xref: /kernel/linux/linux-6.6/arch/x86/events/core.c (revision 62306a36)
1/*
2 * Performance events x86 architecture code
3 *
4 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 *  Copyright (C) 2009 Jaswinder Singh Rajput
7 *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
9 *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11 *
12 *  For licencing details see kernel-base/COPYING
13 */
14
15#include <linux/perf_event.h>
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
20#include <linux/export.h>
21#include <linux/init.h>
22#include <linux/kdebug.h>
23#include <linux/sched/mm.h>
24#include <linux/sched/clock.h>
25#include <linux/uaccess.h>
26#include <linux/slab.h>
27#include <linux/cpu.h>
28#include <linux/bitops.h>
29#include <linux/device.h>
30#include <linux/nospec.h>
31#include <linux/static_call.h>
32
33#include <asm/apic.h>
34#include <asm/stacktrace.h>
35#include <asm/nmi.h>
36#include <asm/smp.h>
37#include <asm/alternative.h>
38#include <asm/mmu_context.h>
39#include <asm/tlbflush.h>
40#include <asm/timer.h>
41#include <asm/desc.h>
42#include <asm/ldt.h>
43#include <asm/unwind.h>
44
45#include "perf_event.h"
46
47struct x86_pmu x86_pmu __read_mostly;
48static struct pmu pmu;
49
50DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51	.enabled = 1,
52	.pmu = &pmu,
53};
54
55DEFINE_STATIC_KEY_FALSE(rdpmc_never_available_key);
56DEFINE_STATIC_KEY_FALSE(rdpmc_always_available_key);
57DEFINE_STATIC_KEY_FALSE(perf_is_hybrid);
58
59/*
60 * This here uses DEFINE_STATIC_CALL_NULL() to get a static_call defined
61 * from just a typename, as opposed to an actual function.
62 */
63DEFINE_STATIC_CALL_NULL(x86_pmu_handle_irq,  *x86_pmu.handle_irq);
64DEFINE_STATIC_CALL_NULL(x86_pmu_disable_all, *x86_pmu.disable_all);
65DEFINE_STATIC_CALL_NULL(x86_pmu_enable_all,  *x86_pmu.enable_all);
66DEFINE_STATIC_CALL_NULL(x86_pmu_enable,	     *x86_pmu.enable);
67DEFINE_STATIC_CALL_NULL(x86_pmu_disable,     *x86_pmu.disable);
68
69DEFINE_STATIC_CALL_NULL(x86_pmu_assign, *x86_pmu.assign);
70
71DEFINE_STATIC_CALL_NULL(x86_pmu_add,  *x86_pmu.add);
72DEFINE_STATIC_CALL_NULL(x86_pmu_del,  *x86_pmu.del);
73DEFINE_STATIC_CALL_NULL(x86_pmu_read, *x86_pmu.read);
74
75DEFINE_STATIC_CALL_NULL(x86_pmu_set_period,   *x86_pmu.set_period);
76DEFINE_STATIC_CALL_NULL(x86_pmu_update,       *x86_pmu.update);
77DEFINE_STATIC_CALL_NULL(x86_pmu_limit_period, *x86_pmu.limit_period);
78
79DEFINE_STATIC_CALL_NULL(x86_pmu_schedule_events,       *x86_pmu.schedule_events);
80DEFINE_STATIC_CALL_NULL(x86_pmu_get_event_constraints, *x86_pmu.get_event_constraints);
81DEFINE_STATIC_CALL_NULL(x86_pmu_put_event_constraints, *x86_pmu.put_event_constraints);
82
83DEFINE_STATIC_CALL_NULL(x86_pmu_start_scheduling,  *x86_pmu.start_scheduling);
84DEFINE_STATIC_CALL_NULL(x86_pmu_commit_scheduling, *x86_pmu.commit_scheduling);
85DEFINE_STATIC_CALL_NULL(x86_pmu_stop_scheduling,   *x86_pmu.stop_scheduling);
86
87DEFINE_STATIC_CALL_NULL(x86_pmu_sched_task,    *x86_pmu.sched_task);
88DEFINE_STATIC_CALL_NULL(x86_pmu_swap_task_ctx, *x86_pmu.swap_task_ctx);
89
90DEFINE_STATIC_CALL_NULL(x86_pmu_drain_pebs,   *x86_pmu.drain_pebs);
91DEFINE_STATIC_CALL_NULL(x86_pmu_pebs_aliases, *x86_pmu.pebs_aliases);
92
93DEFINE_STATIC_CALL_NULL(x86_pmu_filter, *x86_pmu.filter);
94
95/*
96 * This one is magic, it will get called even when PMU init fails (because
97 * there is no PMU), in which case it should simply return NULL.
98 */
99DEFINE_STATIC_CALL_RET0(x86_pmu_guest_get_msrs, *x86_pmu.guest_get_msrs);
100
101u64 __read_mostly hw_cache_event_ids
102				[PERF_COUNT_HW_CACHE_MAX]
103				[PERF_COUNT_HW_CACHE_OP_MAX]
104				[PERF_COUNT_HW_CACHE_RESULT_MAX];
105u64 __read_mostly hw_cache_extra_regs
106				[PERF_COUNT_HW_CACHE_MAX]
107				[PERF_COUNT_HW_CACHE_OP_MAX]
108				[PERF_COUNT_HW_CACHE_RESULT_MAX];
109
110/*
111 * Propagate event elapsed time into the generic event.
112 * Can only be executed on the CPU where the event is active.
113 * Returns the delta events processed.
114 */
115u64 x86_perf_event_update(struct perf_event *event)
116{
117	struct hw_perf_event *hwc = &event->hw;
118	int shift = 64 - x86_pmu.cntval_bits;
119	u64 prev_raw_count, new_raw_count;
120	u64 delta;
121
122	if (unlikely(!hwc->event_base))
123		return 0;
124
125	/*
126	 * Careful: an NMI might modify the previous event value.
127	 *
128	 * Our tactic to handle this is to first atomically read and
129	 * exchange a new raw count - then add that new-prev delta
130	 * count to the generic event atomically:
131	 */
132	prev_raw_count = local64_read(&hwc->prev_count);
133	do {
134		rdpmcl(hwc->event_base_rdpmc, new_raw_count);
135	} while (!local64_try_cmpxchg(&hwc->prev_count,
136				      &prev_raw_count, new_raw_count));
137
138	/*
139	 * Now we have the new raw value and have updated the prev
140	 * timestamp already. We can now calculate the elapsed delta
141	 * (event-)time and add that to the generic event.
142	 *
143	 * Careful, not all hw sign-extends above the physical width
144	 * of the count.
145	 */
146	delta = (new_raw_count << shift) - (prev_raw_count << shift);
147	delta >>= shift;
148
149	local64_add(delta, &event->count);
150	local64_sub(delta, &hwc->period_left);
151
152	return new_raw_count;
153}
154
155/*
156 * Find and validate any extra registers to set up.
157 */
158static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
159{
160	struct extra_reg *extra_regs = hybrid(event->pmu, extra_regs);
161	struct hw_perf_event_extra *reg;
162	struct extra_reg *er;
163
164	reg = &event->hw.extra_reg;
165
166	if (!extra_regs)
167		return 0;
168
169	for (er = extra_regs; er->msr; er++) {
170		if (er->event != (config & er->config_mask))
171			continue;
172		if (event->attr.config1 & ~er->valid_mask)
173			return -EINVAL;
174		/* Check if the extra msrs can be safely accessed*/
175		if (!er->extra_msr_access)
176			return -ENXIO;
177
178		reg->idx = er->idx;
179		reg->config = event->attr.config1;
180		reg->reg = er->msr;
181		break;
182	}
183	return 0;
184}
185
186static atomic_t active_events;
187static atomic_t pmc_refcount;
188static DEFINE_MUTEX(pmc_reserve_mutex);
189
190#ifdef CONFIG_X86_LOCAL_APIC
191
192static inline int get_possible_num_counters(void)
193{
194	int i, num_counters = x86_pmu.num_counters;
195
196	if (!is_hybrid())
197		return num_counters;
198
199	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++)
200		num_counters = max_t(int, num_counters, x86_pmu.hybrid_pmu[i].num_counters);
201
202	return num_counters;
203}
204
205static bool reserve_pmc_hardware(void)
206{
207	int i, num_counters = get_possible_num_counters();
208
209	for (i = 0; i < num_counters; i++) {
210		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
211			goto perfctr_fail;
212	}
213
214	for (i = 0; i < num_counters; i++) {
215		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
216			goto eventsel_fail;
217	}
218
219	return true;
220
221eventsel_fail:
222	for (i--; i >= 0; i--)
223		release_evntsel_nmi(x86_pmu_config_addr(i));
224
225	i = num_counters;
226
227perfctr_fail:
228	for (i--; i >= 0; i--)
229		release_perfctr_nmi(x86_pmu_event_addr(i));
230
231	return false;
232}
233
234static void release_pmc_hardware(void)
235{
236	int i, num_counters = get_possible_num_counters();
237
238	for (i = 0; i < num_counters; i++) {
239		release_perfctr_nmi(x86_pmu_event_addr(i));
240		release_evntsel_nmi(x86_pmu_config_addr(i));
241	}
242}
243
244#else
245
246static bool reserve_pmc_hardware(void) { return true; }
247static void release_pmc_hardware(void) {}
248
249#endif
250
251bool check_hw_exists(struct pmu *pmu, int num_counters, int num_counters_fixed)
252{
253	u64 val, val_fail = -1, val_new= ~0;
254	int i, reg, reg_fail = -1, ret = 0;
255	int bios_fail = 0;
256	int reg_safe = -1;
257
258	/*
259	 * Check to see if the BIOS enabled any of the counters, if so
260	 * complain and bail.
261	 */
262	for (i = 0; i < num_counters; i++) {
263		reg = x86_pmu_config_addr(i);
264		ret = rdmsrl_safe(reg, &val);
265		if (ret)
266			goto msr_fail;
267		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
268			bios_fail = 1;
269			val_fail = val;
270			reg_fail = reg;
271		} else {
272			reg_safe = i;
273		}
274	}
275
276	if (num_counters_fixed) {
277		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
278		ret = rdmsrl_safe(reg, &val);
279		if (ret)
280			goto msr_fail;
281		for (i = 0; i < num_counters_fixed; i++) {
282			if (fixed_counter_disabled(i, pmu))
283				continue;
284			if (val & (0x03ULL << i*4)) {
285				bios_fail = 1;
286				val_fail = val;
287				reg_fail = reg;
288			}
289		}
290	}
291
292	/*
293	 * If all the counters are enabled, the below test will always
294	 * fail.  The tools will also become useless in this scenario.
295	 * Just fail and disable the hardware counters.
