);
488
489	flush_tlb_kernel_range(start, start + size);
490	preempt_enable();
491}
492
493static void *dsalloc_pages(size_t size, gfp_t flags, int cpu)
494{
495	unsigned int order = get_order(size);
496	int node = cpu_to_node(cpu);
497	struct page *page;
498
499	page = __alloc_pages_node(node, flags | __GFP_ZERO, order);
500	return page ? page_address(page) : NULL;
501}
502
503static void dsfree_pages(const void *buffer, size_t size)
504{
505	if (buffer)
506		free_pages((unsigned long)buffer, get_order(size));
507}
508
509static int alloc_pebs_buffer(int cpu)
510{
511	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
512	struct debug_store *ds = hwev->ds;
513	size_t bsiz = x86_pmu.pebs_buffer_size;
514	int max, node = cpu_to_node(cpu);
515	void *buffer, *insn_buff, *cea;
516
517	if (!x86_pmu.pebs)
518		return 0;
519
520	buffer = dsalloc_pages(bsiz, GFP_KERNEL, cpu);
521	if (unlikely(!buffer))
522		return -ENOMEM;
523
524	/*
525	 * HSW+ already provides us the eventing ip; no need to allocate this
526	 * buffer then.
527	 */
528	if (x86_pmu.intel_cap.pebs_format < 2) {
529		insn_buff = kzalloc_node(PEBS_FIXUP_SIZE, GFP_KERNEL, node);
530		if (!insn_buff) {
531			dsfree_pages(buffer, bsiz);
532			return -ENOMEM;
533		}
534		per_cpu(insn_buffer, cpu) = insn_buff;
535	}
536	hwev->ds_pebs_vaddr = buffer;
537	/* Update the cpu entry area mapping */
538	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
539	ds->pebs_buffer_base = (unsigned long) cea;
540	ds_update_cea(cea, buffer, bsiz, PAGE_KERNEL);
541	ds->pebs_index = ds->pebs_buffer_base;
542	max = x86_pmu.pebs_record_size * (bsiz / x86_pmu.pebs_record_size);
543	ds->pebs_absolute_maximum = ds->pebs_buffer_base + max;
544	return 0;
545}
546
547static void release_pebs_buffer(int cpu)
548{
549	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
550	void *cea;
551
552	if (!x86_pmu.pebs)
553		return;
554
555	kfree(per_cpu(insn_buffer, cpu));
556	per_cpu(insn_buffer, cpu) = NULL;
557
558	/* Clear the fixmap */
559	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.pebs_buffer;
560	ds_clear_cea(cea, x86_pmu.pebs_buffer_size);
561	dsfree_pages(hwev->ds_pebs_vaddr, x86_pmu.pebs_buffer_size);
562	hwev->ds_pebs_vaddr = NULL;
563}
564
565static int alloc_bts_buffer(int cpu)
566{
567	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
568	struct debug_store *ds = hwev->ds;
569	void *buffer, *cea;
570	int max;
571
572	if (!x86_pmu.bts)
573		return 0;
574
575	buffer = dsalloc_pages(BTS_BUFFER_SIZE, GFP_KERNEL | __GFP_NOWARN, cpu);
576	if (unlikely(!buffer)) {
577		WARN_ONCE(1, "%s: BTS buffer allocation failure\n", __func__);
578		return -ENOMEM;
579	}
580	hwev->ds_bts_vaddr = buffer;
581	/* Update the fixmap */
582	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
583	ds->bts_buffer_base = (unsigned long) cea;
584	ds_update_cea(cea, buffer, BTS_BUFFER_SIZE, PAGE_KERNEL);
585	ds->bts_index = ds->bts_buffer_base;
586	max = BTS_BUFFER_SIZE / BTS_RECORD_SIZE;
587	ds->bts_absolute_maximum = ds->bts_buffer_base +
588					max * BTS_RECORD_SIZE;
589	ds->bts_interrupt_threshold = ds->bts_absolute_maximum -
590					(max / 16) * BTS_RECORD_SIZE;
591	return 0;
592}
593
594static void release_bts_buffer(int cpu)
595{
596	struct cpu_hw_events *hwev = per_cpu_ptr(&cpu_hw_events, cpu);
597	void *cea;
598
599	if (!x86_pmu.bts)
600		return;
601
602	/* Clear the fixmap */
603	cea = &get_cpu_entry_area(cpu)->cpu_debug_buffers.bts_buffer;
604	ds_clear_cea(cea, BTS_BUFFER_SIZE);
605	dsfree_pages(hwev->ds_bts_vaddr, BTS_BUFFER_SIZE);
606	hwev->ds_bts_vaddr = NULL;
607}
608
609static int alloc_ds_buffer(int cpu)
610{
611	struct debug_store *ds = &get_cpu_entry_area(cpu)->cpu_debug_store;
612
613	memset(ds, 0, sizeof(*ds));
614	per_cpu(cpu_hw_events, cpu).ds = ds;
615	return 0;
616}
617
618static void release_ds_buffer(int cpu)
619{
620	per_cpu(cpu_hw_events, cpu).ds = NULL;
621}
622
623void release_ds_buffers(void)
624{
625	int cpu;
626
627	if (!x86_pmu.bts && !x86_pmu.pebs)
628		return;
629
630	for_each_possible_cpu(cpu)
631		release_ds_buffer(cpu);
632
633	for_each_possible_cpu(cpu) {
634		/*
635		 * Again, ignore errors from offline CPUs, they will no longer
636		 * observe cpu_hw_events.ds and not program the DS_AREA when
637		 * they come up.
638		 */
639		fini_debug_store_on_cpu(cpu);
640	}
641
642	for_each_possible_cpu(cpu) {
643		release_pebs_buffer(cpu);
644		release_bts_buffer(cpu);
645	}
646}
647
648void reserve_ds_buffers(void)
649{
650	int bts_err = 0, pebs_err = 0;
651	int cpu;
652
653	x86_pmu.bts_active = 0;
654	x86_pmu.pebs_active = 0;
655
656	if (!x86_pmu.bts && !x86_pmu.pebs)
657		return;
658
659	if (!x86_pmu.bts)
660		bts_err = 1;
661
662	if (!x86_pmu.pebs)
663		pebs_err = 1;
664
665	for_each_possible_cpu(cpu) {
666		if (alloc_ds_buffer(cpu)) {
667			bts_err = 1;
668			pebs_err = 1;
669		}
670
671		if (!bts_err && alloc_bts_buffer(cpu))
672			bts_err = 1;
673
674		if (!pebs_err && alloc_pebs_buffer(cpu))
675			pebs_err = 1;
676
677		if (bts_err && pebs_err)
678			break;
679	}
680
681	if (bts_err) {
682		for_each_possible_cpu(cpu)
683			release_bts_buffer(cpu);
684	}
685
686	if (pebs_err) {
687		for_each_possible_cpu(cpu)
688			release_pebs_buffer(cpu);
689	}
690
691	if (bts_err && pebs_err) {
692		for_each_possible_cpu(cpu)
693			release_ds_buffer(cpu);
694	} else {
695		if (x86_pmu.bts && !bts_err)
696			x86_pmu.bts_active = 1;
697
698		if (x86_pmu.pebs && !pebs_err)
699			x86_pmu.pebs_active = 1;
700
701		for_each_possible_cpu(cpu) {
702			/*
703			 * Ignores wrmsr_on_cpu() errors for offline CPUs they
704			 * will get this call through intel_pmu_cpu_starting().
705			 */
706			init_debug_store_on_cpu(cpu);
707		}
708	}
709}
710
711/*
712 * BTS
713 */
714
715struct event_constraint bts_constraint =
716	EVENT_CONSTRAINT(0, 1ULL << INTEL_PMC_IDX_FIXED_BTS, 0);
717
718void intel_pmu_enable_bts(u64 config)
719{
720	unsigned long debugctlmsr;
721
722	debugctlmsr = get_debugctlmsr();
723
724	debugctlmsr |= DEBUGCTLMSR_TR;
725	debugctlmsr |= DEBUGCTLMSR_BTS;
726	if (config & ARCH_PERFMON_EVENTSEL_INT)
727		debugctlmsr |= DEBUGCTLMSR_BTINT;
728
729	if (!(config & ARCH_PERFMON_EVENTSEL_OS))
730		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_OS;
731
732	if (!(config & ARCH_PERFMON_EVENTSEL_USR))
733		debugctlmsr |= DEBUGCTLMSR_BTS_OFF_USR;
734
735	update_debugctlmsr(debugctlmsr);
736}
737
738void intel_pmu_disable_bts(void)
739{
740	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
741	unsigned long debugctlmsr;
742
743	if (!cpuc->ds)
744		return;
745
746	debugctlmsr = get_debugctlmsr();
747
748	debugctlmsr &=
749		~(DEBUGCTLMSR_TR | DEBUGCTLMSR_BTS | DEBUGCTLMSR_BTINT |
750		  DEBUGCTLMSR_BTS_OFF_OS | DEBUGCTLMSR_BTS_OFF_USR);
751
752	update_debugctlmsr(debugctlmsr);
753}
754
755int intel_pmu_drain_bts_buffer(void)
756{
757	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
758	struct debug_store *ds = cpuc->ds;
759	struct bts_record {
760		u64	from;
761		u64	to;
762		u64	flags;
763	};
764	struct perf_event *event = cpuc->events[INTEL_PMC_IDX_FIXED_BTS];
765	struct bts_record *at, *base, *top;
766	struct perf_output_handle handle;
767	struct perf_event_header header;
768	struct perf_sample_data data;
769	unsigned long skip = 0;
770	struct pt_regs regs;
771
772	if (!event)
773		return 0;
774
775	if (!x86_pmu.bts_active)
776		return 0;
777
778	base = (struct bts_record *)(unsigned long)ds->bts_buffer_base;
779	top  = (struct bts_record *)(unsigned long)ds->bts_index;
780
781	if (top <= base)
782		return 0;
783
784	memset(&regs, 0, sizeof(regs));
785
786	ds->bts_index = ds->bts_buffer_base;
787
788	perf_sample_data_init(&data, 0, event->hw.last_period);
789
790	/*
791	 * BTS leaks kernel addresses in branches across the cpl boundary,
792	 * such as traps or system calls, so unless the user is asking for
793	 * kernel tracing (and right now it's not possible), we'd need to
794	 * filter them out. But first we need to count how many of those we
795	 * have in the current batch. This is an extra O(n) pass, however,
796	 * it's much faster than the other one especially considering that
797	 * n <= 2560 (BTS_BUFFER_SIZE / BTS_RECORD_SIZE * 15/16; see the
798	 * alloc_bts_buffer()).
