xref: /kernel/linux/linux-6.6/arch/s390/mm/pgalloc.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  Page table allocation functions
4 *
5 *    Copyright IBM Corp. 2016
6 *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 */
8
9#include <linux/sysctl.h>
10#include <linux/slab.h>
11#include <linux/mm.h>
12#include <asm/mmu_context.h>
13#include <asm/pgalloc.h>
14#include <asm/gmap.h>
15#include <asm/tlb.h>
16#include <asm/tlbflush.h>
17
18#ifdef CONFIG_PGSTE
19
20int page_table_allocate_pgste = 0;
21EXPORT_SYMBOL(page_table_allocate_pgste);
22
23static struct ctl_table page_table_sysctl[] = {
24	{
25		.procname	= "allocate_pgste",
26		.data		= &page_table_allocate_pgste,
27		.maxlen		= sizeof(int),
28		.mode		= S_IRUGO | S_IWUSR,
29		.proc_handler	= proc_dointvec_minmax,
30		.extra1		= SYSCTL_ZERO,
31		.extra2		= SYSCTL_ONE,
32	},
33	{ }
34};
35
36static int __init page_table_register_sysctl(void)
37{
38	return register_sysctl("vm", page_table_sysctl) ? 0 : -ENOMEM;
39}
40__initcall(page_table_register_sysctl);
41
42#endif /* CONFIG_PGSTE */
43
44unsigned long *crst_table_alloc(struct mm_struct *mm)
45{
46	struct ptdesc *ptdesc = pagetable_alloc(GFP_KERNEL, CRST_ALLOC_ORDER);
47
48	if (!ptdesc)
49		return NULL;
50	arch_set_page_dat(ptdesc_page(ptdesc), CRST_ALLOC_ORDER);
51	return (unsigned long *) ptdesc_to_virt(ptdesc);
52}
53
54void crst_table_free(struct mm_struct *mm, unsigned long *table)
55{
56	pagetable_free(virt_to_ptdesc(table));
57}
58
59static void __crst_table_upgrade(void *arg)
60{
61	struct mm_struct *mm = arg;
62
63	/* change all active ASCEs to avoid the creation of new TLBs */
64	if (current->active_mm == mm) {
65		S390_lowcore.user_asce = mm->context.asce;
66		__ctl_load(S390_lowcore.user_asce, 7, 7);
67	}
68	__tlb_flush_local();
69}
70
71int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
72{
73	unsigned long *pgd = NULL, *p4d = NULL, *__pgd;
74	unsigned long asce_limit = mm->context.asce_limit;
75
76	/* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
77	VM_BUG_ON(asce_limit < _REGION2_SIZE);
78
79	if (end <= asce_limit)
80		return 0;
81
82	if (asce_limit == _REGION2_SIZE) {
83		p4d = crst_table_alloc(mm);
84		if (unlikely(!p4d))
85			goto err_p4d;
86		crst_table_init(p4d, _REGION2_ENTRY_EMPTY);
87	}
88	if (end > _REGION1_SIZE) {
89		pgd = crst_table_alloc(mm);
90		if (unlikely(!pgd))
91			goto err_pgd;
92		crst_table_init(pgd, _REGION1_ENTRY_EMPTY);
93	}
94
95	spin_lock_bh(&mm->page_table_lock);
96
97	/*
98	 * This routine gets called with mmap_lock lock held and there is
99	 * no reason to optimize for the case of otherwise. However, if
100	 * that would ever change, the below check will let us know.
101	 */
102	VM_BUG_ON(asce_limit != mm->context.asce_limit);
103
104	if (p4d) {
105		__pgd = (unsigned long *) mm->pgd;
106		p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd);
107		mm->pgd = (pgd_t *) p4d;
108		mm->context.asce_limit = _REGION1_SIZE;
109		mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
110			_ASCE_USER_BITS | _ASCE_TYPE_REGION2;
111		mm_inc_nr_puds(mm);
112	}
113	if (pgd) {
114		__pgd = (unsigned long *) mm->pgd;
115		pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd);
116		mm->pgd = (pgd_t *) pgd;
117		mm->context.asce_limit = TASK_SIZE_MAX;
118		mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
119			_ASCE_USER_BITS | _ASCE_TYPE_REGION1;
120	}
121
122	spin_unlock_bh(&mm->page_table_lock);
123
124	on_each_cpu(__crst_table_upgrade, mm, 0);
125
126	return 0;
127
128err_pgd:
129	crst_table_free(mm, p4d);
130err_p4d:
131	return -ENOMEM;
132}
133
134static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
135{
136	return atomic_fetch_xor(bits, v) ^ bits;
137}
138
139#ifdef CONFIG_PGSTE
140
141struct page *page_table_alloc_pgste(struct mm_struct *mm)
142{
143	struct ptdesc *ptdesc;
144	u64 *table;
145
146	ptdesc = pagetable_alloc(GFP_KERNEL, 0);
147	if (ptdesc) {
148		table = (u64 *)ptdesc_to_virt(ptdesc);
149		arch_set_page_dat(virt_to_page(table), 0);
150		memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
151		memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
152	}
153	return ptdesc_page(ptdesc);
154}
155
156void page_table_free_pgste(struct page *page)
157{
158	pagetable_free(page_ptdesc(page));
159}
160
161#endif /* CONFIG_PGSTE */
162
163/*
164 * A 2KB-pgtable is either upper or lower half of a normal page.
