1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de)
4 * Copyright (C) 2002- 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
5 */
6
7#include <stdlib.h>
8#include <stdbool.h>
9#include <unistd.h>
10#include <sched.h>
11#include <errno.h>
12#include <string.h>
13#include <sys/mman.h>
14#include <sys/wait.h>
15#include <asm/unistd.h>
16#include <as-layout.h>
17#include <init.h>
18#include <kern_util.h>
19#include <mem.h>
20#include <os.h>
21#include <ptrace_user.h>
22#include <registers.h>
23#include <skas.h>
24#include <sysdep/stub.h>
25#include <linux/threads.h>
26
27int is_skas_winch(int pid, int fd, void *data)
28{
29	return pid == getpgrp();
30}
31
32static const char *ptrace_reg_name(int idx)
33{
34#define R(n) case HOST_##n: return #n
35
36	switch (idx) {
37#ifdef __x86_64__
38	R(BX);
39	R(CX);
40	R(DI);
41	R(SI);
42	R(DX);
43	R(BP);
44	R(AX);
45	R(R8);
46	R(R9);
47	R(R10);
48	R(R11);
49	R(R12);
50	R(R13);
51	R(R14);
52	R(R15);
53	R(ORIG_AX);
54	R(CS);
55	R(SS);
56	R(EFLAGS);
57#elif defined(__i386__)
58	R(IP);
59	R(SP);
60	R(EFLAGS);
61	R(AX);
62	R(BX);
63	R(CX);
64	R(DX);
65	R(SI);
66	R(DI);
67	R(BP);
68	R(CS);
69	R(SS);
70	R(DS);
71	R(FS);
72	R(ES);
73	R(GS);
74	R(ORIG_AX);
75#endif
76	}
77	return "";
78}
79
80static int ptrace_dump_regs(int pid)
81{
82	unsigned long regs[MAX_REG_NR];
83	int i;
84
85	if (ptrace(PTRACE_GETREGS, pid, 0, regs) < 0)
86		return -errno;
87
88	printk(UM_KERN_ERR "Stub registers -\n");
89	for (i = 0; i < ARRAY_SIZE(regs); i++) {
90		const char *regname = ptrace_reg_name(i);
91
92		printk(UM_KERN_ERR "\t%s\t(%2d): %lx\n", regname, i, regs[i]);
93	}
94
95	return 0;
96}
97
98/*
99 * Signals that are OK to receive in the stub - we'll just continue it.
100 * SIGWINCH will happen when UML is inside a detached screen.
101 */
102#define STUB_SIG_MASK ((1 << SIGALRM) | (1 << SIGWINCH))
103
104/* Signals that the stub will finish with - anything else is an error */
105#define STUB_DONE_MASK (1 << SIGTRAP)
106
107void wait_stub_done(int pid)
108{
109	int n, status, err;
110
111	while (1) {
112		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
113		if ((n < 0) || !WIFSTOPPED(status))
114			goto bad_wait;
115
116		if (((1 << WSTOPSIG(status)) & STUB_SIG_MASK) == 0)
117			break;
118
119		err = ptrace(PTRACE_CONT, pid, 0, 0);
120		if (err) {
121			printk(UM_KERN_ERR "%s : continue failed, errno = %d\n",
122			       __func__, errno);
123			fatal_sigsegv();
124		}
125	}
126
127	if (((1 << WSTOPSIG(status)) & STUB_DONE_MASK) != 0)
128		return;
129
130bad_wait:
131	err = ptrace_dump_regs(pid);
132	if (err)
133		printk(UM_KERN_ERR "Failed to get registers from stub, errno = %d\n",
134		       -err);
135	printk(UM_KERN_ERR "%s : failed to wait for SIGTRAP, pid = %d, n = %d, errno = %d, status = 0x%x\n",
136	       __func__, pid, n, errno, status);
137	fatal_sigsegv();
138}
139
140extern unsigned long current_stub_stack(void);
141
142static void get_skas_faultinfo(int pid, struct faultinfo *fi, unsigned long *aux_fp_regs)
143{
144	int err;
145
146	err = get_fp_registers(pid, aux_fp_regs);
147	if (err < 0) {
148		printk(UM_KERN_ERR "save_fp_registers returned %d\n",
149		       err);
150		fatal_sigsegv();
151	}
152	err = ptrace(PTRACE_CONT, pid, 0, SIGSEGV);
153	if (err) {
154		printk(UM_KERN_ERR "Failed to continue stub, pid = %d, "
155		       "errno = %d\n", pid, errno);
156		fatal_sigsegv();
157	}
158	wait_stub_done(pid);
159
160	/*
161	 * faultinfo is prepared by the stub_segv_handler at start of
162	 * the stub stack page. We just have to copy it.