296	 */
297
298	if (reg_safe == -1) {
299		reg = reg_safe;
300		goto msr_fail;
301	}
302
303	/*
304	 * Read the current value, change it and read it back to see if it
305	 * matches, this is needed to detect certain hardware emulators
306	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
307	 */
308	reg = x86_pmu_event_addr(reg_safe);
309	if (rdmsrl_safe(reg, &val))
310		goto msr_fail;
311	val ^= 0xffffUL;
312	ret = wrmsrl_safe(reg, val);
313	ret |= rdmsrl_safe(reg, &val_new);
314	if (ret || val != val_new)
315		goto msr_fail;
316
317	/*
318	 * We still allow the PMU driver to operate:
319	 */
320	if (bios_fail) {
321		pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
322		pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
323			      reg_fail, val_fail);
324	}
325
326	return true;
327
328msr_fail:
329	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
330		pr_cont("PMU not available due to virtualization, using software events only.\n");
331	} else {
332		pr_cont("Broken PMU hardware detected, using software events only.\n");
333		pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
334		       reg, val_new);
335	}
336
337	return false;
338}
339
340static void hw_perf_event_destroy(struct perf_event *event)
341{
342	x86_release_hardware();
343	atomic_dec(&active_events);
344}
345
346void hw_perf_lbr_event_destroy(struct perf_event *event)
347{
348	hw_perf_event_destroy(event);
349
350	/* undo the lbr/bts event accounting */
351	x86_del_exclusive(x86_lbr_exclusive_lbr);
352}
353
354static inline int x86_pmu_initialized(void)
355{
356	return x86_pmu.handle_irq != NULL;
357}
358
359static inline int
360set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
361{
362	struct perf_event_attr *attr = &event->attr;
363	unsigned int cache_type, cache_op, cache_result;
364	u64 config, val;
365
366	config = attr->config;
367
368	cache_type = (config >> 0) & 0xff;
369	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
370		return -EINVAL;
371	cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
372
373	cache_op = (config >>  8) & 0xff;
374	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
375		return -EINVAL;
376	cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
377
378	cache_result = (config >> 16) & 0xff;
379	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
380		return -EINVAL;
381	cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
382
383	val = hybrid_var(event->pmu, hw_cache_event_ids)[cache_type][cache_op][cache_result];
384	if (val == 0)
385		return -ENOENT;
386
387	if (val == -1)
388		return -EINVAL;
389
390	hwc->config |= val;
391	attr->config1 = hybrid_var(event->pmu, hw_cache_extra_regs)[cache_type][cache_op][cache_result];
392	return x86_pmu_extra_regs(val, event);
393}
394
395int x86_reserve_hardware(void)
396{
397	int err = 0;
398
399	if (!atomic_inc_not_zero(&pmc_refcount)) {
400		mutex_lock(&pmc_reserve_mutex);
401		if (atomic_read(&pmc_refcount) == 0) {
402			if (!reserve_pmc_hardware()) {
403				err = -EBUSY;
404			} else {
405				reserve_ds_buffers();
406				reserve_lbr_buffers();
407			}
408		}
409		if (!err)
410			atomic_inc(&pmc_refcount);
411		mutex_unlock(&pmc_reserve_mutex);
412	}
413
414	return err;
415}
416
417void x86_release_hardware(void)
418{
419	if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
420		release_pmc_hardware();
421		release_ds_buffers();
422		release_lbr_buffers();
423		mutex_unlock(&pmc_reserve_mutex);
424	}
425}
426
427/*
428 * Check if we can create event of a certain type (that no conflicting events
429 * are present).
430 */
431int x86_add_exclusive(unsigned int what)
432{
433	int i;
434
435	/*
436	 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
437	 * LBR and BTS are still mutually exclusive.
438	 */
439	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
440		goto out;
441
442	if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
443		mutex_lock(&pmc_reserve_mutex);
444		for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
445			if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
446				goto fail_unlock;
447		}
448		atomic_inc(&x86_pmu.lbr_exclusive[what]);
449		mutex_unlock(&pmc_reserve_mutex);
450	}
451
452out:
453	atomic_inc(&active_events);
454	return 0;
455
456fail_unlock:
457	mutex_unlock(&pmc_reserve_mutex);
458	return -EBUSY;
459}
460
461void x86_del_exclusive(unsigned int what)
462{
463	atomic_dec(&active_events);
464
465	/*
466	 * See the comment in x86_add_exclusive().
467	 */
468	if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
469		return;
470
471	atomic_dec(&x86_pmu.lbr_exclusive[what]);
472}
473
474int x86_setup_perfctr(struct perf_event *event)
475{
476	struct perf_event_attr *attr = &event->attr;
477	struct hw_perf_event *hwc = &event->hw;
478	u64 config;
479
480	if (!is_sampling_event(event)) {
481		hwc->sample_period = x86_pmu.max_period;
482		hwc->last_period = hwc->sample_period;
483		local64_set(&hwc->period_left, hwc->sample_period);
484	}
485
486	if (attr->type == event->pmu->type)
487		return x86_pmu_extra_regs(event->attr.config, event);
488
489	if (attr->type == PERF_TYPE_HW_CACHE)
490		return set_ext_hw_attr(hwc, event);
491
492	if (attr->config >= x86_pmu.max_events)
493		return -EINVAL;
494
495	attr->config = array_index_nospec((unsigned long)attr->config, x86_pmu.max_events);
496
497	/*
498	 * The generic map:
499	 */
500	config = x86_pmu.event_map(attr->config);
501
502	if (config == 0)
503		return -ENOENT;
504
505	if (config == -1LL)
506		return -EINVAL;
507
508	hwc->config |= config;
509
510	return 0;
511}
512
513/*
514 * check that branch_sample_type is compatible with
515 * settings needed for precise_ip > 1 which implies
516 * using the LBR to capture ALL taken branches at the
517 * priv levels of the measurement
518 */
519static inline int precise_br_compat(struct perf_event *event)
520{
521	u64 m = event->attr.branch_sample_type;
522	u64 b = 0;
523
524	/* must capture all branches */
525	if (!(m & PERF_SAMPLE_BRANCH_ANY))
526		return 0;
527
528	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
529
530	if (!event->attr.exclude_user)
531		b |= PERF_SAMPLE_BRANCH_USER;
532
533	if (!event->attr.exclude_kernel)
534		b |= PERF_SAMPLE_BRANCH_KERNEL;
535
536	/*
537	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
538	 */
539
540	return m == b;
541}
542
543int x86_pmu_max_precise(void)
544{
545	int precise = 0;
546
547	/* Support for constant skid */
548	if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
549		precise++;
550
551		/* Support for IP fixup */
552		if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
553			precise++;
554
555		if (x86_pmu.pebs_prec_dist)
556			precise++;
557	}
558	return precise;
559}
560
561int x86_pmu_hw_config(struct perf_event *event)
562{
563	if (event->attr.precise_ip) {
564		int precise = x86_pmu_max_precise();
565
566		if (event->attr.precise_ip > precise)
567			return -EOPNOTSUPP;
568
569		/* There's no sense in having PEBS for non sampling events: */
570		if (!is_sampling_event(event))
571			return -EINVAL;
572	}
573	/*
574	 * check that PEBS LBR correction does not conflict with
575	 * whatever the user is asking with attr->branch_sample_type
576	 */
577	if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
578		u64 *br_type = &event->attr.branch_sample_type;
579
580		if (has_branch_stack(event)) {
581			if (!precise_br_compat(event))
582				return -EOPNOTSUPP;
583
584			/* branch_sample_type is compatible */
585
586		} else {
587			/*
588			 * user did not specify  branch_sample_type
589			 *
590			 * For PEBS fixups, we capture all
591			 * the branches at the priv level of the
592			 * event.
593			 */
594			*br_type = PERF_SAMPLE_BRANCH_ANY;
595
596			if (!event->attr.exclude_user)
597				*br_type |= PERF_SAMPLE_BRANCH_USER;
598
599			if (!event->attr.exclude_kernel)
600				*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
601		}
602	}
603
604	if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
605		event->attach_state |= PERF_ATTACH_TASK_DATA;
606
607	/*
608	 * Generate PMC IRQs:
609	 * (keep 'enabled' bit clear for now)
610	 */
611	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
612
613	/*
614	 * Count user and OS events unless requested not to
615	 */
616	if (!event->attr.exclude_user)
617		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
618	if (!event->attr.exclude_kernel)
619		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
620
621	if (event->attr.type == event->pmu->type)
622		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
623
624	if (event->attr.sample_period && x86_pmu.limit_period) {
625		s64 left = event->attr.sample_period;
626		x86_pmu.limit_period(event, &left);
627		if (left > event->attr.sample_period)
628			return -EINVAL;
629	}
630
631	/* sample_regs_user never support XMM registers */
632	if (unlikely(event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK))
633		return -EINVAL;
634	/*
635	 * Besides the general purpose registers, XMM registers may
636	 * be collected in PEBS on some platforms, e.g. Icelake
637	 */
638	if (unlikely(event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK)) {
639		if (!(event->pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS))
640			return -EINVAL;
641
642		if (!event->attr.precise_ip)
643			return -EINVAL;
644	}
645
646	return x86_setup_perfctr(event);
647}
648
649/*
650 * Setup the hardware configuration for a given attr_type
651 */
652static int __x86_pmu_event_init(struct perf_event *event)
653{
654	int err;
655
656	if (!x86_pmu_initialized())
657		return -ENODEV;
658
659	err = x86_reserve_hardware();
660	if (err)
661		return err;
662
663	atomic_inc(&active_events);
664	event->destroy = hw_perf_event_destroy;
665
666	event->hw.idx = -1;
667	event->hw.last_cpu = -1;
668	event->hw.last_tag = ~0ULL;
669
670	/* mark unused */
671	event->hw.extra_reg.idx = EXTRA_REG_NONE;
672	event->hw.branch_reg.idx = EXTRA_REG_NONE;
673
674	return x86_pmu.hw_config(event);
675}
676
677void x86_pmu_disable_all(void)
678{
679	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
680	int idx;
681
682	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
683		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
684		u64 val;
685
686		if (!test_bit(idx, cpuc->active_mask))
687			continue;
688		rdmsrl(x86_pmu_config_addr(idx), val);
689		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
690			continue;
691		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
692		wrmsrl(x86_pmu_config_addr(idx), val);
693		if (is_counter_pair(hwc))
694			wrmsrl(x86_pmu_config_addr(idx + 1), 0);
695	}
696}
697
698struct perf_guest_switch_msr *perf_guest_get_msrs(int *nr, void *data)
699{
700	return static_call(x86_pmu_guest_get_msrs)(nr, data);
701}
702EXPORT_SYMBOL_GPL(perf_guest_get_msrs);
703
704/*
705 * There may be PMI landing after enabled=0. The PMI hitting could be before or
706 * after disable_all.
707 *
708 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
709 * It will not be re-enabled in the NMI handler again, because enabled=0. After
710 * handling the NMI, disable_all will be called, which will not change the
711 * state either. If PMI hits after disable_all, the PMU is already disabled
712 * before entering NMI handler. The NMI handler will not change the state
713 * either.
714 *
715 * So either situation is harmless.
716 */
717static void x86_pmu_disable(struct pmu *pmu)
718{
719	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
720
721	if (!x86_pmu_initialized())
722		return;
723
724	if (!cpuc->enabled)
725		return;
726
727	cpuc->n_added = 0;
728	cpuc->enabled = 0;
729	barrier();
730
731	static_call(x86_pmu_disable_all)();
732}
733
734void x86_pmu_enable_all(int added)
735{
736	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
737	int idx;
738
739	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
740		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
741
742		if (!test_bit(idx, cpuc->active_mask))
743			continue;
744
745		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
746	}
747}
748
749static inline int is_x86_event(struct perf_event *event)
750{
751	int i;
752
753	if (!is_hybrid())
754		return event->pmu == &pmu;
755
756	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
757		if (event->pmu == &x86_pmu.hybrid_pmu[i].pmu)
758			return true;
759	}
760
761	return false;
762}
763
764struct pmu *x86_get_pmu(unsigned int cpu)
765{
766	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
767
768	/*
769	 * All CPUs of the hybrid type have been offline.
770	 * The x86_get_pmu() should not be invoked.
771	 */
772	if (WARN_ON_ONCE(!cpuc->pmu))
773		return &pmu;
774
775	return cpuc->pmu;
776}
777/*
778 * Event scheduler state:
779 *
780 * Assign events iterating over all events and counters, beginning
781 * with events with least weights first. Keep the current iterator
782 * state in struct sched_state.
