162306a36Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Hardware-accelerated CRC-32 variants for Linux on z Systems 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Use the z/Architecture Vector Extension Facility to accelerate the 662306a36Sopenharmony_ci * computing of bitreflected CRC-32 checksums for IEEE 802.3 Ethernet 762306a36Sopenharmony_ci * and Castagnoli. 862306a36Sopenharmony_ci * 962306a36Sopenharmony_ci * This CRC-32 implementation algorithm is bitreflected and processes 1062306a36Sopenharmony_ci * the least-significant bit first (Little-Endian). 1162306a36Sopenharmony_ci * 1262306a36Sopenharmony_ci * Copyright IBM Corp. 2015 1362306a36Sopenharmony_ci * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 1462306a36Sopenharmony_ci */ 1562306a36Sopenharmony_ci 1662306a36Sopenharmony_ci#include <linux/linkage.h> 1762306a36Sopenharmony_ci#include <asm/nospec-insn.h> 1862306a36Sopenharmony_ci#include <asm/vx-insn.h> 1962306a36Sopenharmony_ci 2062306a36Sopenharmony_ci/* Vector register range containing CRC-32 constants */ 2162306a36Sopenharmony_ci#define CONST_PERM_LE2BE %v9 2262306a36Sopenharmony_ci#define CONST_R2R1 %v10 2362306a36Sopenharmony_ci#define CONST_R4R3 %v11 2462306a36Sopenharmony_ci#define CONST_R5 %v12 2562306a36Sopenharmony_ci#define CONST_RU_POLY %v13 2662306a36Sopenharmony_ci#define CONST_CRC_POLY %v14 2762306a36Sopenharmony_ci 2862306a36Sopenharmony_ci .data 2962306a36Sopenharmony_ci .balign 8 3062306a36Sopenharmony_ci 3162306a36Sopenharmony_ci/* 3262306a36Sopenharmony_ci * The CRC-32 constant block contains reduction constants to fold and 3362306a36Sopenharmony_ci * process particular chunks of the input data stream in parallel. 3462306a36Sopenharmony_ci * 3562306a36Sopenharmony_ci * For the CRC-32 variants, the constants are precomputed according to 3662306a36Sopenharmony_ci * these definitions: 3762306a36Sopenharmony_ci * 3862306a36Sopenharmony_ci * R1 = [(x4*128+32 mod P'(x) << 32)]' << 1 3962306a36Sopenharmony_ci * R2 = [(x4*128-32 mod P'(x) << 32)]' << 1 4062306a36Sopenharmony_ci * R3 = [(x128+32 mod P'(x) << 32)]' << 1 4162306a36Sopenharmony_ci * R4 = [(x128-32 mod P'(x) << 32)]' << 1 4262306a36Sopenharmony_ci * R5 = [(x64 mod P'(x) << 32)]' << 1 4362306a36Sopenharmony_ci * R6 = [(x32 mod P'(x) << 32)]' << 1 4462306a36Sopenharmony_ci * 4562306a36Sopenharmony_ci * The bitreflected Barret reduction constant, u', is defined as 4662306a36Sopenharmony_ci * the bit reversal of floor(x**64 / P(x)). 4762306a36Sopenharmony_ci * 4862306a36Sopenharmony_ci * where P(x) is the polynomial in the normal domain and the P'(x) is the 4962306a36Sopenharmony_ci * polynomial in the reversed (bitreflected) domain. 5062306a36Sopenharmony_ci * 5162306a36Sopenharmony_ci * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: 5262306a36Sopenharmony_ci * 5362306a36Sopenharmony_ci * P(x) = 0x04C11DB7 5462306a36Sopenharmony_ci * P'(x) = 0xEDB88320 5562306a36Sopenharmony_ci * 5662306a36Sopenharmony_ci * CRC-32C (Castagnoli) polynomials: 5762306a36Sopenharmony_ci * 5862306a36Sopenharmony_ci * P(x) = 0x1EDC6F41 5962306a36Sopenharmony_ci * P'(x) = 0x82F63B78 6062306a36Sopenharmony_ci */ 6162306a36Sopenharmony_ci 6262306a36Sopenharmony_ciSYM_DATA_START_LOCAL(constants_CRC_32_LE) 6362306a36Sopenharmony_ci .