1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Support for Partition Mobility/Migration
4 *
5 * Copyright (C) 2010 Nathan Fontenot
6 * Copyright (C) 2010 IBM Corporation
7 */
8
9
10#define pr_fmt(fmt) "mobility: " fmt
11
12#include <linux/cpu.h>
13#include <linux/kernel.h>
14#include <linux/kobject.h>
15#include <linux/nmi.h>
16#include <linux/sched.h>
17#include <linux/smp.h>
18#include <linux/stat.h>
19#include <linux/stop_machine.h>
20#include <linux/completion.h>
21#include <linux/device.h>
22#include <linux/delay.h>
23#include <linux/slab.h>
24#include <linux/stringify.h>
25
26#include <asm/machdep.h>
27#include <asm/nmi.h>
28#include <asm/rtas.h>
29#include "pseries.h"
30#include "vas.h"	/* vas_migration_handler() */
31#include "../../kernel/cacheinfo.h"
32
33static struct kobject *mobility_kobj;
34
35struct update_props_workarea {
36	__be32 phandle;
37	__be32 state;
38	__be64 reserved;
39	__be32 nprops;
40} __packed;
41
42#define NODE_ACTION_MASK	0xff000000
43#define NODE_COUNT_MASK		0x00ffffff
44
45#define DELETE_DT_NODE	0x01000000
46#define UPDATE_DT_NODE	0x02000000
47#define ADD_DT_NODE	0x03000000
48
49#define MIGRATION_SCOPE	(1)
50#define PRRN_SCOPE -2
51
52#ifdef CONFIG_PPC_WATCHDOG
53static unsigned int nmi_wd_lpm_factor = 200;
54
55#ifdef CONFIG_SYSCTL
56static struct ctl_table nmi_wd_lpm_factor_ctl_table[] = {
57	{
58		.procname	= "nmi_wd_lpm_factor",
59		.data		= &nmi_wd_lpm_factor,
60		.maxlen		= sizeof(int),
61		.mode		= 0644,
62		.proc_handler	= proc_douintvec_minmax,
63	},
64	{}
65};
66
67static int __init register_nmi_wd_lpm_factor_sysctl(void)
68{
69	register_sysctl("kernel", nmi_wd_lpm_factor_ctl_table);
70
71	return 0;
72}
73device_initcall(register_nmi_wd_lpm_factor_sysctl);
74#endif /* CONFIG_SYSCTL */
75#endif /* CONFIG_PPC_WATCHDOG */
76
77static int mobility_rtas_call(int token, char *buf, s32 scope)
78{
79	int rc;
80
81	spin_lock(&rtas_data_buf_lock);
82
83	memcpy(rtas_data_buf, buf, RTAS_DATA_BUF_SIZE);
84	rc = rtas_call(token, 2, 1, NULL, rtas_data_buf, scope);
85	memcpy(buf, rtas_data_buf, RTAS_DATA_BUF_SIZE);
86
87	spin_unlock(&rtas_data_buf_lock);
88	return rc;
89}
90
91static int delete_dt_node(struct device_node *dn)
92{
93	struct device_node *pdn;
94	bool is_platfac;
95
96	pdn = of_get_parent(dn);
97	is_platfac = of_node_is_type(dn, "ibm,platform-facilities") ||
98		     of_node_is_type(pdn, "ibm,platform-facilities");
99	of_node_put(pdn);
100
101	/*
102	 * The drivers that bind to nodes in the platform-facilities
103	 * hierarchy don't support node removal, and the removal directive
104	 * from firmware is always followed by an add of an equivalent
105	 * node. The capability (e.g. RNG, encryption, compression)
106	 * represented by the node is never interrupted by the migration.
107	 * So ignore changes to this part of the tree.
108	 */
109	if (is_platfac) {
110		pr_notice("ignoring remove operation for %pOFfp\n", dn);
111		return 0;
112	}
113
114	pr_debug("removing node %pOFfp\n", dn);
115	dlpar_detach_node(dn);
116	return 0;
117}
118
119static int update_dt_property(struct device_node *dn, struct property **prop,
120			      const char *name, u32 vd, char *value)
121{
122	struct property *new_prop = *prop;
123	int more = 0;
124
125	/* A negative 'vd' value indicates that only part of the new property
126	 * value is contained in the buffer and we need to call
127	 * ibm,update-properties again to get the rest of the value.