783 */
784struct sched_state {
785	int	weight;
786	int	event;		/* event index */
787	int	counter;	/* counter index */
788	int	unassigned;	/* number of events to be assigned left */
789	int	nr_gp;		/* number of GP counters used */
790	u64	used;
791};
792
793/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
794#define	SCHED_STATES_MAX	2
795
796struct perf_sched {
797	int			max_weight;
798	int			max_events;
799	int			max_gp;
800	int			saved_states;
801	struct event_constraint	**constraints;
802	struct sched_state	state;
803	struct sched_state	saved[SCHED_STATES_MAX];
804};
805
806/*
807 * Initialize iterator that runs through all events and counters.
808 */
809static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
810			    int num, int wmin, int wmax, int gpmax)
811{
812	int idx;
813
814	memset(sched, 0, sizeof(*sched));
815	sched->max_events	= num;
816	sched->max_weight	= wmax;
817	sched->max_gp		= gpmax;
818	sched->constraints	= constraints;
819
820	for (idx = 0; idx < num; idx++) {
821		if (constraints[idx]->weight == wmin)
822			break;
823	}
824
825	sched->state.event	= idx;		/* start with min weight */
826	sched->state.weight	= wmin;
827	sched->state.unassigned	= num;
828}
829
830static void perf_sched_save_state(struct perf_sched *sched)
831{
832	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
833		return;
834
835	sched->saved[sched->saved_states] = sched->state;
836	sched->saved_states++;
837}
838
839static bool perf_sched_restore_state(struct perf_sched *sched)
840{
841	if (!sched->saved_states)
842		return false;
843
844	sched->saved_states--;
845	sched->state = sched->saved[sched->saved_states];
846
847	/* this assignment didn't work out */
848	/* XXX broken vs EVENT_PAIR */
849	sched->state.used &= ~BIT_ULL(sched->state.counter);
850
851	/* try the next one */
852	sched->state.counter++;
853
854	return true;
855}
856
857/*
858 * Select a counter for the current event to schedule. Return true on
859 * success.
860 */
861static bool __perf_sched_find_counter(struct perf_sched *sched)
862{
863	struct event_constraint *c;
864	int idx;
865
866	if (!sched->state.unassigned)
867		return false;
868
869	if (sched->state.event >= sched->max_events)
870		return false;
871
872	c = sched->constraints[sched->state.event];
873	/* Prefer fixed purpose counters */
874	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
875		idx = INTEL_PMC_IDX_FIXED;
876		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
877			u64 mask = BIT_ULL(idx);
878
879			if (sched->state.used & mask)
880				continue;
881
882			sched->state.used |= mask;
883			goto done;
884		}
885	}
886
887	/* Grab the first unused counter starting with idx */
888	idx = sched->state.counter;
889	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
890		u64 mask = BIT_ULL(idx);
891
892		if (c->flags & PERF_X86_EVENT_PAIR)
893			mask |= mask << 1;
894
895		if (sched->state.used & mask)
896			continue;
897
898		if (sched->state.nr_gp++ >= sched->max_gp)
899			return false;
900
901		sched->state.used |= mask;
902		goto done;
903	}
904
905	return false;
906
907done:
908	sched->state.counter = idx;
909
910	if (c->overlap)
911		perf_sched_save_state(sched);
912
913	return true;
914}
915
916static bool perf_sched_find_counter(struct perf_sched *sched)
917{
918	while (!__perf_sched_find_counter(sched)) {
919		if (!perf_sched_restore_state(sched))
920			return false;
921	}
922
923	return true;
924}
925
926/*
927 * Go through all unassigned events and find the next one to schedule.
928 * Take events with the least weight first. Return true on success.
929 */
930static bool perf_sched_next_event(struct perf_sched *sched)
931{
932	struct event_constraint *c;
933
934	if (!sched->state.unassigned || !--sched->state.unassigned)
935		return false;
936
937	do {
938		/* next event */
939		sched->state.event++;
940		if (sched->state.event >= sched->max_events) {
941			/* next weight */
942			sched->state.event = 0;
943			sched->state.weight++;
944			if (sched->state.weight > sched->max_weight)
945				return false;
946		}
947		c = sched->constraints[sched->state.event];
948	} while (c->weight != sched->state.weight);
949
950	sched->state.counter = 0;	/* start with first counter */
951
952	return true;
953}
954
955/*
956 * Assign a counter for each event.
957 */
958int perf_assign_events(struct event_constraint **constraints, int n,
959			int wmin, int wmax, int gpmax, int *assign)
960{
961	struct perf_sched sched;
962
963	perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
964
965	do {
966		if (!perf_sched_find_counter(&sched))
967			break;	/* failed */
968		if (assign)
969			assign[sched.state.event] = sched.state.counter;
970	} while (perf_sched_next_event(&sched));
971
972	return sched.state.unassigned;
973}
974EXPORT_SYMBOL_GPL(perf_assign_events);
975
976int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
977{
978	int num_counters = hybrid(cpuc->pmu, num_counters);
979	struct event_constraint *c;
980	struct perf_event *e;
981	int n0, i, wmin, wmax, unsched = 0;
982	struct hw_perf_event *hwc;
983	u64 used_mask = 0;
984
985	/*
986	 * Compute the number of events already present; see x86_pmu_add(),
987	 * validate_group() and x86_pmu_commit_txn(). For the former two
988	 * cpuc->n_events hasn't been updated yet, while for the latter
989	 * cpuc->n_txn contains the number of events added in the current
990	 * transaction.
991	 */
992	n0 = cpuc->n_events;
993	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
994		n0 -= cpuc->n_txn;
995
996	static_call_cond(x86_pmu_start_scheduling)(cpuc);
997
998	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
999		c = cpuc->event_constraint[i];
1000
1001		/*
1002		 * Previously scheduled events should have a cached constraint,
1003		 * while new events should not have one.
1004		 */
1005		WARN_ON_ONCE((c && i >= n0) || (!c && i < n0));
1006
1007		/*
1008		 * Request constraints for new events; or for those events that
1009		 * have a dynamic constraint -- for those the constraint can
1010		 * change due to external factors (sibling state, allow_tfa).
1011		 */
1012		if (!c || (c->flags & PERF_X86_EVENT_DYNAMIC)) {
1013			c = static_call(x86_pmu_get_event_constraints)(cpuc, i, cpuc->event_list[i]);
1014			cpuc->event_constraint[i] = c;
1015		}
1016
1017		wmin = min(wmin, c->weight);
1018		wmax = max(wmax, c->weight);
1019	}
1020
1021	/*
1022	 * fastpath, try to reuse previous register
1023	 */
1024	for (i = 0; i < n; i++) {
1025		u64 mask;
1026
1027		hwc = &cpuc->event_list[i]->hw;
1028		c = cpuc->event_constraint[i];
1029
1030		/* never assigned */
1031		if (hwc->idx == -1)
1032			break;
1033
1034		/* constraint still honored */
1035		if (!test_bit(hwc->idx, c->idxmsk))
1036			break;
1037
1038		mask = BIT_ULL(hwc->idx);
1039		if (is_counter_pair(hwc))
1040			mask |= mask << 1;
1041
1042		/* not already used */
1043		if (used_mask & mask)
1044			break;
1045
1046		used_mask |= mask;
1047
1048		if (assign)
1049			assign[i] = hwc->idx;
1050	}
1051
1052	/* slow path */
1053	if (i != n) {
1054		int gpmax = num_counters;
1055
1056		/*
1057		 * Do not allow scheduling of more than half the available
1058		 * generic counters.
1059		 *
1060		 * This helps avoid counter starvation of sibling thread by
1061		 * ensuring at most half the counters cannot be in exclusive
1062		 * mode. There is no designated counters for the limits. Any
1063		 * N/2 counters can be used. This helps with events with
1064		 * specific counter constraints.
1065		 */
1066		if (is_ht_workaround_enabled() && !cpuc->is_fake &&
1067		    READ_ONCE(cpuc->excl_cntrs->exclusive_present))
1068			gpmax /= 2;
1069
1070		/*
1071		 * Reduce the amount of available counters to allow fitting
1072		 * the extra Merge events needed by large increment events.
1073		 */
1074		if (x86_pmu.flags & PMU_FL_PAIR) {
1075			gpmax = num_counters - cpuc->n_pair;
1076			WARN_ON(gpmax <= 0);
1077		}
1078
1079		unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
1080					     wmax, gpmax, assign);
1081	}
1082
1083	/*
1084	 * In case of success (unsched = 0), mark events as committed,
1085	 * so we do not put_constraint() in case new events are added
1086	 * and fail to be scheduled
1087	 *
1088	 * We invoke the lower level commit callback to lock the resource
1089	 *
1090	 * We do not need to do all of this in case we are called to
1091	 * validate an event group (assign == NULL)
1092	 */
1093	if (!unsched && assign) {
1094		for (i = 0; i < n; i++)
1095			static_call_cond(x86_pmu_commit_scheduling)(cpuc, i, assign[i]);
1096	} else {
1097		for (i = n0; i < n; i++) {
1098			e = cpuc->event_list[i];
1099
1100			/*
1101			 * release events that failed scheduling
1102			 */
1103			static_call_cond(x86_pmu_put_event_constraints)(cpuc, e);
1104
1105			cpuc->event_constraint[i] = NULL;
1106		}
1107	}
1108
1109	static_call_cond(x86_pmu_stop_scheduling)(cpuc);
1110
1111	return unsched ? -EINVAL : 0;
1112}
1113
1114static int add_nr_metric_event(struct cpu_hw_events *cpuc,
1115			       struct perf_event *event)
1116{
1117	if (is_metric_event(event)) {
1118		if (cpuc->n_metric == INTEL_TD_METRIC_NUM)
1119			return -EINVAL;
1120		cpuc->n_metric++;
1121		cpuc->n_txn_metric++;
1122	}
1123
1124	return 0;
1125}
1126
1127static void del_nr_metric_event(struct cpu_hw_events *cpuc,
1128				struct perf_event *event)
1129{
1130	if (is_metric_event(event))
1131		cpuc->n_metric--;
1132}
1133
1134static int collect_event(struct cpu_hw_events *cpuc, struct perf_event *event,
1135			 int max_count, int n)
1136{
1137	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1138
1139	if (intel_cap.perf_metrics && add_nr_metric_event(cpuc, event))
1140		return -EINVAL;
1141
1142	if (n >= max_count + cpuc->n_metric)
1143		return -EINVAL;
1144
1145	cpuc->event_list[n] = event;
1146	if (is_counter_pair(&event->hw)) {
1147		cpuc->n_pair++;
1148		cpuc->n_txn_pair++;
1149	}
1150
1151	return 0;
1152}
1153
1154/*
1155 * dogrp: true if must collect siblings events (group)
1156 * returns total number of events and error code
1157 */
1158static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
1159{
1160	int num_counters = hybrid(cpuc->pmu, num_counters);
1161	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1162	struct perf_event *event;
1163	int n, max_count;
1164
1165	max_count = num_counters + num_counters_fixed;
1166
1167	/* current number of events already accepted */
1168	n = cpuc->n_events;
1169	if (!cpuc->n_events)
1170		cpuc->pebs_output = 0;
1171
1172	if (!cpuc->is_fake && leader->attr.precise_ip) {
1173		/*
1174		 * For PEBS->PT, if !aux_event, the group leader (PT) went
1175		 * away, the group was broken down and this singleton event
1176		 * can't schedule any more.