163	 */
164	memcpy(fi, (void *)current_stub_stack(), sizeof(*fi));
165
166	err = put_fp_registers(pid, aux_fp_regs);
167	if (err < 0) {
168		printk(UM_KERN_ERR "put_fp_registers returned %d\n",
169		       err);
170		fatal_sigsegv();
171	}
172}
173
174static void handle_segv(int pid, struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
175{
176	get_skas_faultinfo(pid, &regs->faultinfo, aux_fp_regs);
177	segv(regs->faultinfo, 0, 1, NULL);
178}
179
180/*
181 * To use the same value of using_sysemu as the caller, ask it that value
182 * (in local_using_sysemu
183 */
184static void handle_trap(int pid, struct uml_pt_regs *regs,
185			int local_using_sysemu)
186{
187	int err, status;
188
189	if ((UPT_IP(regs) >= STUB_START) && (UPT_IP(regs) < STUB_END))
190		fatal_sigsegv();
191
192	if (!local_using_sysemu)
193	{
194		err = ptrace(PTRACE_POKEUSER, pid, PT_SYSCALL_NR_OFFSET,
195			     __NR_getpid);
196		if (err < 0) {
197			printk(UM_KERN_ERR "%s - nullifying syscall failed, errno = %d\n",
198			       __func__, errno);
199			fatal_sigsegv();
200		}
201
202		err = ptrace(PTRACE_SYSCALL, pid, 0, 0);
203		if (err < 0) {
204			printk(UM_KERN_ERR "%s - continuing to end of syscall failed, errno = %d\n",
205			       __func__, errno);
206			fatal_sigsegv();
207		}
208
209		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
210		if ((err < 0) || !WIFSTOPPED(status) ||
211		    (WSTOPSIG(status) != SIGTRAP + 0x80)) {
212			err = ptrace_dump_regs(pid);
213			if (err)
214				printk(UM_KERN_ERR "Failed to get registers from process, errno = %d\n",
215				       -err);
216			printk(UM_KERN_ERR "%s - failed to wait at end of syscall, errno = %d, status = %d\n",
217			       __func__, errno, status);
218			fatal_sigsegv();
219		}
220	}
221
222	handle_syscall(regs);
223}
224
225extern char __syscall_stub_start[];
226
227/**
228 * userspace_tramp() - userspace trampoline
229 * @stack:	pointer to the new userspace stack page, can be NULL, if? FIXME:
230 *
231 * The userspace trampoline is used to setup a new userspace process in start_userspace() after it was clone()'ed.
232 * This function will run on a temporary stack page.
233 * It ptrace()'es itself, then
234 * Two pages are mapped into the userspace address space:
235 * - STUB_CODE (with EXEC), which contains the skas stub code
236 * - STUB_DATA (with R/W), which contains a data page that is used to transfer certain data between the UML userspace process and the UML kernel.
237 * Also for the userspace process a SIGSEGV handler is installed to catch pagefaults in the userspace process.
238 * And last the process stops itself to give control to the UML kernel for this userspace process.
