xref: /kernel/linux/linux-6.6/arch/s390/kernel/smp.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  SMP related functions
4 *
5 *    Copyright IBM Corp. 1999, 2012
6 *    Author(s): Denis Joseph Barrow,
7 *		 Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 *
9 *  based on other smp stuff by
10 *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11 *    (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18#define KMSG_COMPONENT "cpu"
19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21#include <linux/workqueue.h>
22#include <linux/memblock.h>
23#include <linux/export.h>
24#include <linux/init.h>
25#include <linux/mm.h>
26#include <linux/err.h>
27#include <linux/spinlock.h>
28#include <linux/kernel_stat.h>
29#include <linux/delay.h>
30#include <linux/interrupt.h>
31#include <linux/irqflags.h>
32#include <linux/irq_work.h>
33#include <linux/cpu.h>
34#include <linux/slab.h>
35#include <linux/sched/hotplug.h>
36#include <linux/sched/task_stack.h>
37#include <linux/crash_dump.h>
38#include <linux/kprobes.h>
39#include <asm/asm-offsets.h>
40#include <asm/pfault.h>
41#include <asm/diag.h>
42#include <asm/switch_to.h>
43#include <asm/facility.h>
44#include <asm/ipl.h>
45#include <asm/setup.h>
46#include <asm/irq.h>
47#include <asm/tlbflush.h>
48#include <asm/vtimer.h>
49#include <asm/abs_lowcore.h>
50#include <asm/sclp.h>
51#include <asm/debug.h>
52#include <asm/os_info.h>
53#include <asm/sigp.h>
54#include <asm/idle.h>
55#include <asm/nmi.h>
56#include <asm/stacktrace.h>
57#include <asm/topology.h>
58#include <asm/vdso.h>
59#include <asm/maccess.h>
60#include "entry.h"
61
62enum {
63	ec_schedule = 0,
64	ec_call_function_single,
65	ec_stop_cpu,
66	ec_mcck_pending,
67	ec_irq_work,
68};
69
70enum {
71	CPU_STATE_STANDBY,
72	CPU_STATE_CONFIGURED,
73};
74
75static DEFINE_PER_CPU(struct cpu *, cpu_device);
76
77struct pcpu {
78	unsigned long ec_mask;		/* bit mask for ec_xxx functions */
79	unsigned long ec_clk;		/* sigp timestamp for ec_xxx */
80	signed char state;		/* physical cpu state */
81	signed char polarization;	/* physical polarization */
82	u16 address;			/* physical cpu address */
83};
84
85static u8 boot_core_type;
86static struct pcpu pcpu_devices[NR_CPUS];
87
88unsigned int smp_cpu_mt_shift;
89EXPORT_SYMBOL(smp_cpu_mt_shift);
90
91unsigned int smp_cpu_mtid;
92EXPORT_SYMBOL(smp_cpu_mtid);
93
94#ifdef CONFIG_CRASH_DUMP
95__vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
96#endif
97
98static unsigned int smp_max_threads __initdata = -1U;
99cpumask_t cpu_setup_mask;
100
101static int __init early_nosmt(char *s)
102{
103	smp_max_threads = 1;
104	return 0;
105}
106early_param("nosmt", early_nosmt);
107
108static int __init early_smt(char *s)
109{
110	get_option(&s, &smp_max_threads);
111	return 0;
112}
113early_param("smt", early_smt);
114
115/*
116 * The smp_cpu_state_mutex must be held when changing the state or polarization
117 * member of a pcpu data structure within the pcpu_devices array.
118 */
119DEFINE_MUTEX(smp_cpu_state_mutex);
120
121/*
122 * Signal processor helper functions.
123 */
124static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
125{
126	int cc;
127
128	while (1) {
129		cc = __pcpu_sigp(addr, order, parm, NULL);
130		if (cc != SIGP_CC_BUSY)
131			return cc;
132		cpu_relax();
133	}
134}
135
136static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
137{
138	int cc, retry;
139
140	for (retry = 0; ; retry++) {
141		cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
142		if (cc != SIGP_CC_BUSY)
143			break;
144		if (retry >= 3)
145			udelay(10);
146	}
147	return cc;
148}
149
150static inline int pcpu_stopped(struct pcpu *pcpu)
151{
152	u32 status;
153
154	if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
155			0, &status) != SIGP_CC_STATUS_STORED)
156		return 0;
157	return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
158}
159
160static inline int pcpu_running(struct pcpu *pcpu)
161{
162	if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
163			0, NULL) != SIGP_CC_STATUS_STORED)
164		return 1;
165	/* Status stored condition code is equivalent to cpu not running. */
166	return 0;
167}
168
169/*
170 * Find struct pcpu by cpu address.