165 * The second half of the page may be unused or used as another
166 * 2KB-pgtable.
167 *
168 * Whenever possible the parent page for a new 2KB-pgtable is picked
169 * from the list of partially allocated pages mm_context_t::pgtable_list.
170 * In case the list is empty a new parent page is allocated and added to
171 * the list.
172 *
173 * When a parent page gets fully allocated it contains 2KB-pgtables in both
174 * upper and lower halves and is removed from mm_context_t::pgtable_list.
175 *
176 * When 2KB-pgtable is freed from to fully allocated parent page that
177 * page turns partially allocated and added to mm_context_t::pgtable_list.
178 *
179 * If 2KB-pgtable is freed from the partially allocated parent page that
180 * page turns unused and gets removed from mm_context_t::pgtable_list.
181 * Furthermore, the unused parent page is released.
182 *
183 * As follows from the above, no unallocated or fully allocated parent
184 * pages are contained in mm_context_t::pgtable_list.
185 *
186 * The upper byte (bits 24-31) of the parent page _refcount is used
187 * for tracking contained 2KB-pgtables and has the following format:
188 *
189 *   PP  AA
190 * 01234567    upper byte (bits 24-31) of struct page::_refcount
191 *   ||  ||
192 *   ||  |+--- upper 2KB-pgtable is allocated
193 *   ||  +---- lower 2KB-pgtable is allocated
194 *   |+------- upper 2KB-pgtable is pending for removal
195 *   +-------- lower 2KB-pgtable is pending for removal
196 *
197 * (See commit 620b4e903179 ("s390: use _refcount for pgtables") on why
198 * using _refcount is possible).
199 *
200 * When 2KB-pgtable is allocated the corresponding AA bit is set to 1.
201 * The parent page is either:
202 *   - added to mm_context_t::pgtable_list in case the second half of the
203 *     parent page is still unallocated;
204 *   - removed from mm_context_t::pgtable_list in case both hales of the
205 *     parent page are allocated;
206 * These operations are protected with mm_context_t::lock.
207 *
208 * When 2KB-pgtable is deallocated the corresponding AA bit is set to 0
209 * and the corresponding PP bit is set to 1 in a single atomic operation.
210 * Thus, PP and AA bits corresponding to the same 2KB-pgtable are mutually
211 * exclusive and may never be both set to 1!
212 * The parent page is either:
213 *   - added to mm_context_t::pgtable_list in case the second half of the
214 *     parent page is still allocated;
215 *   - removed from mm_context_t::pgtable_list in case the second half of
216 *     the parent page is unallocated;
217 * These operations are protected with mm_context_t::lock.
218 *
219 * It is important to understand that mm_context_t::lock only protects
220 * mm_context_t::pgtable_list and AA bits, but not the parent page itself
221 * and PP bits.
222 *
223 * Releasing the parent page happens whenever the PP bit turns from 1 to 0,
224 * while both AA bits and the second PP bit are already unset. Then the
225 * parent page does not contain any 2KB-pgtable fragment anymore, and it has
226 * also been removed from mm_context_t::pgtable_list. It is safe to release
227 * the page therefore.
228 *
229 * PGSTE memory spaces use full 4KB-pgtables and do not need most of the
230 * logic described above. Both AA bits are set to 1 to denote a 4KB-pgtable
231 * while the PP bits are never used, nor such a page is added to or removed
232 * from mm_context_t::pgtable_list.
233 *
234 * pte_free_defer() overrides those rules: it takes the page off pgtable_list,
235 * and prevents both 2K fragments from being reused. pte_free_defer() has to
236 * guarantee that its pgtable cannot be reused before the RCU grace period
237 * has elapsed (which page_table_free_rcu() does not actually guarantee).