799	 */
800	for (at = base; at < top; at++) {
801		/*
802		 * Note that right now *this* BTS code only works if
803		 * attr::exclude_kernel is set, but let's keep this extra
804		 * check here in case that changes.
805		 */
806		if (event->attr.exclude_kernel &&
807		    (kernel_ip(at->from) || kernel_ip(at->to)))
808			skip++;
809	}
810
811	/*
812	 * Prepare a generic sample, i.e. fill in the invariant fields.
813	 * We will overwrite the from and to address before we output
814	 * the sample.
815	 */
816	rcu_read_lock();
817	perf_prepare_sample(&data, event, &regs);
818	perf_prepare_header(&header, &data, event, &regs);
819
820	if (perf_output_begin(&handle, &data, event,
821			      header.size * (top - base - skip)))
822		goto unlock;
823
824	for (at = base; at < top; at++) {
825		/* Filter out any records that contain kernel addresses. */
826		if (event->attr.exclude_kernel &&
827		    (kernel_ip(at->from) || kernel_ip(at->to)))
828			continue;
829
830		data.ip		= at->from;
831		data.addr	= at->to;
832
833		perf_output_sample(&handle, &header, &data, event);
834	}
835
836	perf_output_end(&handle);
837
838	/* There's new data available. */
839	event->hw.interrupts++;
840	event->pending_kill = POLL_IN;
841unlock:
842	rcu_read_unlock();
843	return 1;
844}
845
846static inline void intel_pmu_drain_pebs_buffer(void)
847{
848	struct perf_sample_data data;
849
850	x86_pmu.drain_pebs(NULL, &data);
851}
852
853/*
854 * PEBS
855 */
856struct event_constraint intel_core2_pebs_event_constraints[] = {
857	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
858	INTEL_FLAGS_UEVENT_CONSTRAINT(0xfec1, 0x1), /* X87_OPS_RETIRED.ANY */
859	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* BR_INST_RETIRED.MISPRED */
860	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1fc7, 0x1), /* SIMD_INST_RETURED.ANY */
861	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
862	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
863	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
864	EVENT_CONSTRAINT_END
865};
866
867struct event_constraint intel_atom_pebs_event_constraints[] = {
868	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c0, 0x1), /* INST_RETIRED.ANY */
869	INTEL_FLAGS_UEVENT_CONSTRAINT(0x00c5, 0x1), /* MISPREDICTED_BRANCH_RETIRED */
870	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0x1),    /* MEM_LOAD_RETIRED.* */
871	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
872	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x01),
873	/* Allow all events as PEBS with no flags */
874	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
875	EVENT_CONSTRAINT_END
876};
877
878struct event_constraint intel_slm_pebs_event_constraints[] = {
879	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
880	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x1),
881	/* Allow all events as PEBS with no flags */
882	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
883	EVENT_CONSTRAINT_END
884};
885
886struct event_constraint intel_glm_pebs_event_constraints[] = {
887	/* Allow all events as PEBS with no flags */
888	INTEL_ALL_EVENT_CONSTRAINT(0, 0x1),
889	EVENT_CONSTRAINT_END
890};
891
892struct event_constraint intel_grt_pebs_event_constraints[] = {
893	/* Allow all events as PEBS with no flags */
894	INTEL_HYBRID_LAT_CONSTRAINT(0x5d0, 0x3),
895	INTEL_HYBRID_LAT_CONSTRAINT(0x6d0, 0xf),
896	EVENT_CONSTRAINT_END
897};
898
899struct event_constraint intel_nehalem_pebs_event_constraints[] = {
900	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
901	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
902	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
903	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INST_RETIRED.ANY */
904	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
905	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
906	INTEL_FLAGS_UEVENT_CONSTRAINT(0x02c5, 0xf), /* BR_MISP_RETIRED.NEAR_CALL */
907	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
908	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
909	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
910	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
911	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
912	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
913	EVENT_CONSTRAINT_END
914};
915
916struct event_constraint intel_westmere_pebs_event_constraints[] = {
917	INTEL_PLD_CONSTRAINT(0x100b, 0xf),      /* MEM_INST_RETIRED.* */
918	INTEL_FLAGS_EVENT_CONSTRAINT(0x0f, 0xf),    /* MEM_UNCORE_RETIRED.* */
919	INTEL_FLAGS_UEVENT_CONSTRAINT(0x010c, 0xf), /* MEM_STORE_RETIRED.DTLB_MISS */
920	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xf),    /* INSTR_RETIRED.* */
921	INTEL_EVENT_CONSTRAINT(0xc2, 0xf),    /* UOPS_RETIRED.* */
922	INTEL_FLAGS_EVENT_CONSTRAINT(0xc4, 0xf),    /* BR_INST_RETIRED.* */
923	INTEL_FLAGS_EVENT_CONSTRAINT(0xc5, 0xf),    /* BR_MISP_RETIRED.* */
924	INTEL_FLAGS_EVENT_CONSTRAINT(0xc7, 0xf),    /* SSEX_UOPS_RETIRED.* */
925	INTEL_FLAGS_UEVENT_CONSTRAINT(0x20c8, 0xf), /* ITLB_MISS_RETIRED */
926	INTEL_FLAGS_EVENT_CONSTRAINT(0xcb, 0xf),    /* MEM_LOAD_RETIRED.* */
927	INTEL_FLAGS_EVENT_CONSTRAINT(0xf7, 0xf),    /* FP_ASSIST.* */
928	/* INST_RETIRED.ANY_P, inv=1, cmask=16 (cycles:p). */
929	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
930	EVENT_CONSTRAINT_END
931};
932
933struct event_constraint intel_snb_pebs_event_constraints[] = {
934	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
935	INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
936	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
937	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
938	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
939        INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
940        INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
941        INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
942        INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
943	/* Allow all events as PEBS with no flags */
944	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
945	EVENT_CONSTRAINT_END
946};
947
948struct event_constraint intel_ivb_pebs_event_constraints[] = {
949        INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
950        INTEL_PLD_CONSTRAINT(0x01cd, 0x8),    /* MEM_TRANS_RETIRED.LAT_ABOVE_THR */
951	INTEL_PST_CONSTRAINT(0x02cd, 0x8),    /* MEM_TRANS_RETIRED.PRECISE_STORES */
952	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
953	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
954	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
955	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
956	INTEL_EXCLEVT_CONSTRAINT(0xd0, 0xf),    /* MEM_UOP_RETIRED.* */
957	INTEL_EXCLEVT_CONSTRAINT(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
958	INTEL_EXCLEVT_CONSTRAINT(0xd2, 0xf),    /* MEM_LOAD_UOPS_LLC_HIT_RETIRED.* */
959	INTEL_EXCLEVT_CONSTRAINT(0xd3, 0xf),    /* MEM_LOAD_UOPS_LLC_MISS_RETIRED.* */
960	/* Allow all events as PEBS with no flags */
961	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
962        EVENT_CONSTRAINT_END
963};
964
965struct event_constraint intel_hsw_pebs_event_constraints[] = {
966	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
967	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
968	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
969	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
970	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
971	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
972	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
973	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
974	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
975	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
976	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XLD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
977	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
978	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
979	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_XST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
980	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
981	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
982	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_XLD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
983	/* Allow all events as PEBS with no flags */
984	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
985	EVENT_CONSTRAINT_END
986};
987
988struct event_constraint intel_bdw_pebs_event_constraints[] = {
989	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x2), /* INST_RETIRED.PRECDIST */
990	INTEL_PLD_CONSTRAINT(0x01cd, 0xf),    /* MEM_TRANS_RETIRED.* */
991	/* UOPS_RETIRED.ALL, inv=1, cmask=16 (cycles:p). */
992	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c2, 0xf),
993	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
994	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
995	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_NA(0x01c2, 0xf), /* UOPS_RETIRED.ALL */
996	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_LOADS */
997	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_UOPS_RETIRED.LOCK_LOADS */
998	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_LOADS */
999	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_UOPS_RETIRED.ALL_LOADS */
1000	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_UOPS_RETIRED.STLB_MISS_STORES */
1001	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_UOPS_RETIRED.SPLIT_STORES */
1002	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_UOPS_RETIRED.ALL_STORES */
1003	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_UOPS_RETIRED.* */
1004	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_UOPS_L3_HIT_RETIRED.* */
1005	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_UOPS_L3_MISS_RETIRED.* */
1006	/* Allow all events as PEBS with no flags */
1007	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1008	EVENT_CONSTRAINT_END
1009};
1010
1011
1012struct event_constraint intel_skl_pebs_event_constraints[] = {
1013	INTEL_FLAGS_UEVENT_CONSTRAINT(0x1c0, 0x2),	/* INST_RETIRED.PREC_DIST */
1014	/* INST_RETIRED.PREC_DIST, inv=1, cmask=16 (cycles:ppp). */
1015	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108001c0, 0x2),
1016	/* INST_RETIRED.TOTAL_CYCLES_PS (inv=1, cmask=16) (cycles:p). */
1017	INTEL_FLAGS_UEVENT_CONSTRAINT(0x108000c0, 0x0f),
1018	INTEL_PLD_CONSTRAINT(0x1cd, 0xf),		      /* MEM_TRANS_RETIRED.* */
1019	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_LOADS */
1020	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf), /* MEM_INST_RETIRED.STLB_MISS_STORES */
1021	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf), /* MEM_INST_RETIRED.LOCK_LOADS */
1022	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x22d0, 0xf), /* MEM_INST_RETIRED.LOCK_STORES */
1023	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf), /* MEM_INST_RETIRED.SPLIT_LOADS */
1024	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf), /* MEM_INST_RETIRED.SPLIT_STORES */
1025	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf), /* MEM_INST_RETIRED.ALL_LOADS */
1026	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf), /* MEM_INST_RETIRED.ALL_STORES */
1027	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd1, 0xf),    /* MEM_LOAD_RETIRED.* */
1028	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd2, 0xf),    /* MEM_LOAD_L3_HIT_RETIRED.* */
1029	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD(0xd3, 0xf),    /* MEM_LOAD_L3_MISS_RETIRED.* */
1030	/* Allow all events as PEBS with no flags */
1031	INTEL_ALL_EVENT_CONSTRAINT(0, 0xf),
1032	EVENT_CONSTRAINT_END
1033};
1034
1035struct event_constraint intel_icl_pebs_event_constraints[] = {
1036	INTEL_FLAGS_UEVENT_CONSTRAINT(0x01c0, 0x100000000ULL),	/* old INST_RETIRED.PREC_DIST */
1037	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1038	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),	/* SLOTS */
1039
1040	INTEL_PLD_CONSTRAINT(0x1cd, 0xff),			/* MEM_TRANS_RETIRED.LOAD_LATENCY */
1041	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1042	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1043	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1044	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1045	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1046	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1047	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1048
1049	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf), /* MEM_LOAD_*_RETIRED.* */
1050
1051	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),		/* MEM_INST_RETIRED.* */
1052
1053	/*
1054	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1055	 * need the full constraints from the main table.