171 */
172static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
173{
174	int cpu;
175
176	for_each_cpu(cpu, mask)
177		if (pcpu_devices[cpu].address == address)
178			return pcpu_devices + cpu;
179	return NULL;
180}
181
182static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
183{
184	int order;
185
186	if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
187		return;
188	order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
189	pcpu->ec_clk = get_tod_clock_fast();
190	pcpu_sigp_retry(pcpu, order, 0);
191}
192
193static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
194{
195	unsigned long async_stack, nodat_stack, mcck_stack;
196	struct lowcore *lc;
197
198	lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
199	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
200	async_stack = stack_alloc();
201	mcck_stack = stack_alloc();
202	if (!lc || !nodat_stack || !async_stack || !mcck_stack)
203		goto out;
204	memcpy(lc, &S390_lowcore, 512);
205	memset((char *) lc + 512, 0, sizeof(*lc) - 512);
206	lc->async_stack = async_stack + STACK_INIT_OFFSET;
207	lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
208	lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
209	lc->cpu_nr = cpu;
210	lc->spinlock_lockval = arch_spin_lockval(cpu);
211	lc->spinlock_index = 0;
212	lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
213	lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
214	lc->preempt_count = PREEMPT_DISABLED;
215	if (nmi_alloc_mcesa(&lc->mcesad))
216		goto out;
217	if (abs_lowcore_map(cpu, lc, true))
218		goto out_mcesa;
219	lowcore_ptr[cpu] = lc;
220	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
221	return 0;
222
223out_mcesa:
224	nmi_free_mcesa(&lc->mcesad);
225out:
226	stack_free(mcck_stack);
227	stack_free(async_stack);
228	free_pages(nodat_stack, THREAD_SIZE_ORDER);
229	free_pages((unsigned long) lc, LC_ORDER);
230	return -ENOMEM;
231}
232
233static void pcpu_free_lowcore(struct pcpu *pcpu)
234{
235	unsigned long async_stack, nodat_stack, mcck_stack;
236	struct lowcore *lc;
237	int cpu;
238
239	cpu = pcpu - pcpu_devices;
240	lc = lowcore_ptr[cpu];
241	nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
242	async_stack = lc->async_stack - STACK_INIT_OFFSET;
243	mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
244	pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
245	lowcore_ptr[cpu] = NULL;
246	abs_lowcore_unmap(cpu);
247	nmi_free_mcesa(&lc->mcesad);
248	stack_free(async_stack);
249	stack_free(mcck_stack);
250	free_pages(nodat_stack, THREAD_SIZE_ORDER);
251	free_pages((unsigned long) lc, LC_ORDER);
252}
253
254static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
255{
256	struct lowcore *lc, *abs_lc;
257
258	lc = lowcore_ptr[cpu];
259	cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
260	cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
261	lc->cpu_nr = cpu;
262	lc->restart_flags = RESTART_FLAG_CTLREGS;
263	lc->spinlock_lockval = arch_spin_lockval(cpu);
264	lc->spinlock_index = 0;
265	lc->percpu_offset = __per_cpu_offset[cpu];
266	lc->kernel_asce = S390_lowcore.kernel_asce;
267	lc->user_asce = s390_invalid_asce;
268	lc->machine_flags = S390_lowcore.machine_flags;
269	lc->user_timer = lc->system_timer =
270		lc->steal_timer = lc->avg_steal_timer = 0;
271	abs_lc = get_abs_lowcore();
272	memcpy(lc->cregs_save_area, abs_lc->cregs_save_area, sizeof(lc->cregs_save_area));
273	put_abs_lowcore(abs_lc);
274	lc->cregs_save_area[1] = lc->kernel_asce;
275	lc->cregs_save_area[7] = lc->user_asce;
276	save_access_regs((unsigned int *) lc->access_regs_save_area);
277	arch_spin_lock_setup(cpu);
278}
279
280static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
281{
282	struct lowcore *lc;
283	int cpu;
284
285	cpu = pcpu - pcpu_devices;
286	lc = lowcore_ptr[cpu];
287	lc->kernel_stack = (unsigned long)task_stack_page(tsk) + STACK_INIT_OFFSET;
288	lc->current_task = (unsigned long)tsk;
289	lc->lpp = LPP_MAGIC;
290	lc->current_pid = tsk->pid;
291	lc->user_timer = tsk->thread.user_timer;
292	lc->guest_timer = tsk->thread.guest_timer;
293	lc->system_timer = tsk->thread.system_timer;
294	lc->hardirq_timer = tsk->thread.hardirq_timer;
295	lc->softirq_timer = tsk->thread.softirq_timer;
296	lc->steal_timer = 0;
297}
298
299static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
300{
301	struct lowcore *lc;
302	int cpu;
303
304	cpu = pcpu - pcpu_devices;
305	lc = lowcore_ptr[cpu];
306	lc->restart_stack = lc->kernel_stack;
307	lc->restart_fn = (unsigned long) func;
308	lc->restart_data = (unsigned long) data;
309	lc->restart_source = -1U;
310	pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
311}
312
313typedef void (pcpu_delegate_fn)(void *);
314
315/*
316 * Call function via PSW restart on pcpu and stop the current cpu.