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask 6462306a36Sopenharmony_ci .quad 0x1c6e41596, 0x154442bd4 # R2, R1 6562306a36Sopenharmony_ci .quad 0x0ccaa009e, 0x1751997d0 # R4, R3 6662306a36Sopenharmony_ci .octa 0x163cd6124 # R5 6762306a36Sopenharmony_ci .octa 0x1F7011641 # u' 6862306a36Sopenharmony_ci .octa 0x1DB710641 # P'(x) << 1 6962306a36Sopenharmony_ciSYM_DATA_END(constants_CRC_32_LE) 7062306a36Sopenharmony_ci 7162306a36Sopenharmony_ciSYM_DATA_START_LOCAL(constants_CRC_32C_LE) 7262306a36Sopenharmony_ci .octa 0x0F0E0D0C0B0A09080706050403020100 # BE->LE mask 7362306a36Sopenharmony_ci .quad 0x09e4addf8, 0x740eef02 # R2, R1 7462306a36Sopenharmony_ci .quad 0x14cd00bd6, 0xf20c0dfe # R4, R3 7562306a36Sopenharmony_ci .octa 0x0dd45aab8 # R5 7662306a36Sopenharmony_ci .octa 0x0dea713f1 # u' 7762306a36Sopenharmony_ci .octa 0x105ec76f0 # P'(x) << 1 7862306a36Sopenharmony_ciSYM_DATA_END(constants_CRC_32C_LE) 7962306a36Sopenharmony_ci 8062306a36Sopenharmony_ci .previous 8162306a36Sopenharmony_ci 8262306a36Sopenharmony_ci GEN_BR_THUNK %r14 8362306a36Sopenharmony_ci 8462306a36Sopenharmony_ci .text 8562306a36Sopenharmony_ci 8662306a36Sopenharmony_ci/* 8762306a36Sopenharmony_ci * The CRC-32 functions use these calling conventions: 8862306a36Sopenharmony_ci * 8962306a36Sopenharmony_ci * Parameters: 9062306a36Sopenharmony_ci * 9162306a36Sopenharmony_ci * %r2: Initial CRC value, typically ~0; and final CRC (return) value. 9262306a36Sopenharmony_ci * %r3: Input buffer pointer, performance might be improved if the 9362306a36Sopenharmony_ci * buffer is on a doubleword boundary. 9462306a36Sopenharmony_ci * %r4: Length of the buffer, must be 64 bytes or greater. 9562306a36Sopenharmony_ci * 9662306a36Sopenharmony_ci * Register usage: 9762306a36Sopenharmony_ci * 9862306a36Sopenharmony_ci * %r5: CRC-32 constant pool base pointer. 9962306a36Sopenharmony_ci * V0: Initial CRC value and intermediate constants and results. 10062306a36Sopenharmony_ci * V1..V4: Data for CRC computation. 10162306a36Sopenharmony_ci * V5..V8: Next data chunks that are fetched from the input buffer. 10262306a36Sopenharmony_ci * V9: Constant for BE->LE conversion and shift operations 10362306a36Sopenharmony_ci * 10462306a36Sopenharmony_ci * V10..V14: CRC-32 constants. 10562306a36Sopenharmony_ci */ 10662306a36Sopenharmony_ci 10762306a36Sopenharmony_ciSYM_FUNC_START(crc32_le_vgfm_16) 10862306a36Sopenharmony_ci larl %r5,constants_CRC_32_LE 10962306a36Sopenharmony_ci j crc32_le_vgfm_generic 11062306a36Sopenharmony_ciSYM_FUNC_END(crc32_le_vgfm_16) 11162306a36Sopenharmony_ci 11262306a36Sopenharmony_ciSYM_FUNC_START(crc32c_le_vgfm_16) 11362306a36Sopenharmony_ci larl %r5,constants_CRC_32C_LE 11462306a36Sopenharmony_ci j crc32_le_vgfm_generic 11562306a36Sopenharmony_ciSYM_FUNC_END(crc32c_le_vgfm_16) 11662306a36Sopenharmony_ci 11762306a36Sopenharmony_ciSYM_FUNC_START(crc32_le_vgfm_generic) 11862306a36Sopenharmony_ci /* Load CRC-32 constants */ 11962306a36Sopenharmony_ci VLM CONST_PERM_LE2BE,CONST_CRC_POLY,0,%r5 12062306a36Sopenharmony_ci 12162306a36Sopenharmony_ci /* 12262306a36Sopenharmony_ci * Load the initial CRC value. 