1056	 */
1057
1058	EVENT_CONSTRAINT_END
1059};
1060
1061struct event_constraint intel_spr_pebs_event_constraints[] = {
1062	INTEL_FLAGS_UEVENT_CONSTRAINT(0x100, 0x100000000ULL),	/* INST_RETIRED.PREC_DIST */
1063	INTEL_FLAGS_UEVENT_CONSTRAINT(0x0400, 0x800000000ULL),
1064
1065	INTEL_FLAGS_EVENT_CONSTRAINT(0xc0, 0xfe),
1066	INTEL_PLD_CONSTRAINT(0x1cd, 0xfe),
1067	INTEL_PSD_CONSTRAINT(0x2cd, 0x1),
1068	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x11d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_LOADS */
1069	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x12d0, 0xf),	/* MEM_INST_RETIRED.STLB_MISS_STORES */
1070	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x21d0, 0xf),	/* MEM_INST_RETIRED.LOCK_LOADS */
1071	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x41d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_LOADS */
1072	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x42d0, 0xf),	/* MEM_INST_RETIRED.SPLIT_STORES */
1073	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_LD(0x81d0, 0xf),	/* MEM_INST_RETIRED.ALL_LOADS */
1074	INTEL_FLAGS_UEVENT_CONSTRAINT_DATALA_ST(0x82d0, 0xf),	/* MEM_INST_RETIRED.ALL_STORES */
1075
1076	INTEL_FLAGS_EVENT_CONSTRAINT_DATALA_LD_RANGE(0xd1, 0xd4, 0xf),
1077
1078	INTEL_FLAGS_EVENT_CONSTRAINT(0xd0, 0xf),
1079
1080	/*
1081	 * Everything else is handled by PMU_FL_PEBS_ALL, because we
1082	 * need the full constraints from the main table.
1083	 */
1084
1085	EVENT_CONSTRAINT_END
1086};
1087
1088struct event_constraint *intel_pebs_constraints(struct perf_event *event)
1089{
1090	struct event_constraint *pebs_constraints = hybrid(event->pmu, pebs_constraints);
1091	struct event_constraint *c;
1092
1093	if (!event->attr.precise_ip)
1094		return NULL;
1095
1096	if (pebs_constraints) {
1097		for_each_event_constraint(c, pebs_constraints) {
1098			if (constraint_match(c, event->hw.config)) {
1099				event->hw.flags |= c->flags;
1100				return c;
1101			}
1102		}
1103	}
1104
1105	/*
1106	 * Extended PEBS support
1107	 * Makes the PEBS code search the normal constraints.
1108	 */
1109	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1110		return NULL;
1111
1112	return &emptyconstraint;
1113}
1114
1115/*
1116 * We need the sched_task callback even for per-cpu events when we use
1117 * the large interrupt threshold, such that we can provide PID and TID
1118 * to PEBS samples.
1119 */
1120static inline bool pebs_needs_sched_cb(struct cpu_hw_events *cpuc)
1121{
1122	if (cpuc->n_pebs == cpuc->n_pebs_via_pt)
1123		return false;
1124
1125	return cpuc->n_pebs && (cpuc->n_pebs == cpuc->n_large_pebs);
1126}
1127
1128void intel_pmu_pebs_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
1129{
1130	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1131
1132	if (!sched_in && pebs_needs_sched_cb(cpuc))
1133		intel_pmu_drain_pebs_buffer();
1134}
1135
1136static inline void pebs_update_threshold(struct cpu_hw_events *cpuc)
1137{
1138	struct debug_store *ds = cpuc->ds;
1139	int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
1140	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1141	u64 threshold;
1142	int reserved;
1143
1144	if (cpuc->n_pebs_via_pt)
1145		return;
1146
1147	if (x86_pmu.flags & PMU_FL_PEBS_ALL)
1148		reserved = max_pebs_events + num_counters_fixed;
1149	else
1150		reserved = max_pebs_events;
1151
1152	if (cpuc->n_pebs == cpuc->n_large_pebs) {
1153		threshold = ds->pebs_absolute_maximum -
1154			reserved * cpuc->pebs_record_size;
1155	} else {
1156		threshold = ds->pebs_buffer_base + cpuc->pebs_record_size;
1157	}
1158
1159	ds->pebs_interrupt_threshold = threshold;
1160}
1161
1162static void adaptive_pebs_record_size_update(void)
1163{
1164	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1165	u64 pebs_data_cfg = cpuc->pebs_data_cfg;
1166	int sz = sizeof(struct pebs_basic);
1167
1168	if (pebs_data_cfg & PEBS_DATACFG_MEMINFO)
1169		sz += sizeof(struct pebs_meminfo);
1170	if (pebs_data_cfg & PEBS_DATACFG_GP)
1171		sz += sizeof(struct pebs_gprs);
1172	if (pebs_data_cfg & PEBS_DATACFG_XMMS)
1173		sz += sizeof(struct pebs_xmm);
1174	if (pebs_data_cfg & PEBS_DATACFG_LBRS)
1175		sz += x86_pmu.lbr_nr * sizeof(struct lbr_entry);
1176
1177	cpuc->pebs_record_size = sz;
1178}
1179
1180#define PERF_PEBS_MEMINFO_TYPE	(PERF_SAMPLE_ADDR | PERF_SAMPLE_DATA_SRC |   \
1181				PERF_SAMPLE_PHYS_ADDR |			     \
1182				PERF_SAMPLE_WEIGHT_TYPE |		     \
1183				PERF_SAMPLE_TRANSACTION |		     \
1184				PERF_SAMPLE_DATA_PAGE_SIZE)
1185
1186static u64 pebs_update_adaptive_cfg(struct perf_event *event)
1187{
1188	struct perf_event_attr *attr = &event->attr;
1189	u64 sample_type = attr->sample_type;
1190	u64 pebs_data_cfg = 0;
1191	bool gprs, tsx_weight;
1192
1193	if (!(sample_type & ~(PERF_SAMPLE_IP|PERF_SAMPLE_TIME)) &&
1194	    attr->precise_ip > 1)
1195		return pebs_data_cfg;
1196
1197	if (sample_type & PERF_PEBS_MEMINFO_TYPE)
1198		pebs_data_cfg |= PEBS_DATACFG_MEMINFO;
1199
1200	/*
1201	 * We need GPRs when:
1202	 * + user requested them
1203	 * + precise_ip < 2 for the non event IP
1204	 * + For RTM TSX weight we need GPRs for the abort code.