238 * But for simplicity, because page->rcu_head overlays page->lru, and because
239 * the RCU callback might not be called before the mm_context_t has been freed,
240 * pte_free_defer() in this implementation prevents both fragments from being
241 * reused, and delays making the call to RCU until both fragments are freed.
242 */
243unsigned long *page_table_alloc(struct mm_struct *mm)
244{
245	unsigned long *table;
246	struct ptdesc *ptdesc;
247	unsigned int mask, bit;
248
249	/* Try to get a fragment of a 4K page as a 2K page table */
250	if (!mm_alloc_pgste(mm)) {
251		table = NULL;
252		spin_lock_bh(&mm->context.lock);
253		if (!list_empty(&mm->context.pgtable_list)) {
254			ptdesc = list_first_entry(&mm->context.pgtable_list,
255						struct ptdesc, pt_list);
256			mask = atomic_read(&ptdesc->_refcount) >> 24;
257			/*
258			 * The pending removal bits must also be checked.
259			 * Failure to do so might lead to an impossible
260			 * value of (i.e 0x13 or 0x23) written to _refcount.
261			 * Such values violate the assumption that pending and
262			 * allocation bits are mutually exclusive, and the rest
263			 * of the code unrails as result. That could lead to
264			 * a whole bunch of races and corruptions.
265			 */
266			mask = (mask | (mask >> 4)) & 0x03U;
267			if (mask != 0x03U) {
268				table = (unsigned long *) ptdesc_to_virt(ptdesc);
269				bit = mask & 1;		/* =1 -> second 2K */
270				if (bit)
271					table += PTRS_PER_PTE;
272				atomic_xor_bits(&ptdesc->_refcount,
273							0x01U << (bit + 24));
274				list_del_init(&ptdesc->pt_list);
275			}
276		}
277		spin_unlock_bh(&mm->context.lock);
278		if (table)
279			return table;
280	}
281	/* Allocate a fresh page */
282	ptdesc = pagetable_alloc(GFP_KERNEL, 0);
283	if (!ptdesc)
284		return NULL;
285	if (!pagetable_pte_ctor(ptdesc)) {
286		pagetable_free(ptdesc);
287		return NULL;
288	}
289	arch_set_page_dat(ptdesc_page(ptdesc), 0);
290	/* Initialize page table */
291	table = (unsigned long *) ptdesc_to_virt(ptdesc);
292	if (mm_alloc_pgste(mm)) {
293		/* Return 4K page table with PGSTEs */
294		INIT_LIST_HEAD(&ptdesc->pt_list);
295		atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
296		memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
297		memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
298	} else {
299		/* Return the first 2K fragment of the page */
300		atomic_xor_bits(&ptdesc->_refcount, 0x01U << 24);
301		memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
302		spin_lock_bh(&mm->context.lock);
303		list_add(&ptdesc->pt_list, &mm->context.pgtable_list);
304		spin_unlock_bh(&mm->context.lock);
305	}
306	return table;
307}
308
309static void page_table_release_check(struct page *page, void *table,
310				     unsigned int half, unsigned int mask)
311{
312	char msg[128];
313
314	if (!IS_ENABLED(CONFIG_DEBUG_VM))
315		return;
316	if (!mask && list_empty(&page->lru))
317		return;
318	snprintf(msg, sizeof(msg),
319		 "Invalid pgtable %p release half 0x%02x mask 0x%02x",
320		 table, half, mask);
321	dump_page(page, msg);
322}
323
324static void pte_free_now(struct rcu_head *head)
325{
326	struct ptdesc *ptdesc;
327
328	ptdesc = container_of(head, struct ptdesc, pt_rcu_head);
329	pagetable_pte_dtor(ptdesc);
330	pagetable_free(ptdesc);
331}
332
333void page_table_free(struct mm_struct *mm, unsigned long *table)
334{
335	unsigned int mask, bit, half;
336	struct ptdesc *ptdesc = virt_to_ptdesc(table);
337
338	if (!mm_alloc_pgste(mm)) {
339		/* Free 2K page table fragment of a 4K page */
340		bit = ((unsigned long) table & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
341		spin_lock_bh(&mm->context.lock);
342		/*
343		 * Mark the page for delayed release. The actual release
344		 * will happen outside of the critical section from this
345		 * function or from __tlb_remove_table()
346		 */
347		mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24));
348		mask >>= 24;
349		if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) {
350			/*
351			 * Other half is allocated, and neither half has had
352			 * its free deferred: add page to head of list, to make
353			 * this freed half available for immediate reuse.
