1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * spu_switch.c
4 *
5 * (C) Copyright IBM Corp. 2005
6 *
7 * Author: Mark Nutter <mnutter@us.ibm.com>
8 *
9 * Host-side part of SPU context switch sequence outlined in
10 * Synergistic Processor Element, Book IV.
11 *
12 * A fully premptive switch of an SPE is very expensive in terms
13 * of time and system resources.  SPE Book IV indicates that SPE
14 * allocation should follow a "serially reusable device" model,
15 * in which the SPE is assigned a task until it completes.  When
16 * this is not possible, this sequence may be used to premptively
17 * save, and then later (optionally) restore the context of a
18 * program executing on an SPE.
19 */
20
21#include <linux/export.h>
22#include <linux/errno.h>
23#include <linux/hardirq.h>
24#include <linux/sched.h>
25#include <linux/kernel.h>
26#include <linux/mm.h>
27#include <linux/vmalloc.h>
28#include <linux/smp.h>
29#include <linux/stddef.h>
30#include <linux/unistd.h>
31
32#include <asm/io.h>
33#include <asm/spu.h>
34#include <asm/spu_priv1.h>
35#include <asm/spu_csa.h>
36#include <asm/mmu_context.h>
37
38#include "spufs.h"
39
40#include "spu_save_dump.h"
41#include "spu_restore_dump.h"
42
43#if 0
44#define POLL_WHILE_TRUE(_c) {				\
45    do {						\
46    } while (_c);					\
47  }
48#else
49#define RELAX_SPIN_COUNT				1000
50#define POLL_WHILE_TRUE(_c) {				\
51    do {						\
52	int _i;						\
53	for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
54	    cpu_relax();				\
55	}						\
56	if (unlikely(_c)) yield();			\
57	else break;					\
58    } while (_c);					\
59  }
60#endif				/* debug */
61
62#define POLL_WHILE_FALSE(_c)	POLL_WHILE_TRUE(!(_c))
63
64static inline void acquire_spu_lock(struct spu *spu)
65{
66	/* Save, Step 1:
67	 * Restore, Step 1:
68	 *    Acquire SPU-specific mutual exclusion lock.
69	 *    TBD.
70	 */
71}
72
73static inline void release_spu_lock(struct spu *spu)
74{
75	/* Restore, Step 76:
76	 *    Release SPU-specific mutual exclusion lock.
77	 *    TBD.
78	 */
79}
80
81static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
82{
83	struct spu_problem __iomem *prob = spu->problem;
84	u32 isolate_state;
85
86	/* Save, Step 2:
87	 * Save, Step 6:
88	 *     If SPU_Status[E,L,IS] any field is '1', this
89	 *     SPU is in isolate state and cannot be context
90	 *     saved at this time.
91	 */
92	isolate_state = SPU_STATUS_ISOLATED_STATE |
93	    SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
94	return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
95}
96
97static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
98{
99	/* Save, Step 3:
100	 * Restore, Step 2:
101	 *     Save INT_Mask_class0 in CSA.
102	 *     Write INT_MASK_class0 with value of 0.
103	 *     Save INT_Mask_class1 in CSA.
104	 *     Write INT_MASK_class1 with value of 0.
105	 *     Save INT_Mask_class2 in CSA.
106	 *     Write INT_MASK_class2 with value of 0.
107	 *     Synchronize all three interrupts to be sure
108	 *     we no longer execute a handler on another CPU.
109	 */
110	spin_lock_irq(&spu->register_lock);
111	if (csa) {
112		csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
113		csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
114		csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
115	}
116	spu_int_mask_set(spu, 0, 0ul);
117	spu_int_mask_set(spu, 1, 0ul);
118	spu_int_mask_set(spu, 2, 0ul);
119	eieio();
120	spin_unlock_irq(&spu->register_lock);
121
122	/*
123	 * This flag needs to be set before calling synchronize_irq so
124	 * that the update will be visible to the relevant handlers
125	 * via a simple load.
126	 */
127	set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
128	clear_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
129	synchronize_irq(spu->irqs[0]);
130	synchronize_irq(spu->irqs[1]);
131	synchronize_irq(spu->irqs[2]);
132}
133
134static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
135{
136	/* Save, Step 4:
137	 * Restore, Step 25.
138	 *    Set a software watchdog timer, which specifies the
139	 *    maximum allowable time for a context save sequence.
140	 *
141	 *    For present, this implementation will not set a global
142	 *    watchdog timer, as virtualization & variable system load
143	 *    may cause unpredictable execution times.
144	 */
145}
146
147static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
148{
149	/* Save, Step 5:
150	 * Restore, Step 3:
151	 *     Inhibit user-space access (if provided) to this
152	 *     SPU by unmapping the virtual pages assigned to
153	 *     the SPU memory-mapped I/O (MMIO) for problem
154	 *     state. TBD.
155	 */
156}
157
158static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
159{
160	/* Save, Step 7:
161	 * Restore, Step 5:
162	 *     Set a software context switch pending flag.
163	 *     Done above in Step 3 - disable_interrupts().
164	 */
165}
166
167static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
168{
169	struct spu_priv2 __iomem *priv2 = spu->priv2;
170
171	/* Save, Step 8:
172	 *     Suspend DMA and save MFC_CNTL.
173	 */
174	switch (in_be64(&priv2->mfc_control_RW) &
175	       MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
176	case MFC_CNTL_SUSPEND_IN_PROGRESS:
177		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
178				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
179				 MFC_CNTL_SUSPEND_COMPLETE);
180		fallthrough;
181	case MFC_CNTL_SUSPEND_COMPLETE:
182		if (csa)
183			csa->priv2.mfc_control_RW =
184				in_be64(&priv2->mfc_control_RW) |
185				MFC_CNTL_SUSPEND_DMA_QUEUE;
186		break;
187	case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
188		out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
189		POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
190				  MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
191				 MFC_CNTL_SUSPEND_COMPLETE);
192		if (csa)
193			csa->priv2.mfc_control_RW =
194				in_be64(&priv2->mfc_control_RW) &
195				~MFC_CNTL_SUSPEND_DMA_QUEUE &
196				~MFC_CNTL_SUSPEND_MASK;
197		break;
198	}
199}
200
201static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
202{
203	struct spu_problem __iomem *prob = spu->problem;
204
205	/* Save, Step 9:
206	 *     Save SPU_Runcntl in the CSA.  This value contains
207	 *     the "Application Desired State".
208	 */
209	csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
210}
211
212static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
213{
214	/* Save, Step 10:
215	 *     Save MFC_SR1 in the CSA.
216	 */
217	csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
218}
219
220static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
221{
222	struct spu_problem __iomem *prob = spu->problem;
223
224	/* Save, Step 11:
225	 *     Read SPU_Status[R], and save to CSA.
226	 */
227	if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
228		csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
229	} else {
230		u32 stopped;
231
232		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
233		eieio();
234		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
235				SPU_STATUS_RUNNING);
236		stopped =
237		    SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
238		    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
239		if ((in_be32(&prob->spu_status_R) & stopped) == 0)
240			csa->prob.spu_status_R = SPU_STATUS_RUNNING;
241		else
242			csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
243	}
244}
245
246static inline void save_mfc_stopped_status(struct spu_state *csa,
247		struct spu *spu)
248{
249	struct spu_priv2 __iomem *priv2 = spu->priv2;
250	const u64 mask = MFC_CNTL_DECREMENTER_RUNNING |
251			MFC_CNTL_DMA_QUEUES_EMPTY;
252
253	/* Save, Step 12:
254	 *     Read MFC_CNTL[Ds].  Update saved copy of
255	 *     CSA.MFC_CNTL[Ds].
256	 *
257	 * update: do the same with MFC_CNTL[Q].
258	 */
259	csa->priv2.mfc_control_RW &= ~mask;
260	csa->priv2.mfc_control_RW |= in_be64(&priv2->mfc_control_RW) & mask;
261}
262
263static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
264{
265	struct spu_priv2 __iomem *priv2 = spu->priv2;
266
267	/* Save, Step 13:
268	 *     Write MFC_CNTL[Dh] set to a '1' to halt
269	 *     the decrementer.
270	 */
271	out_be64(&priv2->mfc_control_RW,
272		 MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
273	eieio();
274}
275
276static inline void save_timebase(struct spu_state *csa, struct spu *spu)
277{
278	/* Save, Step 14:
279	 *    Read PPE Timebase High and Timebase low registers
280	 *    and save in CSA.  TBD.
281	 */
282	csa->suspend_time = get_cycles();
283}
284
285static inline void remove_other_spu_access(struct spu_state *csa,
286					   struct spu *spu)
287{
288	/* Save, Step 15:
289	 *     Remove other SPU access to this SPU by unmapping
290	 *     this SPU's pages from their address space.  TBD.