317 */
318static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
319{
320	func(data);	/* should not return */
321}
322
323static void pcpu_delegate(struct pcpu *pcpu,
324			  pcpu_delegate_fn *func,
325			  void *data, unsigned long stack)
326{
327	struct lowcore *lc, *abs_lc;
328	unsigned int source_cpu;
329
330	lc = lowcore_ptr[pcpu - pcpu_devices];
331	source_cpu = stap();
332
333	if (pcpu->address == source_cpu) {
334		call_on_stack(2, stack, void, __pcpu_delegate,
335			      pcpu_delegate_fn *, func, void *, data);
336	}
337	/* Stop target cpu (if func returns this stops the current cpu). */
338	pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
339	pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
340	/* Restart func on the target cpu and stop the current cpu. */
341	if (lc) {
342		lc->restart_stack = stack;
343		lc->restart_fn = (unsigned long)func;
344		lc->restart_data = (unsigned long)data;
345		lc->restart_source = source_cpu;
346	} else {
347		abs_lc = get_abs_lowcore();
348		abs_lc->restart_stack = stack;
349		abs_lc->restart_fn = (unsigned long)func;
350		abs_lc->restart_data = (unsigned long)data;
351		abs_lc->restart_source = source_cpu;
352		put_abs_lowcore(abs_lc);
353	}
354	asm volatile(
355		"0:	sigp	0,%0,%2	# sigp restart to target cpu\n"
356		"	brc	2,0b	# busy, try again\n"
357		"1:	sigp	0,%1,%3	# sigp stop to current cpu\n"
358		"	brc	2,1b	# busy, try again\n"
359		: : "d" (pcpu->address), "d" (source_cpu),
360		    "K" (SIGP_RESTART), "K" (SIGP_STOP)
361		: "0", "1", "cc");
362	for (;;) ;
363}
364
365/*
366 * Enable additional logical cpus for multi-threading.
367 */
368static int pcpu_set_smt(unsigned int mtid)
369{
370	int cc;
371
372	if (smp_cpu_mtid == mtid)
373		return 0;
374	cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
375	if (cc == 0) {
376		smp_cpu_mtid = mtid;
377		smp_cpu_mt_shift = 0;
378		while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
379			smp_cpu_mt_shift++;
380		pcpu_devices[0].address = stap();
381	}
382	return cc;
383}
384
385/*
386 * Call function on an online CPU.
387 */
388void smp_call_online_cpu(void (*func)(void *), void *data)
389{
390	struct pcpu *pcpu;
391
392	/* Use the current cpu if it is online. */
393	pcpu = pcpu_find_address(cpu_online_mask, stap());
394	if (!pcpu)
395		/* Use the first online cpu. */
396		pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
397	pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
398}
399
400/*
401 * Call function on the ipl CPU.
402 */
403void smp_call_ipl_cpu(void (*func)(void *), void *data)
404{
405	struct lowcore *lc = lowcore_ptr[0];
406
407	if (pcpu_devices[0].address == stap())
408		lc = &S390_lowcore;
409
410	pcpu_delegate(&pcpu_devices[0], func, data,
411		      lc->nodat_stack);
412}
413
414int smp_find_processor_id(u16 address)
415{
416	int cpu;
417
418	for_each_present_cpu(cpu)
419		if (pcpu_devices[cpu].address == address)
420			return cpu;
421	return -1;
422}
423
424void schedule_mcck_handler(void)
425{
426	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
427}
428
429bool notrace arch_vcpu_is_preempted(int cpu)
430{
431	if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
432		return false;
433	if (pcpu_running(pcpu_devices + cpu))
434		return false;
435	return true;
436}
437EXPORT_SYMBOL(arch_vcpu_is_preempted);
438
439void notrace smp_yield_cpu(int cpu)
440{
441	if (!MACHINE_HAS_DIAG9C)
442		return;
443	diag_stat_inc_norecursion(DIAG_STAT_X09C);
444	asm volatile("diag %0,0,0x9c"
445		     : : "d" (pcpu_devices[cpu].address));
446}
447EXPORT_SYMBOL_GPL(smp_yield_cpu);
448
449/*
450 * Send cpus emergency shutdown signal. This gives the cpus the
451 * opportunity to complete outstanding interrupts.
452 */
453void notrace smp_emergency_stop(void)
454{
455	static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
456	static cpumask_t cpumask;
457	u64 end;
458	int cpu;
459
460	arch_spin_lock(&lock);
461	cpumask_copy(&cpumask, cpu_online_mask);
462	cpumask_clear_cpu(smp_processor_id(), &cpumask);
463
464	end = get_tod_clock() + (1000000UL << 12);
465	for_each_cpu(cpu, &cpumask) {
466		struct pcpu *pcpu = pcpu_devices + cpu;
467		set_bit(ec_stop_cpu, &pcpu->ec_mask);
468		while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
469				   0, NULL) == SIGP_CC_BUSY &&
470		       get_tod_clock() < end)
471			cpu_relax();
472	}
473	while (get_tod_clock() < end) {
474		for_each_cpu(cpu, &cpumask)
475			if (pcpu_stopped(pcpu_devices + cpu))
476				cpumask_clear_cpu(cpu, &cpumask);
477		if (cpumask_empty(&cpumask))
478			break;
479		cpu_relax();
480	}
481	arch_spin_unlock(&lock);
482}
483NOKPROBE_SYMBOL(smp_emergency_stop);
484
485/*
486 * Stop all cpus but the current one.