354			 */
355			list_add(&ptdesc->pt_list, &mm->context.pgtable_list);
356		} else {
357			/* If page is on list, now remove it. */
358			list_del_init(&ptdesc->pt_list);
359		}
360		spin_unlock_bh(&mm->context.lock);
361		mask = atomic_xor_bits(&ptdesc->_refcount, 0x10U << (bit + 24));
362		mask >>= 24;
363		if (mask != 0x00U)
364			return;
365		half = 0x01U << bit;
366	} else {
367		half = 0x03U;
368		mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
369		mask >>= 24;
370	}
371
372	page_table_release_check(ptdesc_page(ptdesc), table, half, mask);
373	if (folio_test_clear_active(ptdesc_folio(ptdesc)))
374		call_rcu(&ptdesc->pt_rcu_head, pte_free_now);
375	else
376		pte_free_now(&ptdesc->pt_rcu_head);
377}
378
379void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
380			 unsigned long vmaddr)
381{
382	struct mm_struct *mm;
383	unsigned int bit, mask;
384	struct ptdesc *ptdesc = virt_to_ptdesc(table);
385
386	mm = tlb->mm;
387	if (mm_alloc_pgste(mm)) {
388		gmap_unlink(mm, table, vmaddr);
389		table = (unsigned long *) ((unsigned long)table | 0x03U);
390		tlb_remove_ptdesc(tlb, table);
391		return;
392	}
393	bit = ((unsigned long) table & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
394	spin_lock_bh(&mm->context.lock);
395	/*
396	 * Mark the page for delayed release. The actual release will happen
397	 * outside of the critical section from __tlb_remove_table() or from
398	 * page_table_free()
399	 */
400	mask = atomic_xor_bits(&ptdesc->_refcount, 0x11U << (bit + 24));
401	mask >>= 24;
402	if ((mask & 0x03U) && !folio_test_active(ptdesc_folio(ptdesc))) {
403		/*
404		 * Other half is allocated, and neither half has had
405		 * its free deferred: add page to end of list, to make
406		 * this freed half available for reuse once its pending
407		 * bit has been cleared by __tlb_remove_table().
408		 */
409		list_add_tail(&ptdesc->pt_list, &mm->context.pgtable_list);
410	} else {
411		/* If page is on list, now remove it. */
412		list_del_init(&ptdesc->pt_list);
413	}
414	spin_unlock_bh(&mm->context.lock);
415	table = (unsigned long *) ((unsigned long) table | (0x01U << bit));
416	tlb_remove_table(tlb, table);
417}
418
419void __tlb_remove_table(void *_table)
420{
421	unsigned int mask = (unsigned long) _table & 0x03U, half = mask;
422	void *table = (void *)((unsigned long) _table ^ mask);
423	struct ptdesc *ptdesc = virt_to_ptdesc(table);
424
425	switch (half) {
426	case 0x00U:	/* pmd, pud, or p4d */
427		pagetable_free(ptdesc);
428		return;
429	case 0x01U:	/* lower 2K of a 4K page table */
430	case 0x02U:	/* higher 2K of a 4K page table */
431		mask = atomic_xor_bits(&ptdesc->_refcount, mask << (4 + 24));
432		mask >>= 24;
433		if (mask != 0x00U)
434			return;
435		break;
436	case 0x03U:	/* 4K page table with pgstes */
437		mask = atomic_xor_bits(&ptdesc->_refcount, 0x03U << 24);
438		mask >>= 24;
439		break;
440	}
441
442	page_table_release_check(ptdesc_page(ptdesc), table, half, mask);
443	if (folio_test_clear_active(ptdesc_folio(ptdesc)))
444		call_rcu(&ptdesc->pt_rcu_head, pte_free_now);
445	else
446		pte_free_now(&ptdesc->pt_rcu_head);
447}
448
449#ifdef CONFIG_TRANSPARENT_HUGEPAGE
450void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable)
451{
452	struct page *page;
453
454	page = virt_to_page(pgtable);
455	SetPageActive(page);
456	page_table_free(mm, (unsigned long *)pgtable);
457	/*
458	 * page_table_free() does not do the pgste gmap_unlink() which
459	 * page_table_free_rcu() does: warn us if pgste ever reaches here.