291	 */
292}
293
294static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
295{
296	struct spu_problem __iomem *prob = spu->problem;
297
298	/* Save, Step 16:
299	 * Restore, Step 11.
300	 *     Write SPU_MSSync register. Poll SPU_MSSync[P]
301	 *     for a value of 0.
302	 */
303	out_be64(&prob->spc_mssync_RW, 1UL);
304	POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
305}
306
307static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
308{
309	/* Save, Step 17:
310	 * Restore, Step 12.
311	 * Restore, Step 48.
312	 *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
313	 *     Then issue a PPE sync instruction.
314	 */
315	spu_tlb_invalidate(spu);
316	mb();
317}
318
319static inline void handle_pending_interrupts(struct spu_state *csa,
320					     struct spu *spu)
321{
322	/* Save, Step 18:
323	 *     Handle any pending interrupts from this SPU
324	 *     here.  This is OS or hypervisor specific.  One
325	 *     option is to re-enable interrupts to handle any
326	 *     pending interrupts, with the interrupt handlers
327	 *     recognizing the software Context Switch Pending
328	 *     flag, to ensure the SPU execution or MFC command
329	 *     queue is not restarted.  TBD.
330	 */
331}
332
333static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
334{
335	struct spu_priv2 __iomem *priv2 = spu->priv2;
336	int i;
337
338	/* Save, Step 19:
339	 *     If MFC_Cntl[Se]=0 then save
340	 *     MFC command queues.
341	 */
342	if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
343		for (i = 0; i < 8; i++) {
344			csa->priv2.puq[i].mfc_cq_data0_RW =
345			    in_be64(&priv2->puq[i].mfc_cq_data0_RW);
346			csa->priv2.puq[i].mfc_cq_data1_RW =
347			    in_be64(&priv2->puq[i].mfc_cq_data1_RW);
348			csa->priv2.puq[i].mfc_cq_data2_RW =
349			    in_be64(&priv2->puq[i].mfc_cq_data2_RW);
350			csa->priv2.puq[i].mfc_cq_data3_RW =
351			    in_be64(&priv2->puq[i].mfc_cq_data3_RW);
352		}
353		for (i = 0; i < 16; i++) {
354			csa->priv2.spuq[i].mfc_cq_data0_RW =
355			    in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
356			csa->priv2.spuq[i].mfc_cq_data1_RW =
357			    in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
358			csa->priv2.spuq[i].mfc_cq_data2_RW =
359			    in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
360			csa->priv2.spuq[i].mfc_cq_data3_RW =
361			    in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
362		}
363	}
364}
365
366static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
367{
368	struct spu_problem __iomem *prob = spu->problem;
369
370	/* Save, Step 20:
371	 *     Save the PPU_QueryMask register
372	 *     in the CSA.
373	 */
374	csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
375}
376
377static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
378{
379	struct spu_problem __iomem *prob = spu->problem;
380
381	/* Save, Step 21:
382	 *     Save the PPU_QueryType register
383	 *     in the CSA.
384	 */
385	csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
386}
387
388static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
389{
390	struct spu_problem __iomem *prob = spu->problem;
391
392	/* Save the Prxy_TagStatus register in the CSA.
393	 *
394	 * It is unnecessary to restore dma_tagstatus_R, however,
395	 * dma_tagstatus_R in the CSA is accessed via backing_ops, so
396	 * we must save it.
397	 */
398	csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
399}
400
401static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
402{
403	struct spu_priv2 __iomem *priv2 = spu->priv2;
404
405	/* Save, Step 22:
406	 *     Save the MFC_CSR_TSQ register
407	 *     in the LSCSA.
408	 */
409	csa->priv2.spu_tag_status_query_RW =
410	    in_be64(&priv2->spu_tag_status_query_RW);
411}
412
413static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
414{
415	struct spu_priv2 __iomem *priv2 = spu->priv2;
416
417	/* Save, Step 23:
418	 *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
419	 *     registers in the CSA.
420	 */
421	csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
422	csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
423}
424
425static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
426{
427	struct spu_priv2 __iomem *priv2 = spu->priv2;
428
429	/* Save, Step 24:
430	 *     Save the MFC_CSR_ATO register in
431	 *     the CSA.
432	 */
433	csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
434}
435
436static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
437{
438	/* Save, Step 25:
439	 *     Save the MFC_TCLASS_ID register in
440	 *     the CSA.
441	 */
442	csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
443}
444
445static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
446{
447	/* Save, Step 26:
448	 * Restore, Step 23.
449	 *     Write the MFC_TCLASS_ID register with
450	 *     the value 0x10000000.
451	 */
452	spu_mfc_tclass_id_set(spu, 0x10000000);
453	eieio();
454}
455
456static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
457{
458	struct spu_priv2 __iomem *priv2 = spu->priv2;
459
460	/* Save, Step 27:
461	 * Restore, Step 14.
462	 *     Write MFC_CNTL[Pc]=1 (purge queue).
463	 */
464	out_be64(&priv2->mfc_control_RW,
465			MFC_CNTL_PURGE_DMA_REQUEST |
466			MFC_CNTL_SUSPEND_MASK);
467	eieio();
468}
469
470static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
471{
472	struct spu_priv2 __iomem *priv2 = spu->priv2;
473
474	/* Save, Step 28:
475	 *     Poll MFC_CNTL[Ps] until value '11' is read
476	 *     (purge complete).
477	 */
478	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
479			 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
480			 MFC_CNTL_PURGE_DMA_COMPLETE);
481}
482
483static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
484{
485	/* Save, Step 30:
486	 * Restore, Step 18:
487	 *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
488	 *     MFC_SR1[TL,R,Pr,T] set correctly for the
489	 *     OS specific environment.
490	 *
491	 *     Implementation note: The SPU-side code
492	 *     for save/restore is privileged, so the
493	 *     MFC_SR1[Pr] bit is not set.
494	 *
495	 */
496	spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
497			      MFC_STATE1_RELOCATE_MASK |
498			      MFC_STATE1_BUS_TLBIE_MASK));
499}
500
501static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
502{
503	struct spu_problem __iomem *prob = spu->problem;
504
505	/* Save, Step 31:
506	 *     Save SPU_NPC in the CSA.
507	 */
508	csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
509}
510
511static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
512{
513	struct spu_priv2 __iomem *priv2 = spu->priv2;
514
515	/* Save, Step 32:
516	 *     Save SPU_PrivCntl in the CSA.
517	 */
518	csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
519}
520
521static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
522{
523	struct spu_priv2 __iomem *priv2 = spu->priv2;
524
525	/* Save, Step 33:
526	 * Restore, Step 16:
527	 *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
528	 */
529	out_be64(&priv2->spu_privcntl_RW, 0UL);
530	eieio();
531}
532
533static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
534{
535	struct spu_priv2 __iomem *priv2 = spu->priv2;
536
537	/* Save, Step 34:
538	 *     Save SPU_LSLR in the CSA.
539	 */
540	csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
541}
542
543static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
544{
545	struct spu_priv2 __iomem *priv2 = spu->priv2;
546
547	/* Save, Step 35:
548	 * Restore, Step 17.
549	 *     Reset SPU_LSLR.
550	 */
551	out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
552	eieio();
553}
554
555static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
556{
557	struct spu_priv2 __iomem *priv2 = spu->priv2;
558
559	/* Save, Step 36:
560	 *     Save SPU_Cfg in the CSA.
561	 */
562	csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
563}
564
565static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
566{
567	/* Save, Step 37:
568	 *     Save PM_Trace_Tag_Wait_Mask in the CSA.
569	 *     Not performed by this implementation.
570	 */
571}
572
573static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
574{
575	/* Save, Step 38:
576	 *     Save RA_GROUP_ID register and the
577	 *     RA_ENABLE reigster in the CSA.
578	 */
579	csa->priv1.resource_allocation_groupID_RW =
580		spu_resource_allocation_groupID_get(spu);
581	csa->priv1.resource_allocation_enable_RW =
582		spu_resource_allocation_enable_get(spu);
583}
584
585static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
586{
587	struct spu_problem __iomem *prob = spu->problem;
588
589	/* Save, Step 39:
590	 *     Save MB_Stat register in the CSA.
591	 */
592	csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
593}
594
595static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
596{
597	struct spu_problem __iomem *prob = spu->problem;
598
599	/* Save, Step 40:
600	 *     Save the PPU_MB register in the CSA.