12362306a36Sopenharmony_ci * 12462306a36Sopenharmony_ci * The CRC value is loaded into the rightmost word of the 12562306a36Sopenharmony_ci * vector register and is later XORed with the LSB portion 12662306a36Sopenharmony_ci * of the loaded input data. 12762306a36Sopenharmony_ci */ 12862306a36Sopenharmony_ci VZERO %v0 /* Clear V0 */ 12962306a36Sopenharmony_ci VLVGF %v0,%r2,3 /* Load CRC into rightmost word */ 13062306a36Sopenharmony_ci 13162306a36Sopenharmony_ci /* Load a 64-byte data chunk and XOR with CRC */ 13262306a36Sopenharmony_ci VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */ 13362306a36Sopenharmony_ci VPERM %v1,%v1,%v1,CONST_PERM_LE2BE 13462306a36Sopenharmony_ci VPERM %v2,%v2,%v2,CONST_PERM_LE2BE 13562306a36Sopenharmony_ci VPERM %v3,%v3,%v3,CONST_PERM_LE2BE 13662306a36Sopenharmony_ci VPERM %v4,%v4,%v4,CONST_PERM_LE2BE 13762306a36Sopenharmony_ci 13862306a36Sopenharmony_ci VX %v1,%v0,%v1 /* V1 ^= CRC */ 13962306a36Sopenharmony_ci aghi %r3,64 /* BUF = BUF + 64 */ 14062306a36Sopenharmony_ci aghi %r4,-64 /* LEN = LEN - 64 */ 14162306a36Sopenharmony_ci 14262306a36Sopenharmony_ci cghi %r4,64 14362306a36Sopenharmony_ci jl .Lless_than_64bytes 14462306a36Sopenharmony_ci 14562306a36Sopenharmony_ci.Lfold_64bytes_loop: 14662306a36Sopenharmony_ci /* Load the next 64-byte data chunk into V5 to V8 */ 14762306a36Sopenharmony_ci VLM %v5,%v8,0,%r3 14862306a36Sopenharmony_ci VPERM %v5,%v5,%v5,CONST_PERM_LE2BE 14962306a36Sopenharmony_ci VPERM %v6,%v6,%v6,CONST_PERM_LE2BE 15062306a36Sopenharmony_ci VPERM %v7,%v7,%v7,CONST_PERM_LE2BE 15162306a36Sopenharmony_ci VPERM %v8,%v8,%v8,CONST_PERM_LE2BE 15262306a36Sopenharmony_ci 15362306a36Sopenharmony_ci /* 15462306a36Sopenharmony_ci * Perform a GF(2) multiplication of the doublewords in V1 with 15562306a36Sopenharmony_ci * the R1 and R2 reduction constants in V0. The intermediate result 15662306a36Sopenharmony_ci * is then folded (accumulated) with the next data chunk in V5 and 15762306a36Sopenharmony_ci * stored in V1. Repeat this step for the register contents 15862306a36Sopenharmony_ci * in V2, V3, and V4 respectively. 15962306a36Sopenharmony_ci */ 16062306a36Sopenharmony_ci VGFMAG %v1,CONST_R2R1,%v1,%v5 16162306a36Sopenharmony_ci VGFMAG %v2,CONST_R2R1,%v2,%v6 16262306a36Sopenharmony_ci VGFMAG %v3,CONST_R2R1,%v3,%v7 16362306a36Sopenharmony_ci VGFMAG %v4,CONST_R2R1,%v4,%v8 16462306a36Sopenharmony_ci 16562306a36Sopenharmony_ci aghi %r3,64 /* BUF = BUF + 64 */ 16662306a36Sopenharmony_ci aghi %r4,-64 /* LEN = LEN - 64 */ 16762306a36Sopenharmony_ci 16862306a36Sopenharmony_ci cghi %r4,64 16962306a36Sopenharmony_ci jnl .Lfold_64bytes_loop 17062306a36Sopenharmony_ci 17162306a36Sopenharmony_ci.Lless_than_64bytes: 17262306a36Sopenharmony_ci /* 17362306a36Sopenharmony_ci * Fold V1 to V4 into a single 128-bit value in V1. Multiply V1 with R3 17462306a36Sopenharmony_ci * and R4 and accumulating the next 128-bit chunk until a single 128-bit 17562306a36Sopenharmony_ci * value remains. 