162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later 262306a36Sopenharmony_ci/* sched.c - SPU scheduler. 362306a36Sopenharmony_ci * 462306a36Sopenharmony_ci * Copyright (C) IBM 2005 562306a36Sopenharmony_ci * Author: Mark Nutter <mnutter@us.ibm.com> 662306a36Sopenharmony_ci * 762306a36Sopenharmony_ci * 2006-03-31 NUMA domains added. 862306a36Sopenharmony_ci */ 962306a36Sopenharmony_ci 1062306a36Sopenharmony_ci#undef DEBUG 1162306a36Sopenharmony_ci 1262306a36Sopenharmony_ci#include <linux/errno.h> 1362306a36Sopenharmony_ci#include <linux/sched/signal.h> 1462306a36Sopenharmony_ci#include <linux/sched/loadavg.h> 1562306a36Sopenharmony_ci#include <linux/sched/rt.h> 1662306a36Sopenharmony_ci#include <linux/kernel.h> 1762306a36Sopenharmony_ci#include <linux/mm.h> 1862306a36Sopenharmony_ci#include <linux/slab.h> 1962306a36Sopenharmony_ci#include <linux/completion.h> 2062306a36Sopenharmony_ci#include <linux/vmalloc.h> 2162306a36Sopenharmony_ci#include <linux/smp.h> 2262306a36Sopenharmony_ci#include <linux/stddef.h> 2362306a36Sopenharmony_ci#include <linux/unistd.h> 2462306a36Sopenharmony_ci#include <linux/numa.h> 2562306a36Sopenharmony_ci#include <linux/mutex.h> 2662306a36Sopenharmony_ci#include <linux/notifier.h> 2762306a36Sopenharmony_ci#include <linux/kthread.h> 2862306a36Sopenharmony_ci#include <linux/pid_namespace.h> 2962306a36Sopenharmony_ci#include <linux/proc_fs.h> 3062306a36Sopenharmony_ci#include <linux/seq_file.h> 3162306a36Sopenharmony_ci 3262306a36Sopenharmony_ci#include <asm/io.h> 3362306a36Sopenharmony_ci#include <asm/mmu_context.h> 3462306a36Sopenharmony_ci#include <asm/spu.h> 3562306a36Sopenharmony_ci#include <asm/spu_csa.h> 3662306a36Sopenharmony_ci#include <asm/spu_priv1.h> 3762306a36Sopenharmony_ci#include "spufs.h" 3862306a36Sopenharmony_ci#define CREATE_TRACE_POINTS 3962306a36Sopenharmony_ci#include "sputrace.h" 4062306a36Sopenharmony_ci 4162306a36Sopenharmony_cistruct spu_prio_array { 4262306a36Sopenharmony_ci DECLARE_BITMAP(bitmap, MAX_PRIO); 4362306a36Sopenharmony_ci struct list_head runq[MAX_PRIO]; 4462306a36Sopenharmony_ci spinlock_t runq_lock; 4562306a36Sopenharmony_ci int nr_waiting; 4662306a36Sopenharmony_ci}; 4762306a36Sopenharmony_ci 4862306a36Sopenharmony_cistatic unsigned long spu_avenrun[3]; 4962306a36Sopenharmony_cistatic struct spu_prio_array *spu_prio; 5062306a36Sopenharmony_cistatic struct task_struct *spusched_task; 5162306a36Sopenharmony_cistatic struct timer_list spusched_timer; 5262306a36Sopenharmony_cistatic struct timer_list spuloadavg_timer; 5362306a36Sopenharmony_ci 5462306a36Sopenharmony_ci/* 5562306a36Sopenharmony_ci * Priority of a normal, non-rt, non-niced'd process (aka nice level 0). 5662306a36Sopenharmony_ci */ 5762306a36Sopenharmony_ci#define NORMAL_PRIO 120 5862306a36Sopenharmony_ci 5962306a36Sopenharmony_ci/* 6062306a36Sopenharmony_ci * Frequency of the spu scheduler tick. By default we do one SPU scheduler 6162306a36Sopenharmony_ci * tick for every 10 CPU scheduler ticks. 6262306a36Sopenharmony_ci */ 6362306a36Sopenharmony_ci#define SPUSCHED_TICK (10) 6462306a36Sopenharmony_ci 6562306a36Sopenharmony_ci/* 6662306a36Sopenharmony_ci * These are the 'tuning knobs' of the scheduler: 6762306a36Sopenharmony_ci * 6862306a36Sopenharmony_ci * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is 6962306a36Sopenharmony_ci * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs. 7062306a36Sopenharmony_ci */ 7162306a36Sopenharmony_ci#define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1) 7262306a36Sopenharmony_ci#define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK)) 7362306a36Sopenharmony_ci 7462306a36Sopenharmony_ci#define SCALE_PRIO(x, prio) \ 7562306a36Sopenharmony_ci max(x * (MAX_PRIO - prio) / (NICE_WIDTH / 2), MIN_SPU_TIMESLICE) 7662306a36Sopenharmony_ci 7762306a36Sopenharmony_ci/* 7862306a36Sopenharmony_ci * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values: 7962306a36Sopenharmony_ci * [800ms ... 100ms ... 5ms] 8062306a36Sopenharmony_ci * 8162306a36Sopenharmony_ci * The higher a thread's priority, the bigger timeslices 8262306a36Sopenharmony_ci * it gets during one round of execution. But even the lowest 8362306a36Sopenharmony_ci * priority thread gets MIN_TIMESLICE worth of execution time. 8462306a36Sopenharmony_ci */ 8562306a36Sopenharmony_civoid spu_set_timeslice(struct spu_context *ctx) 8662306a36Sopenharmony_ci{ 8762306a36Sopenharmony_ci if (ctx->prio < NORMAL_PRIO) 8862306a36Sopenharmony_ci ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio); 8962306a36Sopenharmony_ci else 9062306a36Sopenharmony_ci ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio); 9162306a36Sopenharmony_ci} 9262306a36Sopenharmony_ci 9362306a36Sopenharmony_ci/* 9462306a36Sopenharmony_ci * Update scheduling information from the owning thread. 9562306a36Sopenharmony_ci */ 9662306a36Sopenharmony_civoid __spu_update_sched_info(struct spu_context *ctx) 9762306a36Sopenharmony_ci{ 9862306a36Sopenharmony_ci /* 9962306a36Sopenharmony_ci * assert that the context is not on the runqueue, so it is safe 10062306a36Sopenharmony_ci * to change its scheduling parameters. 10162306a36Sopenharmony_ci */ 10262306a36Sopenharmony_ci BUG_ON(!list_empty(&ctx->rq)); 10362306a36Sopenharmony_ci 10462306a36Sopenharmony_ci /* 10562306a36Sopenharmony_ci * 32-Bit assignments are atomic on powerpc, and we don't care about 10662306a36Sopenharmony_ci * memory ordering here because retrieving the controlling thread is 10762306a36Sopenharmony_ci * per definition racy. 10862306a36Sopenharmony_ci */ 10962306a36Sopenharmony_ci ctx->tid = current->pid; 11062306a36Sopenharmony_ci 11162306a36Sopenharmony_ci /* 11262306a36Sopenharmony_ci * We do our own priority calculations, so we normally want 11362306a36Sopenharmony_ci * ->static_prio to start with. Unfortunately this field 11462306a36Sopenharmony_ci * contains junk for threads with a realtime scheduling 11562306a36Sopenharmony_ci * policy so we have to look at ->prio in this case. 11662306a36Sopenharmony_ci */ 11762306a36Sopenharmony_ci if (rt_prio(current->prio)) 11862306a36Sopenharmony_ci ctx->prio = current->prio; 11962306a36Sopenharmony_ci else 12062306a36Sopenharmony_ci ctx->prio = current->static_prio; 12162306a36Sopenharmony_ci ctx->policy = current->policy; 12262306a36Sopenharmony_ci 12362306a36Sopenharmony_ci /* 12462306a36Sopenharmony_ci * TO DO: the context may be loaded, so we may need to activate 12562306a36Sopenharmony_ci * it again on a different node. But it shouldn't hurt anything 12662306a36Sopenharmony_ci * to update its parameters, because we know that the scheduler 12762306a36Sopenharmony_ci * is not actively looking at this field, since it is not on the 12862306a36Sopenharmony_ci * runqueue. The context will be rescheduled on the proper node 12962306a36Sopenharmony_ci * if it is timesliced or preempted. 