1177		 */
1178		if (is_pebs_pt(leader) && !leader->aux_event)
1179			return -EINVAL;
1180
1181		/*
1182		 * pebs_output: 0: no PEBS so far, 1: PT, 2: DS
1183		 */
1184		if (cpuc->pebs_output &&
1185		    cpuc->pebs_output != is_pebs_pt(leader) + 1)
1186			return -EINVAL;
1187
1188		cpuc->pebs_output = is_pebs_pt(leader) + 1;
1189	}
1190
1191	if (is_x86_event(leader)) {
1192		if (collect_event(cpuc, leader, max_count, n))
1193			return -EINVAL;
1194		n++;
1195	}
1196
1197	if (!dogrp)
1198		return n;
1199
1200	for_each_sibling_event(event, leader) {
1201		if (!is_x86_event(event) || event->state <= PERF_EVENT_STATE_OFF)
1202			continue;
1203
1204		if (collect_event(cpuc, event, max_count, n))
1205			return -EINVAL;
1206
1207		n++;
1208	}
1209	return n;
1210}
1211
1212static inline void x86_assign_hw_event(struct perf_event *event,
1213				struct cpu_hw_events *cpuc, int i)
1214{
1215	struct hw_perf_event *hwc = &event->hw;
1216	int idx;
1217
1218	idx = hwc->idx = cpuc->assign[i];
1219	hwc->last_cpu = smp_processor_id();
1220	hwc->last_tag = ++cpuc->tags[i];
1221
1222	static_call_cond(x86_pmu_assign)(event, idx);
1223
1224	switch (hwc->idx) {
1225	case INTEL_PMC_IDX_FIXED_BTS:
1226	case INTEL_PMC_IDX_FIXED_VLBR:
1227		hwc->config_base = 0;
1228		hwc->event_base	= 0;
1229		break;
1230
1231	case INTEL_PMC_IDX_METRIC_BASE ... INTEL_PMC_IDX_METRIC_END:
1232		/* All the metric events are mapped onto the fixed counter 3. */
1233		idx = INTEL_PMC_IDX_FIXED_SLOTS;
1234		fallthrough;
1235	case INTEL_PMC_IDX_FIXED ... INTEL_PMC_IDX_FIXED_BTS-1:
1236		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
1237		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 +
1238				(idx - INTEL_PMC_IDX_FIXED);
1239		hwc->event_base_rdpmc = (idx - INTEL_PMC_IDX_FIXED) |
1240					INTEL_PMC_FIXED_RDPMC_BASE;
1241		break;
1242
1243	default:
1244		hwc->config_base = x86_pmu_config_addr(hwc->idx);
1245		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
1246		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1247		break;
1248	}
1249}
1250
1251/**
1252 * x86_perf_rdpmc_index - Return PMC counter used for event
1253 * @event: the perf_event to which the PMC counter was assigned
1254 *
1255 * The counter assigned to this performance event may change if interrupts
1256 * are enabled. This counter should thus never be used while interrupts are
1257 * enabled. Before this function is used to obtain the assigned counter the
1258 * event should be checked for validity using, for example,
1259 * perf_event_read_local(), within the same interrupt disabled section in
1260 * which this counter is planned to be used.
1261 *
1262 * Return: The index of the performance monitoring counter assigned to
1263 * @perf_event.
1264 */
1265int x86_perf_rdpmc_index(struct perf_event *event)
1266{
1267	lockdep_assert_irqs_disabled();
1268
1269	return event->hw.event_base_rdpmc;
1270}
1271
1272static inline int match_prev_assignment(struct hw_perf_event *hwc,
1273					struct cpu_hw_events *cpuc,
1274					int i)
1275{
1276	return hwc->idx == cpuc->assign[i] &&
1277		hwc->last_cpu == smp_processor_id() &&
1278		hwc->last_tag == cpuc->tags[i];
1279}
1280
1281static void x86_pmu_start(struct perf_event *event, int flags);
1282
1283static void x86_pmu_enable(struct pmu *pmu)
1284{
1285	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1286	struct perf_event *event;
1287	struct hw_perf_event *hwc;
1288	int i, added = cpuc->n_added;
1289
1290	if (!x86_pmu_initialized())
1291		return;
1292
1293	if (cpuc->enabled)
1294		return;
1295
1296	if (cpuc->n_added) {
1297		int n_running = cpuc->n_events - cpuc->n_added;
1298		/*
1299		 * apply assignment obtained either from
1300		 * hw_perf_group_sched_in() or x86_pmu_enable()
1301		 *
1302		 * step1: save events moving to new counters
1303		 */
1304		for (i = 0; i < n_running; i++) {
1305			event = cpuc->event_list[i];
1306			hwc = &event->hw;
1307
1308			/*
1309			 * we can avoid reprogramming counter if:
1310			 * - assigned same counter as last time
1311			 * - running on same CPU as last time
1312			 * - no other event has used the counter since
1313			 */
1314			if (hwc->idx == -1 ||
1315			    match_prev_assignment(hwc, cpuc, i))
1316				continue;
1317
1318			/*
1319			 * Ensure we don't accidentally enable a stopped
1320			 * counter simply because we rescheduled.
1321			 */
1322			if (hwc->state & PERF_HES_STOPPED)
1323				hwc->state |= PERF_HES_ARCH;
1324
1325			x86_pmu_stop(event, PERF_EF_UPDATE);
1326		}
1327
1328		/*
1329		 * step2: reprogram moved events into new counters
1330		 */
1331		for (i = 0; i < cpuc->n_events; i++) {
1332			event = cpuc->event_list[i];
1333			hwc = &event->hw;
1334
1335			if (!match_prev_assignment(hwc, cpuc, i))
1336				x86_assign_hw_event(event, cpuc, i);
1337			else if (i < n_running)
1338				continue;
1339
1340			if (hwc->state & PERF_HES_ARCH)
1341				continue;
1342
1343			/*
1344			 * if cpuc->enabled = 0, then no wrmsr as
1345			 * per x86_pmu_enable_event()
1346			 */
1347			x86_pmu_start(event, PERF_EF_RELOAD);
1348		}
1349		cpuc->n_added = 0;
1350		perf_events_lapic_init();
1351	}
1352
1353	cpuc->enabled = 1;
1354	barrier();
1355
1356	static_call(x86_pmu_enable_all)(added);
1357}
1358
1359DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1360
1361/*
1362 * Set the next IRQ period, based on the hwc->period_left value.
1363 * To be called with the event disabled in hw:
1364 */
1365int x86_perf_event_set_period(struct perf_event *event)
1366{
1367	struct hw_perf_event *hwc = &event->hw;
1368	s64 left = local64_read(&hwc->period_left);
1369	s64 period = hwc->sample_period;
1370	int ret = 0, idx = hwc->idx;
1371
1372	if (unlikely(!hwc->event_base))
1373		return 0;
1374
1375	/*
1376	 * If we are way outside a reasonable range then just skip forward:
1377	 */
1378	if (unlikely(left <= -period)) {
1379		left = period;
1380		local64_set(&hwc->period_left, left);
1381		hwc->last_period = period;
1382		ret = 1;
1383	}
1384
1385	if (unlikely(left <= 0)) {
1386		left += period;
1387		local64_set(&hwc->period_left, left);
1388		hwc->last_period = period;
1389		ret = 1;
1390	}
1391	/*
1392	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1393	 */
1394	if (unlikely(left < 2))
1395		left = 2;
1396
1397	if (left > x86_pmu.max_period)
1398		left = x86_pmu.max_period;
1399
1400	static_call_cond(x86_pmu_limit_period)(event, &left);
1401
1402	this_cpu_write(pmc_prev_left[idx], left);
1403
1404	/*
1405	 * The hw event starts counting from this event offset,
1406	 * mark it to be able to extra future deltas:
1407	 */
1408	local64_set(&hwc->prev_count, (u64)-left);
1409
1410	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1411
1412	/*
1413	 * Sign extend the Merge event counter's upper 16 bits since
1414	 * we currently declare a 48-bit counter width
1415	 */
1416	if (is_counter_pair(hwc))
1417		wrmsrl(x86_pmu_event_addr(idx + 1), 0xffff);
1418
1419	perf_event_update_userpage(event);
1420
1421	return ret;
1422}
1423
1424void x86_pmu_enable_event(struct perf_event *event)
1425{
1426	if (__this_cpu_read(cpu_hw_events.enabled))
1427		__x86_pmu_enable_event(&event->hw,
1428				       ARCH_PERFMON_EVENTSEL_ENABLE);
1429}
1430
1431/*
1432 * Add a single event to the PMU.
1433 *
1434 * The event is added to the group of enabled events
1435 * but only if it can be scheduled with existing events.
1436 */
1437static int x86_pmu_add(struct perf_event *event, int flags)
1438{
1439	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1440	struct hw_perf_event *hwc;
1441	int assign[X86_PMC_IDX_MAX];
1442	int n, n0, ret;
1443
1444	hwc = &event->hw;
1445
1446	n0 = cpuc->n_events;
1447	ret = n = collect_events(cpuc, event, false);
1448	if (ret < 0)
1449		goto out;
1450
1451	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1452	if (!(flags & PERF_EF_START))
1453		hwc->state |= PERF_HES_ARCH;
1454
1455	/*
1456	 * If group events scheduling transaction was started,
1457	 * skip the schedulability test here, it will be performed
1458	 * at commit time (->commit_txn) as a whole.
1459	 *
1460	 * If commit fails, we'll call ->del() on all events
1461	 * for which ->add() was called.
1462	 */
1463	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1464		goto done_collect;
1465
1466	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
1467	if (ret)
1468		goto out;
1469	/*
1470	 * copy new assignment, now we know it is possible
1471	 * will be used by hw_perf_enable()
1472	 */
1473	memcpy(cpuc->assign, assign, n*sizeof(int));
1474
1475done_collect:
1476	/*
1477	 * Commit the collect_events() state. See x86_pmu_del() and
1478	 * x86_pmu_*_txn().
1479	 */
1480	cpuc->n_events = n;
1481	cpuc->n_added += n - n0;
1482	cpuc->n_txn += n - n0;
1483
1484	/*
1485	 * This is before x86_pmu_enable() will call x86_pmu_start(),
1486	 * so we enable LBRs before an event needs them etc..
1487	 */
1488	static_call_cond(x86_pmu_add)(event);
1489
1490	ret = 0;
1491out:
1492	return ret;
1493}
1494
1495static void x86_pmu_start(struct perf_event *event, int flags)
1496{
1497	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1498	int idx = event->hw.idx;
1499
1500	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1501		return;
1502
1503	if (WARN_ON_ONCE(idx == -1))
1504		return;
1505
1506	if (flags & PERF_EF_RELOAD) {
1507		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1508		static_call(x86_pmu_set_period)(event);
1509	}
1510
1511	event->hw.state = 0;
1512
1513	cpuc->events[idx] = event;
1514	__set_bit(idx, cpuc->active_mask);
1515	static_call(x86_pmu_enable)(event);
1516	perf_event_update_userpage(event);
1517}
1518
1519void perf_event_print_debug(void)
1520{
1521	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1522	u64 pebs, debugctl;
1523	int cpu = smp_processor_id();
1524	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1525	int num_counters = hybrid(cpuc->pmu, num_counters);
1526	int num_counters_fixed = hybrid(cpuc->pmu, num_counters_fixed);
1527	struct event_constraint *pebs_constraints = hybrid(cpuc->pmu, pebs_constraints);
1528	unsigned long flags;
1529	int idx;
1530
1531	if (!num_counters)
1532		return;
1533
1534	local_irq_save(flags);
1535
1536	if (x86_pmu.version >= 2) {
1537		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1538		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1539		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1540		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1541
1542		pr_info("\n");
1543		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1544		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1545		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1546		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1547		if (pebs_constraints) {
1548			rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1549			pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1550		}
1551		if (x86_pmu.lbr_nr) {
1552			rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1553			pr_info("CPU#%d: debugctl:   %016llx\n", cpu, debugctl);
1554		}
1555	}
1556	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1557
1558	for (idx = 0; idx < num_counters; idx++) {
1559		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1560		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1561
1562		prev_left = per_cpu(pmc_prev_left[idx], cpu);
1563
1564		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1565			cpu, idx, pmc_ctrl);
1566		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1567			cpu, idx, pmc_count);
1568		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1569			cpu, idx, prev_left);
1570	}
1571	for (idx = 0; idx < num_counters_fixed; idx++) {
1572		if (fixed_counter_disabled(idx, cpuc->pmu))
1573			continue;
1574		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1575
1576		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1577			cpu, idx, pmc_count);
1578	}
1579	local_irq_restore(flags);
1580}
1581
1582void x86_pmu_stop(struct perf_event *event, int flags)
1583{
1584	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1585	struct hw_perf_event *hwc = &event->hw;
1586
1587	if (test_bit(hwc->idx, cpuc->active_mask)) {
1588		static_call(x86_pmu_disable)(event);
1589		__clear_bit(hwc->idx, cpuc->active_mask);
1590		cpuc->events[hwc->idx] = NULL;
1591		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1592		hwc->state |= PERF_HES_STOPPED;
1593	}
1594
1595	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1596		/*
1597		 * Drain the remaining delta count out of a event
1598		 * that we are disabling:
1599		 */
1600		static_call(x86_pmu_update)(event);
1601		hwc->state |= PERF_HES_UPTODATE;
1602	}
1603}
1604
1605static void x86_pmu_del(struct perf_event *event, int flags)
1606{
1607	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1608	union perf_capabilities intel_cap = hybrid(cpuc->pmu, intel_cap);
1609	int i;
1610
1611	/*
1612	 * If we're called during a txn, we only need to undo x86_pmu.add.