17662306a36Sopenharmony_ci */ 17762306a36Sopenharmony_ci VGFMAG %v1,CONST_R4R3,%v1,%v2 17862306a36Sopenharmony_ci VGFMAG %v1,CONST_R4R3,%v1,%v3 17962306a36Sopenharmony_ci VGFMAG %v1,CONST_R4R3,%v1,%v4 18062306a36Sopenharmony_ci 18162306a36Sopenharmony_ci cghi %r4,16 18262306a36Sopenharmony_ci jl .Lfinal_fold 18362306a36Sopenharmony_ci 18462306a36Sopenharmony_ci.Lfold_16bytes_loop: 18562306a36Sopenharmony_ci 18662306a36Sopenharmony_ci VL %v2,0,,%r3 /* Load next data chunk */ 18762306a36Sopenharmony_ci VPERM %v2,%v2,%v2,CONST_PERM_LE2BE 18862306a36Sopenharmony_ci VGFMAG %v1,CONST_R4R3,%v1,%v2 /* Fold next data chunk */ 18962306a36Sopenharmony_ci 19062306a36Sopenharmony_ci aghi %r3,16 19162306a36Sopenharmony_ci aghi %r4,-16 19262306a36Sopenharmony_ci 19362306a36Sopenharmony_ci cghi %r4,16 19462306a36Sopenharmony_ci jnl .Lfold_16bytes_loop 19562306a36Sopenharmony_ci 19662306a36Sopenharmony_ci.Lfinal_fold: 19762306a36Sopenharmony_ci /* 19862306a36Sopenharmony_ci * Set up a vector register for byte shifts. The shift value must 19962306a36Sopenharmony_ci * be loaded in bits 1-4 in byte element 7 of a vector register. 20062306a36Sopenharmony_ci * Shift by 8 bytes: 0x40 20162306a36Sopenharmony_ci * Shift by 4 bytes: 0x20 20262306a36Sopenharmony_ci */ 20362306a36Sopenharmony_ci VLEIB %v9,0x40,7 20462306a36Sopenharmony_ci 20562306a36Sopenharmony_ci /* 20662306a36Sopenharmony_ci * Prepare V0 for the next GF(2) multiplication: shift V0 by 8 bytes 20762306a36Sopenharmony_ci * to move R4 into the rightmost doubleword and set the leftmost 20862306a36Sopenharmony_ci * doubleword to 0x1. 20962306a36Sopenharmony_ci */ 21062306a36Sopenharmony_ci VSRLB %v0,CONST_R4R3,%v9 21162306a36Sopenharmony_ci VLEIG %v0,1,0 21262306a36Sopenharmony_ci 21362306a36Sopenharmony_ci /* 21462306a36Sopenharmony_ci * Compute GF(2) product of V1 and V0. The rightmost doubleword 21562306a36Sopenharmony_ci * of V1 is multiplied with R4. The leftmost doubleword of V1 is 21662306a36Sopenharmony_ci * multiplied by 0x1 and is then XORed with rightmost product. 21762306a36Sopenharmony_ci * Implicitly, the intermediate leftmost product becomes padded 21862306a36Sopenharmony_ci */ 21962306a36Sopenharmony_ci VGFMG %v1,%v0,%v1 22062306a36Sopenharmony_ci 22162306a36Sopenharmony_ci /* 22262306a36Sopenharmony_ci * Now do the final 32-bit fold by multiplying the rightmost word 22362306a36Sopenharmony_ci * in V1 with R5 and XOR the result with the remaining bits in V1. 