487 */
488void smp_send_stop(void)
489{
490	int cpu;
491
492	/* Disable all interrupts/machine checks */
493	__load_psw_mask(PSW_KERNEL_BITS);
494	trace_hardirqs_off();
495
496	debug_set_critical();
497
498	if (oops_in_progress)
499		smp_emergency_stop();
500
501	/* stop all processors */
502	for_each_online_cpu(cpu) {
503		if (cpu == smp_processor_id())
504			continue;
505		pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
506		while (!pcpu_stopped(pcpu_devices + cpu))
507			cpu_relax();
508	}
509}
510
511/*
512 * This is the main routine where commands issued by other
513 * cpus are handled.
514 */
515static void smp_handle_ext_call(void)
516{
517	unsigned long bits;
518
519	/* handle bit signal external calls */
520	bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
521	if (test_bit(ec_stop_cpu, &bits))
522		smp_stop_cpu();
523	if (test_bit(ec_schedule, &bits))
524		scheduler_ipi();
525	if (test_bit(ec_call_function_single, &bits))
526		generic_smp_call_function_single_interrupt();
527	if (test_bit(ec_mcck_pending, &bits))
528		s390_handle_mcck();
529	if (test_bit(ec_irq_work, &bits))
530		irq_work_run();
531}
532
533static void do_ext_call_interrupt(struct ext_code ext_code,
534				  unsigned int param32, unsigned long param64)
535{
536	inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
537	smp_handle_ext_call();
538}
539
540void arch_send_call_function_ipi_mask(const struct cpumask *mask)
541{
542	int cpu;
543
544	for_each_cpu(cpu, mask)
545		pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
546}
547
548void arch_send_call_function_single_ipi(int cpu)
549{
550	pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
551}
552
553/*
554 * this function sends a 'reschedule' IPI to another CPU.
555 * it goes straight through and wastes no time serializing
556 * anything. Worst case is that we lose a reschedule ...
557 */
558void arch_smp_send_reschedule(int cpu)
559{
560	pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
561}
562
563#ifdef CONFIG_IRQ_WORK
564void arch_irq_work_raise(void)
565{
566	pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
567}
568#endif
569
570/*
571 * parameter area for the set/clear control bit callbacks
572 */
573struct ec_creg_mask_parms {
574	unsigned long orval;
575	unsigned long andval;
576	int cr;
577};
578
579/*
580 * callback for setting/clearing control bits
581 */
582static void smp_ctl_bit_callback(void *info)
583{
584	struct ec_creg_mask_parms *pp = info;
585	unsigned long cregs[16];
586
587	__ctl_store(cregs, 0, 15);
588	cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
589	__ctl_load(cregs, 0, 15);
590}
591
592static DEFINE_SPINLOCK(ctl_lock);
593
594void smp_ctl_set_clear_bit(int cr, int bit, bool set)
595{
596	struct ec_creg_mask_parms parms = { .cr = cr, };
597	struct lowcore *abs_lc;
598	u64 ctlreg;
599
600	if (set) {
601		parms.orval = 1UL << bit;
602		parms.andval = -1UL;
603	} else {
604		parms.orval = 0;
605		parms.andval = ~(1UL << bit);
606	}
607	spin_lock(&ctl_lock);
608	abs_lc = get_abs_lowcore();
609	ctlreg = abs_lc->cregs_save_area[cr];
610	ctlreg = (ctlreg & parms.andval) | parms.orval;
611	abs_lc->cregs_save_area[cr] = ctlreg;
612	put_abs_lowcore(abs_lc);
613	on_each_cpu(smp_ctl_bit_callback, &parms, 1);
614	spin_unlock(&ctl_lock);
615}
616EXPORT_SYMBOL(smp_ctl_set_clear_bit);
617
618#ifdef CONFIG_CRASH_DUMP
619
620int smp_store_status(int cpu)
621{
622	struct lowcore *lc;
623	struct pcpu *pcpu;
624	unsigned long pa;
625
626	pcpu = pcpu_devices + cpu;
627	lc = lowcore_ptr[cpu];
628	pa = __pa(&lc->floating_pt_save_area);
629	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
630			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
631		return -EIO;
632	if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
633		return 0;
634	pa = lc->mcesad & MCESA_ORIGIN_MASK;
635	if (MACHINE_HAS_GS)
636		pa |= lc->mcesad & MCESA_LC_MASK;
637	if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
638			      pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
639		return -EIO;
640	return 0;
641}
642
643/*
644 * Collect CPU state of the previous, crashed system.
645 * There are four cases:
646 * 1) standard zfcp/nvme dump
647 *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
648 *    The state for all CPUs except the boot CPU needs to be collected
649 *    with sigp stop-and-store-status. The boot CPU state is located in
650 *    the absolute lowcore of the memory stored in the HSA. The zcore code
651 *    will copy the boot CPU state from the HSA.
652 * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
653 *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
654 *    The state for all CPUs except the boot CPU needs to be collected
655 *    with sigp stop-and-store-status. The firmware or the boot-loader
656 *    stored the registers of the boot CPU in the absolute lowcore in the
657 *    memory of the old system.
658 * 3) kdump and the old kernel did not store the CPU state,
659 *    or stand-alone kdump for DASD
660 *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
661 *    The state for all CPUs except the boot CPU needs to be collected
662 *    with sigp stop-and-store-status. The kexec code or the boot-loader
663 *    stored the registers of the boot CPU in the memory of the old system.
