162306a36Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 262306a36Sopenharmony_ci#ifndef _SPARC64_TSB_H 362306a36Sopenharmony_ci#define _SPARC64_TSB_H 462306a36Sopenharmony_ci 562306a36Sopenharmony_ci/* The sparc64 TSB is similar to the powerpc hashtables. It's a 662306a36Sopenharmony_ci * power-of-2 sized table of TAG/PTE pairs. The cpu precomputes 762306a36Sopenharmony_ci * pointers into this table for 8K and 64K page sizes, and also a 862306a36Sopenharmony_ci * comparison TAG based upon the virtual address and context which 962306a36Sopenharmony_ci * faults. 1062306a36Sopenharmony_ci * 1162306a36Sopenharmony_ci * TLB miss trap handler software does the actual lookup via something 1262306a36Sopenharmony_ci * of the form: 1362306a36Sopenharmony_ci * 1462306a36Sopenharmony_ci * ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1 1562306a36Sopenharmony_ci * ldxa [%g0] ASI_{D,I}MMU, %g6 1662306a36Sopenharmony_ci * sllx %g6, 22, %g6 1762306a36Sopenharmony_ci * srlx %g6, 22, %g6 1862306a36Sopenharmony_ci * ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4 1962306a36Sopenharmony_ci * cmp %g4, %g6 2062306a36Sopenharmony_ci * bne,pn %xcc, tsb_miss_{d,i}tlb 2162306a36Sopenharmony_ci * mov FAULT_CODE_{D,I}TLB, %g3 2262306a36Sopenharmony_ci * stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN 2362306a36Sopenharmony_ci * retry 2462306a36Sopenharmony_ci * 2562306a36Sopenharmony_ci * 2662306a36Sopenharmony_ci * Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte 2762306a36Sopenharmony_ci * PTE. The TAG is of the same layout as the TLB TAG TARGET mmu 2862306a36Sopenharmony_ci * register which is: 2962306a36Sopenharmony_ci * 3062306a36Sopenharmony_ci * ------------------------------------------------- 3162306a36Sopenharmony_ci * | - | CONTEXT | - | VADDR bits 63:22 | 3262306a36Sopenharmony_ci * ------------------------------------------------- 3362306a36Sopenharmony_ci * 63 61 60 48 47 42 41 0 3462306a36Sopenharmony_ci * 3562306a36Sopenharmony_ci * But actually, since we use per-mm TSB's, we zero out the CONTEXT 3662306a36Sopenharmony_ci * field. 3762306a36Sopenharmony_ci * 3862306a36Sopenharmony_ci * Like the powerpc hashtables we need to use locking in order to 3962306a36Sopenharmony_ci * synchronize while we update the entries. PTE updates need locking 4062306a36Sopenharmony_ci * as well. 4162306a36Sopenharmony_ci * 4262306a36Sopenharmony_ci * We need to carefully choose a lock bits for the TSB entry. We 4362306a36Sopenharmony_ci * choose to use bit 47 in the tag. Also, since we never map anything 4462306a36Sopenharmony_ci * at page zero in context zero, we use zero as an invalid tag entry. 4562306a36Sopenharmony_ci * When the lock bit is set, this forces a tag comparison failure. 