162306a36Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Hardware-accelerated CRC-32 variants for Linux on z Systems 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Use the z/Architecture Vector Extension Facility to accelerate the 662306a36Sopenharmony_ci * computing of CRC-32 checksums. 762306a36Sopenharmony_ci * 862306a36Sopenharmony_ci * This CRC-32 implementation algorithm processes the most-significant 962306a36Sopenharmony_ci * bit first (BE). 1062306a36Sopenharmony_ci * 1162306a36Sopenharmony_ci * Copyright IBM Corp. 2015 1262306a36Sopenharmony_ci * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com> 1362306a36Sopenharmony_ci */ 1462306a36Sopenharmony_ci 1562306a36Sopenharmony_ci#include <linux/linkage.h> 1662306a36Sopenharmony_ci#include <asm/nospec-insn.h> 1762306a36Sopenharmony_ci#include <asm/vx-insn.h> 1862306a36Sopenharmony_ci 1962306a36Sopenharmony_ci/* Vector register range containing CRC-32 constants */ 2062306a36Sopenharmony_ci#define CONST_R1R2 %v9 2162306a36Sopenharmony_ci#define CONST_R3R4 %v10 2262306a36Sopenharmony_ci#define CONST_R5 %v11 2362306a36Sopenharmony_ci#define CONST_R6 %v12 2462306a36Sopenharmony_ci#define CONST_RU_POLY %v13 2562306a36Sopenharmony_ci#define CONST_CRC_POLY %v14 2662306a36Sopenharmony_ci 2762306a36Sopenharmony_ci .data 2862306a36Sopenharmony_ci .balign 8 2962306a36Sopenharmony_ci 3062306a36Sopenharmony_ci/* 3162306a36Sopenharmony_ci * The CRC-32 constant block contains reduction constants to fold and 3262306a36Sopenharmony_ci * process particular chunks of the input data stream in parallel. 3362306a36Sopenharmony_ci * 3462306a36Sopenharmony_ci * For the CRC-32 variants, the constants are precomputed according to 3562306a36Sopenharmony_ci * these definitions: 3662306a36Sopenharmony_ci * 3762306a36Sopenharmony_ci * R1 = x4*128+64 mod P(x) 3862306a36Sopenharmony_ci * R2 = x4*128 mod P(x) 3962306a36Sopenharmony_ci * R3 = x128+64 mod P(x) 4062306a36Sopenharmony_ci * R4 = x128 mod P(x) 4162306a36Sopenharmony_ci * R5 = x96 mod P(x) 4262306a36Sopenharmony_ci * R6 = x64 mod P(x) 4362306a36Sopenharmony_ci * 4462306a36Sopenharmony_ci * Barret reduction constant, u, is defined as floor(x**64 / P(x)). 4562306a36Sopenharmony_ci * 4662306a36Sopenharmony_ci * where P(x) is the polynomial in the normal domain and the P'(x) is the 4762306a36Sopenharmony_ci * polynomial in the reversed (bitreflected) domain. 4862306a36Sopenharmony_ci * 4962306a36Sopenharmony_ci * Note that the constant definitions below are extended in order to compute 5062306a36Sopenharmony_ci * intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction. 5162306a36Sopenharmony_ci * The rightmost doubleword can be 0 to prevent contribution to the result or 5262306a36Sopenharmony_ci * can be multiplied by 1 to perform an XOR without the need for a separate 5362306a36Sopenharmony_ci * VECTOR EXCLUSIVE OR instruction. 