1205	 */
1206	gprs = (sample_type & PERF_SAMPLE_REGS_INTR) &&
1207	       (attr->sample_regs_intr & PEBS_GP_REGS);
1208
1209	tsx_weight = (sample_type & PERF_SAMPLE_WEIGHT_TYPE) &&
1210		     ((attr->config & INTEL_ARCH_EVENT_MASK) ==
1211		      x86_pmu.rtm_abort_event);
1212
1213	if (gprs || (attr->precise_ip < 2) || tsx_weight)
1214		pebs_data_cfg |= PEBS_DATACFG_GP;
1215
1216	if ((sample_type & PERF_SAMPLE_REGS_INTR) &&
1217	    (attr->sample_regs_intr & PERF_REG_EXTENDED_MASK))
1218		pebs_data_cfg |= PEBS_DATACFG_XMMS;
1219
1220	if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
1221		/*
1222		 * For now always log all LBRs. Could configure this
1223		 * later.
1224		 */
1225		pebs_data_cfg |= PEBS_DATACFG_LBRS |
1226			((x86_pmu.lbr_nr-1) << PEBS_DATACFG_LBR_SHIFT);
1227	}
1228
1229	return pebs_data_cfg;
1230}
1231
1232static void
1233pebs_update_state(bool needed_cb, struct cpu_hw_events *cpuc,
1234		  struct perf_event *event, bool add)
1235{
1236	struct pmu *pmu = event->pmu;
1237
1238	/*
1239	 * Make sure we get updated with the first PEBS
1240	 * event. It will trigger also during removal, but
1241	 * that does not hurt:
1242	 */
1243	if (cpuc->n_pebs == 1)
1244		cpuc->pebs_data_cfg = PEBS_UPDATE_DS_SW;
1245
1246	if (needed_cb != pebs_needs_sched_cb(cpuc)) {
1247		if (!needed_cb)
1248			perf_sched_cb_inc(pmu);
1249		else
1250			perf_sched_cb_dec(pmu);
1251
1252		cpuc->pebs_data_cfg |= PEBS_UPDATE_DS_SW;
1253	}
1254
1255	/*
1256	 * The PEBS record doesn't shrink on pmu::del(). Doing so would require
1257	 * iterating all remaining PEBS events to reconstruct the config.
1258	 */
1259	if (x86_pmu.intel_cap.pebs_baseline && add) {
1260		u64 pebs_data_cfg;
1261
1262		pebs_data_cfg = pebs_update_adaptive_cfg(event);
1263		/*
1264		 * Be sure to update the thresholds when we change the record.
1265		 */
1266		if (pebs_data_cfg & ~cpuc->pebs_data_cfg)
1267			cpuc->pebs_data_cfg |= pebs_data_cfg | PEBS_UPDATE_DS_SW;
1268	}
1269}
1270
1271void intel_pmu_pebs_add(struct perf_event *event)
1272{
1273	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1274	struct hw_perf_event *hwc = &event->hw;
1275	bool needed_cb = pebs_needs_sched_cb(cpuc);
1276
1277	cpuc->n_pebs++;
1278	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1279		cpuc->n_large_pebs++;
1280	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1281		cpuc->n_pebs_via_pt++;
1282
1283	pebs_update_state(needed_cb, cpuc, event, true);
1284}
1285
1286static void intel_pmu_pebs_via_pt_disable(struct perf_event *event)
1287{
1288	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1289
1290	if (!is_pebs_pt(event))
1291		return;
1292
1293	if (!(cpuc->pebs_enabled & ~PEBS_VIA_PT_MASK))
1294		cpuc->pebs_enabled &= ~PEBS_VIA_PT_MASK;
1295}
1296
1297static void intel_pmu_pebs_via_pt_enable(struct perf_event *event)
1298{
1299	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1300	struct hw_perf_event *hwc = &event->hw;
1301	struct debug_store *ds = cpuc->ds;
1302	u64 value = ds->pebs_event_reset[hwc->idx];
1303	u32 base = MSR_RELOAD_PMC0;
1304	unsigned int idx = hwc->idx;
1305
1306	if (!is_pebs_pt(event))
1307		return;
1308
1309	if (!(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
1310		cpuc->pebs_enabled |= PEBS_PMI_AFTER_EACH_RECORD;
1311
1312	cpuc->pebs_enabled |= PEBS_OUTPUT_PT;
1313
1314	if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1315		base = MSR_RELOAD_FIXED_CTR0;
1316		idx = hwc->idx - INTEL_PMC_IDX_FIXED;
1317		if (x86_pmu.intel_cap.pebs_format < 5)
1318			value = ds->pebs_event_reset[MAX_PEBS_EVENTS_FMT4 + idx];
1319		else
1320			value = ds->pebs_event_reset[MAX_PEBS_EVENTS + idx];
1321	}
1322	wrmsrl(base + idx, value);
1323}
1324
1325static inline void intel_pmu_drain_large_pebs(struct cpu_hw_events *cpuc)
1326{
1327	if (cpuc->n_pebs == cpuc->n_large_pebs &&
1328	    cpuc->n_pebs != cpuc->n_pebs_via_pt)
1329		intel_pmu_drain_pebs_buffer();
1330}
1331
1332void intel_pmu_pebs_enable(struct perf_event *event)
1333{
1334	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1335	u64 pebs_data_cfg = cpuc->pebs_data_cfg & ~PEBS_UPDATE_DS_SW;
1336	struct hw_perf_event *hwc = &event->hw;
1337	struct debug_store *ds = cpuc->ds;
1338	unsigned int idx = hwc->idx;
1339
1340	hwc->config &= ~ARCH_PERFMON_EVENTSEL_INT;
1341
1342	cpuc->pebs_enabled |= 1ULL << hwc->idx;
1343
1344	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) && (x86_pmu.version < 5))
1345		cpuc->pebs_enabled |= 1ULL << (hwc->idx + 32);
1346	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1347		cpuc->pebs_enabled |= 1ULL << 63;
1348
1349	if (x86_pmu.intel_cap.pebs_baseline) {
1350		hwc->config |= ICL_EVENTSEL_ADAPTIVE;
1351		if (pebs_data_cfg != cpuc->active_pebs_data_cfg) {
1352			/*
1353			 * drain_pebs() assumes uniform record size;
1354			 * hence we need to drain when changing said
1355			 * size.
1356			 */
1357			intel_pmu_drain_large_pebs(cpuc);
1358			adaptive_pebs_record_size_update();
1359			wrmsrl(MSR_PEBS_DATA_CFG, pebs_data_cfg);
1360			cpuc->active_pebs_data_cfg = pebs_data_cfg;
1361		}
1362	}
1363	if (cpuc->pebs_data_cfg & PEBS_UPDATE_DS_SW) {
1364		cpuc->pebs_data_cfg = pebs_data_cfg;
1365		pebs_update_threshold(cpuc);
1366	}
1367
1368	if (idx >= INTEL_PMC_IDX_FIXED) {
1369		if (x86_pmu.intel_cap.pebs_format < 5)
1370			idx = MAX_PEBS_EVENTS_FMT4 + (idx - INTEL_PMC_IDX_FIXED);
1371		else
1372			idx = MAX_PEBS_EVENTS + (idx - INTEL_PMC_IDX_FIXED);
1373	}
1374
1375	/*
1376	 * Use auto-reload if possible to save a MSR write in the PMI.
1377	 * This must be done in pmu::start(), because PERF_EVENT_IOC_PERIOD.
1378	 */
1379	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
1380		ds->pebs_event_reset[idx] =
1381			(u64)(-hwc->sample_period) & x86_pmu.cntval_mask;
1382	} else {
1383		ds->pebs_event_reset[idx] = 0;
1384	}
1385
1386	intel_pmu_pebs_via_pt_enable(event);
1387}
1388
1389void intel_pmu_pebs_del(struct perf_event *event)
1390{
1391	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1392	struct hw_perf_event *hwc = &event->hw;
1393	bool needed_cb = pebs_needs_sched_cb(cpuc);
1394
1395	cpuc->n_pebs--;
1396	if (hwc->flags & PERF_X86_EVENT_LARGE_PEBS)
1397		cpuc->n_large_pebs--;
1398	if (hwc->flags & PERF_X86_EVENT_PEBS_VIA_PT)
1399		cpuc->n_pebs_via_pt--;
1400
1401	pebs_update_state(needed_cb, cpuc, event, false);
1402}
1403
1404void intel_pmu_pebs_disable(struct perf_event *event)
1405{
1406	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1407	struct hw_perf_event *hwc = &event->hw;
1408
1409	intel_pmu_drain_large_pebs(cpuc);
1410
1411	cpuc->pebs_enabled &= ~(1ULL << hwc->idx);
1412
1413	if ((event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT) &&
1414	    (x86_pmu.version < 5))
1415		cpuc->pebs_enabled &= ~(1ULL << (hwc->idx + 32));
1416	else if (event->hw.flags & PERF_X86_EVENT_PEBS_ST)
1417		cpuc->pebs_enabled &= ~(1ULL << 63);
1418
1419	intel_pmu_pebs_via_pt_disable(event);
1420
1421	if (cpuc->enabled)
1422		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1423
1424	hwc->config |= ARCH_PERFMON_EVENTSEL_INT;
1425}
1426
1427void intel_pmu_pebs_enable_all(void)
1428{
1429	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1430
1431	if (cpuc->pebs_enabled)
1432		wrmsrl(MSR_IA32_PEBS_ENABLE, cpuc->pebs_enabled);
1433}
1434
1435void intel_pmu_pebs_disable_all(void)
1436{
1437	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1438
1439	if (cpuc->pebs_enabled)
1440		__intel_pmu_pebs_disable_all();
1441}
1442
1443static int intel_pmu_pebs_fixup_ip(struct pt_regs *regs)
1444{
1445	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1446	unsigned long from = cpuc->lbr_entries[0].from;
1447	unsigned long old_to, to = cpuc->lbr_entries[0].to;
1448	unsigned long ip = regs->ip;
1449	int is_64bit = 0;
1450	void *kaddr;
1451	int size;
1452
1453	/*
1454	 * We don't need to fixup if the PEBS assist is fault like
1455	 */
1456	if (!x86_pmu.intel_cap.pebs_trap)
1457		return 1;
1458
1459	/*
1460	 * No LBR entry, no basic block, no rewinding
1461	 */
1462	if (!cpuc->lbr_stack.nr || !from || !to)
1463		return 0;
1464
1465	/*
1466	 * Basic blocks should never cross user/kernel boundaries
1467	 */
1468	if (kernel_ip(ip) != kernel_ip(to))
1469		return 0;
1470
1471	/*
1472	 * unsigned math, either ip is before the start (impossible) or
1473	 * the basic block is larger than 1 page (sanity)
1474	 */
1475	if ((ip - to) > PEBS_FIXUP_SIZE)
1476		return 0;
1477
1478	/*
1479	 * We sampled a branch insn, rewind using the LBR stack
1480	 */
1481	if (ip == to) {
1482		set_linear_ip(regs, from);
1483		return 1;
1484	}
1485
1486	size = ip - to;
1487	if (!kernel_ip(ip)) {
1488		int bytes;
1489		u8 *buf = this_cpu_read(insn_buffer);
1490
1491		/* 'size' must fit our buffer, see above */
1492		bytes = copy_from_user_nmi(buf, (void __user *)to, size);
1493		if (bytes != 0)
1494			return 0;
1495
1496		kaddr = buf;
1497	} else {
1498		kaddr = (void *)to;
1499	}
1500
1501	do {
1502		struct insn insn;
1503
1504		old_to = to;
1505
1506#ifdef CONFIG_X86_64
1507		is_64bit = kernel_ip(to) || any_64bit_mode(regs);
1508#endif
1509		insn_init(&insn, kaddr, size, is_64bit);
1510
1511		/*
1512		 * Make sure there was not a problem decoding the instruction.