4662306a36Sopenharmony_ci */ 4762306a36Sopenharmony_ci 4862306a36Sopenharmony_ci#define TSB_TAG_LOCK_BIT 47 4962306a36Sopenharmony_ci#define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32)) 5062306a36Sopenharmony_ci 5162306a36Sopenharmony_ci#define TSB_TAG_INVALID_BIT 46 5262306a36Sopenharmony_ci#define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32)) 5362306a36Sopenharmony_ci 5462306a36Sopenharmony_ci/* Some cpus support physical address quad loads. We want to use 5562306a36Sopenharmony_ci * those if possible so we don't need to hard-lock the TSB mapping 5662306a36Sopenharmony_ci * into the TLB. We encode some instruction patching in order to 5762306a36Sopenharmony_ci * support this. 5862306a36Sopenharmony_ci * 5962306a36Sopenharmony_ci * The kernel TSB is locked into the TLB by virtue of being in the 6062306a36Sopenharmony_ci * kernel image, so we don't play these games for swapper_tsb access. 6162306a36Sopenharmony_ci */ 6262306a36Sopenharmony_ci#ifndef __ASSEMBLY__ 6362306a36Sopenharmony_cistruct tsb_ldquad_phys_patch_entry { 6462306a36Sopenharmony_ci unsigned int addr; 6562306a36Sopenharmony_ci unsigned int sun4u_insn; 6662306a36Sopenharmony_ci unsigned int sun4v_insn; 6762306a36Sopenharmony_ci}; 6862306a36Sopenharmony_ciextern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch, 6962306a36Sopenharmony_ci __tsb_ldquad_phys_patch_end; 7062306a36Sopenharmony_ci 7162306a36Sopenharmony_cistruct tsb_phys_patch_entry { 7262306a36Sopenharmony_ci unsigned int addr; 7362306a36Sopenharmony_ci unsigned int insn; 7462306a36Sopenharmony_ci}; 7562306a36Sopenharmony_ciextern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end; 7662306a36Sopenharmony_ci#endif 7762306a36Sopenharmony_ci#define TSB_LOAD_QUAD(TSB, REG) \ 7862306a36Sopenharmony_ci661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \ 7962306a36Sopenharmony_ci .section .tsb_ldquad_phys_patch, "ax"; \ 8062306a36Sopenharmony_ci .word 661b; \ 8162306a36Sopenharmony_ci ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \ 8262306a36Sopenharmony_ci ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \ 8362306a36Sopenharmony_ci .previous 8462306a36Sopenharmony_ci 8562306a36Sopenharmony_ci#define TSB_LOAD_TAG_HIGH(TSB, REG) \ 8662306a36Sopenharmony_ci661: lduwa [TSB] ASI_N, REG; \ 8762306a36Sopenharmony_ci .section .tsb_phys_patch, "ax"; \ 8862306a36Sopenharmony_ci .word 661b; \ 8962306a36Sopenharmony_ci lduwa [TSB] ASI_PHYS_USE_EC, REG; \ 9062306a36Sopenharmony_ci .previous 9162306a36Sopenharmony_ci 9262306a36Sopenharmony_ci#define TSB_LOAD_TAG(TSB, REG) \ 9362306a36Sopenharmony_ci661: ldxa [TSB] ASI_N, REG; \ 9462306a36Sopenharmony_ci .section .tsb_phys_patch, "ax"; \ 9562306a36Sopenharmony_ci .word 661b; \ 9662306a36Sopenharmony_ci ldxa [TSB] ASI_PHYS_USE_EC, REG; \ 9762306a36Sopenharmony_ci .previous 9862306a36Sopenharmony_ci 9962306a36Sopenharmony_ci#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \ 10062306a36Sopenharmony_ci661: casa [TSB] ASI_N, REG1, REG2; \ 10162306a36Sopenharmony_ci .section .tsb_phys_patch, "ax"; \ 10262306a36Sopenharmony_ci .word 661b; \ 10362306a36Sopenharmony_ci casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ 10462306a36Sopenharmony_ci .previous 10562306a36Sopenharmony_ci 10662306a36Sopenharmony_ci#define TSB_CAS_TAG(TSB, REG1, REG2) \ 10762306a36Sopenharmony_ci661: casxa [TSB] ASI_N, REG1, REG2; \ 10862306a36Sopenharmony_ci .section .tsb_phys_patch, "ax"; \ 10962306a36Sopenharmony_ci .word 661b; \ 11062306a36Sopenharmony_ci casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \ 11162306a36Sopenharmony_ci .previous 11262306a36Sopenharmony_ci 11362306a36Sopenharmony_ci#define TSB_STORE(ADDR, VAL) \ 11462306a36Sopenharmony_ci661: stxa VAL, [ADDR] ASI_N; \ 11562306a36Sopenharmony_ci .section .tsb_phys_patch, "ax"; \ 11662306a36Sopenharmony_ci .word 661b; \ 11762306a36Sopenharmony_ci stxa VAL, [ADDR] ASI_PHYS_USE_EC; \ 11862306a36Sopenharmony_ci .previous 11962306a36Sopenharmony_ci 12062306a36Sopenharmony_ci#define TSB_LOCK_TAG(TSB, REG1, REG2) \ 12162306a36Sopenharmony_ci99: TSB_LOAD_TAG_HIGH(TSB, REG1); \ 12262306a36Sopenharmony_ci sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\ 12362306a36Sopenharmony_ci andcc REG1, REG2, %g0; \ 12462306a36Sopenharmony_ci bne,pn %icc, 99b; \ 12562306a36Sopenharmony_ci nop; \ 12662306a36Sopenharmony_ci TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \ 12762306a36Sopenharmony_ci cmp REG1, REG2; \ 12862306a36Sopenharmony_ci bne,pn %icc, 99b; \ 12962306a36Sopenharmony_ci nop; \ 13062306a36Sopenharmony_ci 13162306a36Sopenharmony_ci#define TSB_WRITE(TSB, TTE, TAG) \ 13262306a36Sopenharmony_ci add TSB, 0x8, TSB; \ 13362306a36Sopenharmony_ci TSB_STORE(TSB, TTE); \ 13462306a36Sopenharmony_ci sub TSB, 0x8, TSB; \ 13562306a36Sopenharmony_ci TSB_STORE(TSB, TAG); 13662306a36Sopenharmony_ci 13762306a36Sopenharmony_ci /* Do a kernel page table walk. Leaves valid PTE value in 13862306a36Sopenharmony_ci * REG1. Jumps to FAIL_LABEL on early page table walk 13962306a36Sopenharmony_ci * termination. VADDR will not be clobbered, but REG2 will. 14062306a36Sopenharmony_ci * 14162306a36Sopenharmony_ci * There are two masks we must apply to propagate bits from 14262306a36Sopenharmony_ci * the virtual address into the PTE physical address field 14362306a36Sopenharmony_ci * when dealing with huge pages. This is because the page 14462306a36Sopenharmony_ci * table boundaries do not match the huge page size(s) the 14562306a36Sopenharmony_ci * hardware supports. 14662306a36Sopenharmony_ci * 14762306a36Sopenharmony_ci * In these cases we propagate the bits that are below the 14862306a36Sopenharmony_ci * page table level where we saw the huge page mapping, but 14962306a36Sopenharmony_ci * are still within the relevant physical bits for the huge 15062306a36Sopenharmony_ci * page size in question. So for PMD mappings (which fall on 15162306a36Sopenharmony_ci * bit 23, for 8MB per PMD) we must propagate bit 22 for a 15262306a36Sopenharmony_ci * 4MB huge page. For huge PUDs (which fall on bit 33, for 15362306a36Sopenharmony_ci * 8GB per PUD), we have to accommodate 256MB and 2GB huge 15462306a36Sopenharmony_ci * pages. So for those we propagate bits 32 to 28. 15562306a36Sopenharmony_ci */ 15662306a36Sopenharmony_ci#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \ 15762306a36Sopenharmony_ci sethi %hi(swapper_pg_dir), REG1; \ 15862306a36Sopenharmony_ci or REG1, %lo(swapper_pg_dir), REG1; \ 15962306a36Sopenharmony_ci sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ 16062306a36Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 16162306a36Sopenharmony_ci andn REG2, 0x7, REG2; \ 16262306a36Sopenharmony_ci ldx [REG1 + REG2], REG1; \ 