5462306a36Sopenharmony_ci * 5562306a36Sopenharmony_ci * CRC-32 (IEEE 802.3 Ethernet, ...) polynomials: 5662306a36Sopenharmony_ci * 5762306a36Sopenharmony_ci * P(x) = 0x04C11DB7 5862306a36Sopenharmony_ci * P'(x) = 0xEDB88320 5962306a36Sopenharmony_ci */ 6062306a36Sopenharmony_ci 6162306a36Sopenharmony_ciSYM_DATA_START_LOCAL(constants_CRC_32_BE) 6262306a36Sopenharmony_ci .quad 0x08833794c, 0x0e6228b11 # R1, R2 6362306a36Sopenharmony_ci .quad 0x0c5b9cd4c, 0x0e8a45605 # R3, R4 6462306a36Sopenharmony_ci .quad 0x0f200aa66, 1 << 32 # R5, x32 6562306a36Sopenharmony_ci .quad 0x0490d678d, 1 # R6, 1 6662306a36Sopenharmony_ci .quad 0x104d101df, 0 # u 6762306a36Sopenharmony_ci .quad 0x104C11DB7, 0 # P(x) 6862306a36Sopenharmony_ciSYM_DATA_END(constants_CRC_32_BE) 6962306a36Sopenharmony_ci 7062306a36Sopenharmony_ci .previous 7162306a36Sopenharmony_ci 7262306a36Sopenharmony_ci GEN_BR_THUNK %r14 7362306a36Sopenharmony_ci 7462306a36Sopenharmony_ci .text 7562306a36Sopenharmony_ci/* 7662306a36Sopenharmony_ci * The CRC-32 function(s) use these calling conventions: 7762306a36Sopenharmony_ci * 7862306a36Sopenharmony_ci * Parameters: 7962306a36Sopenharmony_ci * 8062306a36Sopenharmony_ci * %r2: Initial CRC value, typically ~0; and final CRC (return) value. 8162306a36Sopenharmony_ci * %r3: Input buffer pointer, performance might be improved if the 8262306a36Sopenharmony_ci * buffer is on a doubleword boundary. 8362306a36Sopenharmony_ci * %r4: Length of the buffer, must be 64 bytes or greater. 8462306a36Sopenharmony_ci * 8562306a36Sopenharmony_ci * Register usage: 8662306a36Sopenharmony_ci * 8762306a36Sopenharmony_ci * %r5: CRC-32 constant pool base pointer. 8862306a36Sopenharmony_ci * V0: Initial CRC value and intermediate constants and results. 8962306a36Sopenharmony_ci * V1..V4: Data for CRC computation. 9062306a36Sopenharmony_ci * V5..V8: Next data chunks that are fetched from the input buffer. 9162306a36Sopenharmony_ci * 9262306a36Sopenharmony_ci * V9..V14: CRC-32 constants. 9362306a36Sopenharmony_ci */ 9462306a36Sopenharmony_ciSYM_FUNC_START(crc32_be_vgfm_16) 9562306a36Sopenharmony_ci /* Load CRC-32 constants */ 9662306a36Sopenharmony_ci larl %r5,constants_CRC_32_BE 9762306a36Sopenharmony_ci VLM CONST_R1R2,CONST_CRC_POLY,0,%r5 9862306a36Sopenharmony_ci 9962306a36Sopenharmony_ci /* Load the initial CRC value into the leftmost word of V0. */ 10062306a36Sopenharmony_ci VZERO %v0 10162306a36Sopenharmony_ci VLVGF %v0,%r2,0 10262306a36Sopenharmony_ci 10362306a36Sopenharmony_ci /* Load a 64-byte data chunk and XOR with CRC */ 10462306a36Sopenharmony_ci VLM %v1,%v4,0,%r3 /* 64-bytes into V1..V4 */ 10562306a36Sopenharmony_ci VX %v1,%v0,%v1 /* V1 ^= CRC */ 10662306a36Sopenharmony_ci aghi %r3,64 /* BUF = BUF + 64 */ 10762306a36Sopenharmony_ci aghi %r4,-64 /* LEN = LEN - 64 */ 10862306a36Sopenharmony_ci 10962306a36Sopenharmony_ci /* Check remaining buffer size and jump to proper folding method */ 