128	 *
129	 * A negative value is also the two's compliment of the actual value.
130	 */
131	if (vd & 0x80000000) {
132		vd = ~vd + 1;
133		more = 1;
134	}
135
136	if (new_prop) {
137		/* partial property fixup */
138		char *new_data = kzalloc(new_prop->length + vd, GFP_KERNEL);
139		if (!new_data)
140			return -ENOMEM;
141
142		memcpy(new_data, new_prop->value, new_prop->length);
143		memcpy(new_data + new_prop->length, value, vd);
144
145		kfree(new_prop->value);
146		new_prop->value = new_data;
147		new_prop->length += vd;
148	} else {
149		new_prop = kzalloc(sizeof(*new_prop), GFP_KERNEL);
150		if (!new_prop)
151			return -ENOMEM;
152
153		new_prop->name = kstrdup(name, GFP_KERNEL);
154		if (!new_prop->name) {
155			kfree(new_prop);
156			return -ENOMEM;
157		}
158
159		new_prop->length = vd;
160		new_prop->value = kzalloc(new_prop->length, GFP_KERNEL);
161		if (!new_prop->value) {
162			kfree(new_prop->name);
163			kfree(new_prop);
164			return -ENOMEM;
165		}
166
167		memcpy(new_prop->value, value, vd);
168		*prop = new_prop;
169	}
170
171	if (!more) {
172		pr_debug("updating node %pOF property %s\n", dn, name);
173		of_update_property(dn, new_prop);
174		*prop = NULL;
175	}
176
177	return 0;
178}
179
180static int update_dt_node(struct device_node *dn, s32 scope)
181{
182	struct update_props_workarea *upwa;
183	struct property *prop = NULL;
184	int i, rc, rtas_rc;
185	char *prop_data;
186	char *rtas_buf;
187	int update_properties_token;
188	u32 nprops;
189	u32 vd;
190
191	update_properties_token = rtas_function_token(RTAS_FN_IBM_UPDATE_PROPERTIES);
192	if (update_properties_token == RTAS_UNKNOWN_SERVICE)
193		return -EINVAL;
194
195	rtas_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
196	if (!rtas_buf)
197		return -ENOMEM;
198
199	upwa = (struct update_props_workarea *)&rtas_buf[0];
200	upwa->phandle = cpu_to_be32(dn->phandle);
201
202	do {
203		rtas_rc = mobility_rtas_call(update_properties_token, rtas_buf,
204					scope);
205		if (rtas_rc < 0)
206			break;
207
208		prop_data = rtas_buf + sizeof(*upwa);
209		nprops = be32_to_cpu(upwa->nprops);
210
211		/* On the first call to ibm,update-properties for a node the
212		 * first property value descriptor contains an empty
213		 * property name, the property value length encoded as u32,
214		 * and the property value is the node path being updated.
215		 */
216		if (*prop_data == 0) {
217			prop_data++;
218			vd = be32_to_cpu(*(__be32 *)prop_data);
219			prop_data += vd + sizeof(vd);
220			nprops--;
221		}
222
223		for (i = 0; i < nprops; i++) {
224			char *prop_name;
225
226			prop_name = prop_data;
227			prop_data += strlen(prop_name) + 1;
228			vd = be32_to_cpu(*(__be32 *)prop_data);
229			prop_data += sizeof(vd);
230
231			switch (vd) {
232			case 0x00000000:
233				/* name only property, nothing to do */
234				break;
235
236			case 0x80000000:
237				of_remove_property(dn, of_find_property(dn,
238							prop_name, NULL));
239				prop = NULL;
240				break;
241
242			default:
243				rc = update_dt_property(dn, &prop, prop_name,
244							vd, prop_data);
245				if (rc) {
246					pr_err("updating %s property failed: %d\n",
247					       prop_name, rc);
248				}
249
250				prop_data += vd;
251				break;
252			}
253
254			cond_resched();
255		}
256
257		cond_resched();
258	} while (rtas_rc == 1);
259
260	kfree(rtas_buf);
261	return 0;
262}
263
264static int add_dt_node(struct device_node *parent_dn, __be32 drc_index)
265{
266	struct device_node *dn;
267	int rc;
268
269	dn = dlpar_configure_connector(drc_index, parent_dn);
270	if (!dn)
271		return -ENOENT;
272
273	/*
274	 * Since delete_dt_node() ignores this node type, this is the
275	 * necessary counterpart. We also know that a platform-facilities
276	 * node returned from dlpar_configure_connector() has children
277	 * attached, and dlpar_attach_node() only adds the parent, leaking
278	 * the children. So ignore these on the add side for now.