16362306a36Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 16462306a36Sopenharmony_ci sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \ 16562306a36Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 16662306a36Sopenharmony_ci andn REG2, 0x7, REG2; \ 16762306a36Sopenharmony_ci ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 16862306a36Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 16962306a36Sopenharmony_ci sethi %uhi(_PAGE_PUD_HUGE), REG2; \ 17062306a36Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 17162306a36Sopenharmony_ci sllx REG2, 32, REG2; \ 17262306a36Sopenharmony_ci andcc REG1, REG2, %g0; \ 17362306a36Sopenharmony_ci sethi %hi(0xf8000000), REG2; \ 17462306a36Sopenharmony_ci bne,pt %xcc, 697f; \ 17562306a36Sopenharmony_ci sllx REG2, 1, REG2; \ 17662306a36Sopenharmony_ci sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ 17762306a36Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 17862306a36Sopenharmony_ci andn REG2, 0x7, REG2; \ 17962306a36Sopenharmony_ci ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 18062306a36Sopenharmony_ci sethi %uhi(_PAGE_PMD_HUGE), REG2; \ 18162306a36Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 18262306a36Sopenharmony_ci sllx REG2, 32, REG2; \ 18362306a36Sopenharmony_ci andcc REG1, REG2, %g0; \ 18462306a36Sopenharmony_ci be,pn %xcc, 698f; \ 18562306a36Sopenharmony_ci sethi %hi(0x400000), REG2; \ 18662306a36Sopenharmony_ci697: brgez,pn REG1, FAIL_LABEL; \ 18762306a36Sopenharmony_ci andn REG1, REG2, REG1; \ 18862306a36Sopenharmony_ci and VADDR, REG2, REG2; \ 18962306a36Sopenharmony_ci ba,pt %xcc, 699f; \ 19062306a36Sopenharmony_ci or REG1, REG2, REG1; \ 19162306a36Sopenharmony_ci698: sllx VADDR, 64 - PMD_SHIFT, REG2; \ 19262306a36Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 19362306a36Sopenharmony_ci andn REG2, 0x7, REG2; \ 19462306a36Sopenharmony_ci ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 19562306a36Sopenharmony_ci brgez,pn REG1, FAIL_LABEL; \ 19662306a36Sopenharmony_ci nop; \ 19762306a36Sopenharmony_ci699: 19862306a36Sopenharmony_ci 19962306a36Sopenharmony_ci /* PUD has been loaded into REG1, interpret the value, seeing 20062306a36Sopenharmony_ci * if it is a HUGE PUD or a normal one. If it is not valid 20162306a36Sopenharmony_ci * then jump to FAIL_LABEL. If it is a HUGE PUD, and it 20262306a36Sopenharmony_ci * translates to a valid PTE, branch to PTE_LABEL. 20362306a36Sopenharmony_ci * 20462306a36Sopenharmony_ci * We have to propagate bits [32:22] from the virtual address 20562306a36Sopenharmony_ci * to resolve at 4M granularity. 20662306a36Sopenharmony_ci */ 20762306a36Sopenharmony_ci#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 20862306a36Sopenharmony_ci#define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 20962306a36Sopenharmony_ci700: ba 700f; \ 21062306a36Sopenharmony_ci nop; \ 21162306a36Sopenharmony_ci .section .pud_huge_patch, "ax"; \ 21262306a36Sopenharmony_ci .word 700b; \ 21362306a36Sopenharmony_ci nop; \ 21462306a36Sopenharmony_ci .previous; \ 21562306a36Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 21662306a36Sopenharmony_ci sethi %uhi(_PAGE_PUD_HUGE), REG2; \ 