1513		 * This is doubly important because we have an infinite loop if
1514		 * insn.length=0.
1515		 */
1516		if (insn_get_length(&insn))
1517			break;
1518
1519		to += insn.length;
1520		kaddr += insn.length;
1521		size -= insn.length;
1522	} while (to < ip);
1523
1524	if (to == ip) {
1525		set_linear_ip(regs, old_to);
1526		return 1;
1527	}
1528
1529	/*
1530	 * Even though we decoded the basic block, the instruction stream
1531	 * never matched the given IP, either the TO or the IP got corrupted.
1532	 */
1533	return 0;
1534}
1535
1536static inline u64 intel_get_tsx_weight(u64 tsx_tuning)
1537{
1538	if (tsx_tuning) {
1539		union hsw_tsx_tuning tsx = { .value = tsx_tuning };
1540		return tsx.cycles_last_block;
1541	}
1542	return 0;
1543}
1544
1545static inline u64 intel_get_tsx_transaction(u64 tsx_tuning, u64 ax)
1546{
1547	u64 txn = (tsx_tuning & PEBS_HSW_TSX_FLAGS) >> 32;
1548
1549	/* For RTM XABORTs also log the abort code from AX */
1550	if ((txn & PERF_TXN_TRANSACTION) && (ax & 1))
1551		txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
1552	return txn;
1553}
1554
1555static inline u64 get_pebs_status(void *n)
1556{
1557	if (x86_pmu.intel_cap.pebs_format < 4)
1558		return ((struct pebs_record_nhm *)n)->status;
1559	return ((struct pebs_basic *)n)->applicable_counters;
1560}
1561
1562#define PERF_X86_EVENT_PEBS_HSW_PREC \
1563		(PERF_X86_EVENT_PEBS_ST_HSW | \
1564		 PERF_X86_EVENT_PEBS_LD_HSW | \
1565		 PERF_X86_EVENT_PEBS_NA_HSW)
1566
1567static u64 get_data_src(struct perf_event *event, u64 aux)
1568{
1569	u64 val = PERF_MEM_NA;
1570	int fl = event->hw.flags;
1571	bool fst = fl & (PERF_X86_EVENT_PEBS_ST | PERF_X86_EVENT_PEBS_HSW_PREC);
1572
1573	if (fl & PERF_X86_EVENT_PEBS_LDLAT)
1574		val = load_latency_data(event, aux);
1575	else if (fl & PERF_X86_EVENT_PEBS_STLAT)
1576		val = store_latency_data(event, aux);
1577	else if (fl & PERF_X86_EVENT_PEBS_LAT_HYBRID)
1578		val = x86_pmu.pebs_latency_data(event, aux);
1579	else if (fst && (fl & PERF_X86_EVENT_PEBS_HSW_PREC))
1580		val = precise_datala_hsw(event, aux);
1581	else if (fst)
1582		val = precise_store_data(aux);
1583	return val;
1584}
1585
1586static void setup_pebs_time(struct perf_event *event,
1587			    struct perf_sample_data *data,
1588			    u64 tsc)
1589{
1590	/* Converting to a user-defined clock is not supported yet. */
1591	if (event->attr.use_clockid != 0)
1592		return;
1593
1594	/*
1595	 * Doesn't support the conversion when the TSC is unstable.
1596	 * The TSC unstable case is a corner case and very unlikely to
1597	 * happen. If it happens, the TSC in a PEBS record will be
1598	 * dropped and fall back to perf_event_clock().
1599	 */
1600	if (!using_native_sched_clock() || !sched_clock_stable())
1601		return;
1602
1603	data->time = native_sched_clock_from_tsc(tsc) + __sched_clock_offset;
1604	data->sample_flags |= PERF_SAMPLE_TIME;
1605}
1606
1607#define PERF_SAMPLE_ADDR_TYPE	(PERF_SAMPLE_ADDR |		\
1608				 PERF_SAMPLE_PHYS_ADDR |	\
1609				 PERF_SAMPLE_DATA_PAGE_SIZE)
1610
1611static void setup_pebs_fixed_sample_data(struct perf_event *event,
1612				   struct pt_regs *iregs, void *__pebs,
1613				   struct perf_sample_data *data,
1614				   struct pt_regs *regs)
1615{
1616	/*
1617	 * We cast to the biggest pebs_record but are careful not to
1618	 * unconditionally access the 'extra' entries.
1619	 */
1620	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1621	struct pebs_record_skl *pebs = __pebs;
1622	u64 sample_type;
1623	int fll;
1624
1625	if (pebs == NULL)
1626		return;
1627
1628	sample_type = event->attr.sample_type;
1629	fll = event->hw.flags & PERF_X86_EVENT_PEBS_LDLAT;
1630
1631	perf_sample_data_init(data, 0, event->hw.last_period);
1632
1633	data->period = event->hw.last_period;
1634
1635	/*
1636	 * Use latency for weight (only avail with PEBS-LL)
1637	 */
1638	if (fll && (sample_type & PERF_SAMPLE_WEIGHT_TYPE)) {
1639		data->weight.full = pebs->lat;
1640		data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1641	}
1642
1643	/*
1644	 * data.data_src encodes the data source
1645	 */
1646	if (sample_type & PERF_SAMPLE_DATA_SRC) {
1647		data->data_src.val = get_data_src(event, pebs->dse);
1648		data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1649	}
1650
1651	/*
1652	 * We must however always use iregs for the unwinder to stay sane; the
1653	 * record BP,SP,IP can point into thin air when the record is from a
1654	 * previous PMI context or an (I)RET happened between the record and
1655	 * PMI.
1656	 */
1657	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1658		perf_sample_save_callchain(data, event, iregs);
1659
1660	/*
1661	 * We use the interrupt regs as a base because the PEBS record does not
1662	 * contain a full regs set, specifically it seems to lack segment
1663	 * descriptors, which get used by things like user_mode().
1664	 *
1665	 * In the simple case fix up only the IP for PERF_SAMPLE_IP.
1666	 */
1667	*regs = *iregs;
1668
1669	/*
1670	 * Initialize regs_>flags from PEBS,
1671	 * Clear exact bit (which uses x86 EFLAGS Reserved bit 3),
1672	 * i.e., do not rely on it being zero:
1673	 */
1674	regs->flags = pebs->flags & ~PERF_EFLAGS_EXACT;
1675
1676	if (sample_type & PERF_SAMPLE_REGS_INTR) {
1677		regs->ax = pebs->ax;
1678		regs->bx = pebs->bx;
1679		regs->cx = pebs->cx;
1680		regs->dx = pebs->dx;
1681		regs->si = pebs->si;
1682		regs->di = pebs->di;
1683
1684		regs->bp = pebs->bp;
1685		regs->sp = pebs->sp;
1686
1687#ifndef CONFIG_X86_32
1688		regs->r8 = pebs->r8;
1689		regs->r9 = pebs->r9;
1690		regs->r10 = pebs->r10;
1691		regs->r11 = pebs->r11;
1692		regs->r12 = pebs->r12;
1693		regs->r13 = pebs->r13;
1694		regs->r14 = pebs->r14;
1695		regs->r15 = pebs->r15;
1696#endif
1697	}
1698
1699	if (event->attr.precise_ip > 1) {
1700		/*
1701		 * Haswell and later processors have an 'eventing IP'
1702		 * (real IP) which fixes the off-by-1 skid in hardware.