1613	 * The events never got scheduled and ->cancel_txn will truncate
1614	 * the event_list.
1615	 *
1616	 * XXX assumes any ->del() called during a TXN will only be on
1617	 * an event added during that same TXN.
1618	 */
1619	if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
1620		goto do_del;
1621
1622	__set_bit(event->hw.idx, cpuc->dirty);
1623
1624	/*
1625	 * Not a TXN, therefore cleanup properly.
1626	 */
1627	x86_pmu_stop(event, PERF_EF_UPDATE);
1628
1629	for (i = 0; i < cpuc->n_events; i++) {
1630		if (event == cpuc->event_list[i])
1631			break;
1632	}
1633
1634	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1635		return;
1636
1637	/* If we have a newly added event; make sure to decrease n_added. */
1638	if (i >= cpuc->n_events - cpuc->n_added)
1639		--cpuc->n_added;
1640
1641	static_call_cond(x86_pmu_put_event_constraints)(cpuc, event);
1642
1643	/* Delete the array entry. */
1644	while (++i < cpuc->n_events) {
1645		cpuc->event_list[i-1] = cpuc->event_list[i];
1646		cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1647	}
1648	cpuc->event_constraint[i-1] = NULL;
1649	--cpuc->n_events;
1650	if (intel_cap.perf_metrics)
1651		del_nr_metric_event(cpuc, event);
1652
1653	perf_event_update_userpage(event);
1654
1655do_del:
1656
1657	/*
1658	 * This is after x86_pmu_stop(); so we disable LBRs after any
1659	 * event can need them etc..
1660	 */
1661	static_call_cond(x86_pmu_del)(event);
1662}
1663
1664int x86_pmu_handle_irq(struct pt_regs *regs)
1665{
1666	struct perf_sample_data data;
1667	struct cpu_hw_events *cpuc;
1668	struct perf_event *event;
1669	int idx, handled = 0;
1670	u64 val;
1671
1672	cpuc = this_cpu_ptr(&cpu_hw_events);
1673
1674	/*
1675	 * Some chipsets need to unmask the LVTPC in a particular spot
1676	 * inside the nmi handler.  As a result, the unmasking was pushed
1677	 * into all the nmi handlers.
1678	 *
1679	 * This generic handler doesn't seem to have any issues where the
1680	 * unmasking occurs so it was left at the top.
1681	 */
1682	apic_write(APIC_LVTPC, APIC_DM_NMI);
1683
1684	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1685		if (!test_bit(idx, cpuc->active_mask))
1686			continue;
1687
1688		event = cpuc->events[idx];
1689
1690		val = static_call(x86_pmu_update)(event);
1691		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1692			continue;
1693
1694		/*
1695		 * event overflow
1696		 */
1697		handled++;
1698
1699		if (!static_call(x86_pmu_set_period)(event))
1700			continue;
1701
1702		perf_sample_data_init(&data, 0, event->hw.last_period);
1703
1704		if (has_branch_stack(event))
1705			perf_sample_save_brstack(&data, event, &cpuc->lbr_stack);
1706
1707		if (perf_event_overflow(event, &data, regs))
1708			x86_pmu_stop(event, 0);
1709	}
1710
1711	if (handled)
1712		inc_irq_stat(apic_perf_irqs);
1713
1714	return handled;
1715}
1716
1717void perf_events_lapic_init(void)
1718{
1719	if (!x86_pmu.apic || !x86_pmu_initialized())
1720		return;
1721
1722	/*
1723	 * Always use NMI for PMU
1724	 */
1725	apic_write(APIC_LVTPC, APIC_DM_NMI);
1726}
1727
1728static int
1729perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1730{
1731	u64 start_clock;
1732	u64 finish_clock;
1733	int ret;
1734
1735	/*
1736	 * All PMUs/events that share this PMI handler should make sure to
1737	 * increment active_events for their events.
1738	 */
1739	if (!atomic_read(&active_events))
1740		return NMI_DONE;
1741
1742	start_clock = sched_clock();
1743	ret = static_call(x86_pmu_handle_irq)(regs);
1744	finish_clock = sched_clock();
1745
1746	perf_sample_event_took(finish_clock - start_clock);
1747
1748	return ret;
1749}
1750NOKPROBE_SYMBOL(perf_event_nmi_handler);
1751
1752struct event_constraint emptyconstraint;
1753struct event_constraint unconstrained;
1754
1755static int x86_pmu_prepare_cpu(unsigned int cpu)
1756{
1757	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1758	int i;
1759
1760	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1761		cpuc->kfree_on_online[i] = NULL;
1762	if (x86_pmu.cpu_prepare)
1763		return x86_pmu.cpu_prepare(cpu);
1764	return 0;
1765}
1766
1767static int x86_pmu_dead_cpu(unsigned int cpu)
1768{
1769	if (x86_pmu.cpu_dead)
1770		x86_pmu.cpu_dead(cpu);
1771	return 0;
1772}
1773
1774static int x86_pmu_online_cpu(unsigned int cpu)
1775{
1776	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1777	int i;
1778
1779	for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1780		kfree(cpuc->kfree_on_online[i]);
1781		cpuc->kfree_on_online[i] = NULL;
1782	}
1783	return 0;
1784}
1785
1786static int x86_pmu_starting_cpu(unsigned int cpu)
1787{
1788	if (x86_pmu.cpu_starting)
1789		x86_pmu.cpu_starting(cpu);
1790	return 0;
1791}
1792
1793static int x86_pmu_dying_cpu(unsigned int cpu)
1794{
1795	if (x86_pmu.cpu_dying)
1796		x86_pmu.cpu_dying(cpu);
1797	return 0;
1798}
1799
1800static void __init pmu_check_apic(void)
1801{
1802	if (boot_cpu_has(X86_FEATURE_APIC))
1803		return;
1804
1805	x86_pmu.apic = 0;
1806	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1807	pr_info("no hardware sampling interrupt available.\n");
1808
1809	/*
1810	 * If we have a PMU initialized but no APIC
1811	 * interrupts, we cannot sample hardware
1812	 * events (user-space has to fall back and
1813	 * sample via a hrtimer based software event):
1814	 */
1815	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1816
1817}
1818
1819static struct attribute_group x86_pmu_format_group __ro_after_init = {
1820	.name = "format",
1821	.attrs = NULL,
1822};
1823
1824ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
1825{
1826	struct perf_pmu_events_attr *pmu_attr =
1827		container_of(attr, struct perf_pmu_events_attr, attr);
1828	u64 config = 0;
1829
1830	if (pmu_attr->id < x86_pmu.max_events)
1831		config = x86_pmu.event_map(pmu_attr->id);
1832
1833	/* string trumps id */
1834	if (pmu_attr->event_str)
1835		return sprintf(page, "%s\n", pmu_attr->event_str);
1836
1837	return x86_pmu.events_sysfs_show(page, config);
1838}
1839EXPORT_SYMBOL_GPL(events_sysfs_show);
1840
1841ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1842			  char *page)
1843{
1844	struct perf_pmu_events_ht_attr *pmu_attr =
1845		container_of(attr, struct perf_pmu_events_ht_attr, attr);
1846
1847	/*
1848	 * Report conditional events depending on Hyper-Threading.
1849	 *
1850	 * This is overly conservative as usually the HT special
1851	 * handling is not needed if the other CPU thread is idle.
1852	 *
1853	 * Note this does not (and cannot) handle the case when thread
1854	 * siblings are invisible, for example with virtualization
1855	 * if they are owned by some other guest.  The user tool
1856	 * has to re-read when a thread sibling gets onlined later.
1857	 */
1858	return sprintf(page, "%s",
1859			topology_max_smt_threads() > 1 ?
1860			pmu_attr->event_str_ht :
1861			pmu_attr->event_str_noht);
1862}
1863
1864ssize_t events_hybrid_sysfs_show(struct device *dev,
1865				 struct device_attribute *attr,
1866				 char *page)
1867{
1868	struct perf_pmu_events_hybrid_attr *pmu_attr =
1869		container_of(attr, struct perf_pmu_events_hybrid_attr, attr);
1870	struct x86_hybrid_pmu *pmu;
1871	const char *str, *next_str;
1872	int i;
1873
1874	if (hweight64(pmu_attr->pmu_type) == 1)
1875		return sprintf(page, "%s", pmu_attr->event_str);
1876
1877	/*
1878	 * Hybrid PMUs may support the same event name, but with different
1879	 * event encoding, e.g., the mem-loads event on an Atom PMU has
1880	 * different event encoding from a Core PMU.
1881	 *
1882	 * The event_str includes all event encodings. Each event encoding
1883	 * is divided by ";". The order of the event encodings must follow
1884	 * the order of the hybrid PMU index.
1885	 */
1886	pmu = container_of(dev_get_drvdata(dev), struct x86_hybrid_pmu, pmu);
1887
1888	str = pmu_attr->event_str;
1889	for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
1890		if (!(x86_pmu.hybrid_pmu[i].cpu_type & pmu_attr->pmu_type))
1891			continue;
1892		if (x86_pmu.hybrid_pmu[i].cpu_type & pmu->cpu_type) {
1893			next_str = strchr(str, ';');
1894			if (next_str)
1895				return snprintf(page, next_str - str + 1, "%s", str);
1896			else
1897				return sprintf(page, "%s", str);
1898		}
1899		str = strchr(str, ';');
1900		str++;
1901	}
1902
1903	return 0;
1904}
1905EXPORT_SYMBOL_GPL(events_hybrid_sysfs_show);
1906
1907EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
1908EVENT_ATTR(instructions,		INSTRUCTIONS		);
1909EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
1910EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
1911EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
1912EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
1913EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
1914EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
1915EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
1916EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
1917
1918static struct attribute *empty_attrs;
1919
1920static struct attribute *events_attr[] = {
1921	EVENT_PTR(CPU_CYCLES),
1922	EVENT_PTR(INSTRUCTIONS),
1923	EVENT_PTR(CACHE_REFERENCES),
1924	EVENT_PTR(CACHE_MISSES),
1925	EVENT_PTR(BRANCH_INSTRUCTIONS),
1926	EVENT_PTR(BRANCH_MISSES),
1927	EVENT_PTR(BUS_CYCLES),
1928	EVENT_PTR(STALLED_CYCLES_FRONTEND),
1929	EVENT_PTR(STALLED_CYCLES_BACKEND),
1930	EVENT_PTR(REF_CPU_CYCLES),
1931	NULL,
1932};
1933
1934/*
1935 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1936 * out of events_attr attributes.