460	 */
461	WARN_ON_ONCE(mm_has_pgste(mm));
462}
463#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
464
465/*
466 * Base infrastructure required to generate basic asces, region, segment,
467 * and page tables that do not make use of enhanced features like EDAT1.
468 */
469
470static struct kmem_cache *base_pgt_cache;
471
472static unsigned long *base_pgt_alloc(void)
473{
474	unsigned long *table;
475
476	table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
477	if (table)
478		memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
479	return table;
480}
481
482static void base_pgt_free(unsigned long *table)
483{
484	kmem_cache_free(base_pgt_cache, table);
485}
486
487static unsigned long *base_crst_alloc(unsigned long val)
488{
489	unsigned long *table;
490	struct ptdesc *ptdesc;
491
492	ptdesc = pagetable_alloc(GFP_KERNEL & ~__GFP_HIGHMEM, CRST_ALLOC_ORDER);
493	if (!ptdesc)
494		return NULL;
495	table = ptdesc_address(ptdesc);
496
497	crst_table_init(table, val);
498	return table;
499}
500
501static void base_crst_free(unsigned long *table)
502{
503	pagetable_free(virt_to_ptdesc(table));
504}
505
506#define BASE_ADDR_END_FUNC(NAME, SIZE)					\
507static inline unsigned long base_##NAME##_addr_end(unsigned long addr,	\
508						   unsigned long end)	\
509{									\
510	unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1);		\
511									\
512	return (next - 1) < (end - 1) ? next : end;			\
513}
514
515BASE_ADDR_END_FUNC(page,    _PAGE_SIZE)
516BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
517BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
518BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
519BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
520
521static inline unsigned long base_lra(unsigned long address)
522{
523	unsigned long real;
524
525	asm volatile(
526		"	lra	%0,0(%1)\n"
527		: "=d" (real) : "a" (address) : "cc");
528	return real;
529}
530
531static int base_page_walk(unsigned long *origin, unsigned long addr,
532			  unsigned long end, int alloc)
533{
534	unsigned long *pte, next;
535
536	if (!alloc)
537		return 0;
538	pte = origin;
539	pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
540	do {
541		next = base_page_addr_end(addr, end);
542		*pte = base_lra(addr);
543	} while (pte++, addr = next, addr < end);
544	return 0;
545}
546
547static int base_segment_walk(unsigned long *origin, unsigned long addr,
548			     unsigned long end, int alloc)
549{
550	unsigned long *ste, next, *table;
551	int rc;
552
553	ste = origin;
554	ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
555	do {
556		next = base_segment_addr_end(addr, end);
557		if (*ste & _SEGMENT_ENTRY_INVALID) {
558			if (!alloc)
559				continue;
560			table = base_pgt_alloc();
561			if (!table)
562				return -ENOMEM;
563			*ste = __pa(table) | _SEGMENT_ENTRY;
564		}
565		table = __va(*ste & _SEGMENT_ENTRY_ORIGIN);
566		rc = base_page_walk(table, addr, next, alloc);
567		if (rc)
568			return rc;
569		if (!alloc)
570			base_pgt_free(table);
571		cond_resched();
572	} while (ste++, addr = next, addr < end);
573	return 0;
574}
575
576static int base_region3_walk(unsigned long *origin, unsigned long addr,
577			     unsigned long end, int alloc)
578{
579	unsigned long *rtte, next, *table;
580	int rc;
581
582	rtte = origin;
583	rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
584	do {
585		next = base_region3_addr_end(addr, end);
586		if (*rtte & _REGION_ENTRY_INVALID) {
587			if (!alloc)
588				continue;
589			table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
590			if (!table)
591				return -ENOMEM;
592			*rtte = __pa(table) | _REGION3_ENTRY;
593		}
594		table = __va(*rtte & _REGION_ENTRY_ORIGIN);
595		rc = base_segment_walk(table, addr, next, alloc);
596		if (rc)
597			return rc;
598		if (!alloc)
599			base_crst_free(table);
600	} while (rtte++, addr = next, addr < end);
601	return 0;
602}
603
604static int base_region2_walk(unsigned long *origin, unsigned long addr,
605			     unsigned long end, int alloc)
606{
607	unsigned long *rste, next, *table;
608	int rc;
609
610	rste = origin;
611	rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
612	do {
613		next = base_region2_addr_end(addr, end);
614		if (*rste & _REGION_ENTRY_INVALID) {
615			if (!alloc)
616				continue;
617			table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
618			if (!table)
619				return -ENOMEM;