279	 */
280	if (of_node_is_type(dn, "ibm,platform-facilities")) {
281		pr_notice("ignoring add operation for %pOF\n", dn);
282		dlpar_free_cc_nodes(dn);
283		return 0;
284	}
285
286	rc = dlpar_attach_node(dn, parent_dn);
287	if (rc)
288		dlpar_free_cc_nodes(dn);
289
290	pr_debug("added node %pOFfp\n", dn);
291
292	return rc;
293}
294
295static int pseries_devicetree_update(s32 scope)
296{
297	char *rtas_buf;
298	__be32 *data;
299	int update_nodes_token;
300	int rc;
301
302	update_nodes_token = rtas_function_token(RTAS_FN_IBM_UPDATE_NODES);
303	if (update_nodes_token == RTAS_UNKNOWN_SERVICE)
304		return 0;
305
306	rtas_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
307	if (!rtas_buf)
308		return -ENOMEM;
309
310	do {
311		rc = mobility_rtas_call(update_nodes_token, rtas_buf, scope);
312		if (rc && rc != 1)
313			break;
314
315		data = (__be32 *)rtas_buf + 4;
316		while (be32_to_cpu(*data) & NODE_ACTION_MASK) {
317			int i;
318			u32 action = be32_to_cpu(*data) & NODE_ACTION_MASK;
319			u32 node_count = be32_to_cpu(*data) & NODE_COUNT_MASK;
320
321			data++;
322
323			for (i = 0; i < node_count; i++) {
324				struct device_node *np;
325				__be32 phandle = *data++;
326				__be32 drc_index;
327
328				np = of_find_node_by_phandle(be32_to_cpu(phandle));
329				if (!np) {
330					pr_warn("Failed lookup: phandle 0x%x for action 0x%x\n",
331						be32_to_cpu(phandle), action);
332					continue;
333				}
334
335				switch (action) {
336				case DELETE_DT_NODE:
337					delete_dt_node(np);
338					break;
339				case UPDATE_DT_NODE:
340					update_dt_node(np, scope);
341					break;
342				case ADD_DT_NODE:
343					drc_index = *data++;
344					add_dt_node(np, drc_index);
345					break;
346				}
347
348				of_node_put(np);
349				cond_resched();
350			}
351		}
352
353		cond_resched();
354	} while (rc == 1);
355
356	kfree(rtas_buf);
357	return rc;
358}
359
360void post_mobility_fixup(void)
361{
362	int rc;
363
364	rtas_activate_firmware();
365
366	/*
367	 * We don't want CPUs to go online/offline while the device
368	 * tree is being updated.
369	 */
370	cpus_read_lock();
371
372	/*
373	 * It's common for the destination firmware to replace cache
374	 * nodes.  Release all of the cacheinfo hierarchy's references
375	 * before updating the device tree.
376	 */
377	cacheinfo_teardown();
378
379	rc = pseries_devicetree_update(MIGRATION_SCOPE);
380	if (rc)
381		pr_err("device tree update failed: %d\n", rc);
382
383	cacheinfo_rebuild();
384
385	cpus_read_unlock();
386
387	/* Possibly switch to a new L1 flush type */
388	pseries_setup_security_mitigations();
389
390	/* Reinitialise system information for hv-24x7 */
391	read_24x7_sys_info();
392
393	return;
394}
395
396static int poll_vasi_state(u64 handle, unsigned long *res)
397{
398	unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
399	long hvrc;
400	int ret;
401
402	hvrc = plpar_hcall(H_VASI_STATE, retbuf, handle);
403	switch (hvrc) {
404	case H_SUCCESS:
405		ret = 0;
406		*res = retbuf[0];
407		break;
408	case H_PARAMETER:
409		ret = -EINVAL;
410		break;
411	case H_FUNCTION:
412		ret = -EOPNOTSUPP;
413		break;
414	case H_HARDWARE:
415	default:
416		pr_err("unexpected H_VASI_STATE result %ld\n", hvrc);
417		ret = -EIO;
418		break;
419	}
420	return ret;
421}
422
423static int wait_for_vasi_session_suspending(u64 handle)
424{
425	unsigned long state;
426	int ret;
427
428	/*
429	 * Wait for transition from H_VASI_ENABLED to
430	 * H_VASI_SUSPENDING. Treat anything else as an error.