1937 */
1938static umode_t
1939is_visible(struct kobject *kobj, struct attribute *attr, int idx)
1940{
1941	struct perf_pmu_events_attr *pmu_attr;
1942
1943	if (idx >= x86_pmu.max_events)
1944		return 0;
1945
1946	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
1947	/* str trumps id */
1948	return pmu_attr->event_str || x86_pmu.event_map(idx) ? attr->mode : 0;
1949}
1950
1951static struct attribute_group x86_pmu_events_group __ro_after_init = {
1952	.name = "events",
1953	.attrs = events_attr,
1954	.is_visible = is_visible,
1955};
1956
1957ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
1958{
1959	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1960	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1961	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1962	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1963	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
1964	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
1965	ssize_t ret;
1966
1967	/*
1968	* We have whole page size to spend and just little data
1969	* to write, so we can safely use sprintf.
1970	*/
1971	ret = sprintf(page, "event=0x%02llx", event);
1972
1973	if (umask)
1974		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1975
1976	if (edge)
1977		ret += sprintf(page + ret, ",edge");
1978
1979	if (pc)
1980		ret += sprintf(page + ret, ",pc");
1981
1982	if (any)
1983		ret += sprintf(page + ret, ",any");
1984
1985	if (inv)
1986		ret += sprintf(page + ret, ",inv");
1987
1988	if (cmask)
1989		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1990
1991	ret += sprintf(page + ret, "\n");
1992
1993	return ret;
1994}
1995
1996static struct attribute_group x86_pmu_attr_group;
1997static struct attribute_group x86_pmu_caps_group;
1998
1999static void x86_pmu_static_call_update(void)
2000{
2001	static_call_update(x86_pmu_handle_irq, x86_pmu.handle_irq);
2002	static_call_update(x86_pmu_disable_all, x86_pmu.disable_all);
2003	static_call_update(x86_pmu_enable_all, x86_pmu.enable_all);
2004	static_call_update(x86_pmu_enable, x86_pmu.enable);
2005	static_call_update(x86_pmu_disable, x86_pmu.disable);
2006
2007	static_call_update(x86_pmu_assign, x86_pmu.assign);
2008
2009	static_call_update(x86_pmu_add, x86_pmu.add);
2010	static_call_update(x86_pmu_del, x86_pmu.del);
2011	static_call_update(x86_pmu_read, x86_pmu.read);
2012
2013	static_call_update(x86_pmu_set_period, x86_pmu.set_period);
2014	static_call_update(x86_pmu_update, x86_pmu.update);
2015	static_call_update(x86_pmu_limit_period, x86_pmu.limit_period);
2016
2017	static_call_update(x86_pmu_schedule_events, x86_pmu.schedule_events);
2018	static_call_update(x86_pmu_get_event_constraints, x86_pmu.get_event_constraints);
2019	static_call_update(x86_pmu_put_event_constraints, x86_pmu.put_event_constraints);
2020
2021	static_call_update(x86_pmu_start_scheduling, x86_pmu.start_scheduling);
2022	static_call_update(x86_pmu_commit_scheduling, x86_pmu.commit_scheduling);
2023	static_call_update(x86_pmu_stop_scheduling, x86_pmu.stop_scheduling);
2024
2025	static_call_update(x86_pmu_sched_task, x86_pmu.sched_task);
2026	static_call_update(x86_pmu_swap_task_ctx, x86_pmu.swap_task_ctx);
2027
2028	static_call_update(x86_pmu_drain_pebs, x86_pmu.drain_pebs);
2029	static_call_update(x86_pmu_pebs_aliases, x86_pmu.pebs_aliases);
2030
2031	static_call_update(x86_pmu_guest_get_msrs, x86_pmu.guest_get_msrs);
2032	static_call_update(x86_pmu_filter, x86_pmu.filter);
2033}
2034
2035static void _x86_pmu_read(struct perf_event *event)
2036{
2037	static_call(x86_pmu_update)(event);
2038}
2039
2040void x86_pmu_show_pmu_cap(int num_counters, int num_counters_fixed,
2041			  u64 intel_ctrl)
2042{
2043	pr_info("... version:                %d\n",     x86_pmu.version);
2044	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
2045	pr_info("... generic registers:      %d\n",     num_counters);
2046	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
2047	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
2048	pr_info("... fixed-purpose events:   %lu\n",
2049			hweight64((((1ULL << num_counters_fixed) - 1)
2050					<< INTEL_PMC_IDX_FIXED) & intel_ctrl));
2051	pr_info("... event mask:             %016Lx\n", intel_ctrl);
2052}
2053
2054static int __init init_hw_perf_events(void)
2055{
2056	struct x86_pmu_quirk *quirk;
2057	int err;
2058
2059	pr_info("Performance Events: ");
2060
2061	switch (boot_cpu_data.x86_vendor) {
2062	case X86_VENDOR_INTEL:
2063		err = intel_pmu_init();
2064		break;
2065	case X86_VENDOR_AMD:
2066		err = amd_pmu_init();
2067		break;
2068	case X86_VENDOR_HYGON:
2069		err = amd_pmu_init();
2070		x86_pmu.name = "HYGON";
2071		break;
2072	case X86_VENDOR_ZHAOXIN:
2073	case X86_VENDOR_CENTAUR:
2074		err = zhaoxin_pmu_init();
2075		break;
2076	default:
2077		err = -ENOTSUPP;
2078	}
2079	if (err != 0) {
2080		pr_cont("no PMU driver, software events only.\n");
2081		err = 0;
2082		goto out_bad_pmu;
2083	}
2084
2085	pmu_check_apic();
2086
2087	/* sanity check that the hardware exists or is emulated */
2088	if (!check_hw_exists(&pmu, x86_pmu.num_counters, x86_pmu.num_counters_fixed))
2089		goto out_bad_pmu;
2090
2091	pr_cont("%s PMU driver.\n", x86_pmu.name);
2092
2093	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
2094
2095	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
2096		quirk->func();
2097
2098	if (!x86_pmu.intel_ctrl)
2099		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
2100
2101	perf_events_lapic_init();
2102	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
2103
2104	unconstrained = (struct event_constraint)
2105		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
2106				   0, x86_pmu.num_counters, 0, 0);
2107
2108	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
2109
2110	if (!x86_pmu.events_sysfs_show)
2111		x86_pmu_events_group.attrs = &empty_attrs;
2112
2113	pmu.attr_update = x86_pmu.attr_update;
2114
2115	if (!is_hybrid()) {
2116		x86_pmu_show_pmu_cap(x86_pmu.num_counters,
2117				     x86_pmu.num_counters_fixed,
2118				     x86_pmu.intel_ctrl);
2119	}
2120
2121	if (!x86_pmu.read)
2122		x86_pmu.read = _x86_pmu_read;
2123
2124	if (!x86_pmu.guest_get_msrs)
2125		x86_pmu.guest_get_msrs = (void *)&__static_call_return0;
2126
2127	if (!x86_pmu.set_period)
2128		x86_pmu.set_period = x86_perf_event_set_period;
2129
2130	if (!x86_pmu.update)
2131		x86_pmu.update = x86_perf_event_update;
2132
2133	x86_pmu_static_call_update();
2134
2135	/*
2136	 * Install callbacks. Core will call them for each online
2137	 * cpu.
2138	 */
2139	err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
2140				x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
2141	if (err)
2142		return err;
2143
2144	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
2145				"perf/x86:starting", x86_pmu_starting_cpu,
2146				x86_pmu_dying_cpu);
2147	if (err)
2148		goto out;
2149
2150	err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
2151				x86_pmu_online_cpu, NULL);
2152	if (err)
2153		goto out1;
2154
2155	if (!is_hybrid()) {
2156		err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
2157		if (err)
2158			goto out2;
2159	} else {
2160		struct x86_hybrid_pmu *hybrid_pmu;
2161		int i, j;
2162
2163		for (i = 0; i < x86_pmu.num_hybrid_pmus; i++) {
2164			hybrid_pmu = &x86_pmu.hybrid_pmu[i];
2165
2166			hybrid_pmu->pmu = pmu;
2167			hybrid_pmu->pmu.type = -1;
2168			hybrid_pmu->pmu.attr_update = x86_pmu.attr_update;
2169			hybrid_pmu->pmu.capabilities |= PERF_PMU_CAP_EXTENDED_HW_TYPE;
2170
2171			err = perf_pmu_register(&hybrid_pmu->pmu, hybrid_pmu->name,
2172						(hybrid_pmu->cpu_type == hybrid_big) ? PERF_TYPE_RAW : -1);
2173			if (err)
2174				break;
2175		}
2176
2177		if (i < x86_pmu.num_hybrid_pmus) {
2178			for (j = 0; j < i; j++)
2179				perf_pmu_unregister(&x86_pmu.hybrid_pmu[j].pmu);
2180			pr_warn("Failed to register hybrid PMUs\n");
2181			kfree(x86_pmu.hybrid_pmu);
2182			x86_pmu.hybrid_pmu = NULL;
2183			x86_pmu.num_hybrid_pmus = 0;
2184			goto out2;
2185		}
2186	}
2187
2188	return 0;
2189
2190out2:
2191	cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
2192out1:
2193	cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
2194out:
2195	cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
2196out_bad_pmu:
2197	memset(&x86_pmu, 0, sizeof(x86_pmu));
2198	return err;
2199}
2200early_initcall(init_hw_perf_events);
2201
2202static void x86_pmu_read(struct perf_event *event)
2203{
2204	static_call(x86_pmu_read)(event);
2205}
2206
2207/*
2208 * Start group events scheduling transaction
2209 * Set the flag to make pmu::enable() not perform the
2210 * schedulability test, it will be performed at commit time
2211 *
2212 * We only support PERF_PMU_TXN_ADD transactions. Save the
2213 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
2214 * transactions.
2215 */
2216static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
2217{
2218	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2219
2220	WARN_ON_ONCE(cpuc->txn_flags);		/* txn already in flight */
2221
2222	cpuc->txn_flags = txn_flags;
2223	if (txn_flags & ~PERF_PMU_TXN_ADD)
2224		return;
2225
2226	perf_pmu_disable(pmu);
2227	__this_cpu_write(cpu_hw_events.n_txn, 0);
2228	__this_cpu_write(cpu_hw_events.n_txn_pair, 0);
2229	__this_cpu_write(cpu_hw_events.n_txn_metric, 0);
2230}
2231
2232/*
2233 * Stop group events scheduling transaction
2234 * Clear the flag and pmu::enable() will perform the
2235 * schedulability test.
2236 */
2237static void x86_pmu_cancel_txn(struct pmu *pmu)
2238{
2239	unsigned int txn_flags;
2240	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2241
2242	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2243
2244	txn_flags = cpuc->txn_flags;
2245	cpuc->txn_flags = 0;
2246	if (txn_flags & ~PERF_PMU_TXN_ADD)
2247		return;
2248
2249	/*
2250	 * Truncate collected array by the number of events added in this
2251	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
2252	 */
2253	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
2254	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
2255	__this_cpu_sub(cpu_hw_events.n_pair, __this_cpu_read(cpu_hw_events.n_txn_pair));
2256	__this_cpu_sub(cpu_hw_events.n_metric, __this_cpu_read(cpu_hw_events.n_txn_metric));
2257	perf_pmu_enable(pmu);
2258}
2259
2260/*
2261 * Commit group events scheduling transaction
2262 * Perform the group schedulability test as a whole
2263 * Return 0 if success
2264 *
2265 * Does not cancel the transaction on failure; expects the caller to do this.