13062306a36Sopenharmony_ci */ 13162306a36Sopenharmony_ci cpumask_copy(&ctx->cpus_allowed, current->cpus_ptr); 13262306a36Sopenharmony_ci 13362306a36Sopenharmony_ci /* Save the current cpu id for spu interrupt routing. */ 13462306a36Sopenharmony_ci ctx->last_ran = raw_smp_processor_id(); 13562306a36Sopenharmony_ci} 13662306a36Sopenharmony_ci 13762306a36Sopenharmony_civoid spu_update_sched_info(struct spu_context *ctx) 13862306a36Sopenharmony_ci{ 13962306a36Sopenharmony_ci int node; 14062306a36Sopenharmony_ci 14162306a36Sopenharmony_ci if (ctx->state == SPU_STATE_RUNNABLE) { 14262306a36Sopenharmony_ci node = ctx->spu->node; 14362306a36Sopenharmony_ci 14462306a36Sopenharmony_ci /* 14562306a36Sopenharmony_ci * Take list_mutex to sync with find_victim(). 14662306a36Sopenharmony_ci */ 14762306a36Sopenharmony_ci mutex_lock(&cbe_spu_info[node].list_mutex); 14862306a36Sopenharmony_ci __spu_update_sched_info(ctx); 14962306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 15062306a36Sopenharmony_ci } else { 15162306a36Sopenharmony_ci __spu_update_sched_info(ctx); 15262306a36Sopenharmony_ci } 15362306a36Sopenharmony_ci} 15462306a36Sopenharmony_ci 15562306a36Sopenharmony_cistatic int __node_allowed(struct spu_context *ctx, int node) 15662306a36Sopenharmony_ci{ 15762306a36Sopenharmony_ci if (nr_cpus_node(node)) { 15862306a36Sopenharmony_ci const struct cpumask *mask = cpumask_of_node(node); 15962306a36Sopenharmony_ci 16062306a36Sopenharmony_ci if (cpumask_intersects(mask, &ctx->cpus_allowed)) 16162306a36Sopenharmony_ci return 1; 16262306a36Sopenharmony_ci } 16362306a36Sopenharmony_ci 16462306a36Sopenharmony_ci return 0; 16562306a36Sopenharmony_ci} 16662306a36Sopenharmony_ci 16762306a36Sopenharmony_cistatic int node_allowed(struct spu_context *ctx, int node) 16862306a36Sopenharmony_ci{ 16962306a36Sopenharmony_ci int rval; 17062306a36Sopenharmony_ci 17162306a36Sopenharmony_ci spin_lock(&spu_prio->runq_lock); 17262306a36Sopenharmony_ci rval = __node_allowed(ctx, node); 17362306a36Sopenharmony_ci spin_unlock(&spu_prio->runq_lock); 17462306a36Sopenharmony_ci 17562306a36Sopenharmony_ci return rval; 17662306a36Sopenharmony_ci} 17762306a36Sopenharmony_ci 17862306a36Sopenharmony_civoid do_notify_spus_active(void) 17962306a36Sopenharmony_ci{ 18062306a36Sopenharmony_ci int node; 18162306a36Sopenharmony_ci 18262306a36Sopenharmony_ci /* 18362306a36Sopenharmony_ci * Wake up the active spu_contexts. 18462306a36Sopenharmony_ci */ 18562306a36Sopenharmony_ci for_each_online_node(node) { 18662306a36Sopenharmony_ci struct spu *spu; 18762306a36Sopenharmony_ci 18862306a36Sopenharmony_ci mutex_lock(&cbe_spu_info[node].list_mutex); 18962306a36Sopenharmony_ci list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 19062306a36Sopenharmony_ci if (spu->alloc_state != SPU_FREE) { 19162306a36Sopenharmony_ci struct spu_context *ctx = spu->ctx; 19262306a36Sopenharmony_ci set_bit(SPU_SCHED_NOTIFY_ACTIVE, 19362306a36Sopenharmony_ci &ctx->sched_flags); 19462306a36Sopenharmony_ci mb(); 19562306a36Sopenharmony_ci wake_up_all(&ctx->stop_wq); 19662306a36Sopenharmony_ci } 19762306a36Sopenharmony_ci } 19862306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 19962306a36Sopenharmony_ci } 20062306a36Sopenharmony_ci} 20162306a36Sopenharmony_ci 20262306a36Sopenharmony_ci/** 20362306a36Sopenharmony_ci * spu_bind_context - bind spu context to physical spu 20462306a36Sopenharmony_ci * @spu: physical spu to bind to 20562306a36Sopenharmony_ci * @ctx: context to bind 20662306a36Sopenharmony_ci */ 20762306a36Sopenharmony_cistatic void spu_bind_context(struct spu *spu, struct spu_context *ctx) 20862306a36Sopenharmony_ci{ 20962306a36Sopenharmony_ci spu_context_trace(spu_bind_context__enter, ctx, spu); 21062306a36Sopenharmony_ci 21162306a36Sopenharmony_ci spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 21262306a36Sopenharmony_ci 21362306a36Sopenharmony_ci if (ctx->flags & SPU_CREATE_NOSCHED) 21462306a36Sopenharmony_ci atomic_inc(&cbe_spu_info[spu->node].reserved_spus); 21562306a36Sopenharmony_ci 21662306a36Sopenharmony_ci ctx->stats.slb_flt_base = spu->stats.slb_flt; 21762306a36Sopenharmony_ci ctx->stats.class2_intr_base = spu->stats.class2_intr; 21862306a36Sopenharmony_ci 21962306a36Sopenharmony_ci spu_associate_mm(spu, ctx->owner); 22062306a36Sopenharmony_ci 22162306a36Sopenharmony_ci spin_lock_irq(&spu->register_lock); 22262306a36Sopenharmony_ci spu->ctx = ctx; 22362306a36Sopenharmony_ci spu->flags = 0; 22462306a36Sopenharmony_ci ctx->spu = spu; 22562306a36Sopenharmony_ci ctx->ops = &spu_hw_ops; 22662306a36Sopenharmony_ci spu->pid = current->pid; 22762306a36Sopenharmony_ci spu->tgid = current->tgid; 22862306a36Sopenharmony_ci spu->ibox_callback = spufs_ibox_callback; 22962306a36Sopenharmony_ci spu->wbox_callback = spufs_wbox_callback; 23062306a36Sopenharmony_ci spu->stop_callback = spufs_stop_callback; 23162306a36Sopenharmony_ci spu->mfc_callback = spufs_mfc_callback; 23262306a36Sopenharmony_ci spin_unlock_irq(&spu->register_lock); 23362306a36Sopenharmony_ci 23462306a36Sopenharmony_ci spu_unmap_mappings(ctx); 23562306a36Sopenharmony_ci 23662306a36Sopenharmony_ci spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0); 23762306a36Sopenharmony_ci spu_restore(&ctx->csa, spu); 23862306a36Sopenharmony_ci spu->timestamp = jiffies; 23962306a36Sopenharmony_ci ctx->state = SPU_STATE_RUNNABLE; 24062306a36Sopenharmony_ci 24162306a36Sopenharmony_ci spuctx_switch_state(ctx, SPU_UTIL_USER); 24262306a36Sopenharmony_ci} 24362306a36Sopenharmony_ci 24462306a36Sopenharmony_ci/* 24562306a36Sopenharmony_ci * Must be used with the list_mutex held. 24662306a36Sopenharmony_ci */ 24762306a36Sopenharmony_cistatic inline int sched_spu(struct spu *spu) 24862306a36Sopenharmony_ci{ 24962306a36Sopenharmony_ci BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex)); 25062306a36Sopenharmony_ci 25162306a36Sopenharmony_ci return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED)); 25262306a36Sopenharmony_ci} 25362306a36Sopenharmony_ci 25462306a36Sopenharmony_cistatic void aff_merge_remaining_ctxs(struct spu_gang *gang) 25562306a36Sopenharmony_ci{ 25662306a36Sopenharmony_ci struct spu_context *ctx; 25762306a36Sopenharmony_ci 25862306a36Sopenharmony_ci list_for_each_entry(ctx, &gang->aff_list_head, aff_list) { 25962306a36Sopenharmony_ci if (list_empty(&ctx->aff_list)) 26062306a36Sopenharmony_ci list_add(&ctx->aff_list, &gang->aff_list_head); 26162306a36Sopenharmony_ci } 26262306a36Sopenharmony_ci gang->aff_flags |= AFF_MERGED; 26362306a36Sopenharmony_ci} 26462306a36Sopenharmony_ci 26562306a36Sopenharmony_cistatic void aff_set_offsets(struct spu_gang *gang) 26662306a36Sopenharmony_ci{ 26762306a36Sopenharmony_ci struct spu_context *ctx; 26862306a36Sopenharmony_ci int offset; 