601	 */
602	csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
603}
604
605static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
606{
607	struct spu_priv2 __iomem *priv2 = spu->priv2;
608
609	/* Save, Step 41:
610	 *     Save the PPUINT_MB register in the CSA.
611	 */
612	csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
613}
614
615static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
616{
617	struct spu_priv2 __iomem *priv2 = spu->priv2;
618	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
619	int i;
620
621	/* Save, Step 42:
622	 */
623
624	/* Save CH 1, without channel count */
625	out_be64(&priv2->spu_chnlcntptr_RW, 1);
626	csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
627
628	/* Save the following CH: [0,3,4,24,25,27] */
629	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
630		idx = ch_indices[i];
631		out_be64(&priv2->spu_chnlcntptr_RW, idx);
632		eieio();
633		csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
634		csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
635		out_be64(&priv2->spu_chnldata_RW, 0UL);
636		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
637		eieio();
638	}
639}
640
641static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
642{
643	struct spu_priv2 __iomem *priv2 = spu->priv2;
644	int i;
645
646	/* Save, Step 43:
647	 *     Save SPU Read Mailbox Channel.
648	 */
649	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
650	eieio();
651	csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
652	for (i = 0; i < 4; i++) {
653		csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
654	}
655	out_be64(&priv2->spu_chnlcnt_RW, 0UL);
656	eieio();
657}
658
659static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
660{
661	struct spu_priv2 __iomem *priv2 = spu->priv2;
662
663	/* Save, Step 44:
664	 *     Save MFC_CMD Channel.
665	 */
666	out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
667	eieio();
668	csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
669	eieio();
670}
671
672static inline void reset_ch(struct spu_state *csa, struct spu *spu)
673{
674	struct spu_priv2 __iomem *priv2 = spu->priv2;
675	u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
676	u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
677	u64 idx;
678	int i;
679
680	/* Save, Step 45:
681	 *     Reset the following CH: [21, 23, 28, 30]
682	 */
683	for (i = 0; i < 4; i++) {
684		idx = ch_indices[i];
685		out_be64(&priv2->spu_chnlcntptr_RW, idx);
686		eieio();
687		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
688		eieio();
689	}
690}
691
692static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
693{
694	struct spu_priv2 __iomem *priv2 = spu->priv2;
695
696	/* Save, Step 46:
697	 * Restore, Step 25.
698	 *     Write MFC_CNTL[Sc]=0 (resume queue processing).
699	 */
700	out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
701}
702
703static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
704		unsigned int *code, int code_size)
705{
706	/* Save, Step 47:
707	 * Restore, Step 30.
708	 *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
709	 *     register, then initialize SLB_VSID and SLB_ESID
710	 *     to provide access to SPU context save code and
711	 *     LSCSA.
712	 *
713	 *     This implementation places both the context
714	 *     switch code and LSCSA in kernel address space.
715	 *
716	 *     Further this implementation assumes that the
717	 *     MFC_SR1[R]=1 (in other words, assume that
718	 *     translation is desired by OS environment).
719	 */
720	spu_invalidate_slbs(spu);
721	spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
722}
723
724static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
725{
726	/* Save, Step 48:
727	 * Restore, Step 23.
728	 *     Change the software context switch pending flag
729	 *     to context switch active.  This implementation does
730	 *     not uses a switch active flag.
731	 *
732	 * Now that we have saved the mfc in the csa, we can add in the
733	 * restart command if an exception occurred.
734	 */
735	if (test_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags))
736		csa->priv2.mfc_control_RW |= MFC_CNTL_RESTART_DMA_COMMAND;
737	clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
738	mb();
739}
740
741static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
742{
743	unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
744	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
745
746	/* Save, Step 49:
747	 * Restore, Step 22:
748	 *     Reset and then enable interrupts, as
749	 *     needed by OS.
750	 *
751	 *     This implementation enables only class1
752	 *     (translation) interrupts.
753	 */
754	spin_lock_irq(&spu->register_lock);
755	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
756	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
757	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
758	spu_int_mask_set(spu, 0, 0ul);
759	spu_int_mask_set(spu, 1, class1_mask);
760	spu_int_mask_set(spu, 2, 0ul);
761	spin_unlock_irq(&spu->register_lock);
762}
763
764static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
765			       unsigned int ls_offset, unsigned int size,
766			       unsigned int tag, unsigned int rclass,
767			       unsigned int cmd)
768{
769	struct spu_problem __iomem *prob = spu->problem;
770	union mfc_tag_size_class_cmd command;
771	unsigned int transfer_size;
772	volatile unsigned int status = 0x0;
773
774	while (size > 0) {
775		transfer_size =
776		    (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
777		command.u.mfc_size = transfer_size;
778		command.u.mfc_tag = tag;
779		command.u.mfc_rclassid = rclass;
780		command.u.mfc_cmd = cmd;
781		do {
782			out_be32(&prob->mfc_lsa_W, ls_offset);
783			out_be64(&prob->mfc_ea_W, ea);
784			out_be64(&prob->mfc_union_W.all64, command.all64);
785			status =
786			    in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
787			if (unlikely(status & 0x2)) {
788				cpu_relax();
789			}
790		} while (status & 0x3);
791		size -= transfer_size;
792		ea += transfer_size;
793		ls_offset += transfer_size;
794	}
795	return 0;
796}
797
798static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
799{
800	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
801	unsigned int ls_offset = 0x0;
802	unsigned int size = 16384;
803	unsigned int tag = 0;
804	unsigned int rclass = 0;
805	unsigned int cmd = MFC_PUT_CMD;
806
807	/* Save, Step 50:
808	 *     Issue a DMA command to copy the first 16K bytes
809	 *     of local storage to the CSA.
810	 */
811	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
812}
813
814static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
815{
816	struct spu_problem __iomem *prob = spu->problem;
817
818	/* Save, Step 51:
819	 * Restore, Step 31.
820	 *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
821	 *     point address of context save code in local
822	 *     storage.
823	 *
824	 *     This implementation uses SPU-side save/restore
825	 *     programs with entry points at LSA of 0.
826	 */
827	out_be32(&prob->spu_npc_RW, 0);
828	eieio();
829}
830
831static inline void set_signot1(struct spu_state *csa, struct spu *spu)
832{
833	struct spu_problem __iomem *prob = spu->problem;
834	union {
835		u64 ull;
836		u32 ui[2];
837	} addr64;
838
839	/* Save, Step 52:
840	 * Restore, Step 32:
841	 *    Write SPU_Sig_Notify_1 register with upper 32-bits
842	 *    of the CSA.LSCSA effective address.
843	 */
844	addr64.ull = (u64) csa->lscsa;
845	out_be32(&prob->signal_notify1, addr64.ui[0]);
846	eieio();
847}
848
849static inline void set_signot2(struct spu_state *csa, struct spu *spu)
850{
851	struct spu_problem __iomem *prob = spu->problem;
852	union {
853		u64 ull;
854		u32 ui[2];
855	} addr64;
856
857	/* Save, Step 53:
858	 * Restore, Step 33:
859	 *    Write SPU_Sig_Notify_2 register with lower 32-bits
860	 *    of the CSA.LSCSA effective address.
861	 */
862	addr64.ull = (u64) csa->lscsa;
863	out_be32(&prob->signal_notify2, addr64.ui[1]);
864	eieio();
865}
866
867static inline void send_save_code(struct spu_state *csa, struct spu *spu)
868{
869	unsigned long addr = (unsigned long)&spu_save_code[0];
870	unsigned int ls_offset = 0x0;
871	unsigned int size = sizeof(spu_save_code);
872	unsigned int tag = 0;
873	unsigned int rclass = 0;
874	unsigned int cmd = MFC_GETFS_CMD;
875
876	/* Save, Step 54:
877	 *     Issue a DMA command to copy context save code
878	 *     to local storage and start SPU.
879	 */
880	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
881}
882
883static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
884{
885	struct spu_problem __iomem *prob = spu->problem;
886
887	/* Save, Step 55:
888	 * Restore, Step 38.
889	 *     Write PPU_QueryMask=1 (enable Tag Group 0)
890	 *     and issue eieio instruction.
891	 */
892	out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
893	eieio();
894}
895
896static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
897{
898	struct spu_problem __iomem *prob = spu->problem;
899	u32 mask = MFC_TAGID_TO_TAGMASK(0);
900	unsigned long flags;
901
902	/* Save, Step 56:
903	 * Restore, Step 39.
904	 * Restore, Step 39.
905	 * Restore, Step 46.
906	 *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
907	 *     or write PPU_QueryType[TS]=01 and wait for Tag Group
908	 *     Complete Interrupt.  Write INT_Stat_Class0 or
909	 *     INT_Stat_Class2 with value of 'handled'.