431	 */
432	while (true) {
433		ret = poll_vasi_state(handle, &state);
434
435		if (ret != 0 || state == H_VASI_SUSPENDING) {
436			break;
437		} else if (state == H_VASI_ENABLED) {
438			ssleep(1);
439		} else {
440			pr_err("unexpected H_VASI_STATE result %lu\n", state);
441			ret = -EIO;
442			break;
443		}
444	}
445
446	/*
447	 * Proceed even if H_VASI_STATE is unavailable. If H_JOIN or
448	 * ibm,suspend-me are also unimplemented, we'll recover then.
449	 */
450	if (ret == -EOPNOTSUPP)
451		ret = 0;
452
453	return ret;
454}
455
456static void wait_for_vasi_session_completed(u64 handle)
457{
458	unsigned long state = 0;
459	int ret;
460
461	pr_info("waiting for memory transfer to complete...\n");
462
463	/*
464	 * Wait for transition from H_VASI_RESUMED to H_VASI_COMPLETED.
465	 */
466	while (true) {
467		ret = poll_vasi_state(handle, &state);
468
469		/*
470		 * If the memory transfer is already complete and the migration
471		 * has been cleaned up by the hypervisor, H_PARAMETER is return,
472		 * which is translate in EINVAL by poll_vasi_state().
473		 */
474		if (ret == -EINVAL || (!ret && state == H_VASI_COMPLETED)) {
475			pr_info("memory transfer completed.\n");
476			break;
477		}
478
479		if (ret) {
480			pr_err("H_VASI_STATE return error (%d)\n", ret);
481			break;
482		}
483
484		if (state != H_VASI_RESUMED) {
485			pr_err("unexpected H_VASI_STATE result %lu\n", state);
486			break;
487		}
488
489		msleep(500);
490	}
491}
492
493static void prod_single(unsigned int target_cpu)
494{
495	long hvrc;
496	int hwid;
497
498	hwid = get_hard_smp_processor_id(target_cpu);
499	hvrc = plpar_hcall_norets(H_PROD, hwid);
500	if (hvrc == H_SUCCESS)
501		return;
502	pr_err_ratelimited("H_PROD of CPU %u (hwid %d) error: %ld\n",
503			   target_cpu, hwid, hvrc);
504}
505
506static void prod_others(void)
507{
508	unsigned int cpu;
509
510	for_each_online_cpu(cpu) {
511		if (cpu != smp_processor_id())
512			prod_single(cpu);
513	}
514}
515
516static u16 clamp_slb_size(void)
517{
518#ifdef CONFIG_PPC_64S_HASH_MMU
519	u16 prev = mmu_slb_size;
520
521	slb_set_size(SLB_MIN_SIZE);
522
523	return prev;
524#else
525	return 0;
526#endif
527}
528
529static int do_suspend(void)
530{
531	u16 saved_slb_size;
532	int status;
533	int ret;
534
535	pr_info("calling ibm,suspend-me on CPU %i\n", smp_processor_id());
536
537	/*
538	 * The destination processor model may have fewer SLB entries
539	 * than the source. We reduce mmu_slb_size to a safe minimum
540	 * before suspending in order to minimize the possibility of
541	 * programming non-existent entries on the destination. If
542	 * suspend fails, we restore it before returning. On success
543	 * the OF reconfig path will update it from the new device
544	 * tree after resuming on the destination.
545	 */
546	saved_slb_size = clamp_slb_size();
547
548	ret = rtas_ibm_suspend_me(&status);
549	if (ret != 0) {
550		pr_err("ibm,suspend-me error: %d\n", status);
551		slb_set_size(saved_slb_size);
552	}
553
554	return ret;
555}
556
557/**
558 * struct pseries_suspend_info - State shared between CPUs for join/suspend.
559 * @counter: Threads are to increment this upon resuming from suspend
560 *           or if an error is received from H_JOIN. The thread which performs
561 *           the first increment (i.e. sets it to 1) is responsible for
562 *           waking the other threads.