2266 */
2267static int x86_pmu_commit_txn(struct pmu *pmu)
2268{
2269	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2270	int assign[X86_PMC_IDX_MAX];
2271	int n, ret;
2272
2273	WARN_ON_ONCE(!cpuc->txn_flags);	/* no txn in flight */
2274
2275	if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
2276		cpuc->txn_flags = 0;
2277		return 0;
2278	}
2279
2280	n = cpuc->n_events;
2281
2282	if (!x86_pmu_initialized())
2283		return -EAGAIN;
2284
2285	ret = static_call(x86_pmu_schedule_events)(cpuc, n, assign);
2286	if (ret)
2287		return ret;
2288
2289	/*
2290	 * copy new assignment, now we know it is possible
2291	 * will be used by hw_perf_enable()
2292	 */
2293	memcpy(cpuc->assign, assign, n*sizeof(int));
2294
2295	cpuc->txn_flags = 0;
2296	perf_pmu_enable(pmu);
2297	return 0;
2298}
2299/*
2300 * a fake_cpuc is used to validate event groups. Due to
2301 * the extra reg logic, we need to also allocate a fake
2302 * per_core and per_cpu structure. Otherwise, group events
2303 * using extra reg may conflict without the kernel being
2304 * able to catch this when the last event gets added to
2305 * the group.
2306 */
2307static void free_fake_cpuc(struct cpu_hw_events *cpuc)
2308{
2309	intel_cpuc_finish(cpuc);
2310	kfree(cpuc);
2311}
2312
2313static struct cpu_hw_events *allocate_fake_cpuc(struct pmu *event_pmu)
2314{
2315	struct cpu_hw_events *cpuc;
2316	int cpu;
2317
2318	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2319	if (!cpuc)
2320		return ERR_PTR(-ENOMEM);
2321	cpuc->is_fake = 1;
2322
2323	if (is_hybrid()) {
2324		struct x86_hybrid_pmu *h_pmu;
2325
2326		h_pmu = hybrid_pmu(event_pmu);
2327		if (cpumask_empty(&h_pmu->supported_cpus))
2328			goto error;
2329		cpu = cpumask_first(&h_pmu->supported_cpus);
2330	} else
2331		cpu = raw_smp_processor_id();
2332	cpuc->pmu = event_pmu;
2333
2334	if (intel_cpuc_prepare(cpuc, cpu))
2335		goto error;
2336
2337	return cpuc;
2338error:
2339	free_fake_cpuc(cpuc);
2340	return ERR_PTR(-ENOMEM);
2341}
2342
2343/*
2344 * validate that we can schedule this event
2345 */
2346static int validate_event(struct perf_event *event)
2347{
2348	struct cpu_hw_events *fake_cpuc;
2349	struct event_constraint *c;
2350	int ret = 0;
2351
2352	fake_cpuc = allocate_fake_cpuc(event->pmu);
2353	if (IS_ERR(fake_cpuc))
2354		return PTR_ERR(fake_cpuc);
2355
2356	c = x86_pmu.get_event_constraints(fake_cpuc, 0, event);
2357
2358	if (!c || !c->weight)
2359		ret = -EINVAL;
2360
2361	if (x86_pmu.put_event_constraints)
2362		x86_pmu.put_event_constraints(fake_cpuc, event);
2363
2364	free_fake_cpuc(fake_cpuc);
2365
2366	return ret;
2367}
2368
2369/*
2370 * validate a single event group
2371 *
2372 * validation include:
2373 *	- check events are compatible which each other
2374 *	- events do not compete for the same counter
2375 *	- number of events <= number of counters
2376 *
2377 * validation ensures the group can be loaded onto the
2378 * PMU if it was the only group available.
2379 */
2380static int validate_group(struct perf_event *event)
2381{
2382	struct perf_event *leader = event->group_leader;
2383	struct cpu_hw_events *fake_cpuc;
2384	int ret = -EINVAL, n;
2385
2386	/*
2387	 * Reject events from different hybrid PMUs.
2388	 */
2389	if (is_hybrid()) {
2390		struct perf_event *sibling;
2391		struct pmu *pmu = NULL;
2392
2393		if (is_x86_event(leader))
2394			pmu = leader->pmu;
2395
2396		for_each_sibling_event(sibling, leader) {
2397			if (!is_x86_event(sibling))
2398				continue;
2399			if (!pmu)
2400				pmu = sibling->pmu;
2401			else if (pmu != sibling->pmu)
2402				return ret;
2403		}
2404	}
2405
2406	fake_cpuc = allocate_fake_cpuc(event->pmu);
2407	if (IS_ERR(fake_cpuc))
2408		return PTR_ERR(fake_cpuc);
2409	/*
2410	 * the event is not yet connected with its
2411	 * siblings therefore we must first collect
2412	 * existing siblings, then add the new event
2413	 * before we can simulate the scheduling
2414	 */
2415	n = collect_events(fake_cpuc, leader, true);
2416	if (n < 0)
2417		goto out;
2418
2419	fake_cpuc->n_events = n;
2420	n = collect_events(fake_cpuc, event, false);
2421	if (n < 0)
2422		goto out;
2423
2424	fake_cpuc->n_events = 0;
2425	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
2426
2427out:
2428	free_fake_cpuc(fake_cpuc);
2429	return ret;
2430}
2431
2432static int x86_pmu_event_init(struct perf_event *event)
2433{
2434	struct x86_hybrid_pmu *pmu = NULL;
2435	int err;
2436
2437	if ((event->attr.type != event->pmu->type) &&
2438	    (event->attr.type != PERF_TYPE_HARDWARE) &&
2439	    (event->attr.type != PERF_TYPE_HW_CACHE))
2440		return -ENOENT;
2441
2442	if (is_hybrid() && (event->cpu != -1)) {
2443		pmu = hybrid_pmu(event->pmu);
2444		if (!cpumask_test_cpu(event->cpu, &pmu->supported_cpus))
2445			return -ENOENT;
2446	}
2447
2448	err = __x86_pmu_event_init(event);
2449	if (!err) {
2450		if (event->group_leader != event)
2451			err = validate_group(event);
2452		else
2453			err = validate_event(event);
2454	}
2455	if (err) {
2456		if (event->destroy)
2457			event->destroy(event);
2458		event->destroy = NULL;
2459	}
2460
2461	if (READ_ONCE(x86_pmu.attr_rdpmc) &&
2462	    !(event->hw.flags & PERF_X86_EVENT_LARGE_PEBS))
2463		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
2464
2465	return err;
2466}
2467
2468void perf_clear_dirty_counters(void)
2469{
2470	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2471	int i;
2472
2473	 /* Don't need to clear the assigned counter. */
2474	for (i = 0; i < cpuc->n_events; i++)
2475		__clear_bit(cpuc->assign[i], cpuc->dirty);
2476
2477	if (bitmap_empty(cpuc->dirty, X86_PMC_IDX_MAX))
2478		return;
2479
2480	for_each_set_bit(i, cpuc->dirty, X86_PMC_IDX_MAX) {
2481		if (i >= INTEL_PMC_IDX_FIXED) {
2482			/* Metrics and fake events don't have corresponding HW counters. */
2483			if ((i - INTEL_PMC_IDX_FIXED) >= hybrid(cpuc->pmu, num_counters_fixed))
2484				continue;
2485
2486			wrmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + (i - INTEL_PMC_IDX_FIXED), 0);
2487		} else {
2488			wrmsrl(x86_pmu_event_addr(i), 0);
2489		}
2490	}
2491
2492	bitmap_zero(cpuc->dirty, X86_PMC_IDX_MAX);
2493}
2494
2495static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
2496{
2497	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2498		return;
2499
2500	/*
2501	 * This function relies on not being called concurrently in two
2502	 * tasks in the same mm.  Otherwise one task could observe
2503	 * perf_rdpmc_allowed > 1 and return all the way back to
2504	 * userspace with CR4.PCE clear while another task is still
2505	 * doing on_each_cpu_mask() to propagate CR4.PCE.
2506	 *
2507	 * For now, this can't happen because all callers hold mmap_lock
2508	 * for write.  If this changes, we'll need a different solution.
2509	 */
2510	mmap_assert_write_locked(mm);
2511
2512	if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2513		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2514}
2515
2516static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
2517{
2518	if (!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT))
2519		return;
2520
2521	if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2522		on_each_cpu_mask(mm_cpumask(mm), cr4_update_pce, NULL, 1);
2523}
2524
2525static int x86_pmu_event_idx(struct perf_event *event)
2526{
2527	struct hw_perf_event *hwc = &event->hw;
2528
2529	if (!(hwc->flags & PERF_EVENT_FLAG_USER_READ_CNT))
2530		return 0;
2531
2532	if (is_metric_idx(hwc->idx))
2533		return INTEL_PMC_FIXED_RDPMC_METRICS + 1;
2534	else
2535		return hwc->event_base_rdpmc + 1;
2536}
2537
2538static ssize_t get_attr_rdpmc(struct device *cdev,
2539			      struct device_attribute *attr,
2540			      char *buf)
2541{
2542	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2543}
2544
2545static ssize_t set_attr_rdpmc(struct device *cdev,
2546			      struct device_attribute *attr,
2547			      const char *buf, size_t count)
2548{
2549	unsigned long val;
2550	ssize_t ret;
2551
2552	ret = kstrtoul(buf, 0, &val);
2553	if (ret)
2554		return ret;
2555
2556	if (val > 2)
2557		return -EINVAL;
2558
2559	if (x86_pmu.attr_rdpmc_broken)
2560		return -ENOTSUPP;
2561
2562	if (val != x86_pmu.attr_rdpmc) {
2563		/*
2564		 * Changing into or out of never available or always available,
2565		 * aka perf-event-bypassing mode. This path is extremely slow,
2566		 * but only root can trigger it, so it's okay.