664 * 4) kdump and the old kernel stored the CPU state
665 *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
666 *    This case does not exist for s390 anymore, setup_arch explicitly
667 *    deactivates the elfcorehdr= kernel parameter
668 */
669static bool dump_available(void)
670{
671	return oldmem_data.start || is_ipl_type_dump();
672}
673
674void __init smp_save_dump_ipl_cpu(void)
675{
676	struct save_area *sa;
677	void *regs;
678
679	if (!dump_available())
680		return;
681	sa = save_area_alloc(true);
682	regs = memblock_alloc(512, 8);
683	if (!sa || !regs)
684		panic("could not allocate memory for boot CPU save area\n");
685	copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
686	save_area_add_regs(sa, regs);
687	memblock_free(regs, 512);
688	if (MACHINE_HAS_VX)
689		save_area_add_vxrs(sa, boot_cpu_vector_save_area);
690}
691
692void __init smp_save_dump_secondary_cpus(void)
693{
694	int addr, boot_cpu_addr, max_cpu_addr;
695	struct save_area *sa;
696	void *page;
697
698	if (!dump_available())
699		return;
700	/* Allocate a page as dumping area for the store status sigps */
701	page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
702	if (!page)
703		panic("ERROR: Failed to allocate %lx bytes below %lx\n",
704		      PAGE_SIZE, 1UL << 31);
705
706	/* Set multi-threading state to the previous system. */
707	pcpu_set_smt(sclp.mtid_prev);
708	boot_cpu_addr = stap();
709	max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
710	for (addr = 0; addr <= max_cpu_addr; addr++) {
711		if (addr == boot_cpu_addr)
712			continue;
713		if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
714		    SIGP_CC_NOT_OPERATIONAL)
715			continue;
716		sa = save_area_alloc(false);
717		if (!sa)
718			panic("could not allocate memory for save area\n");
719		__pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
720		save_area_add_regs(sa, page);
721		if (MACHINE_HAS_VX) {
722			__pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
723			save_area_add_vxrs(sa, page);
724		}
725	}
726	memblock_free(page, PAGE_SIZE);
727	diag_amode31_ops.diag308_reset();
728	pcpu_set_smt(0);
729}
730#endif /* CONFIG_CRASH_DUMP */
731
732void smp_cpu_set_polarization(int cpu, int val)
733{
734	pcpu_devices[cpu].polarization = val;
735}
736
737int smp_cpu_get_polarization(int cpu)
738{
739	return pcpu_devices[cpu].polarization;
740}
741
742int smp_cpu_get_cpu_address(int cpu)
743{
744	return pcpu_devices[cpu].address;
745}
746
747static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
748{
749	static int use_sigp_detection;
750	int address;
751
752	if (use_sigp_detection || sclp_get_core_info(info, early)) {
753		use_sigp_detection = 1;
754		for (address = 0;
755		     address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
756		     address += (1U << smp_cpu_mt_shift)) {
757			if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
758			    SIGP_CC_NOT_OPERATIONAL)
759				continue;
760			info->core[info->configured].core_id =
761				address >> smp_cpu_mt_shift;
762			info->configured++;
763		}
764		info->combined = info->configured;
765	}
766}
767
768static int smp_add_present_cpu(int cpu);
769
770static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
771			bool configured, bool early)
772{
773	struct pcpu *pcpu;
774	int cpu, nr, i;
775	u16 address;
776
777	nr = 0;
778	if (sclp.has_core_type && core->type != boot_core_type)
779		return nr;
780	cpu = cpumask_first(avail);
781	address = core->core_id << smp_cpu_mt_shift;
782	for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
783		if (pcpu_find_address(cpu_present_mask, address + i))
784			continue;
785		pcpu = pcpu_devices + cpu;
786		pcpu->address = address + i;
787		if (configured)
788			pcpu->state = CPU_STATE_CONFIGURED;
789		else
790			pcpu->state = CPU_STATE_STANDBY;
791		smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
792		set_cpu_present(cpu, true);
793		if (!early && smp_add_present_cpu(cpu) != 0)
794			set_cpu_present(cpu, false);
795		else
796			nr++;
797		cpumask_clear_cpu(cpu, avail);
798		cpu = cpumask_next(cpu, avail);
799	}
800	return nr;
801}
802
803static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
804{
805	struct sclp_core_entry *core;
806	static cpumask_t avail;
807	bool configured;
808	u16 core_id;
809	int nr, i;
810
811	cpus_read_lock();
812	mutex_lock(&smp_cpu_state_mutex);
813	nr = 0;
814	cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
815	/*
816	 * Add IPL core first (which got logical CPU number 0) to make sure
817	 * that all SMT threads get subsequent logical CPU numbers.