910	 */
911	POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
912
913	local_irq_save(flags);
914	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
915	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
916	local_irq_restore(flags);
917}
918
919static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
920{
921	struct spu_problem __iomem *prob = spu->problem;
922	unsigned long flags;
923
924	/* Save, Step 57:
925	 * Restore, Step 40.
926	 *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
927	 *     or SPU Class 2 interrupt.  Write INT_Stat_class0
928	 *     or INT_Stat_class2 with value of handled.
929	 */
930	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
931
932	local_irq_save(flags);
933	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
934	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
935	local_irq_restore(flags);
936}
937
938static inline int check_save_status(struct spu_state *csa, struct spu *spu)
939{
940	struct spu_problem __iomem *prob = spu->problem;
941	u32 complete;
942
943	/* Save, Step 54:
944	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
945	 *     context save succeeded, otherwise context save
946	 *     failed.
947	 */
948	complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
949		    SPU_STATUS_STOPPED_BY_STOP);
950	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
951}
952
953static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
954{
955	/* Restore, Step 4:
956	 *    If required, notify the "using application" that
957	 *    the SPU task has been terminated.  TBD.
958	 */
959}
960
961static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
962		struct spu *spu)
963{
964	struct spu_priv2 __iomem *priv2 = spu->priv2;
965
966	/* Restore, Step 7:
967	 *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
968	 *     the queue and halt the decrementer.
969	 */
970	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
971		 MFC_CNTL_DECREMENTER_HALTED);
972	eieio();
973}
974
975static inline void wait_suspend_mfc_complete(struct spu_state *csa,
976					     struct spu *spu)
977{
978	struct spu_priv2 __iomem *priv2 = spu->priv2;
979
980	/* Restore, Step 8:
981	 * Restore, Step 47.
982	 *     Poll MFC_CNTL[Ss] until 11 is returned.
983	 */
984	POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
985			 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
986			 MFC_CNTL_SUSPEND_COMPLETE);
987}
988
989static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
990{
991	struct spu_problem __iomem *prob = spu->problem;
992
993	/* Restore, Step 9:
994	 *    If SPU_Status[R]=1, stop SPU execution
995	 *    and wait for stop to complete.
996	 *
997	 *    Returns       1 if SPU_Status[R]=1 on entry.
998	 *                  0 otherwise
999	 */
1000	if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1001		if (in_be32(&prob->spu_status_R) &
1002		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1003			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1004					SPU_STATUS_RUNNING);
1005		}
1006		if ((in_be32(&prob->spu_status_R) &
1007		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1008		    || (in_be32(&prob->spu_status_R) &
1009			SPU_STATUS_ISOLATED_STATE)) {
1010			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1011			eieio();
1012			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1013					SPU_STATUS_RUNNING);
1014			out_be32(&prob->spu_runcntl_RW, 0x2);
1015			eieio();
1016			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1017					SPU_STATUS_RUNNING);
1018		}
1019		if (in_be32(&prob->spu_status_R) &
1020		    SPU_STATUS_WAITING_FOR_CHANNEL) {
1021			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1022			eieio();
1023			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1024					SPU_STATUS_RUNNING);
1025		}
1026		return 1;
1027	}
1028	return 0;
1029}
1030
1031static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1032{
1033	struct spu_problem __iomem *prob = spu->problem;
1034
1035	/* Restore, Step 10:
1036	 *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1037	 *    release SPU from isolate state.
1038	 */
1039	if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1040		if (in_be32(&prob->spu_status_R) &
1041		    SPU_STATUS_ISOLATED_EXIT_STATUS) {
1042			spu_mfc_sr1_set(spu,
1043					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1044			eieio();
1045			out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1046			eieio();
1047			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1048					SPU_STATUS_RUNNING);
1049		}
1050		if ((in_be32(&prob->spu_status_R) &
1051		     SPU_STATUS_ISOLATED_LOAD_STATUS)
1052		    || (in_be32(&prob->spu_status_R) &
1053			SPU_STATUS_ISOLATED_STATE)) {
1054			spu_mfc_sr1_set(spu,
1055					MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1056			eieio();
1057			out_be32(&prob->spu_runcntl_RW, 0x2);
1058			eieio();
1059			POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1060					SPU_STATUS_RUNNING);
1061		}
1062	}
1063}
1064
1065static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1066{
1067	struct spu_priv2 __iomem *priv2 = spu->priv2;
1068	u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1069	u64 idx;
1070	int i;
1071
1072	/* Restore, Step 20:
1073	 */
1074
1075	/* Reset CH 1 */
1076	out_be64(&priv2->spu_chnlcntptr_RW, 1);
1077	out_be64(&priv2->spu_chnldata_RW, 0UL);
1078
1079	/* Reset the following CH: [0,3,4,24,25,27] */
1080	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1081		idx = ch_indices[i];
1082		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1083		eieio();
1084		out_be64(&priv2->spu_chnldata_RW, 0UL);
1085		out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1086		eieio();
1087	}
1088}
1089
1090static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1091{
1092	struct spu_priv2 __iomem *priv2 = spu->priv2;
1093	u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1094	u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1095	u64 idx;
1096	int i;
1097
1098	/* Restore, Step 21:
1099	 *     Reset the following CH: [21, 23, 28, 29, 30]
1100	 */
1101	for (i = 0; i < 5; i++) {
1102		idx = ch_indices[i];
1103		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1104		eieio();
1105		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1106		eieio();
1107	}
1108}
1109
1110static inline void setup_spu_status_part1(struct spu_state *csa,
1111					  struct spu *spu)
1112{
1113	u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1114	u32 status_I = SPU_STATUS_INVALID_INSTR;
1115	u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1116	u32 status_S = SPU_STATUS_SINGLE_STEP;
1117	u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1118	u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1119	u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1120	u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1121	u32 status_code;
1122
1123	/* Restore, Step 27:
1124	 *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1125	 *     instruction sequence to the end of the SPU based restore
1126	 *     code (after the "context restored" stop and signal) to
1127	 *     restore the correct SPU status.
1128	 *
1129	 *     NOTE: Rather than modifying the SPU executable, we
1130	 *     instead add a new 'stopped_status' field to the
1131	 *     LSCSA.  The SPU-side restore reads this field and
1132	 *     takes the appropriate action when exiting.
1133	 */
1134
1135	status_code =
1136	    (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1137	if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1138
1139		/* SPU_Status[P,I]=1 - Illegal Instruction followed
1140		 * by Stop and Signal instruction, followed by 'br -4'.
1141		 *
1142		 */
1143		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1144		csa->lscsa->stopped_status.slot[1] = status_code;
1145
1146	} else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1147
1148		/* SPU_Status[P,H]=1 - Halt Conditional, followed
1149		 * by Stop and Signal instruction, followed by
1150		 * 'br -4'.
1151		 */
1152		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1153		csa->lscsa->stopped_status.slot[1] = status_code;
1154
1155	} else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1156
1157		/* SPU_Status[S,P]=1 - Stop and Signal instruction
1158		 * followed by 'br -4'.
1159		 */
1160		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1161		csa->lscsa->stopped_status.slot[1] = status_code;
1162
1163	} else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1164
1165		/* SPU_Status[S,I]=1 - Illegal instruction followed
1166		 * by 'br -4'.
1167		 */
1168		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1169		csa->lscsa->stopped_status.slot[1] = status_code;
1170
1171	} else if ((csa->prob.spu_status_R & status_P) == status_P) {
1172
1173		/* SPU_Status[P]=1 - Stop and Signal instruction
1174		 * followed by 'br -4'.
1175		 */
1176		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1177		csa->lscsa->stopped_status.slot[1] = status_code;
1178
1179	} else if ((csa->prob.spu_status_R & status_H) == status_H) {
1180
1181		/* SPU_Status[H]=1 - Halt Conditional, followed
1182		 * by 'br -4'.
1183		 */
1184		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1185
1186	} else if ((csa->prob.spu_status_R & status_S) == status_S) {
1187
1188		/* SPU_Status[S]=1 - Two nop instructions.
1189		 */
1190		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1191
1192	} else if ((csa->prob.spu_status_R & status_I) == status_I) {
1193
1194		/* SPU_Status[I]=1 - Illegal instruction followed
1195		 * by 'br -4'.
1196		 */
1197		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1198
1199	}
1200}
1201
1202static inline void setup_spu_status_part2(struct spu_state *csa,
1203					  struct spu *spu)
1204{
1205	u32 mask;
1206
1207	/* Restore, Step 28:
1208	 *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1209	 *     add a 'br *' instruction to the end of
1210	 *     the SPU based restore code.