239 *
240 * Return: Always zero, otherwise the current userspace process is ended with non null exit() call
241 */
242static int userspace_tramp(void *stack)
243{
244	void *addr;
245	int fd;
246	unsigned long long offset;
247
248	ptrace(PTRACE_TRACEME, 0, 0, 0);
249
250	signal(SIGTERM, SIG_DFL);
251	signal(SIGWINCH, SIG_IGN);
252
253	fd = phys_mapping(uml_to_phys(__syscall_stub_start), &offset);
254	addr = mmap64((void *) STUB_CODE, UM_KERN_PAGE_SIZE,
255		      PROT_EXEC, MAP_FIXED | MAP_PRIVATE, fd, offset);
256	if (addr == MAP_FAILED) {
257		printk(UM_KERN_ERR "mapping mmap stub at 0x%lx failed, errno = %d\n",
258		       STUB_CODE, errno);
259		exit(1);
260	}
261
262	if (stack != NULL) {
263		fd = phys_mapping(uml_to_phys(stack), &offset);
264		addr = mmap((void *) STUB_DATA,
265			    STUB_DATA_PAGES * UM_KERN_PAGE_SIZE, PROT_READ | PROT_WRITE,
266			    MAP_FIXED | MAP_SHARED, fd, offset);
267		if (addr == MAP_FAILED) {
268			printk(UM_KERN_ERR "mapping segfault stack at 0x%lx failed, errno = %d\n",
269			       STUB_DATA, errno);
270			exit(1);
271		}
272	}
273	if (stack != NULL) {
274		struct sigaction sa;
275
276		unsigned long v = STUB_CODE +
277				  (unsigned long) stub_segv_handler -
278				  (unsigned long) __syscall_stub_start;
279
280		set_sigstack((void *) STUB_DATA, STUB_DATA_PAGES * UM_KERN_PAGE_SIZE);
281		sigemptyset(&sa.sa_mask);
282		sa.sa_flags = SA_ONSTACK | SA_NODEFER | SA_SIGINFO;
283		sa.sa_sigaction = (void *) v;
284		sa.sa_restorer = NULL;
285		if (sigaction(SIGSEGV, &sa, NULL) < 0) {
286			printk(UM_KERN_ERR "%s - setting SIGSEGV handler failed - errno = %d\n",
287			       __func__, errno);
288			exit(1);
289		}
290	}
291
292	kill(os_getpid(), SIGSTOP);
293	return 0;
294}
295
296int userspace_pid[NR_CPUS];
297int kill_userspace_mm[NR_CPUS];
298
299/**
300 * start_userspace() - prepare a new userspace process
301 * @stub_stack:	pointer to the stub stack. Can be NULL, if? FIXME:
302 *
303 * Setups a new temporary stack page that is used while userspace_tramp() runs
304 * Clones the kernel process into a new userspace process, with FDs only.
305 *
306 * Return: When positive: the process id of the new userspace process,
307 *         when negative: an error number.
308 * FIXME: can PIDs become negative?!
309 */
310int start_userspace(unsigned long stub_stack)
311{
312	void *stack;
313	unsigned long sp;
314	int pid, status, n, flags, err;
315
316	/* setup a temporary stack page */
317	stack = mmap(NULL, UM_KERN_PAGE_SIZE,
318		     PROT_READ | PROT_WRITE | PROT_EXEC,
319		     MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
320	if (stack == MAP_FAILED) {
321		err = -errno;
322		printk(UM_KERN_ERR "%s : mmap failed, errno = %d\n",
323		       __func__, errno);
324		return err;
325	}
326
327	/* set stack pointer to the end of the stack page, so it can grow downwards */
328	sp = (unsigned long)stack + UM_KERN_PAGE_SIZE;
329
330	flags = CLONE_FILES | SIGCHLD;
331
332	/* clone into new userspace process */
333	pid = clone(userspace_tramp, (void *) sp, flags, (void *) stub_stack);
334	if (pid < 0) {
335		err = -errno;
336		printk(UM_KERN_ERR "%s : clone failed, errno = %d\n",
337		       __func__, errno);
338		return err;
339	}
340
341	do {
342		CATCH_EINTR(n = waitpid(pid, &status, WUNTRACED | __WALL));
343		if (n < 0) {
344			err = -errno;
345			printk(UM_KERN_ERR "%s : wait failed, errno = %d\n",
346			       __func__, errno);
347			goto out_kill;
348		}
349	} while (WIFSTOPPED(status) && (WSTOPSIG(status) == SIGALRM));
350
351	if (!WIFSTOPPED(status) || (WSTOPSIG(status) != SIGSTOP)) {
352		err = -EINVAL;
353		printk(UM_KERN_ERR "%s : expected SIGSTOP, got status = %d\n",
354		       __func__, status);
355		goto out_kill;
356	}
357
358	if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
359		   (void *) PTRACE_O_TRACESYSGOOD) < 0) {
360		err = -errno;
361		printk(UM_KERN_ERR "%s : PTRACE_OLDSETOPTIONS failed, errno = %d\n",
362		       __func__, errno);
363		goto out_kill;
364	}
365
366	if (munmap(stack, UM_KERN_PAGE_SIZE) < 0) {
367		err = -errno;
368		printk(UM_KERN_ERR "%s : munmap failed, errno = %d\n",
369		       __func__, errno);
370		goto out_kill;
371	}
372
373	return pid;
374
375 out_kill:
376	os_kill_ptraced_process(pid, 1);
377	return err;
378}
379
380void userspace(struct uml_pt_regs *regs, unsigned long *aux_fp_regs)
381{
382	int err, status, op, pid = userspace_pid[0];
383	/* To prevent races if using_sysemu changes under us.*/
384	int local_using_sysemu;
385	siginfo_t si;
386
387	/* Handle any immediate reschedules or signals */
388	interrupt_end();
389
390	while (1) {
391		if (kill_userspace_mm[0])
392			fatal_sigsegv();
393
394		/*
395		 * This can legitimately fail if the process loads a
396		 * bogus value into a segment register.  It will
397		 * segfault and PTRACE_GETREGS will read that value
398		 * out of the process.  However, PTRACE_SETREGS will
399		 * fail.  In this case, there is nothing to do but
400		 * just kill the process.