818	 */
819	if (early) {
820		core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
821		for (i = 0; i < info->configured; i++) {
822			core = &info->core[i];
823			if (core->core_id == core_id) {
824				nr += smp_add_core(core, &avail, true, early);
825				break;
826			}
827		}
828	}
829	for (i = 0; i < info->combined; i++) {
830		configured = i < info->configured;
831		nr += smp_add_core(&info->core[i], &avail, configured, early);
832	}
833	mutex_unlock(&smp_cpu_state_mutex);
834	cpus_read_unlock();
835	return nr;
836}
837
838void __init smp_detect_cpus(void)
839{
840	unsigned int cpu, mtid, c_cpus, s_cpus;
841	struct sclp_core_info *info;
842	u16 address;
843
844	/* Get CPU information */
845	info = memblock_alloc(sizeof(*info), 8);
846	if (!info)
847		panic("%s: Failed to allocate %zu bytes align=0x%x\n",
848		      __func__, sizeof(*info), 8);
849	smp_get_core_info(info, 1);
850	/* Find boot CPU type */
851	if (sclp.has_core_type) {
852		address = stap();
853		for (cpu = 0; cpu < info->combined; cpu++)
854			if (info->core[cpu].core_id == address) {
855				/* The boot cpu dictates the cpu type. */
856				boot_core_type = info->core[cpu].type;
857				break;
858			}
859		if (cpu >= info->combined)
860			panic("Could not find boot CPU type");
861	}
862
863	/* Set multi-threading state for the current system */
864	mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
865	mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
866	pcpu_set_smt(mtid);
867
868	/* Print number of CPUs */
869	c_cpus = s_cpus = 0;
870	for (cpu = 0; cpu < info->combined; cpu++) {
871		if (sclp.has_core_type &&
872		    info->core[cpu].type != boot_core_type)
873			continue;
874		if (cpu < info->configured)
875			c_cpus += smp_cpu_mtid + 1;
876		else
877			s_cpus += smp_cpu_mtid + 1;
878	}
879	pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
880
881	/* Add CPUs present at boot */
882	__smp_rescan_cpus(info, true);
883	memblock_free(info, sizeof(*info));
884}
885
886/*
887 *	Activate a secondary processor.
888 */
889static void smp_start_secondary(void *cpuvoid)
890{
891	int cpu = raw_smp_processor_id();
892
893	S390_lowcore.last_update_clock = get_tod_clock();
894	S390_lowcore.restart_stack = (unsigned long)restart_stack;
895	S390_lowcore.restart_fn = (unsigned long)do_restart;
896	S390_lowcore.restart_data = 0;
897	S390_lowcore.restart_source = -1U;
898	S390_lowcore.restart_flags = 0;
899	restore_access_regs(S390_lowcore.access_regs_save_area);
900	cpu_init();
901	rcu_cpu_starting(cpu);
902	init_cpu_timer();
903	vtime_init();
904	vdso_getcpu_init();
905	pfault_init();
906	cpumask_set_cpu(cpu, &cpu_setup_mask);
907	update_cpu_masks();
908	notify_cpu_starting(cpu);
909	if (topology_cpu_dedicated(cpu))
910		set_cpu_flag(CIF_DEDICATED_CPU);
911	else
912		clear_cpu_flag(CIF_DEDICATED_CPU);
913	set_cpu_online(cpu, true);
914	inc_irq_stat(CPU_RST);
915	local_irq_enable();
916	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
917}
918
919/* Upping and downing of CPUs */
920int __cpu_up(unsigned int cpu, struct task_struct *tidle)
921{
922	struct pcpu *pcpu = pcpu_devices + cpu;
923	int rc;
924
925	if (pcpu->state != CPU_STATE_CONFIGURED)
926		return -EIO;
927	if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
928	    SIGP_CC_ORDER_CODE_ACCEPTED)
929		return -EIO;
930
931	rc = pcpu_alloc_lowcore(pcpu, cpu);
932	if (rc)
933		return rc;
934	/*
935	 * Make sure global control register contents do not change
936	 * until new CPU has initialized control registers.
937	 */
938	spin_lock(&ctl_lock);
939	pcpu_prepare_secondary(pcpu, cpu);
940	pcpu_attach_task(pcpu, tidle);
941	pcpu_start_fn(pcpu, smp_start_secondary, NULL);
942	/* Wait until cpu puts itself in the online & active maps */
943	while (!cpu_online(cpu))
944		cpu_relax();
945	spin_unlock(&ctl_lock);
946	return 0;
947}
948
949static unsigned int setup_possible_cpus __initdata;
950
951static int __init _setup_possible_cpus(char *s)
952{
953	get_option(&s, &setup_possible_cpus);
954	return 0;
955}
956early_param("possible_cpus", _setup_possible_cpus);
957
958int __cpu_disable(void)
959{
960	unsigned long cregs[16];
961	int cpu;
962
963	/* Handle possible pending IPIs */
964	smp_handle_ext_call();
965	cpu = smp_processor_id();
966	set_cpu_online(cpu, false);
967	cpumask_clear_cpu(cpu, &cpu_setup_mask);
968	update_cpu_masks();
969	/* Disable pseudo page faults on this cpu. */
970	pfault_fini();
971	/* Disable interrupt sources via control register. */
972	__ctl_store(cregs, 0, 15);
973	cregs[0]  &= ~0x0000ee70UL;	/* disable all external interrupts */
974	cregs[6]  &= ~0xff000000UL;	/* disable all I/O interrupts */
975	cregs[14] &= ~0x1f000000UL;	/* disable most machine checks */
976	__ctl_load(cregs, 0, 15);
977	clear_cpu_flag(CIF_NOHZ_DELAY);