563 * @done: False if join/suspend is in progress. True if the operation is
564 *        complete (successful or not).
565 */
566struct pseries_suspend_info {
567	atomic_t counter;
568	bool done;
569};
570
571static int do_join(void *arg)
572{
573	struct pseries_suspend_info *info = arg;
574	atomic_t *counter = &info->counter;
575	long hvrc;
576	int ret;
577
578retry:
579	/* Must ensure MSR.EE off for H_JOIN. */
580	hard_irq_disable();
581	hvrc = plpar_hcall_norets(H_JOIN);
582
583	switch (hvrc) {
584	case H_CONTINUE:
585		/*
586		 * All other CPUs are offline or in H_JOIN. This CPU
587		 * attempts the suspend.
588		 */
589		ret = do_suspend();
590		break;
591	case H_SUCCESS:
592		/*
593		 * The suspend is complete and this cpu has received a
594		 * prod, or we've received a stray prod from unrelated
595		 * code (e.g. paravirt spinlocks) and we need to join
596		 * again.
597		 *
598		 * This barrier orders the return from H_JOIN above vs
599		 * the load of info->done. It pairs with the barrier
600		 * in the wakeup/prod path below.
601		 */
602		smp_mb();
603		if (READ_ONCE(info->done) == false) {
604			pr_info_ratelimited("premature return from H_JOIN on CPU %i, retrying",
605					    smp_processor_id());
606			goto retry;
607		}
608		ret = 0;
609		break;
610	case H_BAD_MODE:
611	case H_HARDWARE:
612	default:
613		ret = -EIO;
614		pr_err_ratelimited("H_JOIN error %ld on CPU %i\n",
615				   hvrc, smp_processor_id());
616		break;
617	}
618
619	if (atomic_inc_return(counter) == 1) {
620		pr_info("CPU %u waking all threads\n", smp_processor_id());
621		WRITE_ONCE(info->done, true);
622		/*
623		 * This barrier orders the store to info->done vs subsequent
624		 * H_PRODs to wake the other CPUs. It pairs with the barrier
625		 * in the H_SUCCESS case above.
626		 */
627		smp_mb();
628		prod_others();
629	}
630	/*
631	 * Execution may have been suspended for several seconds, so reset
632	 * the watchdogs. touch_nmi_watchdog() also touches the soft lockup
633	 * watchdog.
634	 */
635	rcu_cpu_stall_reset();
636	touch_nmi_watchdog();
637
638	return ret;
639}
640
641/*
642 * Abort reason code byte 0. We use only the 'Migrating partition' value.
643 */
644enum vasi_aborting_entity {
645	ORCHESTRATOR        = 1,
646	VSP_SOURCE          = 2,
647	PARTITION_FIRMWARE  = 3,
648	PLATFORM_FIRMWARE   = 4,
649	VSP_TARGET          = 5,
650	MIGRATING_PARTITION = 6,
651};
652
653static void pseries_cancel_migration(u64 handle, int err)
654{
655	u32 reason_code;
656	u32 detail;
657	u8 entity;
658	long hvrc;
659
660	entity = MIGRATING_PARTITION;
661	detail = abs(err) & 0xffffff;
662	reason_code = (entity << 24) | detail;
663
664	hvrc = plpar_hcall_norets(H_VASI_SIGNAL, handle,
665				  H_VASI_SIGNAL_CANCEL, reason_code);
666	if (hvrc)
667		pr_err("H_VASI_SIGNAL error: %ld\n", hvrc);
668}
669
670static int pseries_suspend(u64 handle)
671{
672	const unsigned int max_attempts = 5;
673	unsigned int retry_interval_ms = 1;
674	unsigned int attempt = 1;
675	int ret;
676
677	while (true) {
678		struct pseries_suspend_info info;
679		unsigned long vasi_state;
680		int vasi_err;
681
682		info = (struct pseries_suspend_info) {
683			.counter = ATOMIC_INIT(0),
684			.done = false,
685		};
686
687		ret = stop_machine(do_join, &info, cpu_online_mask);
688		if (ret == 0)
689			break;
690		/*
691		 * Encountered an error. If the VASI stream is still
692		 * in Suspending state, it's likely a transient
693		 * condition related to some device in the partition
694		 * and we can retry in the hope that the cause has
695		 * cleared after some delay.