26962306a36Sopenharmony_ci 27062306a36Sopenharmony_ci offset = -1; 27162306a36Sopenharmony_ci list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 27262306a36Sopenharmony_ci aff_list) { 27362306a36Sopenharmony_ci if (&ctx->aff_list == &gang->aff_list_head) 27462306a36Sopenharmony_ci break; 27562306a36Sopenharmony_ci ctx->aff_offset = offset--; 27662306a36Sopenharmony_ci } 27762306a36Sopenharmony_ci 27862306a36Sopenharmony_ci offset = 0; 27962306a36Sopenharmony_ci list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) { 28062306a36Sopenharmony_ci if (&ctx->aff_list == &gang->aff_list_head) 28162306a36Sopenharmony_ci break; 28262306a36Sopenharmony_ci ctx->aff_offset = offset++; 28362306a36Sopenharmony_ci } 28462306a36Sopenharmony_ci 28562306a36Sopenharmony_ci gang->aff_flags |= AFF_OFFSETS_SET; 28662306a36Sopenharmony_ci} 28762306a36Sopenharmony_ci 28862306a36Sopenharmony_cistatic struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff, 28962306a36Sopenharmony_ci int group_size, int lowest_offset) 29062306a36Sopenharmony_ci{ 29162306a36Sopenharmony_ci struct spu *spu; 29262306a36Sopenharmony_ci int node, n; 29362306a36Sopenharmony_ci 29462306a36Sopenharmony_ci /* 29562306a36Sopenharmony_ci * TODO: A better algorithm could be used to find a good spu to be 29662306a36Sopenharmony_ci * used as reference location for the ctxs chain. 29762306a36Sopenharmony_ci */ 29862306a36Sopenharmony_ci node = cpu_to_node(raw_smp_processor_id()); 29962306a36Sopenharmony_ci for (n = 0; n < MAX_NUMNODES; n++, node++) { 30062306a36Sopenharmony_ci /* 30162306a36Sopenharmony_ci * "available_spus" counts how many spus are not potentially 30262306a36Sopenharmony_ci * going to be used by other affinity gangs whose reference 30362306a36Sopenharmony_ci * context is already in place. Although this code seeks to 30462306a36Sopenharmony_ci * avoid having affinity gangs with a summed amount of 30562306a36Sopenharmony_ci * contexts bigger than the amount of spus in the node, 30662306a36Sopenharmony_ci * this may happen sporadically. In this case, available_spus 30762306a36Sopenharmony_ci * becomes negative, which is harmless. 30862306a36Sopenharmony_ci */ 30962306a36Sopenharmony_ci int available_spus; 31062306a36Sopenharmony_ci 31162306a36Sopenharmony_ci node = (node < MAX_NUMNODES) ? node : 0; 31262306a36Sopenharmony_ci if (!node_allowed(ctx, node)) 31362306a36Sopenharmony_ci continue; 31462306a36Sopenharmony_ci 31562306a36Sopenharmony_ci available_spus = 0; 31662306a36Sopenharmony_ci mutex_lock(&cbe_spu_info[node].list_mutex); 31762306a36Sopenharmony_ci list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 31862306a36Sopenharmony_ci if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset 31962306a36Sopenharmony_ci && spu->ctx->gang->aff_ref_spu) 32062306a36Sopenharmony_ci available_spus -= spu->ctx->gang->contexts; 32162306a36Sopenharmony_ci available_spus++; 32262306a36Sopenharmony_ci } 32362306a36Sopenharmony_ci if (available_spus < ctx->gang->contexts) { 32462306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 32562306a36Sopenharmony_ci continue; 32662306a36Sopenharmony_ci } 32762306a36Sopenharmony_ci 32862306a36Sopenharmony_ci list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 32962306a36Sopenharmony_ci if ((!mem_aff || spu->has_mem_affinity) && 33062306a36Sopenharmony_ci sched_spu(spu)) { 33162306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 33262306a36Sopenharmony_ci return spu; 33362306a36Sopenharmony_ci } 33462306a36Sopenharmony_ci } 33562306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 33662306a36Sopenharmony_ci } 33762306a36Sopenharmony_ci return NULL; 33862306a36Sopenharmony_ci} 33962306a36Sopenharmony_ci 34062306a36Sopenharmony_cistatic void aff_set_ref_point_location(struct spu_gang *gang) 34162306a36Sopenharmony_ci{ 34262306a36Sopenharmony_ci int mem_aff, gs, lowest_offset; 34362306a36Sopenharmony_ci struct spu_context *tmp, *ctx; 34462306a36Sopenharmony_ci 34562306a36Sopenharmony_ci mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM; 34662306a36Sopenharmony_ci lowest_offset = 0; 34762306a36Sopenharmony_ci gs = 0; 34862306a36Sopenharmony_ci 34962306a36Sopenharmony_ci list_for_each_entry(tmp, &gang->aff_list_head, aff_list) 35062306a36Sopenharmony_ci gs++; 35162306a36Sopenharmony_ci 35262306a36Sopenharmony_ci list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list, 35362306a36Sopenharmony_ci aff_list) { 35462306a36Sopenharmony_ci if (&ctx->aff_list == &gang->aff_list_head) 35562306a36Sopenharmony_ci break; 35662306a36Sopenharmony_ci lowest_offset = ctx->aff_offset; 35762306a36Sopenharmony_ci } 35862306a36Sopenharmony_ci 35962306a36Sopenharmony_ci gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs, 36062306a36Sopenharmony_ci lowest_offset); 36162306a36Sopenharmony_ci} 36262306a36Sopenharmony_ci 36362306a36Sopenharmony_cistatic struct spu *ctx_location(struct spu *ref, int offset, int node) 36462306a36Sopenharmony_ci{ 36562306a36Sopenharmony_ci struct spu *spu; 36662306a36Sopenharmony_ci 36762306a36Sopenharmony_ci spu = NULL; 36862306a36Sopenharmony_ci if (offset >= 0) { 36962306a36Sopenharmony_ci list_for_each_entry(spu, ref->aff_list.prev, aff_list) { 37062306a36Sopenharmony_ci BUG_ON(spu->node != node); 37162306a36Sopenharmony_ci if (offset == 0) 37262306a36Sopenharmony_ci break; 37362306a36Sopenharmony_ci if (sched_spu(spu)) 37462306a36Sopenharmony_ci offset--; 37562306a36Sopenharmony_ci } 37662306a36Sopenharmony_ci } else { 37762306a36Sopenharmony_ci list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) { 37862306a36Sopenharmony_ci BUG_ON(spu->node != node); 37962306a36Sopenharmony_ci if (offset == 0) 38062306a36Sopenharmony_ci break; 38162306a36Sopenharmony_ci if (sched_spu(spu)) 38262306a36Sopenharmony_ci offset++; 38362306a36Sopenharmony_ci } 38462306a36Sopenharmony_ci } 38562306a36Sopenharmony_ci 38662306a36Sopenharmony_ci return spu; 38762306a36Sopenharmony_ci} 38862306a36Sopenharmony_ci 38962306a36Sopenharmony_ci/* 39062306a36Sopenharmony_ci * affinity_check is called each time a context is going to be scheduled. 39162306a36Sopenharmony_ci * It returns the spu ptr on which the context must run. 39262306a36Sopenharmony_ci */ 39362306a36Sopenharmony_cistatic int has_affinity(struct spu_context *ctx) 39462306a36Sopenharmony_ci{ 39562306a36Sopenharmony_ci struct spu_gang *gang = ctx->gang; 39662306a36Sopenharmony_ci 39762306a36Sopenharmony_ci if (list_empty(&ctx->aff_list)) 39862306a36Sopenharmony_ci return 0; 39962306a36Sopenharmony_ci 40062306a36Sopenharmony_ci if (atomic_read(&ctx->gang->aff_sched_count) == 0) 40162306a36Sopenharmony_ci ctx->gang->aff_ref_spu = NULL; 40262306a36Sopenharmony_ci 40362306a36Sopenharmony_ci if (!gang->aff_ref_spu) { 40462306a36Sopenharmony_ci if (!