1211	 *
1212	 *     NOTE: Rather than modifying the SPU executable, we
1213	 *     instead add a new 'stopped_status' field to the
1214	 *     LSCSA.  The SPU-side restore reads this field and
1215	 *     takes the appropriate action when exiting.
1216	 */
1217	mask = SPU_STATUS_INVALID_INSTR |
1218	    SPU_STATUS_SINGLE_STEP |
1219	    SPU_STATUS_STOPPED_BY_HALT |
1220	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1221	if (!(csa->prob.spu_status_R & mask)) {
1222		csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1223	}
1224}
1225
1226static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1227{
1228	/* Restore, Step 29:
1229	 *     Restore RA_GROUP_ID register and the
1230	 *     RA_ENABLE reigster from the CSA.
1231	 */
1232	spu_resource_allocation_groupID_set(spu,
1233			csa->priv1.resource_allocation_groupID_RW);
1234	spu_resource_allocation_enable_set(spu,
1235			csa->priv1.resource_allocation_enable_RW);
1236}
1237
1238static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1239{
1240	unsigned long addr = (unsigned long)&spu_restore_code[0];
1241	unsigned int ls_offset = 0x0;
1242	unsigned int size = sizeof(spu_restore_code);
1243	unsigned int tag = 0;
1244	unsigned int rclass = 0;
1245	unsigned int cmd = MFC_GETFS_CMD;
1246
1247	/* Restore, Step 37:
1248	 *     Issue MFC DMA command to copy context
1249	 *     restore code to local storage.
1250	 */
1251	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1252}
1253
1254static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1255{
1256	/* Restore, Step 34:
1257	 *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1258	 *     running) then adjust decrementer, set
1259	 *     decrementer running status in LSCSA,
1260	 *     and set decrementer "wrapped" status
1261	 *     in LSCSA.
1262	 */
1263	if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1264		cycles_t resume_time = get_cycles();
1265		cycles_t delta_time = resume_time - csa->suspend_time;
1266
1267		csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1268		if (csa->lscsa->decr.slot[0] < delta_time) {
1269			csa->lscsa->decr_status.slot[0] |=
1270				 SPU_DECR_STATUS_WRAPPED;
1271		}
1272
1273		csa->lscsa->decr.slot[0] -= delta_time;
1274	} else {
1275		csa->lscsa->decr_status.slot[0] = 0;
1276	}
1277}
1278
1279static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1280{
1281	/* Restore, Step 35:
1282	 *     Copy the CSA.PU_MB data into the LSCSA.
1283	 */
1284	csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1285}
1286
1287static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1288{
1289	/* Restore, Step 36:
1290	 *     Copy the CSA.PUINT_MB data into the LSCSA.
1291	 */
1292	csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1293}
1294
1295static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1296{
1297	struct spu_problem __iomem *prob = spu->problem;
1298	u32 complete;
1299
1300	/* Restore, Step 40:
1301	 *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1302	 *     context restore succeeded, otherwise context restore
1303	 *     failed.
1304	 */
1305	complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1306		    SPU_STATUS_STOPPED_BY_STOP);
1307	return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1308}
1309
1310static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1311{
1312	struct spu_priv2 __iomem *priv2 = spu->priv2;
1313
1314	/* Restore, Step 41:
1315	 *     Restore SPU_PrivCntl from the CSA.
1316	 */
1317	out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1318	eieio();
1319}
1320
1321static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1322{
1323	struct spu_problem __iomem *prob = spu->problem;
1324	u32 mask;
1325
1326	/* Restore, Step 42:
1327	 *     If any CSA.SPU_Status[I,S,H,P]=1, then
1328	 *     restore the error or single step state.
1329	 */
1330	mask = SPU_STATUS_INVALID_INSTR |
1331	    SPU_STATUS_SINGLE_STEP |
1332	    SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1333	if (csa->prob.spu_status_R & mask) {
1334		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1335		eieio();
1336		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1337				SPU_STATUS_RUNNING);
1338	}
1339}
1340
1341static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1342{
1343	struct spu_problem __iomem *prob = spu->problem;
1344	u32 mask;
1345
1346	/* Restore, Step 43:
1347	 *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1348	 *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1349	 *     then write '00' to SPU_RunCntl[R0R1] and wait
1350	 *     for SPU_Status[R]=0.
1351	 */
1352	mask = SPU_STATUS_INVALID_INSTR |
1353	    SPU_STATUS_SINGLE_STEP |
1354	    SPU_STATUS_STOPPED_BY_HALT |
1355	    SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1356	if (!(csa->prob.spu_status_R & mask)) {
1357		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1358		eieio();
1359		POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1360				 SPU_STATUS_RUNNING);
1361		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1362		eieio();
1363		POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1364				SPU_STATUS_RUNNING);
1365	}
1366}
1367
1368static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1369{
1370	unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1371	unsigned int ls_offset = 0x0;
1372	unsigned int size = 16384;
1373	unsigned int tag = 0;
1374	unsigned int rclass = 0;
1375	unsigned int cmd = MFC_GET_CMD;
1376
1377	/* Restore, Step 44:
1378	 *     Issue a DMA command to restore the first
1379	 *     16kb of local storage from CSA.
1380	 */
1381	send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1382}
1383
1384static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1385{
1386	struct spu_priv2 __iomem *priv2 = spu->priv2;
1387
1388	/* Restore, Step 47.
1389	 *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1390	 *     the queue.
1391	 */
1392	out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1393	eieio();
1394}
1395
1396static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1397{
1398	/* Restore, Step 49:
1399	 *     Write INT_MASK_class0 with value of 0.
1400	 *     Write INT_MASK_class1 with value of 0.
1401	 *     Write INT_MASK_class2 with value of 0.
1402	 *     Write INT_STAT_class0 with value of -1.
1403	 *     Write INT_STAT_class1 with value of -1.
1404	 *     Write INT_STAT_class2 with value of -1.
1405	 */
1406	spin_lock_irq(&spu->register_lock);
1407	spu_int_mask_set(spu, 0, 0ul);
1408	spu_int_mask_set(spu, 1, 0ul);
1409	spu_int_mask_set(spu, 2, 0ul);
1410	spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1411	spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1412	spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1413	spin_unlock_irq(&spu->register_lock);
1414}
1415
1416static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1417{
1418	struct spu_priv2 __iomem *priv2 = spu->priv2;
1419	int i;
1420
1421	/* Restore, Step 50:
1422	 *     If MFC_Cntl[Se]!=0 then restore
1423	 *     MFC command queues.
1424	 */
1425	if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1426		for (i = 0; i < 8; i++) {
1427			out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1428				 csa->priv2.puq[i].mfc_cq_data0_RW);
1429			out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1430				 csa->priv2.puq[i].mfc_cq_data1_RW);
1431			out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1432				 csa->priv2.puq[i].mfc_cq_data2_RW);
1433			out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1434				 csa->priv2.puq[i].mfc_cq_data3_RW);
1435		}
1436		for (i = 0; i < 16; i++) {
1437			out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1438				 csa->priv2.spuq[i].mfc_cq_data0_RW);
1439			out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1440				 csa->priv2.spuq[i].mfc_cq_data1_RW);
1441			out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1442				 csa->priv2.spuq[i].mfc_cq_data2_RW);
1443			out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1444				 csa->priv2.spuq[i].mfc_cq_data3_RW);
1445		}
1446	}
1447	eieio();
1448}
1449
1450static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1451{
1452	struct spu_problem __iomem *prob = spu->problem;
1453
1454	/* Restore, Step 51:
1455	 *     Restore the PPU_QueryMask register from CSA.
1456	 */
1457	out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1458	eieio();
1459}
1460
1461static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1462{
1463	struct spu_problem __iomem *prob = spu->problem;
1464
1465	/* Restore, Step 52:
1466	 *     Restore the PPU_QueryType register from CSA.
1467	 */
1468	out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1469	eieio();
1470}
1471
1472static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1473{
1474	struct spu_priv2 __iomem *priv2 = spu->priv2;
1475
1476	/* Restore, Step 53:
1477	 *     Restore the MFC_CSR_TSQ register from CSA.
1478	 */
1479	out_be64(&priv2->spu_tag_status_query_RW,
1480		 csa->priv2.spu_tag_status_query_RW);
1481	eieio();
1482}
1483
1484static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1485{
1486	struct spu_priv2 __iomem *priv2 = spu->priv2;
1487
1488	/* Restore, Step 54:
1489	 *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1490	 *     registers from CSA.
1491	 */
1492	out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1493	out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1494	eieio();
1495}
1496
1497static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1498{
1499	struct spu_priv2 __iomem *priv2 = spu->priv2;
1500
1501	/* Restore, Step 55:
1502	 *     Restore the MFC_CSR_ATO register from CSA.