11062306a36Sopenharmony_ci cghi %r4,64 11162306a36Sopenharmony_ci jl .Lless_than_64bytes 11262306a36Sopenharmony_ci 11362306a36Sopenharmony_ci.Lfold_64bytes_loop: 11462306a36Sopenharmony_ci /* Load the next 64-byte data chunk into V5 to V8 */ 11562306a36Sopenharmony_ci VLM %v5,%v8,0,%r3 11662306a36Sopenharmony_ci 11762306a36Sopenharmony_ci /* 11862306a36Sopenharmony_ci * Perform a GF(2) multiplication of the doublewords in V1 with 11962306a36Sopenharmony_ci * the reduction constants in V0. The intermediate result is 12062306a36Sopenharmony_ci * then folded (accumulated) with the next data chunk in V5 and 12162306a36Sopenharmony_ci * stored in V1. Repeat this step for the register contents 12262306a36Sopenharmony_ci * in V2, V3, and V4 respectively. 12362306a36Sopenharmony_ci */ 12462306a36Sopenharmony_ci VGFMAG %v1,CONST_R1R2,%v1,%v5 12562306a36Sopenharmony_ci VGFMAG %v2,CONST_R1R2,%v2,%v6 12662306a36Sopenharmony_ci VGFMAG %v3,CONST_R1R2,%v3,%v7 12762306a36Sopenharmony_ci VGFMAG %v4,CONST_R1R2,%v4,%v8 12862306a36Sopenharmony_ci 12962306a36Sopenharmony_ci /* Adjust buffer pointer and length for next loop */ 13062306a36Sopenharmony_ci aghi %r3,64 /* BUF = BUF + 64 */ 13162306a36Sopenharmony_ci aghi %r4,-64 /* LEN = LEN - 64 */ 13262306a36Sopenharmony_ci 13362306a36Sopenharmony_ci cghi %r4,64 13462306a36Sopenharmony_ci jnl .Lfold_64bytes_loop 13562306a36Sopenharmony_ci 13662306a36Sopenharmony_ci.Lless_than_64bytes: 13762306a36Sopenharmony_ci /* Fold V1 to V4 into a single 128-bit value in V1 */ 13862306a36Sopenharmony_ci VGFMAG %v1,CONST_R3R4,%v1,%v2 13962306a36Sopenharmony_ci VGFMAG %v1,CONST_R3R4,%v1,%v3 14062306a36Sopenharmony_ci VGFMAG %v1,CONST_R3R4,%v1,%v4 14162306a36Sopenharmony_ci 14262306a36Sopenharmony_ci /* Check whether to continue with 64-bit folding */ 14362306a36Sopenharmony_ci cghi %r4,16 14462306a36Sopenharmony_ci jl .Lfinal_fold 14562306a36Sopenharmony_ci 14662306a36Sopenharmony_ci.Lfold_16bytes_loop: 14762306a36Sopenharmony_ci 14862306a36Sopenharmony_ci VL %v2,0,,%r3 /* Load next data chunk */ 14962306a36Sopenharmony_ci VGFMAG %v1,CONST_R3R4,%v1,%v2 /* Fold next data chunk */ 15062306a36Sopenharmony_ci 15162306a36Sopenharmony_ci /* Adjust buffer pointer and size for folding next data chunk */ 15262306a36Sopenharmony_ci aghi %r3,16 15362306a36Sopenharmony_ci aghi %r4,-16 15462306a36Sopenharmony_ci 15562306a36Sopenharmony_ci /* Process remaining data chunks */ 15662306a36Sopenharmony_ci cghi %r4,16 15762306a36Sopenharmony_ci jnl .Lfold_16bytes_loop 15862306a36Sopenharmony_ci 15962306a36Sopenharmony_ci.Lfinal_fold: 16062306a36Sopenharmony_ci /* 16162306a36Sopenharmony_ci * The R5 constant is used to fold a 128-bit value into an 96-bit value 16262306a36Sopenharmony_ci * that is XORed with the next 96-bit input data chunk. To use a single 16362306a36Sopenharmony_ci * VGFMG instruction, multiply the rightmost 64-bit with x^32 (1<<32) to 16462306a36Sopenharmony_ci * form an intermediate 96-bit value (with appended zeros) which is then 16562306a36Sopenharmony_ci * XORed with the intermediate reduction result. 