(gang->aff_flags & AFF_MERGED)) 40562306a36Sopenharmony_ci aff_merge_remaining_ctxs(gang); 40662306a36Sopenharmony_ci if (!(gang->aff_flags & AFF_OFFSETS_SET)) 40762306a36Sopenharmony_ci aff_set_offsets(gang); 40862306a36Sopenharmony_ci aff_set_ref_point_location(gang); 40962306a36Sopenharmony_ci } 41062306a36Sopenharmony_ci 41162306a36Sopenharmony_ci return gang->aff_ref_spu != NULL; 41262306a36Sopenharmony_ci} 41362306a36Sopenharmony_ci 41462306a36Sopenharmony_ci/** 41562306a36Sopenharmony_ci * spu_unbind_context - unbind spu context from physical spu 41662306a36Sopenharmony_ci * @spu: physical spu to unbind from 41762306a36Sopenharmony_ci * @ctx: context to unbind 41862306a36Sopenharmony_ci */ 41962306a36Sopenharmony_cistatic void spu_unbind_context(struct spu *spu, struct spu_context *ctx) 42062306a36Sopenharmony_ci{ 42162306a36Sopenharmony_ci u32 status; 42262306a36Sopenharmony_ci 42362306a36Sopenharmony_ci spu_context_trace(spu_unbind_context__enter, ctx, spu); 42462306a36Sopenharmony_ci 42562306a36Sopenharmony_ci spuctx_switch_state(ctx, SPU_UTIL_SYSTEM); 42662306a36Sopenharmony_ci 42762306a36Sopenharmony_ci if (spu->ctx->flags & SPU_CREATE_NOSCHED) 42862306a36Sopenharmony_ci atomic_dec(&cbe_spu_info[spu->node].reserved_spus); 42962306a36Sopenharmony_ci 43062306a36Sopenharmony_ci if (ctx->gang) 43162306a36Sopenharmony_ci /* 43262306a36Sopenharmony_ci * If ctx->gang->aff_sched_count is positive, SPU affinity is 43362306a36Sopenharmony_ci * being considered in this gang. Using atomic_dec_if_positive 43462306a36Sopenharmony_ci * allow us to skip an explicit check for affinity in this gang 43562306a36Sopenharmony_ci */ 43662306a36Sopenharmony_ci atomic_dec_if_positive(&ctx->gang->aff_sched_count); 43762306a36Sopenharmony_ci 43862306a36Sopenharmony_ci spu_unmap_mappings(ctx); 43962306a36Sopenharmony_ci spu_save(&ctx->csa, spu); 44062306a36Sopenharmony_ci spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0); 44162306a36Sopenharmony_ci 44262306a36Sopenharmony_ci spin_lock_irq(&spu->register_lock); 44362306a36Sopenharmony_ci spu->timestamp = jiffies; 44462306a36Sopenharmony_ci ctx->state = SPU_STATE_SAVED; 44562306a36Sopenharmony_ci spu->ibox_callback = NULL; 44662306a36Sopenharmony_ci spu->wbox_callback = NULL; 44762306a36Sopenharmony_ci spu->stop_callback = NULL; 44862306a36Sopenharmony_ci spu->mfc_callback = NULL; 44962306a36Sopenharmony_ci spu->pid = 0; 45062306a36Sopenharmony_ci spu->tgid = 0; 45162306a36Sopenharmony_ci ctx->ops = &spu_backing_ops; 45262306a36Sopenharmony_ci spu->flags = 0; 45362306a36Sopenharmony_ci spu->ctx = NULL; 45462306a36Sopenharmony_ci spin_unlock_irq(&spu->register_lock); 45562306a36Sopenharmony_ci 45662306a36Sopenharmony_ci spu_associate_mm(spu, NULL); 45762306a36Sopenharmony_ci 45862306a36Sopenharmony_ci ctx->stats.slb_flt += 45962306a36Sopenharmony_ci (spu->stats.slb_flt - ctx->stats.slb_flt_base); 46062306a36Sopenharmony_ci ctx->stats.class2_intr += 46162306a36Sopenharmony_ci (spu->stats.class2_intr - ctx->stats.class2_intr_base); 46262306a36Sopenharmony_ci 46362306a36Sopenharmony_ci /* This maps the underlying spu state to idle */ 46462306a36Sopenharmony_ci spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED); 46562306a36Sopenharmony_ci ctx->spu = NULL; 46662306a36Sopenharmony_ci 46762306a36Sopenharmony_ci if (spu_stopped(ctx, &status)) 46862306a36Sopenharmony_ci wake_up_all(&ctx->stop_wq); 46962306a36Sopenharmony_ci} 47062306a36Sopenharmony_ci 47162306a36Sopenharmony_ci/** 47262306a36Sopenharmony_ci * spu_add_to_rq - add a context to the runqueue 47362306a36Sopenharmony_ci * @ctx: context to add 47462306a36Sopenharmony_ci */ 47562306a36Sopenharmony_cistatic void __spu_add_to_rq(struct spu_context *ctx) 47662306a36Sopenharmony_ci{ 47762306a36Sopenharmony_ci /* 47862306a36Sopenharmony_ci * Unfortunately this code path can be called from multiple threads 47962306a36Sopenharmony_ci * on behalf of a single context due to the way the problem state 48062306a36Sopenharmony_ci * mmap support works. 48162306a36Sopenharmony_ci * 48262306a36Sopenharmony_ci * Fortunately we need to wake up all these threads at the same time 48362306a36Sopenharmony_ci * and can simply skip the runqueue addition for every but the first 48462306a36Sopenharmony_ci * thread getting into this codepath. 48562306a36Sopenharmony_ci * 48662306a36Sopenharmony_ci * It's still quite hacky, and long-term we should proxy all other 48762306a36Sopenharmony_ci * threads through the owner thread so that spu_run is in control 48862306a36Sopenharmony_ci * of all the scheduling activity for a given context. 48962306a36Sopenharmony_ci */ 49062306a36Sopenharmony_ci if (list_empty(&ctx->rq)) { 49162306a36Sopenharmony_ci list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]); 49262306a36Sopenharmony_ci set_bit(ctx->prio, spu_prio->bitmap); 49362306a36Sopenharmony_ci if (!spu_prio->nr_waiting++) 49462306a36Sopenharmony_ci mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 49562306a36Sopenharmony_ci } 49662306a36Sopenharmony_ci} 49762306a36Sopenharmony_ci 49862306a36Sopenharmony_cistatic void spu_add_to_rq(struct spu_context *ctx) 49962306a36Sopenharmony_ci{ 50062306a36Sopenharmony_ci spin_lock(&spu_prio->runq_lock); 50162306a36Sopenharmony_ci __spu_add_to_rq(ctx); 50262306a36Sopenharmony_ci spin_unlock(&spu_prio->runq_lock); 50362306a36Sopenharmony_ci} 50462306a36Sopenharmony_ci 50562306a36Sopenharmony_cistatic void __spu_del_from_rq(struct spu_context *ctx) 50662306a36Sopenharmony_ci{ 50762306a36Sopenharmony_ci int prio = ctx->prio; 50862306a36Sopenharmony_ci 50962306a36Sopenharmony_ci if (!list_empty(&ctx->rq)) { 51062306a36Sopenharmony_ci if (!--spu_prio->nr_waiting) 51162306a36Sopenharmony_ci del_timer(&spusched_timer); 51262306a36Sopenharmony_ci list_del_init(&ctx->rq); 51362306a36Sopenharmony_ci 51462306a36Sopenharmony_ci if (list_empty(&spu_prio->runq[prio])) 51562306a36Sopenharmony_ci clear_bit(prio, spu_prio->bitmap); 51662306a36Sopenharmony_ci } 51762306a36Sopenharmony_ci} 51862306a36Sopenharmony_ci 51962306a36Sopenharmony_civoid spu_del_from_rq(struct spu_context *ctx) 52062306a36Sopenharmony_ci{ 52162306a36Sopenharmony_ci spin_lock(&spu_prio->runq_lock); 52262306a36Sopenharmony_ci __spu_del_from_rq(ctx); 52362306a36Sopenharmony_ci spin_unlock(&spu_prio->runq_lock); 52462306a36Sopenharmony_ci} 52562306a36Sopenharmony_ci 52662306a36Sopenharmony_cistatic void spu_prio_wait(struct spu_context *ctx) 52762306a36Sopenharmony_ci{ 52862306a36Sopenharmony_ci DEFINE_WAIT(wait); 52962306a36Sopenharmony_ci 53062306a36Sopenharmony_ci /* 53162306a36Sopenharmony_ci * The caller must explicitly wait for a context to be loaded 53262306a36Sopenharmony_ci * if the nosched flag is set. If NOSCHED is not set, the caller 53362306a36Sopenharmony_ci * queues the context and waits for an spu event or error. 