401		 */
402		if (ptrace(PTRACE_SETREGS, pid, 0, regs->gp)) {
403			printk(UM_KERN_ERR "%s - ptrace set regs failed, errno = %d\n",
404			       __func__, errno);
405			fatal_sigsegv();
406		}
407
408		if (put_fp_registers(pid, regs->fp)) {
409			printk(UM_KERN_ERR "%s - ptrace set fp regs failed, errno = %d\n",
410			       __func__, errno);
411			fatal_sigsegv();
412		}
413
414		/* Now we set local_using_sysemu to be used for one loop */
415		local_using_sysemu = get_using_sysemu();
416
417		op = SELECT_PTRACE_OPERATION(local_using_sysemu,
418					     singlestepping(NULL));
419
420		if (ptrace(op, pid, 0, 0)) {
421			printk(UM_KERN_ERR "%s - ptrace continue failed, op = %d, errno = %d\n",
422			       __func__, op, errno);
423			fatal_sigsegv();
424		}
425
426		CATCH_EINTR(err = waitpid(pid, &status, WUNTRACED | __WALL));
427		if (err < 0) {
428			printk(UM_KERN_ERR "%s - wait failed, errno = %d\n",
429			       __func__, errno);
430			fatal_sigsegv();
431		}
432
433		regs->is_user = 1;
434		if (ptrace(PTRACE_GETREGS, pid, 0, regs->gp)) {
435			printk(UM_KERN_ERR "%s - PTRACE_GETREGS failed, errno = %d\n",
436			       __func__, errno);
437			fatal_sigsegv();
438		}
439
440		if (get_fp_registers(pid, regs->fp)) {
441			printk(UM_KERN_ERR "%s -  get_fp_registers failed, errno = %d\n",
442			       __func__, errno);
443			fatal_sigsegv();
444		}
445
446		UPT_SYSCALL_NR(regs) = -1; /* Assume: It's not a syscall */
447
448		if (WIFSTOPPED(status)) {
449			int sig = WSTOPSIG(status);
450
451			/* These signal handlers need the si argument.
452			 * The SIGIO and SIGALARM handlers which constitute the
453			 * majority of invocations, do not use it.