1703		 * Use it when precise_ip >= 2 :
1704		 */
1705		if (x86_pmu.intel_cap.pebs_format >= 2) {
1706			set_linear_ip(regs, pebs->real_ip);
1707			regs->flags |= PERF_EFLAGS_EXACT;
1708		} else {
1709			/* Otherwise, use PEBS off-by-1 IP: */
1710			set_linear_ip(regs, pebs->ip);
1711
1712			/*
1713			 * With precise_ip >= 2, try to fix up the off-by-1 IP
1714			 * using the LBR. If successful, the fixup function
1715			 * corrects regs->ip and calls set_linear_ip() on regs:
1716			 */
1717			if (intel_pmu_pebs_fixup_ip(regs))
1718				regs->flags |= PERF_EFLAGS_EXACT;
1719		}
1720	} else {
1721		/*
1722		 * When precise_ip == 1, return the PEBS off-by-1 IP,
1723		 * no fixup attempted:
1724		 */
1725		set_linear_ip(regs, pebs->ip);
1726	}
1727
1728
1729	if ((sample_type & PERF_SAMPLE_ADDR_TYPE) &&
1730	    x86_pmu.intel_cap.pebs_format >= 1) {
1731		data->addr = pebs->dla;
1732		data->sample_flags |= PERF_SAMPLE_ADDR;
1733	}
1734
1735	if (x86_pmu.intel_cap.pebs_format >= 2) {
1736		/* Only set the TSX weight when no memory weight. */
1737		if ((sample_type & PERF_SAMPLE_WEIGHT_TYPE) && !fll) {
1738			data->weight.full = intel_get_tsx_weight(pebs->tsx_tuning);
1739			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1740		}
1741		if (sample_type & PERF_SAMPLE_TRANSACTION) {
1742			data->txn = intel_get_tsx_transaction(pebs->tsx_tuning,
1743							      pebs->ax);
1744			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1745		}
1746	}
1747
1748	/*
1749	 * v3 supplies an accurate time stamp, so we use that
1750	 * for the time stamp.
1751	 *
1752	 * We can only do this for the default trace clock.
1753	 */
1754	if (x86_pmu.intel_cap.pebs_format >= 3)
1755		setup_pebs_time(event, data, pebs->tsc);
1756
1757	if (has_branch_stack(event))
1758		perf_sample_save_brstack(data, event, &cpuc->lbr_stack);
1759}
1760
1761static void adaptive_pebs_save_regs(struct pt_regs *regs,
1762				    struct pebs_gprs *gprs)
1763{
1764	regs->ax = gprs->ax;
1765	regs->bx = gprs->bx;
1766	regs->cx = gprs->cx;
1767	regs->dx = gprs->dx;
1768	regs->si = gprs->si;
1769	regs->di = gprs->di;
1770	regs->bp = gprs->bp;
1771	regs->sp = gprs->sp;
1772#ifndef CONFIG_X86_32
1773	regs->r8 = gprs->r8;
1774	regs->r9 = gprs->r9;
1775	regs->r10 = gprs->r10;
1776	regs->r11 = gprs->r11;
1777	regs->r12 = gprs->r12;
1778	regs->r13 = gprs->r13;
1779	regs->r14 = gprs->r14;
1780	regs->r15 = gprs->r15;
1781#endif
1782}
1783
1784#define PEBS_LATENCY_MASK			0xffff
1785#define PEBS_CACHE_LATENCY_OFFSET		32
1786#define PEBS_RETIRE_LATENCY_OFFSET		32
1787
1788/*
1789 * With adaptive PEBS the layout depends on what fields are configured.
1790 */
1791
1792static void setup_pebs_adaptive_sample_data(struct perf_event *event,
1793					    struct pt_regs *iregs, void *__pebs,
1794					    struct perf_sample_data *data,
1795					    struct pt_regs *regs)
1796{
1797	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1798	struct pebs_basic *basic = __pebs;
1799	void *next_record = basic + 1;
1800	u64 sample_type;
1801	u64 format_size;
1802	struct pebs_meminfo *meminfo = NULL;
1803	struct pebs_gprs *gprs = NULL;
1804	struct x86_perf_regs *perf_regs;
1805
1806	if (basic == NULL)
1807		return;
1808
1809	perf_regs = container_of(regs, struct x86_perf_regs, regs);
1810	perf_regs->xmm_regs = NULL;
1811
1812	sample_type = event->attr.sample_type;
1813	format_size = basic->format_size;
1814	perf_sample_data_init(data, 0, event->hw.last_period);
1815	data->period = event->hw.last_period;
1816
1817	setup_pebs_time(event, data, basic->tsc);
1818
1819	/*
1820	 * We must however always use iregs for the unwinder to stay sane; the
1821	 * record BP,SP,IP can point into thin air when the record is from a
1822	 * previous PMI context or an (I)RET happened between the record and
1823	 * PMI.
1824	 */
1825	if (sample_type & PERF_SAMPLE_CALLCHAIN)
1826		perf_sample_save_callchain(data, event, iregs);
1827
1828	*regs = *iregs;
1829	/* The ip in basic is EventingIP */
1830	set_linear_ip(regs, basic->ip);
1831	regs->flags = PERF_EFLAGS_EXACT;
1832
1833	if ((sample_type & PERF_SAMPLE_WEIGHT_STRUCT) && (x86_pmu.flags & PMU_FL_RETIRE_LATENCY))
1834		data->weight.var3_w = format_size >> PEBS_RETIRE_LATENCY_OFFSET & PEBS_LATENCY_MASK;
1835
1836	/*
1837	 * The record for MEMINFO is in front of GP
1838	 * But PERF_SAMPLE_TRANSACTION needs gprs->ax.
1839	 * Save the pointer here but process later.
1840	 */
1841	if (format_size & PEBS_DATACFG_MEMINFO) {
1842		meminfo = next_record;
1843		next_record = meminfo + 1;
1844	}
1845
1846	if (format_size & PEBS_DATACFG_GP) {
1847		gprs = next_record;
1848		next_record = gprs + 1;
1849
1850		if (event->attr.precise_ip < 2) {
1851			set_linear_ip(regs, gprs->ip);
1852			regs->flags &= ~PERF_EFLAGS_EXACT;
1853		}
1854
1855		if (sample_type & PERF_SAMPLE_REGS_INTR)
1856			adaptive_pebs_save_regs(regs, gprs);
1857	}
1858
1859	if (format_size & PEBS_DATACFG_MEMINFO) {
1860		if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
1861			u64 weight = meminfo->latency;
1862
1863			if (x86_pmu.flags & PMU_FL_INSTR_LATENCY) {
1864				data->weight.var2_w = weight & PEBS_LATENCY_MASK;
1865				weight >>= PEBS_CACHE_LATENCY_OFFSET;
1866			}
1867
1868			/*
1869			 * Although meminfo::latency is defined as a u64,
1870			 * only the lower 32 bits include the valid data
1871			 * in practice on Ice Lake and earlier platforms.
1872			 */
1873			if (sample_type & PERF_SAMPLE_WEIGHT) {
1874				data->weight.full = weight ?:
1875					intel_get_tsx_weight(meminfo->tsx_tuning);
1876			} else {
1877				data->weight.var1_dw = (u32)(weight & PEBS_LATENCY_MASK) ?:
1878					intel_get_tsx_weight(meminfo->tsx_tuning);
1879			}
1880			data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
1881		}
1882
1883		if (sample_type & PERF_SAMPLE_DATA_SRC) {
1884			data->data_src.val = get_data_src(event, meminfo->aux);
1885			data->sample_flags |= PERF_SAMPLE_DATA_SRC;
1886		}
1887
1888		if (sample_type & PERF_SAMPLE_ADDR_TYPE) {
1889			data->addr = meminfo->address;
1890			data->sample_flags |= PERF_SAMPLE_ADDR;
1891		}
1892
1893		if (sample_type & PERF_SAMPLE_TRANSACTION) {
1894			data->txn = intel_get_tsx_transaction(meminfo->tsx_tuning,
1895							  gprs ? gprs->ax : 0);
1896			data->sample_flags |= PERF_SAMPLE_TRANSACTION;
1897		}
1898	}
1899
1900	if (format_size & PEBS_DATACFG_XMMS) {
1901		struct pebs_xmm *xmm = next_record;
1902
1903		next_record = xmm + 1;
1904		perf_regs->xmm_regs = xmm->xmm;
1905	}
1906
1907	if (format_size & PEBS_DATACFG_LBRS) {
1908		struct lbr_entry *lbr = next_record;
1909		int num_lbr = ((format_size >> PEBS_DATACFG_LBR_SHIFT)
1910					& 0xff) + 1;
1911		next_record = next_record + num_lbr * sizeof(struct lbr_entry);
1912
1913		if (has_branch_stack(event)) {
1914			intel_pmu_store_pebs_lbrs(lbr);
1915			perf_sample_save_brstack(data, event, &cpuc->lbr_stack);
1916		}
1917	}
1918
1919	WARN_ONCE(next_record != __pebs + (format_size >> 48),
1920			"PEBS record size %llu, expected %llu, config %llx\n",
1921			format_size >> 48,
1922			(u64)(next_record - __pebs),
1923			basic->format_size);
1924}
1925
1926static inline void *
1927get_next_pebs_record_by_bit(void *base, void *top, int bit)
1928{
1929	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1930	void *at;
1931	u64 pebs_status;
1932
1933	/*
1934	 * fmt0 does not have a status bitfield (does not use
1935	 * perf_record_nhm format)
1936	 */
1937	if (x86_pmu.intel_cap.pebs_format < 1)
1938		return base;
1939
1940	if (base == NULL)
1941		return NULL;
1942
1943	for (at = base; at < top; at += cpuc->pebs_record_size) {
1944		unsigned long status = get_pebs_status(at);
1945
1946		if (test_bit(bit, (unsigned long *)&status)) {
1947			/* PEBS v3 has accurate status bits */
1948			if (x86_pmu.intel_cap.pebs_format >= 3)
1949				return at;
1950
1951			if (status == (1 << bit))
1952				return at;
1953
1954			/* clear non-PEBS bit and re-check */
1955			pebs_status = status & cpuc->pebs_enabled;
1956			pebs_status &= PEBS_COUNTER_MASK;
1957			if (pebs_status == (1 << bit))
1958				return at;
1959		}
1960	}
1961	return NULL;
1962}
1963
1964void intel_pmu_auto_reload_read(struct perf_event *event)
1965{
1966	WARN_ON(!(event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD));
1967
1968	perf_pmu_disable(event->pmu);
1969	intel_pmu_drain_pebs_buffer();
1970	perf_pmu_enable(event->pmu);
1971}
1972
1973/*
1974 * Special variant of intel_pmu_save_and_restart() for auto-reload.