53462306a36Sopenharmony_ci */ 53562306a36Sopenharmony_ci BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED)); 53662306a36Sopenharmony_ci 53762306a36Sopenharmony_ci spin_lock(&spu_prio->runq_lock); 53862306a36Sopenharmony_ci prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE); 53962306a36Sopenharmony_ci if (!signal_pending(current)) { 54062306a36Sopenharmony_ci __spu_add_to_rq(ctx); 54162306a36Sopenharmony_ci spin_unlock(&spu_prio->runq_lock); 54262306a36Sopenharmony_ci mutex_unlock(&ctx->state_mutex); 54362306a36Sopenharmony_ci schedule(); 54462306a36Sopenharmony_ci mutex_lock(&ctx->state_mutex); 54562306a36Sopenharmony_ci spin_lock(&spu_prio->runq_lock); 54662306a36Sopenharmony_ci __spu_del_from_rq(ctx); 54762306a36Sopenharmony_ci } 54862306a36Sopenharmony_ci spin_unlock(&spu_prio->runq_lock); 54962306a36Sopenharmony_ci __set_current_state(TASK_RUNNING); 55062306a36Sopenharmony_ci remove_wait_queue(&ctx->stop_wq, &wait); 55162306a36Sopenharmony_ci} 55262306a36Sopenharmony_ci 55362306a36Sopenharmony_cistatic struct spu *spu_get_idle(struct spu_context *ctx) 55462306a36Sopenharmony_ci{ 55562306a36Sopenharmony_ci struct spu *spu, *aff_ref_spu; 55662306a36Sopenharmony_ci int node, n; 55762306a36Sopenharmony_ci 55862306a36Sopenharmony_ci spu_context_nospu_trace(spu_get_idle__enter, ctx); 55962306a36Sopenharmony_ci 56062306a36Sopenharmony_ci if (ctx->gang) { 56162306a36Sopenharmony_ci mutex_lock(&ctx->gang->aff_mutex); 56262306a36Sopenharmony_ci if (has_affinity(ctx)) { 56362306a36Sopenharmony_ci aff_ref_spu = ctx->gang->aff_ref_spu; 56462306a36Sopenharmony_ci atomic_inc(&ctx->gang->aff_sched_count); 56562306a36Sopenharmony_ci mutex_unlock(&ctx->gang->aff_mutex); 56662306a36Sopenharmony_ci node = aff_ref_spu->node; 56762306a36Sopenharmony_ci 56862306a36Sopenharmony_ci mutex_lock(&cbe_spu_info[node].list_mutex); 56962306a36Sopenharmony_ci spu = ctx_location(aff_ref_spu, ctx->aff_offset, node); 57062306a36Sopenharmony_ci if (spu && spu->alloc_state == SPU_FREE) 57162306a36Sopenharmony_ci goto found; 57262306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 57362306a36Sopenharmony_ci 57462306a36Sopenharmony_ci atomic_dec(&ctx->gang->aff_sched_count); 57562306a36Sopenharmony_ci goto not_found; 57662306a36Sopenharmony_ci } 57762306a36Sopenharmony_ci mutex_unlock(&ctx->gang->aff_mutex); 57862306a36Sopenharmony_ci } 57962306a36Sopenharmony_ci node = cpu_to_node(raw_smp_processor_id()); 58062306a36Sopenharmony_ci for (n = 0; n < MAX_NUMNODES; n++, node++) { 58162306a36Sopenharmony_ci node = (node < MAX_NUMNODES) ? node : 0; 58262306a36Sopenharmony_ci if (!node_allowed(ctx, node)) 58362306a36Sopenharmony_ci continue; 58462306a36Sopenharmony_ci 58562306a36Sopenharmony_ci mutex_lock(&cbe_spu_info[node].list_mutex); 58662306a36Sopenharmony_ci list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 58762306a36Sopenharmony_ci if (spu->alloc_state == SPU_FREE) 58862306a36Sopenharmony_ci goto found; 58962306a36Sopenharmony_ci } 59062306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 59162306a36Sopenharmony_ci } 59262306a36Sopenharmony_ci 59362306a36Sopenharmony_ci not_found: 59462306a36Sopenharmony_ci spu_context_nospu_trace(spu_get_idle__not_found, ctx); 59562306a36Sopenharmony_ci return NULL; 59662306a36Sopenharmony_ci 59762306a36Sopenharmony_ci found: 59862306a36Sopenharmony_ci spu->alloc_state = SPU_USED; 59962306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 60062306a36Sopenharmony_ci spu_context_trace(spu_get_idle__found, ctx, spu); 60162306a36Sopenharmony_ci spu_init_channels(spu); 60262306a36Sopenharmony_ci return spu; 60362306a36Sopenharmony_ci} 60462306a36Sopenharmony_ci 60562306a36Sopenharmony_ci/** 60662306a36Sopenharmony_ci * find_victim - find a lower priority context to preempt 60762306a36Sopenharmony_ci * @ctx: candidate context for running 60862306a36Sopenharmony_ci * 60962306a36Sopenharmony_ci * Returns the freed physical spu to run the new context on. 61062306a36Sopenharmony_ci */ 61162306a36Sopenharmony_cistatic struct spu *find_victim(struct spu_context *ctx) 61262306a36Sopenharmony_ci{ 61362306a36Sopenharmony_ci struct spu_context *victim = NULL; 61462306a36Sopenharmony_ci struct spu *spu; 61562306a36Sopenharmony_ci int node, n; 61662306a36Sopenharmony_ci 61762306a36Sopenharmony_ci spu_context_nospu_trace(spu_find_victim__enter, ctx); 61862306a36Sopenharmony_ci 61962306a36Sopenharmony_ci /* 62062306a36Sopenharmony_ci * Look for a possible preemption candidate on the local node first. 62162306a36Sopenharmony_ci * If there is no candidate look at the other nodes. This isn't 62262306a36Sopenharmony_ci * exactly fair, but so far the whole spu scheduler tries to keep 62362306a36Sopenharmony_ci * a strong node affinity. We might want to fine-tune this in 62462306a36Sopenharmony_ci * the future. 62562306a36Sopenharmony_ci */ 62662306a36Sopenharmony_ci restart: 62762306a36Sopenharmony_ci node = cpu_to_node(raw_smp_processor_id()); 62862306a36Sopenharmony_ci for (n = 0; n < MAX_NUMNODES; n++, node++) { 62962306a36Sopenharmony_ci node = (node < MAX_NUMNODES) ? node : 0; 63062306a36Sopenharmony_ci if (!node_allowed(ctx, node)) 63162306a36Sopenharmony_ci continue; 63262306a36Sopenharmony_ci 63362306a36Sopenharmony_ci mutex_lock(&cbe_spu_info[node].list_mutex); 63462306a36Sopenharmony_ci list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) { 63562306a36Sopenharmony_ci struct spu_context *tmp = spu->ctx; 63662306a36Sopenharmony_ci 63762306a36Sopenharmony_ci if (tmp && tmp->prio > ctx->prio && 63862306a36Sopenharmony_ci !(tmp->flags & SPU_CREATE_NOSCHED) && 63962306a36Sopenharmony_ci (!victim || tmp->prio > victim->prio)) { 64062306a36Sopenharmony_ci victim = spu->ctx; 64162306a36Sopenharmony_ci } 64262306a36Sopenharmony_ci } 64362306a36Sopenharmony_ci if (victim) 64462306a36Sopenharmony_ci get_spu_context(victim); 64562306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 64662306a36Sopenharmony_ci 64762306a36Sopenharmony_ci if (victim) { 64862306a36Sopenharmony_ci /* 64962306a36Sopenharmony_ci * This nests ctx->state_mutex, but we always lock 65062306a36Sopenharmony_ci * higher priority contexts before lower priority 65162306a36Sopenharmony_ci * ones, so this is safe until we introduce 65262306a36Sopenharmony_ci * priority inheritance schemes. 65362306a36Sopenharmony_ci * 65462306a36Sopenharmony_ci * XXX if the highest priority context is locked, 65562306a36Sopenharmony_ci * this can loop a long time. Might be better to 65662306a36Sopenharmony_ci * look at another context or give up after X retries. 