2567		 */
2568		if (val == 0)
2569			static_branch_inc(&rdpmc_never_available_key);
2570		else if (x86_pmu.attr_rdpmc == 0)
2571			static_branch_dec(&rdpmc_never_available_key);
2572
2573		if (val == 2)
2574			static_branch_inc(&rdpmc_always_available_key);
2575		else if (x86_pmu.attr_rdpmc == 2)
2576			static_branch_dec(&rdpmc_always_available_key);
2577
2578		on_each_cpu(cr4_update_pce, NULL, 1);
2579		x86_pmu.attr_rdpmc = val;
2580	}
2581
2582	return count;
2583}
2584
2585static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2586
2587static struct attribute *x86_pmu_attrs[] = {
2588	&dev_attr_rdpmc.attr,
2589	NULL,
2590};
2591
2592static struct attribute_group x86_pmu_attr_group __ro_after_init = {
2593	.attrs = x86_pmu_attrs,
2594};
2595
2596static ssize_t max_precise_show(struct device *cdev,
2597				  struct device_attribute *attr,
2598				  char *buf)
2599{
2600	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2601}
2602
2603static DEVICE_ATTR_RO(max_precise);
2604
2605static struct attribute *x86_pmu_caps_attrs[] = {
2606	&dev_attr_max_precise.attr,
2607	NULL
2608};
2609
2610static struct attribute_group x86_pmu_caps_group __ro_after_init = {
2611	.name = "caps",
2612	.attrs = x86_pmu_caps_attrs,
2613};
2614
2615static const struct attribute_group *x86_pmu_attr_groups[] = {
2616	&x86_pmu_attr_group,
2617	&x86_pmu_format_group,
2618	&x86_pmu_events_group,
2619	&x86_pmu_caps_group,
2620	NULL,
2621};
2622
2623static void x86_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
2624{
2625	static_call_cond(x86_pmu_sched_task)(pmu_ctx, sched_in);
2626}
2627
2628static void x86_pmu_swap_task_ctx(struct perf_event_pmu_context *prev_epc,
2629				  struct perf_event_pmu_context *next_epc)
2630{
2631	static_call_cond(x86_pmu_swap_task_ctx)(prev_epc, next_epc);
2632}
2633
2634void perf_check_microcode(void)
2635{
2636	if (x86_pmu.check_microcode)
2637		x86_pmu.check_microcode();
2638}
2639
2640static int x86_pmu_check_period(struct perf_event *event, u64 value)
2641{
2642	if (x86_pmu.check_period && x86_pmu.check_period(event, value))
2643		return -EINVAL;
2644
2645	if (value && x86_pmu.limit_period) {
2646		s64 left = value;
2647		x86_pmu.limit_period(event, &left);
2648		if (left > value)
2649			return -EINVAL;
2650	}
2651
2652	return 0;
2653}
2654
2655static int x86_pmu_aux_output_match(struct perf_event *event)
2656{
2657	if (!(pmu.capabilities & PERF_PMU_CAP_AUX_OUTPUT))
2658		return 0;
2659
2660	if (x86_pmu.aux_output_match)
2661		return x86_pmu.aux_output_match(event);
2662
2663	return 0;
2664}
2665
2666static bool x86_pmu_filter(struct pmu *pmu, int cpu)
2667{
2668	bool ret = false;
2669
2670	static_call_cond(x86_pmu_filter)(pmu, cpu, &ret);
2671
2672	return ret;
2673}
2674
2675static struct pmu pmu = {
2676	.pmu_enable		= x86_pmu_enable,
2677	.pmu_disable		= x86_pmu_disable,
2678
2679	.attr_groups		= x86_pmu_attr_groups,
2680
2681	.event_init		= x86_pmu_event_init,
2682
2683	.event_mapped		= x86_pmu_event_mapped,
2684	.event_unmapped		= x86_pmu_event_unmapped,
2685
2686	.add			= x86_pmu_add,
2687	.del			= x86_pmu_del,
2688	.start			= x86_pmu_start,
2689	.stop			= x86_pmu_stop,
2690	.read			= x86_pmu_read,
2691
2692	.start_txn		= x86_pmu_start_txn,
2693	.cancel_txn		= x86_pmu_cancel_txn,
2694	.commit_txn		= x86_pmu_commit_txn,
2695
2696	.event_idx		= x86_pmu_event_idx,
2697	.sched_task		= x86_pmu_sched_task,
2698	.swap_task_ctx		= x86_pmu_swap_task_ctx,
2699	.check_period		= x86_pmu_check_period,
2700
2701	.aux_output_match	= x86_pmu_aux_output_match,
2702
2703	.filter			= x86_pmu_filter,
2704};
2705
2706void arch_perf_update_userpage(struct perf_event *event,
2707			       struct perf_event_mmap_page *userpg, u64 now)
2708{
2709	struct cyc2ns_data data;
2710	u64 offset;
2711
2712	userpg->cap_user_time = 0;
2713	userpg->cap_user_time_zero = 0;
2714	userpg->cap_user_rdpmc =
2715		!!(event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT);
2716	userpg->pmc_width = x86_pmu.cntval_bits;
2717
2718	if (!using_native_sched_clock() || !sched_clock_stable())
2719		return;
2720
2721	cyc2ns_read_begin(&data);
2722
2723	offset = data.cyc2ns_offset + __sched_clock_offset;
2724
2725	/*
2726	 * Internal timekeeping for enabled/running/stopped times
2727	 * is always in the local_clock domain.
2728	 */
2729	userpg->cap_user_time = 1;
2730	userpg->time_mult = data.cyc2ns_mul;
2731	userpg->time_shift = data.cyc2ns_shift;
2732	userpg->time_offset = offset - now;
2733
2734	/*
2735	 * cap_user_time_zero doesn't make sense when we're using a different
2736	 * time base for the records.
2737	 */
2738	if (!event->attr.use_clockid) {
2739		userpg->cap_user_time_zero = 1;
2740		userpg->time_zero = offset;
2741	}
2742
2743	cyc2ns_read_end();
2744}
2745
2746/*
2747 * Determine whether the regs were taken from an irq/exception handler rather
2748 * than from perf_arch_fetch_caller_regs().
2749 */
2750static bool perf_hw_regs(struct pt_regs *regs)
2751{
2752	return regs->flags & X86_EFLAGS_FIXED;
2753}
2754
2755void
2756perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2757{
2758	struct unwind_state state;
2759	unsigned long addr;
2760
2761	if (perf_guest_state()) {
2762		/* TODO: We don't support guest os callchain now */
2763		return;
2764	}
2765
2766	if (perf_callchain_store(entry, regs->ip))
2767		return;
2768
2769	if (perf_hw_regs(regs))
2770		unwind_start(&state, current, regs, NULL);
2771	else
2772		unwind_start(&state, current, NULL, (void *)regs->sp);
2773
2774	for (; !unwind_done(&state); unwind_next_frame(&state)) {
2775		addr = unwind_get_return_address(&state);
2776		if (!addr || perf_callchain_store(entry, addr))
2777			return;
2778	}
2779}
2780
2781static inline int
2782valid_user_frame(const void __user *fp, unsigned long size)
2783{
2784	return __access_ok(fp, size);
2785}
2786
2787static unsigned long get_segment_base(unsigned int segment)
2788{
2789	struct desc_struct *desc;
2790	unsigned int idx = segment >> 3;
2791
2792	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2793#ifdef CONFIG_MODIFY_LDT_SYSCALL
2794		struct ldt_struct *ldt;
2795
2796		/* IRQs are off, so this synchronizes with smp_store_release */
2797		ldt = READ_ONCE(current->active_mm->context.ldt);
2798		if (!ldt || idx >= ldt->nr_entries)
2799			return 0;
2800
2801		desc = &ldt->entries[idx];
2802#else
2803		return 0;
2804#endif
2805	} else {
2806		if (idx >= GDT_ENTRIES)
2807			return 0;
2808
2809		desc = raw_cpu_ptr(gdt_page.gdt) + idx;
2810	}
2811
2812	return get_desc_base(desc);
2813}
2814
2815#ifdef CONFIG_IA32_EMULATION
2816
2817#include <linux/compat.h>
2818
2819static inline int
2820perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2821{
2822	/* 32-bit process in 64-bit kernel. */
2823	unsigned long ss_base, cs_base;
2824	struct stack_frame_ia32 frame;
2825	const struct stack_frame_ia32 __user *fp;
2826
2827	if (user_64bit_mode(regs))
2828		return 0;
2829
2830	cs_base = get_segment_base(regs->cs);
2831	ss_base = get_segment_base(regs->ss);
2832
2833	fp = compat_ptr(ss_base + regs->bp);
2834	pagefault_disable();
2835	while (entry->nr < entry->max_stack) {
2836		if (!valid_user_frame(fp, sizeof(frame)))
2837			break;
2838
2839		if (__get_user(frame.next_frame, &fp->next_frame))
2840			break;
2841		if (__get_user(frame.return_address, &fp->return_address))
2842			break;
2843
2844		perf_callchain_store(entry, cs_base + frame.return_address);
2845		fp = compat_ptr(ss_base + frame.next_frame);
2846	}
2847	pagefault_enable();
2848	return 1;
2849}
2850#else
2851static inline int
2852perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
2853{
2854    return 0;
2855}
2856#endif
2857
2858void
2859perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
2860{
2861	struct stack_frame frame;
2862	const struct stack_frame __user *fp;
2863
2864	if (perf_guest_state()) {
2865		/* TODO: We don't support guest os callchain now */
2866		return;
2867	}
2868
2869	/*
2870	 * We don't know what to do with VM86 stacks.. ignore them for now.
2871	 */
2872	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2873		return;
2874
2875	fp = (void __user *)regs->bp;
2876
2877	perf_callchain_store(entry, regs->ip);
2878
2879	if (!nmi_uaccess_okay())
2880		return;
2881
2882	if (perf_callchain_user32(regs, entry))
2883		return;
2884
2885	pagefault_disable();
2886	while (entry->nr < entry->max_stack) {
2887		if (!valid_user_frame(fp, sizeof(frame)))
2888			break;
2889
2890		if (__get_user(frame.next_frame, &fp->next_frame))
2891			break;
2892		if (__get_user(frame.return_address, &fp->return_address))
2893			break;
2894
2895		perf_callchain_store(entry, frame.return_address);
2896		fp = (void __user *)frame.next_frame;
2897	}
2898	pagefault_enable();
2899}
2900
2901/*
2902 * Deal with code segment offsets for the various execution modes:
2903 *
2904 *   VM86 - the good olde 16 bit days, where the linear address is
2905 *          20 bits and we use regs->ip + 0x10 * regs->cs.
2906 *
2907 *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
2908 *          to figure out what the 32bit base address is.
2909 *
2910 *    X32 - has TIF_X32 set, but is running in x86_64
2911 *
2912 * X86_64 - CS,DS,SS,ES are all zero based.
2913 */
2914static unsigned long code_segment_base(struct pt_regs *regs)
2915{
2916	/*
2917	 * For IA32 we look at the GDT/LDT segment base to convert the
2918	 * effective IP to a linear address.
2919	 */
2920
2921#ifdef CONFIG_X86_32
2922	/*
2923	 * If we are in VM86 mode, add the segment offset to convert to a
2924	 * linear address.
2925	 */
2926	if (regs->flags & X86_VM_MASK)
2927		return 0x10 * regs->cs;
2928
2929	if (user_mode(regs) && regs->cs != __USER_CS)
2930		return get_segment_base(regs->cs);
2931#else
2932	if (user_mode(regs) && !user_64bit_mode(regs) &&
2933	    regs->cs != __USER32_CS)
2934		return get_segment_base(regs->cs);
2935#endif
2936	return 0;
2937}
2938
2939unsigned long perf_instruction_pointer(struct pt_regs *regs)
2940{
2941	if (perf_guest_state())
2942		return perf_guest_get_ip();
2943
2944	return regs->ip + code_segment_base(regs);
2945}
2946
2947unsigned long perf_misc_flags(struct pt_regs *regs)
2948{
2949	unsigned int guest_state = perf_guest_state();
2950	int misc = 0;
2951
2952	if (guest_state) {
2953		if (guest_state & PERF_GUEST_USER)
2954			misc |= PERF_RECORD_MISC_GUEST_USER;
2955		else
2956			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2957	} else {
2958		if (user_mode(regs))
2959			misc |= PERF_RECORD_MISC_USER;
2960		else
2961			misc |= PERF_RECORD_MISC_KERNEL;
2962	}
2963
2964	if (regs->flags & PERF_EFLAGS_EXACT)
2965		misc |= PERF_RECORD_MISC_EXACT_IP;
2966
2967	return misc;
2968}
2969
2970void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2971{
2972	/* This API doesn't currently support enumerating hybrid PMUs. */
2973	if (WARN_ON_ONCE(cpu_feature_enabled(X86_FEATURE_HYBRID_CPU)) ||
2974	    !x86_pmu_initialized()) {
2975		memset(cap, 0, sizeof(*cap));
2976		return;
2977	}
2978
2979	/*
2980	 * Note, hybrid CPU models get tracked as having hybrid PMUs even when
2981	 * all E-cores are disabled via BIOS.  When E-cores are disabled, the
2982	 * base PMU holds the correct number of counters for P-cores.
2983	 */
2984	cap->version		= x86_pmu.version;
2985	cap->num_counters_gp	= x86_pmu.num_counters;
2986	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
2987	cap->bit_width_gp	= x86_pmu.cntval_bits;
2988	cap->bit_width_fixed	= x86_pmu.cntval_bits;
2989	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
2990	cap->events_mask_len	= x86_pmu.events_mask_len;
2991	cap->pebs_ept		= x86_pmu.pebs_ept;
2992}
2993EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
2994
2995u64 perf_get_hw_event_config(int hw_event)
2996{
2997	int max = x86_pmu.max_events;
2998
2999	if (hw_event < max)
3000		return x86_pmu.event_map(array_index_nospec(hw_event, max));
3001
3002	return 0;
3003}
3004EXPORT_SYMBOL_GPL(perf_get_hw_event_config);
3005