978	return 0;
979}
980
981void __cpu_die(unsigned int cpu)
982{
983	struct pcpu *pcpu;
984
985	/* Wait until target cpu is down */
986	pcpu = pcpu_devices + cpu;
987	while (!pcpu_stopped(pcpu))
988		cpu_relax();
989	pcpu_free_lowcore(pcpu);
990	cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
991	cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
992}
993
994void __noreturn cpu_die(void)
995{
996	idle_task_exit();
997	pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
998	for (;;) ;
999}
1000
1001void __init smp_fill_possible_mask(void)
1002{
1003	unsigned int possible, sclp_max, cpu;
1004
1005	sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
1006	sclp_max = min(smp_max_threads, sclp_max);
1007	sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
1008	possible = setup_possible_cpus ?: nr_cpu_ids;
1009	possible = min(possible, sclp_max);
1010	for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1011		set_cpu_possible(cpu, true);
1012}
1013
1014void __init smp_prepare_cpus(unsigned int max_cpus)
1015{
1016	/* request the 0x1201 emergency signal external interrupt */
1017	if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1018		panic("Couldn't request external interrupt 0x1201");
1019	/* request the 0x1202 external call external interrupt */
1020	if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1021		panic("Couldn't request external interrupt 0x1202");
1022}
1023
1024void __init smp_prepare_boot_cpu(void)
1025{
1026	struct pcpu *pcpu = pcpu_devices;
1027
1028	WARN_ON(!cpu_present(0) || !cpu_online(0));
1029	pcpu->state = CPU_STATE_CONFIGURED;
1030	S390_lowcore.percpu_offset = __per_cpu_offset[0];
1031	smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1032}
1033
1034void __init smp_setup_processor_id(void)
1035{
1036	pcpu_devices[0].address = stap();
1037	S390_lowcore.cpu_nr = 0;
1038	S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1039	S390_lowcore.spinlock_index = 0;
1040}
1041
1042/*
1043 * the frequency of the profiling timer can be changed
1044 * by writing a multiplier value into /proc/profile.
1045 *
1046 * usually you want to run this on all CPUs ;)
1047 */
1048int setup_profiling_timer(unsigned int multiplier)
1049{
1050	return 0;
1051}
1052
1053static ssize_t cpu_configure_show(struct device *dev,
1054				  struct device_attribute *attr, char *buf)
1055{
1056	ssize_t count;
1057
1058	mutex_lock(&smp_cpu_state_mutex);
1059	count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1060	mutex_unlock(&smp_cpu_state_mutex);
1061	return count;
1062}
1063
1064static ssize_t cpu_configure_store(struct device *dev,
1065				   struct device_attribute *attr,
1066				   const char *buf, size_t count)
1067{
1068	struct pcpu *pcpu;
1069	int cpu, val, rc, i;
1070	char delim;
1071
1072	if (sscanf(buf, "%d %c", &val, &delim) != 1)
1073		return -EINVAL;
1074	if (val != 0 && val != 1)
1075		return -EINVAL;
1076	cpus_read_lock();
1077	mutex_lock(&smp_cpu_state_mutex);
1078	rc = -EBUSY;
1079	/* disallow configuration changes of online cpus and cpu 0 */
1080	cpu = dev->id;
1081	cpu = smp_get_base_cpu(cpu);
1082	if (cpu == 0)
1083		goto out;
1084	for (i = 0; i <= smp_cpu_mtid; i++)
1085		if (cpu_online(cpu + i))
1086			goto out;
1087	pcpu = pcpu_devices + cpu;
1088	rc = 0;
1089	switch (val) {
1090	case 0:
1091		if (pcpu->state != CPU_STATE_CONFIGURED)
1092			break;
1093		rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1094		if (rc)
1095			break;
1096		for (i = 0; i <= smp_cpu_mtid; i++) {
1097			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1098				continue;
1099			pcpu[i].state = CPU_STATE_STANDBY;
1100			smp_cpu_set_polarization(cpu + i,
1101						 POLARIZATION_UNKNOWN);
1102		}
1103		topology_expect_change();
1104		break;
1105	case 1:
1106		if (pcpu->state != CPU_STATE_STANDBY)
1107			break;
1108		rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1109		if (rc)
1110			break;
1111		for (i = 0; i <= smp_cpu_mtid; i++) {
1112			if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1113				continue;
1114			pcpu[i].state = CPU_STATE_CONFIGURED;
1115			smp_cpu_set_polarization(cpu + i,
1116						 POLARIZATION_UNKNOWN);
1117		}
1118		topology_expect_change();
1119		break;
1120	default:
1121		break;
1122	}
1123out:
1124	mutex_unlock(&smp_cpu_state_mutex);
1125	cpus_read_unlock();
1126	return rc ? rc : count;
1127}
1128static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1129
1130static ssize_t show_cpu_address(struct device *dev,
1131				struct device_attribute *attr, char *buf)
1132{
1133	return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1134}
1135static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1136
1137static struct attribute *cpu_common_attrs[] = {
1138	&dev_attr_configure.attr,