21762306a36Sopenharmony_ci sllx REG2, 32, REG2; \ 21862306a36Sopenharmony_ci andcc REG1, REG2, %g0; \ 21962306a36Sopenharmony_ci be,pt %xcc, 700f; \ 22062306a36Sopenharmony_ci sethi %hi(0xffe00000), REG2; \ 22162306a36Sopenharmony_ci sllx REG2, 1, REG2; \ 22262306a36Sopenharmony_ci brgez,pn REG1, FAIL_LABEL; \ 22362306a36Sopenharmony_ci andn REG1, REG2, REG1; \ 22462306a36Sopenharmony_ci and VADDR, REG2, REG2; \ 22562306a36Sopenharmony_ci brlz,pt REG1, PTE_LABEL; \ 22662306a36Sopenharmony_ci or REG1, REG2, REG1; \ 22762306a36Sopenharmony_ci700: 22862306a36Sopenharmony_ci#else 22962306a36Sopenharmony_ci#define USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 23062306a36Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 23162306a36Sopenharmony_ci nop; 23262306a36Sopenharmony_ci#endif 23362306a36Sopenharmony_ci 23462306a36Sopenharmony_ci /* PMD has been loaded into REG1, interpret the value, seeing 23562306a36Sopenharmony_ci * if it is a HUGE PMD or a normal one. If it is not valid 23662306a36Sopenharmony_ci * then jump to FAIL_LABEL. If it is a HUGE PMD, and it 23762306a36Sopenharmony_ci * translates to a valid PTE, branch to PTE_LABEL. 23862306a36Sopenharmony_ci * 23962306a36Sopenharmony_ci * We have to propagate the 4MB bit of the virtual address 24062306a36Sopenharmony_ci * because we are fabricating 8MB pages using 4MB hw pages. 24162306a36Sopenharmony_ci */ 24262306a36Sopenharmony_ci#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE) 24362306a36Sopenharmony_ci#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 24462306a36Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 24562306a36Sopenharmony_ci sethi %uhi(_PAGE_PMD_HUGE), REG2; \ 24662306a36Sopenharmony_ci sllx REG2, 32, REG2; \ 24762306a36Sopenharmony_ci andcc REG1, REG2, %g0; \ 24862306a36Sopenharmony_ci be,pt %xcc, 700f; \ 24962306a36Sopenharmony_ci sethi %hi(4 * 1024 * 1024), REG2; \ 25062306a36Sopenharmony_ci brgez,pn REG1, FAIL_LABEL; \ 25162306a36Sopenharmony_ci andn REG1, REG2, REG1; \ 25262306a36Sopenharmony_ci and VADDR, REG2, REG2; \ 25362306a36Sopenharmony_ci brlz,pt REG1, PTE_LABEL; \ 25462306a36Sopenharmony_ci or REG1, REG2, REG1; \ 25562306a36Sopenharmony_ci700: 25662306a36Sopenharmony_ci#else 25762306a36Sopenharmony_ci#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \ 25862306a36Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 25962306a36Sopenharmony_ci nop; 26062306a36Sopenharmony_ci#endif 26162306a36Sopenharmony_ci 26262306a36Sopenharmony_ci /* Do a user page table walk in MMU globals. Leaves final, 26362306a36Sopenharmony_ci * valid, PTE value in REG1. Jumps to FAIL_LABEL on early 26462306a36Sopenharmony_ci * page table walk termination or if the PTE is not valid. 26562306a36Sopenharmony_ci * 26662306a36Sopenharmony_ci * Physical base of page tables is in PHYS_PGD which will not 26762306a36Sopenharmony_ci * be modified. 