65762306a36Sopenharmony_ci */ 65862306a36Sopenharmony_ci if (!mutex_trylock(&victim->state_mutex)) { 65962306a36Sopenharmony_ci put_spu_context(victim); 66062306a36Sopenharmony_ci victim = NULL; 66162306a36Sopenharmony_ci goto restart; 66262306a36Sopenharmony_ci } 66362306a36Sopenharmony_ci 66462306a36Sopenharmony_ci spu = victim->spu; 66562306a36Sopenharmony_ci if (!spu || victim->prio <= ctx->prio) { 66662306a36Sopenharmony_ci /* 66762306a36Sopenharmony_ci * This race can happen because we've dropped 66862306a36Sopenharmony_ci * the active list mutex. Not a problem, just 66962306a36Sopenharmony_ci * restart the search. 67062306a36Sopenharmony_ci */ 67162306a36Sopenharmony_ci mutex_unlock(&victim->state_mutex); 67262306a36Sopenharmony_ci put_spu_context(victim); 67362306a36Sopenharmony_ci victim = NULL; 67462306a36Sopenharmony_ci goto restart; 67562306a36Sopenharmony_ci } 67662306a36Sopenharmony_ci 67762306a36Sopenharmony_ci spu_context_trace(__spu_deactivate__unload, ctx, spu); 67862306a36Sopenharmony_ci 67962306a36Sopenharmony_ci mutex_lock(&cbe_spu_info[node].list_mutex); 68062306a36Sopenharmony_ci cbe_spu_info[node].nr_active--; 68162306a36Sopenharmony_ci spu_unbind_context(spu, victim); 68262306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 68362306a36Sopenharmony_ci 68462306a36Sopenharmony_ci victim->stats.invol_ctx_switch++; 68562306a36Sopenharmony_ci spu->stats.invol_ctx_switch++; 68662306a36Sopenharmony_ci if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags)) 68762306a36Sopenharmony_ci spu_add_to_rq(victim); 68862306a36Sopenharmony_ci 68962306a36Sopenharmony_ci mutex_unlock(&victim->state_mutex); 69062306a36Sopenharmony_ci put_spu_context(victim); 69162306a36Sopenharmony_ci 69262306a36Sopenharmony_ci return spu; 69362306a36Sopenharmony_ci } 69462306a36Sopenharmony_ci } 69562306a36Sopenharmony_ci 69662306a36Sopenharmony_ci return NULL; 69762306a36Sopenharmony_ci} 69862306a36Sopenharmony_ci 69962306a36Sopenharmony_cistatic void __spu_schedule(struct spu *spu, struct spu_context *ctx) 70062306a36Sopenharmony_ci{ 70162306a36Sopenharmony_ci int node = spu->node; 70262306a36Sopenharmony_ci int success = 0; 70362306a36Sopenharmony_ci 70462306a36Sopenharmony_ci spu_set_timeslice(ctx); 70562306a36Sopenharmony_ci 70662306a36Sopenharmony_ci mutex_lock(&cbe_spu_info[node].list_mutex); 70762306a36Sopenharmony_ci if (spu->ctx == NULL) { 70862306a36Sopenharmony_ci spu_bind_context(spu, ctx); 70962306a36Sopenharmony_ci cbe_spu_info[node].nr_active++; 71062306a36Sopenharmony_ci spu->alloc_state = SPU_USED; 71162306a36Sopenharmony_ci success = 1; 71262306a36Sopenharmony_ci } 71362306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 71462306a36Sopenharmony_ci 71562306a36Sopenharmony_ci if (success) 71662306a36Sopenharmony_ci wake_up_all(&ctx->run_wq); 71762306a36Sopenharmony_ci else 71862306a36Sopenharmony_ci spu_add_to_rq(ctx); 71962306a36Sopenharmony_ci} 72062306a36Sopenharmony_ci 72162306a36Sopenharmony_cistatic void spu_schedule(struct spu *spu, struct spu_context *ctx) 72262306a36Sopenharmony_ci{ 72362306a36Sopenharmony_ci /* not a candidate for interruptible because it's called either 72462306a36Sopenharmony_ci from the scheduler thread or from spu_deactivate */ 72562306a36Sopenharmony_ci mutex_lock(&ctx->state_mutex); 72662306a36Sopenharmony_ci if (ctx->state == SPU_STATE_SAVED) 72762306a36Sopenharmony_ci __spu_schedule(spu, ctx); 72862306a36Sopenharmony_ci spu_release(ctx); 72962306a36Sopenharmony_ci} 73062306a36Sopenharmony_ci 73162306a36Sopenharmony_ci/** 73262306a36Sopenharmony_ci * spu_unschedule - remove a context from a spu, and possibly release it. 73362306a36Sopenharmony_ci * @spu: The SPU to unschedule from 73462306a36Sopenharmony_ci * @ctx: The context currently scheduled on the SPU 73562306a36Sopenharmony_ci * @free_spu Whether to free the SPU for other contexts 73662306a36Sopenharmony_ci * 73762306a36Sopenharmony_ci * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the 73862306a36Sopenharmony_ci * SPU is made available for other contexts (ie, may be returned by 73962306a36Sopenharmony_ci * spu_get_idle). If this is zero, the caller is expected to schedule another 74062306a36Sopenharmony_ci * context to this spu. 74162306a36Sopenharmony_ci * 74262306a36Sopenharmony_ci * Should be called with ctx->state_mutex held. 74362306a36Sopenharmony_ci */ 74462306a36Sopenharmony_cistatic void spu_unschedule(struct spu *spu, struct spu_context *ctx, 74562306a36Sopenharmony_ci int free_spu) 74662306a36Sopenharmony_ci{ 74762306a36Sopenharmony_ci int node = spu->node; 74862306a36Sopenharmony_ci 74962306a36Sopenharmony_ci mutex_lock(&cbe_spu_info[node].list_mutex); 75062306a36Sopenharmony_ci cbe_spu_info[node].nr_active--; 75162306a36Sopenharmony_ci if (free_spu) 75262306a36Sopenharmony_ci spu->alloc_state = SPU_FREE; 75362306a36Sopenharmony_ci spu_unbind_context(spu, ctx); 75462306a36Sopenharmony_ci ctx->stats.invol_ctx_switch++; 75562306a36Sopenharmony_ci spu->stats.invol_ctx_switch++; 75662306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 75762306a36Sopenharmony_ci} 75862306a36Sopenharmony_ci 75962306a36Sopenharmony_ci/** 76062306a36Sopenharmony_ci * spu_activate - find a free spu for a context and execute it 76162306a36Sopenharmony_ci * @ctx: spu context to schedule 76262306a36Sopenharmony_ci * @flags: flags (currently ignored) 76362306a36Sopenharmony_ci * 76462306a36Sopenharmony_ci * Tries to find a free spu to run @ctx. If no free spu is available 76562306a36Sopenharmony_ci * add the context to the runqueue so it gets woken up once an spu 76662306a36Sopenharmony_ci * is available. 76762306a36Sopenharmony_ci */ 76862306a36Sopenharmony_ciint spu_activate(struct spu_context *ctx, unsigned long flags) 76962306a36Sopenharmony_ci{ 77062306a36Sopenharmony_ci struct spu *spu; 77162306a36Sopenharmony_ci 77262306a36Sopenharmony_ci /* 77362306a36Sopenharmony_ci * If there are multiple threads waiting for a single context 77462306a36Sopenharmony_ci * only one actually binds the context while the others will 77562306a36Sopenharmony_ci * only be able to acquire the state_mutex once the context 77662306a36Sopenharmony_ci * already is in runnable state. 77762306a36Sopenharmony_ci */ 77862306a36Sopenharmony_ci if (ctx->spu) 77962306a36Sopenharmony_ci return 0; 78062306a36Sopenharmony_ci 78162306a36Sopenharmony_cispu_activate_top: 78262306a36Sopenharmony_ci if (signal_pending(current)) 78362306a36Sopenharmony_ci return -ERESTARTSYS; 78462306a36Sopenharmony_ci 78562306a36Sopenharmony_ci spu = spu_get_idle(ctx); 78662306a36Sopenharmony_ci /* 78762306a36Sopenharmony_ci * If this is a realtime thread we try to get it running by 78862306a36Sopenharmony_ci * preempting a lower priority thread. 