1975 */
1976static int
1977intel_pmu_save_and_restart_reload(struct perf_event *event, int count)
1978{
1979	struct hw_perf_event *hwc = &event->hw;
1980	int shift = 64 - x86_pmu.cntval_bits;
1981	u64 period = hwc->sample_period;
1982	u64 prev_raw_count, new_raw_count;
1983	s64 new, old;
1984
1985	WARN_ON(!period);
1986
1987	/*
1988	 * drain_pebs() only happens when the PMU is disabled.
1989	 */
1990	WARN_ON(this_cpu_read(cpu_hw_events.enabled));
1991
1992	prev_raw_count = local64_read(&hwc->prev_count);
1993	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
1994	local64_set(&hwc->prev_count, new_raw_count);
1995
1996	/*
1997	 * Since the counter increments a negative counter value and
1998	 * overflows on the sign switch, giving the interval:
1999	 *
2000	 *   [-period, 0]
2001	 *
2002	 * the difference between two consecutive reads is:
2003	 *
2004	 *   A) value2 - value1;
2005	 *      when no overflows have happened in between,
2006	 *
2007	 *   B) (0 - value1) + (value2 - (-period));
2008	 *      when one overflow happened in between,
2009	 *
2010	 *   C) (0 - value1) + (n - 1) * (period) + (value2 - (-period));
2011	 *      when @n overflows happened in between.
2012	 *
2013	 * Here A) is the obvious difference, B) is the extension to the
2014	 * discrete interval, where the first term is to the top of the
2015	 * interval and the second term is from the bottom of the next
2016	 * interval and C) the extension to multiple intervals, where the
2017	 * middle term is the whole intervals covered.
2018	 *
2019	 * An equivalent of C, by reduction, is:
2020	 *
2021	 *   value2 - value1 + n * period
2022	 */
2023	new = ((s64)(new_raw_count << shift) >> shift);
2024	old = ((s64)(prev_raw_count << shift) >> shift);
2025	local64_add(new - old + count * period, &event->count);
2026
2027	local64_set(&hwc->period_left, -new);
2028
2029	perf_event_update_userpage(event);
2030
2031	return 0;
2032}
2033
2034static __always_inline void
2035__intel_pmu_pebs_event(struct perf_event *event,
2036		       struct pt_regs *iregs,
2037		       struct perf_sample_data *data,
2038		       void *base, void *top,
2039		       int bit, int count,
2040		       void (*setup_sample)(struct perf_event *,
2041					    struct pt_regs *,
2042					    void *,
2043					    struct perf_sample_data *,
2044					    struct pt_regs *))
2045{
2046	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2047	struct hw_perf_event *hwc = &event->hw;
2048	struct x86_perf_regs perf_regs;
2049	struct pt_regs *regs = &perf_regs.regs;
2050	void *at = get_next_pebs_record_by_bit(base, top, bit);
2051	static struct pt_regs dummy_iregs;
2052
2053	if (hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) {
2054		/*
2055		 * Now, auto-reload is only enabled in fixed period mode.
2056		 * The reload value is always hwc->sample_period.
2057		 * May need to change it, if auto-reload is enabled in
2058		 * freq mode later.
2059		 */
2060		intel_pmu_save_and_restart_reload(event, count);
2061	} else if (!intel_pmu_save_and_restart(event))
2062		return;
2063
2064	if (!iregs)
2065		iregs = &dummy_iregs;
2066
2067	while (count > 1) {
2068		setup_sample(event, iregs, at, data, regs);
2069		perf_event_output(event, data, regs);
2070		at += cpuc->pebs_record_size;
2071		at = get_next_pebs_record_by_bit(at, top, bit);
2072		count--;
2073	}
2074
2075	setup_sample(event, iregs, at, data, regs);
2076	if (iregs == &dummy_iregs) {
2077		/*
2078		 * The PEBS records may be drained in the non-overflow context,
2079		 * e.g., large PEBS + context switch. Perf should treat the
2080		 * last record the same as other PEBS records, and doesn't
2081		 * invoke the generic overflow handler.
2082		 */
2083		perf_event_output(event, data, regs);
2084	} else {
2085		/*
2086		 * All but the last records are processed.
2087		 * The last one is left to be able to call the overflow handler.
2088		 */
2089		if (perf_event_overflow(event, data, regs))
2090			x86_pmu_stop(event, 0);
2091	}
2092}
2093
2094static void intel_pmu_drain_pebs_core(struct pt_regs *iregs, struct perf_sample_data *data)
2095{
2096	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2097	struct debug_store *ds = cpuc->ds;
2098	struct perf_event *event = cpuc->events[0]; /* PMC0 only */
2099	struct pebs_record_core *at, *top;
2100	int n;
2101
2102	if (!x86_pmu.pebs_active)
2103		return;
2104
2105	at  = (struct pebs_record_core *)(unsigned long)ds->pebs_buffer_base;
2106	top = (struct pebs_record_core *)(unsigned long)ds->pebs_index;
2107
2108	/*
2109	 * Whatever else happens, drain the thing
2110	 */
2111	ds->pebs_index = ds->pebs_buffer_base;
2112
2113	if (!test_bit(0, cpuc->active_mask))
2114		return;
2115
2116	WARN_ON_ONCE(!event);
2117
2118	if (!event->attr.precise_ip)
2119		return;
2120
2121	n = top - at;
2122	if (n <= 0) {
2123		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2124			intel_pmu_save_and_restart_reload(event, 0);
2125		return;
2126	}
2127
2128	__intel_pmu_pebs_event(event, iregs, data, at, top, 0, n,
2129			       setup_pebs_fixed_sample_data);
2130}
2131
2132static void intel_pmu_pebs_event_update_no_drain(struct cpu_hw_events *cpuc, int size)
2133{
2134	struct perf_event *event;
2135	int bit;
2136
2137	/*
2138	 * The drain_pebs() could be called twice in a short period
2139	 * for auto-reload event in pmu::read(). There are no
2140	 * overflows have happened in between.
2141	 * It needs to call intel_pmu_save_and_restart_reload() to
2142	 * update the event->count for this case.
2143	 */
2144	for_each_set_bit(bit, (unsigned long *)&cpuc->pebs_enabled, size) {
2145		event = cpuc->events[bit];
2146		if (event->hw.flags & PERF_X86_EVENT_AUTO_RELOAD)
2147			intel_pmu_save_and_restart_reload(event, 0);
2148	}
2149}
2150
2151static void intel_pmu_drain_pebs_nhm(struct pt_regs *iregs, struct perf_sample_data *data)
2152{
2153	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2154	struct debug_store *ds = cpuc->ds;
2155	struct perf_event *event;
2156	void *base, *at, *top;
2157	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2158	short error[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2159	int bit, i, size;
2160	u64 mask;
2161
2162	if (!x86_pmu.pebs_active)
2163		return;
2164
2165	base = (struct pebs_record_nhm *)(unsigned long)ds->pebs_buffer_base;
2166	top = (struct pebs_record_nhm *)(unsigned long)ds->pebs_index;
2167
2168	ds->pebs_index = ds->pebs_buffer_base;
2169
2170	mask = (1ULL << x86_pmu.max_pebs_events) - 1;
2171	size = x86_pmu.max_pebs_events;
2172	if (x86_pmu.flags & PMU_FL_PEBS_ALL) {
2173		mask |= ((1ULL << x86_pmu.num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED;
2174		size = INTEL_PMC_IDX_FIXED + x86_pmu.num_counters_fixed;
2175	}
2176
2177	if (unlikely(base >= top)) {
2178		intel_pmu_pebs_event_update_no_drain(cpuc, size);
2179		return;
2180	}
2181
2182	for (at = base; at < top; at += x86_pmu.pebs_record_size) {
2183		struct pebs_record_nhm *p = at;
2184		u64 pebs_status;
2185
2186		pebs_status = p->status & cpuc->pebs_enabled;
2187		pebs_status &= mask;
2188
2189		/* PEBS v3 has more accurate status bits */
2190		if (x86_pmu.intel_cap.pebs_format >= 3) {
2191			for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2192				counts[bit]++;
2193
2194			continue;
2195		}
2196
2197		/*
2198		 * On some CPUs the PEBS status can be zero when PEBS is
2199		 * racing with clearing of GLOBAL_STATUS.