454			 */
455			switch (sig) {
456			case SIGSEGV:
457			case SIGTRAP:
458			case SIGILL:
459			case SIGBUS:
460			case SIGFPE:
461			case SIGWINCH:
462				ptrace(PTRACE_GETSIGINFO, pid, 0, (struct siginfo *)&si);
463				break;
464			}
465
466			switch (sig) {
467			case SIGSEGV:
468				if (PTRACE_FULL_FAULTINFO) {
469					get_skas_faultinfo(pid,
470							   &regs->faultinfo, aux_fp_regs);
471					(*sig_info[SIGSEGV])(SIGSEGV, (struct siginfo *)&si,
472							     regs);
473				}
474				else handle_segv(pid, regs, aux_fp_regs);
475				break;
476			case SIGTRAP + 0x80:
477			        handle_trap(pid, regs, local_using_sysemu);
478				break;
479			case SIGTRAP:
480				relay_signal(SIGTRAP, (struct siginfo *)&si, regs);
481				break;
482			case SIGALRM:
483				break;
484			case SIGIO:
485			case SIGILL:
486			case SIGBUS:
487			case SIGFPE:
488			case SIGWINCH:
489				block_signals_trace();
490				(*sig_info[sig])(sig, (struct siginfo *)&si, regs);
491				unblock_signals_trace();
492				break;
493			default:
494				printk(UM_KERN_ERR "%s - child stopped with signal %d\n",
495				       __func__, sig);
496				fatal_sigsegv();
497			}
498			pid = userspace_pid[0];
499			interrupt_end();
500
501			/* Avoid -ERESTARTSYS handling in host */
502			if (PT_SYSCALL_NR_OFFSET != PT_SYSCALL_RET_OFFSET)
503				PT_SYSCALL_NR(regs->gp) = -1;
504		}
505	}
506}
507
508static unsigned long thread_regs[MAX_REG_NR];
509static unsigned long thread_fp_regs[FP_SIZE];
510
511static int __init init_thread_regs(void)
512{
513	get_safe_registers(thread_regs, thread_fp_regs);
514	/* Set parent's instruction pointer to start of clone-stub */
515	thread_regs[REGS_IP_INDEX] = STUB_CODE +
516				(unsigned long) stub_clone_handler -
517				(unsigned long) __syscall_stub_start;
518	thread_regs[REGS_SP_INDEX] = STUB_DATA + STUB_DATA_PAGES * UM_KERN_PAGE_SIZE -
519		sizeof(void *);
520#ifdef __SIGNAL_FRAMESIZE
521	thread_regs[REGS_SP_INDEX] -= __SIGNAL_FRAMESIZE;
522#endif
523	return 0;
524}
525
526__initcall(init_thread_regs);
527
528int copy_context_skas0(unsigned long new_stack, int pid)
529{
530	int err;
531	unsigned long current_stack = current_stub_stack();
532	struct stub_data *data = (struct stub_data *) current_stack;
533	struct stub_data *child_data = (struct stub_data *) new_stack;
534	unsigned long long new_offset;
535	int new_fd = phys_mapping(uml_to_phys((void *)new_stack), &new_offset);
536
537	/*
538	 * prepare offset and fd of child's stack as argument for parent's
539	 * and child's mmap2 calls
540	 */
541	*data = ((struct stub_data) {
542		.offset	= MMAP_OFFSET(new_offset),
543		.fd     = new_fd,
544		.parent_err = -ESRCH,
545		.child_err = 0,
546	});
547
548	*child_data = ((struct stub_data) {
549		.child_err = -ESRCH,
550	});
551
552	err = ptrace_setregs(pid, thread_regs);
553	if (err < 0) {
554		err = -errno;
555		printk(UM_KERN_ERR "%s : PTRACE_SETREGS failed, pid = %d, errno = %d\n",
556		      __func__, pid, -err);
557		return err;
558	}
559
560	err = put_fp_registers(pid, thread_fp_regs);
561	if (err < 0) {
562		printk(UM_KERN_ERR "%s : put_fp_registers failed, pid = %d, err = %d\n",
563		       __func__, pid, err);
564		return err;
565	}
566
567	/*
568	 * Wait, until parent has finished its work: read child's pid from
569	 * parent's stack, and check, if bad result.
570	 */
571	err = ptrace(PTRACE_CONT, pid, 0, 0);
572	if (err) {
573		err = -errno;
574		printk(UM_KERN_ERR "Failed to continue new process, pid = %d, errno = %d\n",
575		       pid, errno);
576		return err;
577	}
578
579	wait_stub_done(pid);
580
581	pid = data->parent_err;
582	if (pid < 0) {
583		printk(UM_KERN_ERR "%s - stub-parent reports error %d\n",
584		      __func__, -pid);
585		return pid;
586	}
587
588	/*
589	 * Wait, until child has finished too: read child's result from
590	 * child's stack and check it.