26862306a36Sopenharmony_ci * 26962306a36Sopenharmony_ci * VADDR will not be clobbered, but REG1 and REG2 will. 27062306a36Sopenharmony_ci */ 27162306a36Sopenharmony_ci#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \ 27262306a36Sopenharmony_ci sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \ 27362306a36Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 27462306a36Sopenharmony_ci andn REG2, 0x7, REG2; \ 27562306a36Sopenharmony_ci ldxa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \ 27662306a36Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 27762306a36Sopenharmony_ci sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \ 27862306a36Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 27962306a36Sopenharmony_ci andn REG2, 0x7, REG2; \ 28062306a36Sopenharmony_ci ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 28162306a36Sopenharmony_ci USER_PGTABLE_CHECK_PUD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \ 28262306a36Sopenharmony_ci brz,pn REG1, FAIL_LABEL; \ 28362306a36Sopenharmony_ci sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \ 28462306a36Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 28562306a36Sopenharmony_ci andn REG2, 0x7, REG2; \ 28662306a36Sopenharmony_ci ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \ 28762306a36Sopenharmony_ci USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \ 28862306a36Sopenharmony_ci sllx VADDR, 64 - PMD_SHIFT, REG2; \ 28962306a36Sopenharmony_ci srlx REG2, 64 - PAGE_SHIFT, REG2; \ 29062306a36Sopenharmony_ci andn REG2, 0x7, REG2; \ 29162306a36Sopenharmony_ci add REG1, REG2, REG1; \ 29262306a36Sopenharmony_ci ldxa [REG1] ASI_PHYS_USE_EC, REG1; \ 29362306a36Sopenharmony_ci brgez,pn REG1, FAIL_LABEL; \ 29462306a36Sopenharmony_ci nop; \ 29562306a36Sopenharmony_ci800: 29662306a36Sopenharmony_ci 29762306a36Sopenharmony_ci/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0. 29862306a36Sopenharmony_ci * If no entry is found, FAIL_LABEL will be branched to. On success 29962306a36Sopenharmony_ci * the resulting PTE value will be left in REG1. VADDR is preserved 30062306a36Sopenharmony_ci * by this routine. 30162306a36Sopenharmony_ci */ 30262306a36Sopenharmony_ci#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \ 30362306a36Sopenharmony_ci sethi %hi(prom_trans), REG1; \ 30462306a36Sopenharmony_ci or REG1, %lo(prom_trans), REG1; \ 30562306a36Sopenharmony_ci97: ldx [REG1 + 0x00], REG2; \ 30662306a36Sopenharmony_ci brz,pn REG2, FAIL_LABEL; \ 30762306a36Sopenharmony_ci nop; \ 30862306a36Sopenharmony_ci ldx [REG1 + 0x08], REG3; \ 30962306a36Sopenharmony_ci add REG2, REG3, REG3; \ 31062306a36Sopenharmony_ci cmp REG2, VADDR; \ 31162306a36Sopenharmony_ci bgu,pt %xcc, 98f; \ 31262306a36Sopenharmony_ci cmp VADDR, REG3; \ 31362306a36Sopenharmony_ci bgeu,pt %xcc, 98f; \ 31462306a36Sopenharmony_ci ldx [REG1 + 0x10], REG3; \ 31562306a36Sopenharmony_ci sub VADDR, REG2, REG2; \ 31662306a36Sopenharmony_ci ba,pt %xcc, 99f; \ 31762306a36Sopenharmony_ci add REG3, REG2, REG1; \ 31862306a36Sopenharmony_ci98: ba,pt %xcc, 97b; \ 31962306a36Sopenharmony_ci add REG1, (3 * 8), REG1; \ 32062306a36Sopenharmony_ci99: 32162306a36Sopenharmony_ci 32262306a36Sopenharmony_ci /* We use a 32K TSB for the whole kernel, this allows to 32362306a36Sopenharmony_ci * handle about 16MB of modules and vmalloc mappings without 32462306a36Sopenharmony_ci * incurring many hash conflicts. 