1503	 */
1504	out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1505}
1506
1507static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1508{
1509	/* Restore, Step 56:
1510	 *     Restore the MFC_TCLASS_ID register from CSA.
1511	 */
1512	spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1513	eieio();
1514}
1515
1516static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1517{
1518	u64 ch0_cnt, ch0_data;
1519	u64 ch1_data;
1520
1521	/* Restore, Step 57:
1522	 *    Set the Lock Line Reservation Lost Event by:
1523	 *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1524	 *      2. If CSA.SPU_Channel_0_Count=0 and
1525	 *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1526	 *         CSA.SPU_Event_Status[Lr]=0 then set
1527	 *         CSA.SPU_Event_Status_Count=1.
1528	 */
1529	ch0_cnt = csa->spu_chnlcnt_RW[0];
1530	ch0_data = csa->spu_chnldata_RW[0];
1531	ch1_data = csa->spu_chnldata_RW[1];
1532	csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1533	if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1534	    (ch1_data & MFC_LLR_LOST_EVENT)) {
1535		csa->spu_chnlcnt_RW[0] = 1;
1536	}
1537}
1538
1539static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1540{
1541	/* Restore, Step 58:
1542	 *     If the status of the CSA software decrementer
1543	 *     "wrapped" flag is set, OR in a '1' to
1544	 *     CSA.SPU_Event_Status[Tm].
1545	 */
1546	if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1547		return;
1548
1549	if ((csa->spu_chnlcnt_RW[0] == 0) &&
1550	    (csa->spu_chnldata_RW[1] & 0x20) &&
1551	    !(csa->spu_chnldata_RW[0] & 0x20))
1552		csa->spu_chnlcnt_RW[0] = 1;
1553
1554	csa->spu_chnldata_RW[0] |= 0x20;
1555}
1556
1557static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1558{
1559	struct spu_priv2 __iomem *priv2 = spu->priv2;
1560	u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1561	int i;
1562
1563	/* Restore, Step 59:
1564	 *	Restore the following CH: [0,3,4,24,25,27]
1565	 */
1566	for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1567		idx = ch_indices[i];
1568		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1569		eieio();
1570		out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1571		out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1572		eieio();
1573	}
1574}
1575
1576static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1577{
1578	struct spu_priv2 __iomem *priv2 = spu->priv2;
1579	u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1580	u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1581	u64 idx;
1582	int i;
1583
1584	/* Restore, Step 60:
1585	 *     Restore the following CH: [9,21,23].
1586	 */
1587	ch_counts[0] = 1UL;
1588	ch_counts[1] = csa->spu_chnlcnt_RW[21];
1589	ch_counts[2] = 1UL;
1590	for (i = 0; i < 3; i++) {
1591		idx = ch_indices[i];
1592		out_be64(&priv2->spu_chnlcntptr_RW, idx);
1593		eieio();
1594		out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1595		eieio();
1596	}
1597}
1598
1599static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1600{
1601	struct spu_priv2 __iomem *priv2 = spu->priv2;
1602
1603	/* Restore, Step 61:
1604	 *     Restore the SPU_LSLR register from CSA.
1605	 */
1606	out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1607	eieio();
1608}
1609
1610static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1611{
1612	struct spu_priv2 __iomem *priv2 = spu->priv2;
1613
1614	/* Restore, Step 62:
1615	 *     Restore the SPU_Cfg register from CSA.
1616	 */
1617	out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1618	eieio();
1619}
1620
1621static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1622{
1623	/* Restore, Step 63:
1624	 *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1625	 *     Not performed by this implementation.
1626	 */
1627}
1628
1629static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1630{
1631	struct spu_problem __iomem *prob = spu->problem;
1632
1633	/* Restore, Step 64:
1634	 *     Restore SPU_NPC from CSA.
1635	 */
1636	out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1637	eieio();
1638}
1639
1640static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1641{
1642	struct spu_priv2 __iomem *priv2 = spu->priv2;
1643	int i;
1644
1645	/* Restore, Step 65:
1646	 *     Restore MFC_RdSPU_MB from CSA.
1647	 */
1648	out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1649	eieio();
1650	out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1651	for (i = 0; i < 4; i++) {
1652		out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1653	}
1654	eieio();
1655}
1656
1657static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1658{
1659	struct spu_problem __iomem *prob = spu->problem;
1660
1661	/* Restore, Step 66:
1662	 *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1663	 *     read from the PPU_MB register.
1664	 */
1665	if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1666		in_be32(&prob->pu_mb_R);
1667		eieio();
1668	}
1669}
1670
1671static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1672{
1673	struct spu_priv2 __iomem *priv2 = spu->priv2;
1674
1675	/* Restore, Step 66:
1676	 *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1677	 *     read from the PPUINT_MB register.
1678	 */
1679	if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1680		in_be64(&priv2->puint_mb_R);
1681		eieio();
1682		spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1683		eieio();
1684	}
1685}
1686
1687static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1688{
1689	/* Restore, Step 69:
1690	 *     Restore the MFC_SR1 register from CSA.
1691	 */
1692	spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1693	eieio();
1694}
1695
1696static inline void set_int_route(struct spu_state *csa, struct spu *spu)
1697{
1698	struct spu_context *ctx = spu->ctx;
1699
1700	spu_cpu_affinity_set(spu, ctx->last_ran);
1701}
1702
1703static inline void restore_other_spu_access(struct spu_state *csa,
1704					    struct spu *spu)
1705{
1706	/* Restore, Step 70:
1707	 *     Restore other SPU mappings to this SPU. TBD.
1708	 */
1709}
1710
1711static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1712{
1713	struct spu_problem __iomem *prob = spu->problem;
1714
1715	/* Restore, Step 71:
1716	 *     If CSA.SPU_Status[R]=1 then write
1717	 *     SPU_RunCntl[R0R1]='01'.
1718	 */
1719	if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1720		out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1721		eieio();
1722	}
1723}
1724
1725static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1726{
1727	struct spu_priv2 __iomem *priv2 = spu->priv2;
1728
1729	/* Restore, Step 72:
1730	 *    Restore the MFC_CNTL register for the CSA.
1731	 */
1732	out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1733	eieio();
1734
1735	/*
1736	 * The queue is put back into the same state that was evident prior to
1737	 * the context switch. The suspend flag is added to the saved state in
1738	 * the csa, if the operational state was suspending or suspended. In
1739	 * this case, the code that suspended the mfc is responsible for
1740	 * continuing it. Note that SPE faults do not change the operational
1741	 * state of the spu.
1742	 */
1743}
1744
1745static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1746{
1747	/* Restore, Step 73:
1748	 *     Enable user-space access (if provided) to this
1749	 *     SPU by mapping the virtual pages assigned to
1750	 *     the SPU memory-mapped I/O (MMIO) for problem
1751	 *     state. TBD.
1752	 */
1753}
1754
1755static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1756{
1757	/* Restore, Step 74:
1758	 *     Reset the "context switch active" flag.
1759	 *     Not performed by this implementation.
1760	 */
1761}
1762
1763static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1764{
1765	/* Restore, Step 75:
1766	 *     Re-enable SPU interrupts.
1767	 */
1768	spin_lock_irq(&spu->register_lock);
1769	spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1770	spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1771	spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1772	spin_unlock_irq(&spu->register_lock);
1773}
1774
1775static int quiece_spu(struct spu_state *prev, struct spu *spu)
1776{
1777	/*
1778	 * Combined steps 2-18 of SPU context save sequence, which
1779	 * quiesce the SPU state (disable SPU execution, MFC command
1780	 * queues, decrementer, SPU interrupts, etc.).
1781	 *
1782	 * Returns      0 on success.
1783	 *              2 if failed step 2.
1784	 *              6 if failed step 6.
1785	 */
1786
1787	if (check_spu_isolate(prev, spu)) {	/* Step 2. */
1788		return 2;
1789	}
1790	disable_interrupts(prev, spu);	        /* Step 3. */
1791	set_watchdog_timer(prev, spu);	        /* Step 4. */
1792	inhibit_user_access(prev, spu);	        /* Step 5. */
1793	if (check_spu_isolate(prev, spu)) {	/* Step 6. */
1794		return 6;
1795	}
1796	set_switch_pending(prev, spu);	        /* Step 7. */
1797	save_mfc_cntl(prev, spu);		/* Step 8. */
1798	save_spu_runcntl(prev, spu);	        /* Step 9. */
1799	save_mfc_sr1(prev, spu);	        /* Step 10. */
1800	save_spu_status(prev, spu);	        /* Step 11. */
1801	save_mfc_stopped_status(prev, spu);     /* Step 12. */
1802	halt_mfc_decr(prev, spu);	        /* Step 13. */
1803	save_timebase(prev, spu);		/* Step 14. */
1804	remove_other_spu_access(prev, spu);	/* Step 15. */
1805	do_mfc_mssync(prev, spu);	        /* Step 16. */
1806	issue_mfc_tlbie(prev, spu);	        /* Step 17. */
1807	handle_pending_interrupts(prev, spu);	/* Step 18. */
1808
1809	return 0;
1810}
1811
1812static void save_csa(struct spu_state *prev, struct spu *spu)
1813{
1814	/*
1815	 * Combine steps 19-44 of SPU context save sequence, which
1816	 * save regions of the privileged & problem state areas.