591	 */
592	wait_stub_done(pid);
593	if (child_data->child_err != STUB_DATA) {
594		printk(UM_KERN_ERR "%s - stub-child %d reports error %ld\n",
595		       __func__, pid, data->child_err);
596		err = data->child_err;
597		goto out_kill;
598	}
599
600	if (ptrace(PTRACE_OLDSETOPTIONS, pid, NULL,
601		   (void *)PTRACE_O_TRACESYSGOOD) < 0) {
602		err = -errno;
603		printk(UM_KERN_ERR "%s : PTRACE_OLDSETOPTIONS failed, errno = %d\n",
604		       __func__, errno);
605		goto out_kill;
606	}
607
608	return pid;
609
610 out_kill:
611	os_kill_ptraced_process(pid, 1);
612	return err;
613}
614
615void new_thread(void *stack, jmp_buf *buf, void (*handler)(void))
616{
617	(*buf)[0].JB_IP = (unsigned long) handler;
618	(*buf)[0].JB_SP = (unsigned long) stack + UM_THREAD_SIZE -
619		sizeof(void *);
620}
621
622#define INIT_JMP_NEW_THREAD 0
623#define INIT_JMP_CALLBACK 1
624#define INIT_JMP_HALT 2
625#define INIT_JMP_REBOOT 3
626
627void switch_threads(jmp_buf *me, jmp_buf *you)
628{
629	if (UML_SETJMP(me) == 0)
630		UML_LONGJMP(you, 1);
631}
632
633static jmp_buf initial_jmpbuf;
634
635/* XXX Make these percpu */
636static void (*cb_proc)(void *arg);
637static void *cb_arg;
638static jmp_buf *cb_back;
639
640int start_idle_thread(void *stack, jmp_buf *switch_buf)
641{
642	int n;
643
644	set_handler(SIGWINCH);
645
646	/*
647	 * Can't use UML_SETJMP or UML_LONGJMP here because they save
648	 * and restore signals, with the possible side-effect of
649	 * trying to handle any signals which came when they were
650	 * blocked, which can't be done on this stack.
651	 * Signals must be blocked when jumping back here and restored
652	 * after returning to the jumper.
653	 */
654	n = setjmp(initial_jmpbuf);
655	switch (n) {
656	case INIT_JMP_NEW_THREAD:
657		(*switch_buf)[0].JB_IP = (unsigned long) uml_finishsetup;
658		(*switch_buf)[0].JB_SP = (unsigned long) stack +
659			UM_THREAD_SIZE - sizeof(void *);
660		break;
661	case INIT_JMP_CALLBACK:
662		(*cb_proc)(cb_arg);
663		longjmp(*cb_back, 1);
664		break;
665	case INIT_JMP_HALT:
666		kmalloc_ok = 0;
667		return 0;
668	case INIT_JMP_REBOOT:
669		kmalloc_ok = 0;
670		return 1;
671	default:
672		printk(UM_KERN_ERR "Bad sigsetjmp return in %s - %d\n",
673		       __func__, n);
674		fatal_sigsegv();
675	}
676	longjmp(*switch_buf, 1);
677
678	/* unreachable */
679	printk(UM_KERN_ERR "impossible long jump!");
680	fatal_sigsegv();
681	return 0;
682}
683
684void initial_thread_cb_skas(void (*proc)(void *), void *arg)
685{
686	jmp_buf here;
687
688	cb_proc = proc;
689	cb_arg = arg;
690	cb_back = &here;
691
692	block_signals_trace();
693	if (UML_SETJMP(&here) == 0)
694		UML_LONGJMP(&initial_jmpbuf, INIT_JMP_CALLBACK);
695	unblock_signals_trace();
696
697	cb_proc = NULL;
698	cb_arg = NULL;
699	cb_back = NULL;
700}
701
702void halt_skas(void)
703{
704	block_signals_trace();
705	UML_LONGJMP(&initial_jmpbuf, INIT_JMP_HALT);
706}
707
708static bool noreboot;
709
710static int __init noreboot_cmd_param(char *str, int *add)
711{
712	noreboot = true;
713	return 0;
714}
715
716__uml_setup("noreboot", noreboot_cmd_param,
717"noreboot\n"
718"    Rather than rebooting, exit always, akin to QEMU's -no-reboot option.\n"
719"    This is useful if you're using CONFIG_PANIC_TIMEOUT in order to catch\n"
720"    crashes in CI\n");
721
722void reboot_skas(void)
723{
724	block_signals_trace();
725	UML_LONGJMP(&initial_jmpbuf, noreboot ? INIT_JMP_HALT : INIT_JMP_REBOOT);
726}
727
728void __switch_mm(struct mm_id *mm_idp)
729{
730	userspace_pid[0] = mm_idp->u.pid;
731	kill_userspace_mm[0] = mm_idp->kill;
732}
733