2200		 *
2201		 * Normally we would drop that record, but in the
2202		 * case when there is only a single active PEBS event
2203		 * we can assume it's for that event.
2204		 */
2205		if (!pebs_status && cpuc->pebs_enabled &&
2206			!(cpuc->pebs_enabled & (cpuc->pebs_enabled-1)))
2207			pebs_status = p->status = cpuc->pebs_enabled;
2208
2209		bit = find_first_bit((unsigned long *)&pebs_status,
2210					x86_pmu.max_pebs_events);
2211		if (bit >= x86_pmu.max_pebs_events)
2212			continue;
2213
2214		/*
2215		 * The PEBS hardware does not deal well with the situation
2216		 * when events happen near to each other and multiple bits
2217		 * are set. But it should happen rarely.
2218		 *
2219		 * If these events include one PEBS and multiple non-PEBS
2220		 * events, it doesn't impact PEBS record. The record will
2221		 * be handled normally. (slow path)
2222		 *
2223		 * If these events include two or more PEBS events, the
2224		 * records for the events can be collapsed into a single
2225		 * one, and it's not possible to reconstruct all events
2226		 * that caused the PEBS record. It's called collision.
2227		 * If collision happened, the record will be dropped.
2228		 */
2229		if (pebs_status != (1ULL << bit)) {
2230			for_each_set_bit(i, (unsigned long *)&pebs_status, size)
2231				error[i]++;
2232			continue;
2233		}
2234
2235		counts[bit]++;
2236	}
2237
2238	for_each_set_bit(bit, (unsigned long *)&mask, size) {
2239		if ((counts[bit] == 0) && (error[bit] == 0))
2240			continue;
2241
2242		event = cpuc->events[bit];
2243		if (WARN_ON_ONCE(!event))
2244			continue;
2245
2246		if (WARN_ON_ONCE(!event->attr.precise_ip))
2247			continue;
2248
2249		/* log dropped samples number */
2250		if (error[bit]) {
2251			perf_log_lost_samples(event, error[bit]);
2252
2253			if (iregs && perf_event_account_interrupt(event))
2254				x86_pmu_stop(event, 0);
2255		}
2256
2257		if (counts[bit]) {
2258			__intel_pmu_pebs_event(event, iregs, data, base,
2259					       top, bit, counts[bit],
2260					       setup_pebs_fixed_sample_data);
2261		}
2262	}
2263}
2264
2265static void intel_pmu_drain_pebs_icl(struct pt_regs *iregs, struct perf_sample_data *data)
2266{
2267	short counts[INTEL_PMC_IDX_FIXED + MAX_FIXED_PEBS_EVENTS] = {};
2268	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2269	int max_pebs_events = hybrid(cpuc->pmu, max_pebs_events);
2270	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
2271	struct debug_store *ds = cpuc->ds;
2272	struct perf_event *event;
2273	void *base, *at, *top;
2274	int bit, size;
2275	u64 mask;
2276
2277	if (!x86_pmu.pebs_active)
2278		return;
2279
2280	base = (struct pebs_basic *)(unsigned long)ds->pebs_buffer_base;
2281	top = (struct pebs_basic *)(unsigned long)ds->pebs_index;
2282
2283	ds->pebs_index = ds->pebs_buffer_base;
2284
2285	mask = ((1ULL << max_pebs_events) - 1) |
2286	       (((1ULL << num_counters_fixed) - 1) << INTEL_PMC_IDX_FIXED);
2287	size = INTEL_PMC_IDX_FIXED + num_counters_fixed;
2288
2289	if (unlikely(base >= top)) {
2290		intel_pmu_pebs_event_update_no_drain(cpuc, size);
2291		return;
2292	}
2293
2294	for (at = base; at < top; at += cpuc->pebs_record_size) {
2295		u64 pebs_status;
2296
2297		pebs_status = get_pebs_status(at) & cpuc->pebs_enabled;
2298		pebs_status &= mask;
2299
2300		for_each_set_bit(bit, (unsigned long *)&pebs_status, size)
2301			counts[bit]++;
2302	}
2303
2304	for_each_set_bit(bit, (unsigned long *)&mask, size) {
2305		if (counts[bit] == 0)
2306			continue;
2307
2308		event = cpuc->events[bit];
2309		if (WARN_ON_ONCE(!event))
2310			continue;
2311
2312		if (WARN_ON_ONCE(!event->attr.precise_ip))
2313			continue;
2314
2315		__intel_pmu_pebs_event(event, iregs, data, base,
2316				       top, bit, counts[bit],
2317				       setup_pebs_adaptive_sample_data);
2318	}
2319}
2320
2321/*
2322 * BTS, PEBS probe and setup
2323 */
2324
2325void __init intel_ds_init(void)
2326{
2327	/*
2328	 * No support for 32bit formats
2329	 */
2330	if (!boot_cpu_has(X86_FEATURE_DTES64))
2331		return;
2332
2333	x86_pmu.bts  = boot_cpu_has(X86_FEATURE_BTS);
2334	x86_pmu.pebs = boot_cpu_has(X86_FEATURE_PEBS);
2335	x86_pmu.pebs_buffer_size = PEBS_BUFFER_SIZE;
2336	if (x86_pmu.version <= 4)
2337		x86_pmu.pebs_no_isolation = 1;
2338
2339	if (x86_pmu.pebs) {
2340		char pebs_type = x86_pmu.intel_cap.pebs_trap ?  '+' : '-';
2341		char *pebs_qual = "";
2342		int format = x86_pmu.intel_cap.pebs_format;
2343
2344		if (format < 4)
2345			x86_pmu.intel_cap.pebs_baseline = 0;
2346
2347		switch (format) {
2348		case 0:
2349			pr_cont("PEBS fmt0%c, ", pebs_type);
2350			x86_pmu.pebs_record_size = sizeof(struct pebs_record_core);
2351			/*
2352			 * Using >PAGE_SIZE buffers makes the WRMSR to
2353			 * PERF_GLOBAL_CTRL in intel_pmu_enable_all()
2354			 * mysteriously hang on Core2.
2355			 *
2356			 * As a workaround, we don't do this.
2357			 */
2358			x86_pmu.pebs_buffer_size = PAGE_SIZE;
2359			x86_pmu.drain_pebs = intel_pmu_drain_pebs_core;
2360			break;
2361
2362		case 1:
2363			pr_cont("PEBS fmt1%c, ", pebs_type);
2364			x86_pmu.pebs_record_size = sizeof(struct pebs_record_nhm);
2365			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2366			break;
2367
2368		case 2:
2369			pr_cont("PEBS fmt2%c, ", pebs_type);
2370			x86_pmu.pebs_record_size = sizeof(struct pebs_record_hsw);
2371			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2372			break;
2373
2374		case 3:
2375			pr_cont("PEBS fmt3%c, ", pebs_type);
2376			x86_pmu.pebs_record_size =
2377						sizeof(struct pebs_record_skl);
2378			x86_pmu.drain_pebs = intel_pmu_drain_pebs_nhm;
2379			x86_pmu.large_pebs_flags |= PERF_SAMPLE_TIME;
2380			break;
2381
2382		case 5:
2383			x86_pmu.pebs_ept = 1;
2384			fallthrough;
2385		case 4:
2386			x86_pmu.drain_pebs = intel_pmu_drain_pebs_icl;
2387			x86_pmu.pebs_record_size = sizeof(struct pebs_basic);
2388			if (x86_pmu.intel_cap.pebs_baseline) {
2389				x86_pmu.large_pebs_flags |=
2390					PERF_SAMPLE_BRANCH_STACK |
2391					PERF_SAMPLE_TIME;
2392				x86_pmu.flags |= PMU_FL_PEBS_ALL;
2393				x86_pmu.pebs_capable = ~0ULL;
2394				pebs_qual = "-baseline";
2395				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_EXTENDED_REGS;
2396			} else {
2397				/* Only basic record supported */
2398				x86_pmu.large_pebs_flags &=
2399					~(PERF_SAMPLE_ADDR |
2400					  PERF_SAMPLE_TIME |
2401					  PERF_SAMPLE_DATA_SRC |
2402					  PERF_SAMPLE_TRANSACTION |
2403					  PERF_SAMPLE_REGS_USER |
2404					  PERF_SAMPLE_REGS_INTR);
2405			}
2406			pr_cont("PEBS fmt4%c%s, ", pebs_type, pebs_qual);
2407
2408			if (!is_hybrid() && x86_pmu.intel_cap.pebs_output_pt_available) {
2409				pr_cont("PEBS-via-PT, ");
2410				x86_get_pmu(smp_processor_id())->capabilities |= PERF_PMU_CAP_AUX_OUTPUT;
2411			}
2412
2413			break;
2414
2415		default:
2416			pr_cont("no PEBS fmt%d%c, ", format, pebs_type);
2417			x86_pmu.pebs = 0;
2418		}
2419	}
2420}
2421
2422void perf_restore_debug_store(void)
2423{
2424	struct debug_store *ds = __this_cpu_read(cpu_hw_events.ds);
2425
2426	if (!x86_pmu.bts && !x86_pmu.pebs)
2427		return;
2428
2429	wrmsrl(MSR_IA32_DS_AREA, (unsigned long)ds);
2430}
2431