16662306a36Sopenharmony_ci */ 16762306a36Sopenharmony_ci VGFMG %v1,CONST_R5,%v1 16862306a36Sopenharmony_ci 16962306a36Sopenharmony_ci /* 17062306a36Sopenharmony_ci * Further reduce the remaining 96-bit value to a 64-bit value using a 17162306a36Sopenharmony_ci * single VGFMG, the rightmost doubleword is multiplied with 0x1. The 17262306a36Sopenharmony_ci * intermediate result is then XORed with the product of the leftmost 17362306a36Sopenharmony_ci * doubleword with R6. The result is a 64-bit value and is subject to 17462306a36Sopenharmony_ci * the Barret reduction. 17562306a36Sopenharmony_ci */ 17662306a36Sopenharmony_ci VGFMG %v1,CONST_R6,%v1 17762306a36Sopenharmony_ci 17862306a36Sopenharmony_ci /* 17962306a36Sopenharmony_ci * The input values to the Barret reduction are the degree-63 polynomial 18062306a36Sopenharmony_ci * in V1 (R(x)), degree-32 generator polynomial, and the reduction 18162306a36Sopenharmony_ci * constant u. The Barret reduction result is the CRC value of R(x) mod 18262306a36Sopenharmony_ci * P(x). 18362306a36Sopenharmony_ci * 18462306a36Sopenharmony_ci * The Barret reduction algorithm is defined as: 18562306a36Sopenharmony_ci * 18662306a36Sopenharmony_ci * 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u 18762306a36Sopenharmony_ci * 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x) 18862306a36Sopenharmony_ci * 3. C(x) = R(x) XOR T2(x) mod x^32 18962306a36Sopenharmony_ci * 19062306a36Sopenharmony_ci * Note: To compensate the division by x^32, use the vector unpack 19162306a36Sopenharmony_ci * instruction to move the leftmost word into the leftmost doubleword 19262306a36Sopenharmony_ci * of the vector register. The rightmost doubleword is multiplied 19362306a36Sopenharmony_ci * with zero to not contribute to the intermediate results. 19462306a36Sopenharmony_ci */ 19562306a36Sopenharmony_ci 19662306a36Sopenharmony_ci /* T1(x) = floor( R(x) / x^32 ) GF2MUL u */ 19762306a36Sopenharmony_ci VUPLLF %v2,%v1 19862306a36Sopenharmony_ci VGFMG %v2,CONST_RU_POLY,%v2 19962306a36Sopenharmony_ci 20062306a36Sopenharmony_ci /* 20162306a36Sopenharmony_ci * Compute the GF(2) product of the CRC polynomial in VO with T1(x) in 20262306a36Sopenharmony_ci * V2 and XOR the intermediate result, T2(x), with the value in V1. 20362306a36Sopenharmony_ci * The final result is in the rightmost word of V2. 20462306a36Sopenharmony_ci */ 20562306a36Sopenharmony_ci VUPLLF %v2,%v2 20662306a36Sopenharmony_ci VGFMAG %v2,CONST_CRC_POLY,%v2,%v1 20762306a36Sopenharmony_ci 20862306a36Sopenharmony_ci.Ldone: 20962306a36Sopenharmony_ci VLGVF %r2,%v2,3 21062306a36Sopenharmony_ci BR_EX %r14 21162306a36Sopenharmony_ciSYM_FUNC_END(crc32_be_vgfm_16) 21262306a36Sopenharmony_ci 21362306a36Sopenharmony_ci.previous 214