1817	 */
1818
1819	save_mfc_queues(prev, spu);	/* Step 19. */
1820	save_ppu_querymask(prev, spu);	/* Step 20. */
1821	save_ppu_querytype(prev, spu);	/* Step 21. */
1822	save_ppu_tagstatus(prev, spu);  /* NEW.     */
1823	save_mfc_csr_tsq(prev, spu);	/* Step 22. */
1824	save_mfc_csr_cmd(prev, spu);	/* Step 23. */
1825	save_mfc_csr_ato(prev, spu);	/* Step 24. */
1826	save_mfc_tclass_id(prev, spu);	/* Step 25. */
1827	set_mfc_tclass_id(prev, spu);	/* Step 26. */
1828	save_mfc_cmd(prev, spu);	/* Step 26a - moved from 44. */
1829	purge_mfc_queue(prev, spu);	/* Step 27. */
1830	wait_purge_complete(prev, spu);	/* Step 28. */
1831	setup_mfc_sr1(prev, spu);	/* Step 30. */
1832	save_spu_npc(prev, spu);	/* Step 31. */
1833	save_spu_privcntl(prev, spu);	/* Step 32. */
1834	reset_spu_privcntl(prev, spu);	/* Step 33. */
1835	save_spu_lslr(prev, spu);	/* Step 34. */
1836	reset_spu_lslr(prev, spu);	/* Step 35. */
1837	save_spu_cfg(prev, spu);	/* Step 36. */
1838	save_pm_trace(prev, spu);	/* Step 37. */
1839	save_mfc_rag(prev, spu);	/* Step 38. */
1840	save_ppu_mb_stat(prev, spu);	/* Step 39. */
1841	save_ppu_mb(prev, spu);	        /* Step 40. */
1842	save_ppuint_mb(prev, spu);	/* Step 41. */
1843	save_ch_part1(prev, spu);	/* Step 42. */
1844	save_spu_mb(prev, spu);	        /* Step 43. */
1845	reset_ch(prev, spu);	        /* Step 45. */
1846}
1847
1848static void save_lscsa(struct spu_state *prev, struct spu *spu)
1849{
1850	/*
1851	 * Perform steps 46-57 of SPU context save sequence,
1852	 * which save regions of the local store and register
1853	 * file.
1854	 */
1855
1856	resume_mfc_queue(prev, spu);	/* Step 46. */
1857	/* Step 47. */
1858	setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1859	set_switch_active(prev, spu);	/* Step 48. */
1860	enable_interrupts(prev, spu);	/* Step 49. */
1861	save_ls_16kb(prev, spu);	/* Step 50. */
1862	set_spu_npc(prev, spu);	        /* Step 51. */
1863	set_signot1(prev, spu);		/* Step 52. */
1864	set_signot2(prev, spu);		/* Step 53. */
1865	send_save_code(prev, spu);	/* Step 54. */
1866	set_ppu_querymask(prev, spu);	/* Step 55. */
1867	wait_tag_complete(prev, spu);	/* Step 56. */
1868	wait_spu_stopped(prev, spu);	/* Step 57. */
1869}
1870
1871static void force_spu_isolate_exit(struct spu *spu)
1872{
1873	struct spu_problem __iomem *prob = spu->problem;
1874	struct spu_priv2 __iomem *priv2 = spu->priv2;
1875
1876	/* Stop SPE execution and wait for completion. */
1877	out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1878	iobarrier_rw();
1879	POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1880
1881	/* Restart SPE master runcntl. */
1882	spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1883	iobarrier_w();
1884
1885	/* Initiate isolate exit request and wait for completion. */
1886	out_be64(&priv2->spu_privcntl_RW, 4LL);
1887	iobarrier_w();
1888	out_be32(&prob->spu_runcntl_RW, 2);
1889	iobarrier_rw();
1890	POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1891				& SPU_STATUS_STOPPED_BY_STOP));
1892
1893	/* Reset load request to normal. */
1894	out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1895	iobarrier_w();
1896}
1897
1898/**
1899 * stop_spu_isolate
1900 *	Check SPU run-control state and force isolated
1901 *	exit function as necessary.
1902 */
1903static void stop_spu_isolate(struct spu *spu)
1904{
1905	struct spu_problem __iomem *prob = spu->problem;
1906
1907	if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1908		/* The SPU is in isolated state; the only way
1909		 * to get it out is to perform an isolated
1910		 * exit (clean) operation.
1911		 */
1912		force_spu_isolate_exit(spu);
1913	}
1914}
1915
1916static void harvest(struct spu_state *prev, struct spu *spu)
1917{
1918	/*
1919	 * Perform steps 2-25 of SPU context restore sequence,
1920	 * which resets an SPU either after a failed save, or
1921	 * when using SPU for first time.
1922	 */
1923
1924	disable_interrupts(prev, spu);	        /* Step 2.  */
1925	inhibit_user_access(prev, spu);	        /* Step 3.  */
1926	terminate_spu_app(prev, spu);	        /* Step 4.  */
1927	set_switch_pending(prev, spu);	        /* Step 5.  */
1928	stop_spu_isolate(spu);			/* NEW.     */
1929	remove_other_spu_access(prev, spu);	/* Step 6.  */
1930	suspend_mfc_and_halt_decr(prev, spu);	/* Step 7.  */
1931	wait_suspend_mfc_complete(prev, spu);	/* Step 8.  */
1932	if (!suspend_spe(prev, spu))	        /* Step 9.  */
1933		clear_spu_status(prev, spu);	/* Step 10. */
1934	do_mfc_mssync(prev, spu);	        /* Step 11. */
1935	issue_mfc_tlbie(prev, spu);	        /* Step 12. */
1936	handle_pending_interrupts(prev, spu);	/* Step 13. */
1937	purge_mfc_queue(prev, spu);	        /* Step 14. */
1938	wait_purge_complete(prev, spu);	        /* Step 15. */
1939	reset_spu_privcntl(prev, spu);	        /* Step 16. */
1940	reset_spu_lslr(prev, spu);              /* Step 17. */
1941	setup_mfc_sr1(prev, spu);	        /* Step 18. */
1942	spu_invalidate_slbs(spu);		/* Step 19. */
1943	reset_ch_part1(prev, spu);	        /* Step 20. */
1944	reset_ch_part2(prev, spu);	        /* Step 21. */
1945	enable_interrupts(prev, spu);	        /* Step 22. */
1946	set_switch_active(prev, spu);	        /* Step 23. */
1947	set_mfc_tclass_id(prev, spu);	        /* Step 24. */
1948	resume_mfc_queue(prev, spu);	        /* Step 25. */
1949}
1950
1951static void restore_lscsa(struct spu_state *next, struct spu *spu)
1952{
1953	/*
1954	 * Perform steps 26-40 of SPU context restore sequence,
1955	 * which restores regions of the local store and register
1956	 * file.
1957	 */
1958
1959	set_watchdog_timer(next, spu);	        /* Step 26. */
1960	setup_spu_status_part1(next, spu);	/* Step 27. */
1961	setup_spu_status_part2(next, spu);	/* Step 28. */
1962	restore_mfc_rag(next, spu);	        /* Step 29. */
1963	/* Step 30. */
1964	setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1965	set_spu_npc(next, spu);	                /* Step 31. */
1966	set_signot1(next, spu);	                /* Step 32. */
1967	set_signot2(next, spu);	                /* Step 33. */
1968	setup_decr(next, spu);	                /* Step 34. */
1969	setup_ppu_mb(next, spu);	        /* Step 35. */
1970	setup_ppuint_mb(next, spu);	        /* Step 36. */
1971	send_restore_code(next, spu);	        /* Step 37. */
1972	set_ppu_querymask(next, spu);	        /* Step 38. */
1973	wait_tag_complete(next, spu);	        /* Step 39. */
1974	wait_spu_stopped(next, spu);	        /* Step 40. */
1975}
1976
1977static void restore_csa(struct spu_state *next, struct spu *spu)
1978{
1979	/*
1980	 * Combine steps 41-76 of SPU context restore sequence, which
1981	 * restore regions of the privileged & problem state areas.