1139	&dev_attr_address.attr,
1140	NULL,
1141};
1142
1143static struct attribute_group cpu_common_attr_group = {
1144	.attrs = cpu_common_attrs,
1145};
1146
1147static struct attribute *cpu_online_attrs[] = {
1148	&dev_attr_idle_count.attr,
1149	&dev_attr_idle_time_us.attr,
1150	NULL,
1151};
1152
1153static struct attribute_group cpu_online_attr_group = {
1154	.attrs = cpu_online_attrs,
1155};
1156
1157static int smp_cpu_online(unsigned int cpu)
1158{
1159	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1160
1161	return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1162}
1163
1164static int smp_cpu_pre_down(unsigned int cpu)
1165{
1166	struct device *s = &per_cpu(cpu_device, cpu)->dev;
1167
1168	sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1169	return 0;
1170}
1171
1172static int smp_add_present_cpu(int cpu)
1173{
1174	struct device *s;
1175	struct cpu *c;
1176	int rc;
1177
1178	c = kzalloc(sizeof(*c), GFP_KERNEL);
1179	if (!c)
1180		return -ENOMEM;
1181	per_cpu(cpu_device, cpu) = c;
1182	s = &c->dev;
1183	c->hotpluggable = 1;
1184	rc = register_cpu(c, cpu);
1185	if (rc)
1186		goto out;
1187	rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1188	if (rc)
1189		goto out_cpu;
1190	rc = topology_cpu_init(c);
1191	if (rc)
1192		goto out_topology;
1193	return 0;
1194
1195out_topology:
1196	sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1197out_cpu:
1198	unregister_cpu(c);
1199out:
1200	return rc;
1201}
1202
1203int __ref smp_rescan_cpus(void)
1204{
1205	struct sclp_core_info *info;
1206	int nr;
1207
1208	info = kzalloc(sizeof(*info), GFP_KERNEL);
1209	if (!info)
1210		return -ENOMEM;
1211	smp_get_core_info(info, 0);
1212	nr = __smp_rescan_cpus(info, false);
1213	kfree(info);
1214	if (nr)
1215		topology_schedule_update();
1216	return 0;
1217}
1218
1219static ssize_t __ref rescan_store(struct device *dev,
1220				  struct device_attribute *attr,
1221				  const char *buf,
1222				  size_t count)
1223{
1224	int rc;
1225
1226	rc = lock_device_hotplug_sysfs();
1227	if (rc)
1228		return rc;
1229	rc = smp_rescan_cpus();
1230	unlock_device_hotplug();
1231	return rc ? rc : count;
1232}
1233static DEVICE_ATTR_WO(rescan);
1234
1235static int __init s390_smp_init(void)
1236{
1237	struct device *dev_root;
1238	int cpu, rc = 0;
1239
1240	dev_root = bus_get_dev_root(&cpu_subsys);
1241	if (dev_root) {
1242		rc = device_create_file(dev_root, &dev_attr_rescan);
1243		put_device(dev_root);
1244		if (rc)
1245			return rc;
1246	}
1247
1248	for_each_present_cpu(cpu) {
1249		rc = smp_add_present_cpu(cpu);
1250		if (rc)
1251			goto out;
1252	}
1253
1254	rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1255			       smp_cpu_online, smp_cpu_pre_down);
1256	rc = rc <= 0 ? rc : 0;
1257out:
1258	return rc;
1259}
1260subsys_initcall(s390_smp_init);
1261
1262static __always_inline void set_new_lowcore(struct lowcore *lc)
1263{
1264	union register_pair dst, src;
1265	u32 pfx;
1266
1267	src.even = (unsigned long) &S390_lowcore;
1268	src.odd  = sizeof(S390_lowcore);
1269	dst.even = (unsigned long) lc;
1270	dst.odd  = sizeof(*lc);
1271	pfx = __pa(lc);
1272
1273	asm volatile(
1274		"	mvcl	%[dst],%[src]\n"
1275		"	spx	%[pfx]\n"
1276		: [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1277		: [pfx] "Q" (pfx)
1278		: "memory", "cc");
1279}
1280
1281int __init smp_reinit_ipl_cpu(void)
1282{
1283	unsigned long async_stack, nodat_stack, mcck_stack;
1284	struct lowcore *lc, *lc_ipl;
1285	unsigned long flags, cr0;
1286	u64 mcesad;
1287
1288	lc_ipl = lowcore_ptr[0];
1289	lc = (struct lowcore *)	__get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1290	nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1291	async_stack = stack_alloc();
1292	mcck_stack = stack_alloc();
1293	if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
1294		panic("Couldn't allocate memory");
1295
1296	local_irq_save(flags);
1297	local_mcck_disable();
1298	set_new_lowcore(lc);
1299	S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1300	S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1301	S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1302	__ctl_store(cr0, 0, 0);
1303	__ctl_clear_bit(0, 28); /* disable lowcore protection */
1304	S390_lowcore.mcesad = mcesad;
1305	__ctl_load(cr0, 0, 0);
1306	if (abs_lowcore_map(0, lc, false))
1307		panic("Couldn't remap absolute lowcore");
1308	lowcore_ptr[0] = lc;
1309	local_mcck_enable();
1310	local_irq_restore(flags);
1311
1312	memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1313	memblock_free_late(__pa(lc_ipl->async_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1314	memblock_free_late(__pa(lc_ipl->nodat_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1315	memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
1316	return 0;
1317}
1318