696		 *
697		 * A better design would allow drivers etc to prepare
698		 * for the suspend and avoid conditions which prevent
699		 * the suspend from succeeding. For now, we have this
700		 * mitigation.
701		 */
702		pr_notice("Partition suspend attempt %u of %u error: %d\n",
703			  attempt, max_attempts, ret);
704
705		if (attempt == max_attempts)
706			break;
707
708		vasi_err = poll_vasi_state(handle, &vasi_state);
709		if (vasi_err == 0) {
710			if (vasi_state != H_VASI_SUSPENDING) {
711				pr_notice("VASI state %lu after failed suspend\n",
712					  vasi_state);
713				break;
714			}
715		} else if (vasi_err != -EOPNOTSUPP) {
716			pr_err("VASI state poll error: %d", vasi_err);
717			break;
718		}
719
720		pr_notice("Will retry partition suspend after %u ms\n",
721			  retry_interval_ms);
722
723		msleep(retry_interval_ms);
724		retry_interval_ms *= 10;
725		attempt++;
726	}
727
728	return ret;
729}
730
731static int pseries_migrate_partition(u64 handle)
732{
733	int ret;
734	unsigned int factor = 0;
735
736#ifdef CONFIG_PPC_WATCHDOG
737	factor = nmi_wd_lpm_factor;
738#endif
739	/*
740	 * When the migration is initiated, the hypervisor changes VAS
741	 * mappings to prepare before OS gets the notification and
742	 * closes all VAS windows. NX generates continuous faults during
743	 * this time and the user space can not differentiate these
744	 * faults from the migration event. So reduce this time window
745	 * by closing VAS windows at the beginning of this function.
746	 */
747	vas_migration_handler(VAS_SUSPEND);
748
749	ret = wait_for_vasi_session_suspending(handle);
750	if (ret)
751		goto out;
752
753	if (factor)
754		watchdog_hardlockup_set_timeout_pct(factor);
755
756	ret = pseries_suspend(handle);
757	if (ret == 0) {
758		post_mobility_fixup();
759		/*
760		 * Wait until the memory transfer is complete, so that the user
761		 * space process returns from the syscall after the transfer is
762		 * complete. This allows the user hooks to be executed at the
763		 * right time.
764		 */
765		wait_for_vasi_session_completed(handle);
766	} else
767		pseries_cancel_migration(handle, ret);
768
769	if (factor)
770		watchdog_hardlockup_set_timeout_pct(0);
771
772out:
773	vas_migration_handler(VAS_RESUME);
774
775	return ret;
776}
777
778int rtas_syscall_dispatch_ibm_suspend_me(u64 handle)
779{
780	return pseries_migrate_partition(handle);
781}
782
783static ssize_t migration_store(const struct class *class,
784			       const struct class_attribute *attr, const char *buf,
785			       size_t count)
786{
787	u64 streamid;
788	int rc;
789
790	rc = kstrtou64(buf, 0, &streamid);
791	if (rc)
792		return rc;
793
794	rc = pseries_migrate_partition(streamid);
795	if (rc)
796		return rc;
797
798	return count;
799}
800
801/*
802 * Used by drmgr to determine the kernel behavior of the migration interface.
803 *
804 * Version 1: Performs all PAPR requirements for migration including
805 *	firmware activation and device tree update.
806 */
807#define MIGRATION_API_VERSION	1
808
809static CLASS_ATTR_WO(migration);
810static CLASS_ATTR_STRING(api_version, 0444, __stringify(MIGRATION_API_VERSION));
811
812static int __init mobility_sysfs_init(void)
813{
814	int rc;
815
816	mobility_kobj = kobject_create_and_add("mobility", kernel_kobj);
817	if (!mobility_kobj)
818		return -ENOMEM;
819
820	rc = sysfs_create_file(mobility_kobj, &class_attr_migration.attr);
821	if (rc)
822		pr_err("unable to create migration sysfs file (%d)\n", rc);
823
824	rc = sysfs_create_file(mobility_kobj, &class_attr_api_version.attr.attr);
825	if (rc)
826		pr_err("unable to create api_version sysfs file (%d)\n", rc);
827
828	return 0;
829}
830machine_device_initcall(pseries, mobility_sysfs_init);
831