620			*rste = __pa(table) | _REGION2_ENTRY;
621		}
622		table = __va(*rste & _REGION_ENTRY_ORIGIN);
623		rc = base_region3_walk(table, addr, next, alloc);
624		if (rc)
625			return rc;
626		if (!alloc)
627			base_crst_free(table);
628	} while (rste++, addr = next, addr < end);
629	return 0;
630}
631
632static int base_region1_walk(unsigned long *origin, unsigned long addr,
633			     unsigned long end, int alloc)
634{
635	unsigned long *rfte, next, *table;
636	int rc;
637
638	rfte = origin;
639	rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
640	do {
641		next = base_region1_addr_end(addr, end);
642		if (*rfte & _REGION_ENTRY_INVALID) {
643			if (!alloc)
644				continue;
645			table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
646			if (!table)
647				return -ENOMEM;
648			*rfte = __pa(table) | _REGION1_ENTRY;
649		}
650		table = __va(*rfte & _REGION_ENTRY_ORIGIN);
651		rc = base_region2_walk(table, addr, next, alloc);
652		if (rc)
653			return rc;
654		if (!alloc)
655			base_crst_free(table);
656	} while (rfte++, addr = next, addr < end);
657	return 0;
658}
659
660/**
661 * base_asce_free - free asce and tables returned from base_asce_alloc()
662 * @asce: asce to be freed
663 *
664 * Frees all region, segment, and page tables that were allocated with a
665 * corresponding base_asce_alloc() call.
666 */
667void base_asce_free(unsigned long asce)
668{
669	unsigned long *table = __va(asce & _ASCE_ORIGIN);
670
671	if (!asce)
672		return;
673	switch (asce & _ASCE_TYPE_MASK) {
674	case _ASCE_TYPE_SEGMENT:
675		base_segment_walk(table, 0, _REGION3_SIZE, 0);
676		break;
677	case _ASCE_TYPE_REGION3:
678		base_region3_walk(table, 0, _REGION2_SIZE, 0);
679		break;
680	case _ASCE_TYPE_REGION2:
681		base_region2_walk(table, 0, _REGION1_SIZE, 0);
682		break;
683	case _ASCE_TYPE_REGION1:
684		base_region1_walk(table, 0, TASK_SIZE_MAX, 0);
685		break;
686	}
687	base_crst_free(table);
688}
689
690static int base_pgt_cache_init(void)
691{
692	static DEFINE_MUTEX(base_pgt_cache_mutex);
693	unsigned long sz = _PAGE_TABLE_SIZE;
694
695	if (base_pgt_cache)
696		return 0;
697	mutex_lock(&base_pgt_cache_mutex);
698	if (!base_pgt_cache)
699		base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
700	mutex_unlock(&base_pgt_cache_mutex);
701	return base_pgt_cache ? 0 : -ENOMEM;
702}
703
704/**
705 * base_asce_alloc - create kernel mapping without enhanced DAT features
706 * @addr: virtual start address of kernel mapping
707 * @num_pages: number of consecutive pages
708 *
709 * Generate an asce, including all required region, segment and page tables,
710 * that can be used to access the virtual kernel mapping. The difference is
711 * that the returned asce does not make use of any enhanced DAT features like
712 * e.g. large pages. This is required for some I/O functions that pass an
713 * asce, like e.g. some service call requests.
714 *
715 * Note: the returned asce may NEVER be attached to any cpu. It may only be
716 *	 used for I/O requests. tlb entries that might result because the
717 *	 asce was attached to a cpu won't be cleared.
718 */
719unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
720{
721	unsigned long asce, *table, end;
722	int rc;
723
724	if (base_pgt_cache_init())
725		return 0;
726	end = addr + num_pages * PAGE_SIZE;
727	if (end <= _REGION3_SIZE) {
728		table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
729		if (!table)
730			return 0;
731		rc = base_segment_walk(table, addr, end, 1);
732		asce = __pa(table) | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
733	} else if (end <= _REGION2_SIZE) {
734		table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
735		if (!table)
736			return 0;
737		rc = base_region3_walk(table, addr, end, 1);
738		asce = __pa(table) | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
739	} else if (end <= _REGION1_SIZE) {
740		table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
741		if (!table)
742			return 0;
743		rc = base_region2_walk(table, addr, end, 1);
744		asce = __pa(table) | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
745	} else {
746		table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
747		if (!table)
748			return 0;
749		rc = base_region1_walk(table, addr, end, 1);
750		asce = __pa(table) | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
751	}
752	if (rc) {
753		base_asce_free(asce);
754		asce = 0;
755	}
756	return asce;
757}
758