1982	 */
1983
1984	restore_spu_privcntl(next, spu);	/* Step 41. */
1985	restore_status_part1(next, spu);	/* Step 42. */
1986	restore_status_part2(next, spu);	/* Step 43. */
1987	restore_ls_16kb(next, spu);	        /* Step 44. */
1988	wait_tag_complete(next, spu);	        /* Step 45. */
1989	suspend_mfc(next, spu);	                /* Step 46. */
1990	wait_suspend_mfc_complete(next, spu);	/* Step 47. */
1991	issue_mfc_tlbie(next, spu);	        /* Step 48. */
1992	clear_interrupts(next, spu);	        /* Step 49. */
1993	restore_mfc_queues(next, spu);	        /* Step 50. */
1994	restore_ppu_querymask(next, spu);	/* Step 51. */
1995	restore_ppu_querytype(next, spu);	/* Step 52. */
1996	restore_mfc_csr_tsq(next, spu);	        /* Step 53. */
1997	restore_mfc_csr_cmd(next, spu);	        /* Step 54. */
1998	restore_mfc_csr_ato(next, spu);	        /* Step 55. */
1999	restore_mfc_tclass_id(next, spu);	/* Step 56. */
2000	set_llr_event(next, spu);	        /* Step 57. */
2001	restore_decr_wrapped(next, spu);	/* Step 58. */
2002	restore_ch_part1(next, spu);	        /* Step 59. */
2003	restore_ch_part2(next, spu);	        /* Step 60. */
2004	restore_spu_lslr(next, spu);	        /* Step 61. */
2005	restore_spu_cfg(next, spu);	        /* Step 62. */
2006	restore_pm_trace(next, spu);	        /* Step 63. */
2007	restore_spu_npc(next, spu);	        /* Step 64. */
2008	restore_spu_mb(next, spu);	        /* Step 65. */
2009	check_ppu_mb_stat(next, spu);	        /* Step 66. */
2010	check_ppuint_mb_stat(next, spu);	/* Step 67. */
2011	spu_invalidate_slbs(spu);		/* Modified Step 68. */
2012	restore_mfc_sr1(next, spu);	        /* Step 69. */
2013	set_int_route(next, spu);		/* NEW      */
2014	restore_other_spu_access(next, spu);	/* Step 70. */
2015	restore_spu_runcntl(next, spu);	        /* Step 71. */
2016	restore_mfc_cntl(next, spu);	        /* Step 72. */
2017	enable_user_access(next, spu);	        /* Step 73. */
2018	reset_switch_active(next, spu);	        /* Step 74. */
2019	reenable_interrupts(next, spu);	        /* Step 75. */
2020}
2021
2022static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2023{
2024	int rc;
2025
2026	/*
2027	 * SPU context save can be broken into three phases:
2028	 *
2029	 *     (a) quiesce [steps 2-16].
2030	 *     (b) save of CSA, performed by PPE [steps 17-42]
2031	 *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2032	 *
2033	 * Returns      0 on success.
2034	 *              2,6 if failed to quiece SPU
2035	 *              53 if SPU-side of save failed.
2036	 */
2037
2038	rc = quiece_spu(prev, spu);	        /* Steps 2-16. */
2039	switch (rc) {
2040	default:
2041	case 2:
2042	case 6:
2043		harvest(prev, spu);
2044		return rc;
2045		break;
2046	case 0:
2047		break;
2048	}
2049	save_csa(prev, spu);	                /* Steps 17-43. */
2050	save_lscsa(prev, spu);	                /* Steps 44-53. */
2051	return check_save_status(prev, spu);	/* Step 54.     */
2052}
2053
2054static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2055{
2056	int rc;
2057
2058	/*
2059	 * SPU context restore can be broken into three phases:
2060	 *
2061	 *    (a) harvest (or reset) SPU [steps 2-24].
2062	 *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2063	 *    (c) restore CSA [steps 41-76], performed by PPE.
2064	 *
2065	 * The 'harvest' step is not performed here, but rather
2066	 * as needed below.
2067	 */
2068
2069	restore_lscsa(next, spu);	        /* Steps 24-39. */
2070	rc = check_restore_status(next, spu);	/* Step 40.     */
2071	switch (rc) {
2072	default:
2073		/* Failed. Return now. */
2074		return rc;
2075		break;
2076	case 0:
2077		/* Fall through to next step. */
2078		break;
2079	}
2080	restore_csa(next, spu);
2081
2082	return 0;
2083}
2084
2085/**
2086 * spu_save - SPU context save, with locking.
2087 * @prev: pointer to SPU context save area, to be saved.
2088 * @spu: pointer to SPU iomem structure.
2089 *
2090 * Acquire locks, perform the save operation then return.
2091 */
2092int spu_save(struct spu_state *prev, struct spu *spu)
2093{
2094	int rc;
2095
2096	acquire_spu_lock(spu);	        /* Step 1.     */
2097	rc = __do_spu_save(prev, spu);	/* Steps 2-53. */
2098	release_spu_lock(spu);
2099	if (rc != 0 && rc != 2 && rc != 6) {
2100		panic("%s failed on SPU[%d], rc=%d.\n",
2101		      __func__, spu->number, rc);
2102	}
2103	return 0;
2104}
2105EXPORT_SYMBOL_GPL(spu_save);
2106
2107/**
2108 * spu_restore - SPU context restore, with harvest and locking.
2109 * @new: pointer to SPU context save area, to be restored.
2110 * @spu: pointer to SPU iomem structure.
2111 *
2112 * Perform harvest + restore, as we may not be coming
2113 * from a previous successful save operation, and the
2114 * hardware state is unknown.
2115 */
2116int spu_restore(struct spu_state *new, struct spu *spu)
2117{
2118	int rc;
2119
2120	acquire_spu_lock(spu);
2121	harvest(NULL, spu);
2122	spu->slb_replace = 0;
2123	rc = __do_spu_restore(new, spu);
2124	release_spu_lock(spu);
2125	if (rc) {
2126		panic("%s failed on SPU[%d] rc=%d.\n",
2127		       __func__, spu->number, rc);
2128	}
2129	return rc;
2130}
2131EXPORT_SYMBOL_GPL(spu_restore);
2132
2133static void init_prob(struct spu_state *csa)
2134{
2135	csa->spu_chnlcnt_RW[9] = 1;
2136	csa->spu_chnlcnt_RW[21] = 16;
2137	csa->spu_chnlcnt_RW[23] = 1;
2138	csa->spu_chnlcnt_RW[28] = 1;
2139	csa->spu_chnlcnt_RW[30] = 1;
2140	csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2141	csa->prob.mb_stat_R = 0x000400;
2142}
2143
2144static void init_priv1(struct spu_state *csa)
2145{
2146	/* Enable decode, relocate, tlbie response, master runcntl. */
2147	csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2148	    MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2149	    MFC_STATE1_PROBLEM_STATE_MASK |
2150	    MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2151
2152	/* Enable OS-specific set of interrupts. */
2153	csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2154	    CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2155	    CLASS0_ENABLE_SPU_ERROR_INTR;
2156	csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2157	    CLASS1_ENABLE_STORAGE_FAULT_INTR;
2158	csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2159	    CLASS2_ENABLE_SPU_HALT_INTR |
2160	    CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2161}
2162
2163static void init_priv2(struct spu_state *csa)
2164{
2165	csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2166	csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2167	    MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2168	    MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2169}
2170
2171/**
2172 * spu_alloc_csa - allocate and initialize an SPU context save area.
2173 *
2174 * Allocate and initialize the contents of an SPU context save area.
2175 * This includes enabling address translation, interrupt masks, etc.,
2176 * as appropriate for the given OS environment.
2177 *
2178 * Note that storage for the 'lscsa' is allocated separately,
2179 * as it is by far the largest of the context save regions,
2180 * and may need to be pinned or otherwise specially aligned.
2181 */
2182int spu_init_csa(struct spu_state *csa)
2183{
2184	int rc;
2185
2186	if (!csa)
2187		return -EINVAL;
2188	memset(csa, 0, sizeof(struct spu_state));
2189
2190	rc = spu_alloc_lscsa(csa);
2191	if (rc)
2192		return rc;
2193
2194	spin_lock_init(&csa->register_lock);
2195
2196	init_prob(csa);
2197	init_priv1(csa);
2198	init_priv2(csa);
2199
2200	return 0;
2201}
2202
2203void spu_fini_csa(struct spu_state *csa)
2204{
2205	spu_free_lscsa(csa);
2206}
2207