78962306a36Sopenharmony_ci */ 79062306a36Sopenharmony_ci if (!spu && rt_prio(ctx->prio)) 79162306a36Sopenharmony_ci spu = find_victim(ctx); 79262306a36Sopenharmony_ci if (spu) { 79362306a36Sopenharmony_ci unsigned long runcntl; 79462306a36Sopenharmony_ci 79562306a36Sopenharmony_ci runcntl = ctx->ops->runcntl_read(ctx); 79662306a36Sopenharmony_ci __spu_schedule(spu, ctx); 79762306a36Sopenharmony_ci if (runcntl & SPU_RUNCNTL_RUNNABLE) 79862306a36Sopenharmony_ci spuctx_switch_state(ctx, SPU_UTIL_USER); 79962306a36Sopenharmony_ci 80062306a36Sopenharmony_ci return 0; 80162306a36Sopenharmony_ci } 80262306a36Sopenharmony_ci 80362306a36Sopenharmony_ci if (ctx->flags & SPU_CREATE_NOSCHED) { 80462306a36Sopenharmony_ci spu_prio_wait(ctx); 80562306a36Sopenharmony_ci goto spu_activate_top; 80662306a36Sopenharmony_ci } 80762306a36Sopenharmony_ci 80862306a36Sopenharmony_ci spu_add_to_rq(ctx); 80962306a36Sopenharmony_ci 81062306a36Sopenharmony_ci return 0; 81162306a36Sopenharmony_ci} 81262306a36Sopenharmony_ci 81362306a36Sopenharmony_ci/** 81462306a36Sopenharmony_ci * grab_runnable_context - try to find a runnable context 81562306a36Sopenharmony_ci * 81662306a36Sopenharmony_ci * Remove the highest priority context on the runqueue and return it 81762306a36Sopenharmony_ci * to the caller. Returns %NULL if no runnable context was found. 81862306a36Sopenharmony_ci */ 81962306a36Sopenharmony_cistatic struct spu_context *grab_runnable_context(int prio, int node) 82062306a36Sopenharmony_ci{ 82162306a36Sopenharmony_ci struct spu_context *ctx; 82262306a36Sopenharmony_ci int best; 82362306a36Sopenharmony_ci 82462306a36Sopenharmony_ci spin_lock(&spu_prio->runq_lock); 82562306a36Sopenharmony_ci best = find_first_bit(spu_prio->bitmap, prio); 82662306a36Sopenharmony_ci while (best < prio) { 82762306a36Sopenharmony_ci struct list_head *rq = &spu_prio->runq[best]; 82862306a36Sopenharmony_ci 82962306a36Sopenharmony_ci list_for_each_entry(ctx, rq, rq) { 83062306a36Sopenharmony_ci /* XXX(hch): check for affinity here as well */ 83162306a36Sopenharmony_ci if (__node_allowed(ctx, node)) { 83262306a36Sopenharmony_ci __spu_del_from_rq(ctx); 83362306a36Sopenharmony_ci goto found; 83462306a36Sopenharmony_ci } 83562306a36Sopenharmony_ci } 83662306a36Sopenharmony_ci best++; 83762306a36Sopenharmony_ci } 83862306a36Sopenharmony_ci ctx = NULL; 83962306a36Sopenharmony_ci found: 84062306a36Sopenharmony_ci spin_unlock(&spu_prio->runq_lock); 84162306a36Sopenharmony_ci return ctx; 84262306a36Sopenharmony_ci} 84362306a36Sopenharmony_ci 84462306a36Sopenharmony_cistatic int __spu_deactivate(struct spu_context *ctx, int force, int max_prio) 84562306a36Sopenharmony_ci{ 84662306a36Sopenharmony_ci struct spu *spu = ctx->spu; 84762306a36Sopenharmony_ci struct spu_context *new = NULL; 84862306a36Sopenharmony_ci 84962306a36Sopenharmony_ci if (spu) { 85062306a36Sopenharmony_ci new = grab_runnable_context(max_prio, spu->node); 85162306a36Sopenharmony_ci if (new || force) { 85262306a36Sopenharmony_ci spu_unschedule(spu, ctx, new == NULL); 85362306a36Sopenharmony_ci if (new) { 85462306a36Sopenharmony_ci if (new->flags & SPU_CREATE_NOSCHED) 85562306a36Sopenharmony_ci wake_up(&new->stop_wq); 85662306a36Sopenharmony_ci else { 85762306a36Sopenharmony_ci spu_release(ctx); 85862306a36Sopenharmony_ci spu_schedule(spu, new); 85962306a36Sopenharmony_ci /* this one can't easily be made 86062306a36Sopenharmony_ci interruptible */ 86162306a36Sopenharmony_ci mutex_lock(&ctx->state_mutex); 86262306a36Sopenharmony_ci } 86362306a36Sopenharmony_ci } 86462306a36Sopenharmony_ci } 86562306a36Sopenharmony_ci } 86662306a36Sopenharmony_ci 86762306a36Sopenharmony_ci return new != NULL; 86862306a36Sopenharmony_ci} 86962306a36Sopenharmony_ci 87062306a36Sopenharmony_ci/** 87162306a36Sopenharmony_ci * spu_deactivate - unbind a context from it's physical spu 87262306a36Sopenharmony_ci * @ctx: spu context to unbind 87362306a36Sopenharmony_ci * 87462306a36Sopenharmony_ci * Unbind @ctx from the physical spu it is running on and schedule 87562306a36Sopenharmony_ci * the highest priority context to run on the freed physical spu. 87662306a36Sopenharmony_ci */ 87762306a36Sopenharmony_civoid spu_deactivate(struct spu_context *ctx) 87862306a36Sopenharmony_ci{ 87962306a36Sopenharmony_ci spu_context_nospu_trace(spu_deactivate__enter, ctx); 88062306a36Sopenharmony_ci __spu_deactivate(ctx, 1, MAX_PRIO); 88162306a36Sopenharmony_ci} 88262306a36Sopenharmony_ci 88362306a36Sopenharmony_ci/** 88462306a36Sopenharmony_ci * spu_yield - yield a physical spu if others are waiting 88562306a36Sopenharmony_ci * @ctx: spu context to yield 88662306a36Sopenharmony_ci * 88762306a36Sopenharmony_ci * Check if there is a higher priority context waiting and if yes 88862306a36Sopenharmony_ci * unbind @ctx from the physical spu and schedule the highest 88962306a36Sopenharmony_ci * priority context to run on the freed physical spu instead. 89062306a36Sopenharmony_ci */ 89162306a36Sopenharmony_civoid spu_yield(struct spu_context *ctx) 89262306a36Sopenharmony_ci{ 89362306a36Sopenharmony_ci spu_context_nospu_trace(spu_yield__enter, ctx); 89462306a36Sopenharmony_ci if (!(ctx->flags & SPU_CREATE_NOSCHED)) { 89562306a36Sopenharmony_ci mutex_lock(&ctx->state_mutex); 89662306a36Sopenharmony_ci __spu_deactivate(ctx, 0, MAX_PRIO); 89762306a36Sopenharmony_ci mutex_unlock(&ctx->state_mutex); 89862306a36Sopenharmony_ci } 89962306a36Sopenharmony_ci} 90062306a36Sopenharmony_ci 90162306a36Sopenharmony_cistatic noinline void spusched_tick(struct spu_context *ctx) 90262306a36Sopenharmony_ci{ 90362306a36Sopenharmony_ci struct spu_context *new = NULL; 90462306a36Sopenharmony_ci struct spu *spu = NULL; 90562306a36Sopenharmony_ci 90662306a36Sopenharmony_ci if (spu_acquire(ctx)) 90762306a36Sopenharmony_ci BUG(); /* a kernel thread never has signals pending */ 90862306a36Sopenharmony_ci 90962306a36Sopenharmony_ci if (ctx->state != SPU_STATE_RUNNABLE) 91062306a36Sopenharmony_ci goto out; 91162306a36Sopenharmony_ci if (ctx->flags & SPU_CREATE_NOSCHED) 91262306a36Sopenharmony_ci goto out; 91362306a36Sopenharmony_ci if (ctx->policy == SCHED_FIFO) 91462306a36Sopenharmony_ci goto out; 91562306a36Sopenharmony_ci 91662306a36Sopenharmony_ci if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 91762306a36Sopenharmony_ci goto out; 91862306a36Sopenharmony_ci 91962306a36Sopenharmony_ci spu = ctx->spu; 92062306a36Sopenharmony_ci 92162306a36Sopenharmony_ci spu_context_trace(spusched_tick__preempt, ctx, spu); 92262306a36Sopenharmony_ci 92362306a36Sopenharmony_ci new = grab_runnable_context(ctx->prio + 1, spu->node); 92462306a36Sopenharmony_ci if (new) { 92562306a36Sopenharmony_ci spu_unschedule(spu, ctx, 0); 92662306a36Sopenharmony_ci if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags)) 92762306a36Sopenharmony_ci spu_add_to_rq(ctx); 92862306a36Sopenharmony_ci } else { 92962306a36Sopenharmony_ci spu_context_nospu_trace(spusched_tick__newslice, ctx); 93062306a36Sopenharmony_ci if (!ctx->time_slice) 93162306a36Sopenharmony_ci ctx->time_slice++; 