32562306a36Sopenharmony_ci */ 32662306a36Sopenharmony_ci#define KERNEL_TSB_SIZE_BYTES (32 * 1024) 32762306a36Sopenharmony_ci#define KERNEL_TSB_NENTRIES \ 32862306a36Sopenharmony_ci (KERNEL_TSB_SIZE_BYTES / 16) 32962306a36Sopenharmony_ci#define KERNEL_TSB4M_NENTRIES 4096 33062306a36Sopenharmony_ci 33162306a36Sopenharmony_ci /* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL 33262306a36Sopenharmony_ci * on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries 33362306a36Sopenharmony_ci * and the found TTE will be left in REG1. REG3 and REG4 must 33462306a36Sopenharmony_ci * be an even/odd pair of registers. 33562306a36Sopenharmony_ci * 33662306a36Sopenharmony_ci * VADDR and TAG will be preserved and not clobbered by this macro. 33762306a36Sopenharmony_ci */ 33862306a36Sopenharmony_ci#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ 33962306a36Sopenharmony_ci661: sethi %uhi(swapper_tsb), REG1; \ 34062306a36Sopenharmony_ci sethi %hi(swapper_tsb), REG2; \ 34162306a36Sopenharmony_ci or REG1, %ulo(swapper_tsb), REG1; \ 34262306a36Sopenharmony_ci or REG2, %lo(swapper_tsb), REG2; \ 34362306a36Sopenharmony_ci .section .swapper_tsb_phys_patch, "ax"; \ 34462306a36Sopenharmony_ci .word 661b; \ 34562306a36Sopenharmony_ci .previous; \ 34662306a36Sopenharmony_ci sllx REG1, 32, REG1; \ 34762306a36Sopenharmony_ci or REG1, REG2, REG1; \ 34862306a36Sopenharmony_ci srlx VADDR, PAGE_SHIFT, REG2; \ 34962306a36Sopenharmony_ci and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \ 35062306a36Sopenharmony_ci sllx REG2, 4, REG2; \ 35162306a36Sopenharmony_ci add REG1, REG2, REG2; \ 35262306a36Sopenharmony_ci TSB_LOAD_QUAD(REG2, REG3); \ 35362306a36Sopenharmony_ci cmp REG3, TAG; \ 35462306a36Sopenharmony_ci be,a,pt %xcc, OK_LABEL; \ 35562306a36Sopenharmony_ci mov REG4, REG1; 35662306a36Sopenharmony_ci 35762306a36Sopenharmony_ci#ifndef CONFIG_DEBUG_PAGEALLOC 35862306a36Sopenharmony_ci /* This version uses a trick, the TAG is already (VADDR >> 22) so 35962306a36Sopenharmony_ci * we can make use of that for the index computation. 36062306a36Sopenharmony_ci */ 36162306a36Sopenharmony_ci#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \ 36262306a36Sopenharmony_ci661: sethi %uhi(swapper_4m_tsb), REG1; \ 36362306a36Sopenharmony_ci sethi %hi(swapper_4m_tsb), REG2; \ 36462306a36Sopenharmony_ci or REG1, %ulo(swapper_4m_tsb), REG1; \ 36562306a36Sopenharmony_ci or REG2, %lo(swapper_4m_tsb), REG2; \ 36662306a36Sopenharmony_ci .section .swapper_4m_tsb_phys_patch, "ax"; \ 36762306a36Sopenharmony_ci .word 661b; \ 36862306a36Sopenharmony_ci .previous; \ 36962306a36Sopenharmony_ci sllx REG1, 32, REG1; \ 37062306a36Sopenharmony_ci or REG1, REG2, REG1; \ 37162306a36Sopenharmony_ci and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \ 37262306a36Sopenharmony_ci sllx REG2, 4, REG2; \ 37362306a36Sopenharmony_ci add REG1, REG2, REG2; \ 37462306a36Sopenharmony_ci TSB_LOAD_QUAD(REG2, REG3); \ 37562306a36Sopenharmony_ci cmp REG3, TAG; \ 37662306a36Sopenharmony_ci be,a,pt %xcc, OK_LABEL; \ 37762306a36Sopenharmony_ci mov REG4, REG1; 37862306a36Sopenharmony_ci#endif 37962306a36Sopenharmony_ci 38062306a36Sopenharmony_ci#endif /* !(_SPARC64_TSB_H) */ 381