22462306a36Sopenharmony_ci * 22562306a36Sopenharmony_ci * To achieve this by a single VGFMAG, right shift V1 by a word 22662306a36Sopenharmony_ci * and store the result in V2 which is then accumulated. Use the 22762306a36Sopenharmony_ci * vector unpack instruction to load the rightmost half of the 22862306a36Sopenharmony_ci * doubleword into the rightmost doubleword element of V1; the other 22962306a36Sopenharmony_ci * half is loaded in the leftmost doubleword. 23062306a36Sopenharmony_ci * The vector register with CONST_R5 contains the R5 constant in the 23162306a36Sopenharmony_ci * rightmost doubleword and the leftmost doubleword is zero to ignore 23262306a36Sopenharmony_ci * the leftmost product of V1. 23362306a36Sopenharmony_ci */ 23462306a36Sopenharmony_ci VLEIB %v9,0x20,7 /* Shift by words */ 23562306a36Sopenharmony_ci VSRLB %v2,%v1,%v9 /* Store remaining bits in V2 */ 23662306a36Sopenharmony_ci VUPLLF %v1,%v1 /* Split rightmost doubleword */ 23762306a36Sopenharmony_ci VGFMAG %v1,CONST_R5,%v1,%v2 /* V1 = (V1 * R5) XOR V2 */ 23862306a36Sopenharmony_ci 23962306a36Sopenharmony_ci /* 24062306a36Sopenharmony_ci * Apply a Barret reduction to compute the final 32-bit CRC value. 24162306a36Sopenharmony_ci * 24262306a36Sopenharmony_ci * The input values to the Barret reduction are the degree-63 polynomial 24362306a36Sopenharmony_ci * in V1 (R(x)), degree-32 generator polynomial, and the reduction 24462306a36Sopenharmony_ci * constant u. The Barret reduction result is the CRC value of R(x) mod 24562306a36Sopenharmony_ci * P(x). 24662306a36Sopenharmony_ci * 24762306a36Sopenharmony_ci * The Barret reduction algorithm is defined as: 24862306a36Sopenharmony_ci * 24962306a36Sopenharmony_ci * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u 25062306a36Sopenharmony_ci * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) 25162306a36Sopenharmony_ci * 3. C(x) = R(x) XOR T2(x) mod x^32 25262306a36Sopenharmony_ci * 25362306a36Sopenharmony_ci * Note: The leftmost doubleword of vector register containing 25462306a36Sopenharmony_ci * CONST_RU_POLY is zero and, thus, the intermediate GF(2) product 25562306a36Sopenharmony_ci * is zero and does not contribute to the final result. 25662306a36Sopenharmony_ci */ 25762306a36Sopenharmony_ci 25862306a36Sopenharmony_ci /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ 25962306a36Sopenharmony_ci VUPLLF %v2,%v1 26062306a36Sopenharmony_ci VGFMG %v2,CONST_RU_POLY,%v2 26162306a36Sopenharmony_ci 26262306a36Sopenharmony_ci /* 26362306a36Sopenharmony_ci * Compute the GF(2) product of the CRC polynomial with T1(x) in 26462306a36Sopenharmony_ci * V2 and XOR the intermediate result, T2(x), with the value in V1. 26562306a36Sopenharmony_ci * The final result is stored in word element 2 of V2. 26662306a36Sopenharmony_ci */ 26762306a36Sopenharmony_ci VUPLLF %v2,%v2 26862306a36Sopenharmony_ci VGFMAG %v2,CONST_CRC_POLY,%v2,%v1 26962306a36Sopenharmony_ci 27062306a36Sopenharmony_ci.Ldone: 27162306a36Sopenharmony_ci VLGVF %r2,%v2,2 27262306a36Sopenharmony_ci BR_EX %r14 27362306a36Sopenharmony_ciSYM_FUNC_END(crc32_le_vgfm_generic) 27462306a36Sopenharmony_ci 27562306a36Sopenharmony_ci.previous 276