93262306a36Sopenharmony_ci } 93362306a36Sopenharmony_ciout: 93462306a36Sopenharmony_ci spu_release(ctx); 93562306a36Sopenharmony_ci 93662306a36Sopenharmony_ci if (new) 93762306a36Sopenharmony_ci spu_schedule(spu, new); 93862306a36Sopenharmony_ci} 93962306a36Sopenharmony_ci 94062306a36Sopenharmony_ci/** 94162306a36Sopenharmony_ci * count_active_contexts - count nr of active tasks 94262306a36Sopenharmony_ci * 94362306a36Sopenharmony_ci * Return the number of tasks currently running or waiting to run. 94462306a36Sopenharmony_ci * 94562306a36Sopenharmony_ci * Note that we don't take runq_lock / list_mutex here. Reading 94662306a36Sopenharmony_ci * a single 32bit value is atomic on powerpc, and we don't care 94762306a36Sopenharmony_ci * about memory ordering issues here. 94862306a36Sopenharmony_ci */ 94962306a36Sopenharmony_cistatic unsigned long count_active_contexts(void) 95062306a36Sopenharmony_ci{ 95162306a36Sopenharmony_ci int nr_active = 0, node; 95262306a36Sopenharmony_ci 95362306a36Sopenharmony_ci for (node = 0; node < MAX_NUMNODES; node++) 95462306a36Sopenharmony_ci nr_active += cbe_spu_info[node].nr_active; 95562306a36Sopenharmony_ci nr_active += spu_prio->nr_waiting; 95662306a36Sopenharmony_ci 95762306a36Sopenharmony_ci return nr_active; 95862306a36Sopenharmony_ci} 95962306a36Sopenharmony_ci 96062306a36Sopenharmony_ci/** 96162306a36Sopenharmony_ci * spu_calc_load - update the avenrun load estimates. 96262306a36Sopenharmony_ci * 96362306a36Sopenharmony_ci * No locking against reading these values from userspace, as for 96462306a36Sopenharmony_ci * the CPU loadavg code. 96562306a36Sopenharmony_ci */ 96662306a36Sopenharmony_cistatic void spu_calc_load(void) 96762306a36Sopenharmony_ci{ 96862306a36Sopenharmony_ci unsigned long active_tasks; /* fixed-point */ 96962306a36Sopenharmony_ci 97062306a36Sopenharmony_ci active_tasks = count_active_contexts() * FIXED_1; 97162306a36Sopenharmony_ci spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks); 97262306a36Sopenharmony_ci spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks); 97362306a36Sopenharmony_ci spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks); 97462306a36Sopenharmony_ci} 97562306a36Sopenharmony_ci 97662306a36Sopenharmony_cistatic void spusched_wake(struct timer_list *unused) 97762306a36Sopenharmony_ci{ 97862306a36Sopenharmony_ci mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK); 97962306a36Sopenharmony_ci wake_up_process(spusched_task); 98062306a36Sopenharmony_ci} 98162306a36Sopenharmony_ci 98262306a36Sopenharmony_cistatic void spuloadavg_wake(struct timer_list *unused) 98362306a36Sopenharmony_ci{ 98462306a36Sopenharmony_ci mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ); 98562306a36Sopenharmony_ci spu_calc_load(); 98662306a36Sopenharmony_ci} 98762306a36Sopenharmony_ci 98862306a36Sopenharmony_cistatic int spusched_thread(void *unused) 98962306a36Sopenharmony_ci{ 99062306a36Sopenharmony_ci struct spu *spu; 99162306a36Sopenharmony_ci int node; 99262306a36Sopenharmony_ci 99362306a36Sopenharmony_ci while (!kthread_should_stop()) { 99462306a36Sopenharmony_ci set_current_state(TASK_INTERRUPTIBLE); 99562306a36Sopenharmony_ci schedule(); 99662306a36Sopenharmony_ci for (node = 0; node < MAX_NUMNODES; node++) { 99762306a36Sopenharmony_ci struct mutex *mtx = &cbe_spu_info[node].list_mutex; 99862306a36Sopenharmony_ci 99962306a36Sopenharmony_ci mutex_lock(mtx); 100062306a36Sopenharmony_ci list_for_each_entry(spu, &cbe_spu_info[node].spus, 100162306a36Sopenharmony_ci cbe_list) { 100262306a36Sopenharmony_ci struct spu_context *ctx = spu->ctx; 100362306a36Sopenharmony_ci 100462306a36Sopenharmony_ci if (ctx) { 100562306a36Sopenharmony_ci get_spu_context(ctx); 100662306a36Sopenharmony_ci mutex_unlock(mtx); 100762306a36Sopenharmony_ci spusched_tick(ctx); 100862306a36Sopenharmony_ci mutex_lock(mtx); 100962306a36Sopenharmony_ci put_spu_context(ctx); 101062306a36Sopenharmony_ci } 101162306a36Sopenharmony_ci } 101262306a36Sopenharmony_ci mutex_unlock(mtx); 101362306a36Sopenharmony_ci } 101462306a36Sopenharmony_ci } 101562306a36Sopenharmony_ci 101662306a36Sopenharmony_ci return 0; 101762306a36Sopenharmony_ci} 101862306a36Sopenharmony_ci 101962306a36Sopenharmony_civoid spuctx_switch_state(struct spu_context *ctx, 102062306a36Sopenharmony_ci enum spu_utilization_state new_state) 102162306a36Sopenharmony_ci{ 102262306a36Sopenharmony_ci unsigned long long curtime; 102362306a36Sopenharmony_ci signed long long delta; 102462306a36Sopenharmony_ci struct spu *spu; 102562306a36Sopenharmony_ci enum spu_utilization_state old_state; 102662306a36Sopenharmony_ci int node; 102762306a36Sopenharmony_ci 102862306a36Sopenharmony_ci curtime = ktime_get_ns(); 102962306a36Sopenharmony_ci delta = curtime - ctx->stats.tstamp; 103062306a36Sopenharmony_ci 103162306a36Sopenharmony_ci WARN_ON(!mutex_is_locked(&ctx->state_mutex)); 103262306a36Sopenharmony_ci WARN_ON(delta < 0); 103362306a36Sopenharmony_ci 103462306a36Sopenharmony_ci spu = ctx->spu; 103562306a36Sopenharmony_ci old_state = ctx->stats.util_state; 103662306a36Sopenharmony_ci ctx->stats.util_state = new_state; 103762306a36Sopenharmony_ci ctx->stats.tstamp = curtime; 103862306a36Sopenharmony_ci 103962306a36Sopenharmony_ci /* 104062306a36Sopenharmony_ci * Update the physical SPU utilization statistics. 104162306a36Sopenharmony_ci */ 104262306a36Sopenharmony_ci if (spu) { 104362306a36Sopenharmony_ci ctx->stats.times[old_state] += delta; 104462306a36Sopenharmony_ci spu->stats.times[old_state] += delta; 104562306a36Sopenharmony_ci spu->stats.util_state = new_state; 104662306a36Sopenharmony_ci spu->stats.tstamp = curtime; 104762306a36Sopenharmony_ci node = spu->node; 104862306a36Sopenharmony_ci if (old_state == SPU_UTIL_USER) 104962306a36Sopenharmony_ci atomic_dec(&cbe_spu_info[node].busy_spus); 105062306a36Sopenharmony_ci if (new_state == SPU_UTIL_USER) 105162306a36Sopenharmony_ci atomic_inc(&cbe_spu_info[node].busy_spus); 105262306a36Sopenharmony_ci } 105362306a36Sopenharmony_ci} 105462306a36Sopenharmony_ci 105562306a36Sopenharmony_ci#ifdef CONFIG_PROC_FS 105662306a36Sopenharmony_cistatic int show_spu_loadavg(struct seq_file *s, void *private) 105762306a36Sopenharmony_ci{ 105862306a36Sopenharmony_ci int a, b, c; 105962306a36Sopenharmony_ci 106062306a36Sopenharmony_ci a = spu_avenrun[0] + (FIXED_1/200); 106162306a36Sopenharmony_ci b = spu_avenrun[1] + (FIXED_1/200); 106262306a36Sopenharmony_ci c = spu_avenrun[2] + (FIXED_1/200); 106362306a36Sopenharmony_ci 106462306a36Sopenharmony_ci /* 106562306a36Sopenharmony_ci * Note that last_pid doesn't really make much sense for the 106662306a36Sopenharmony_ci * SPU loadavg (it even seems very odd on the CPU side...), 106762306a36Sopenharmony_ci * but we include it here to have a 100% compatible interface. 106862306a36Sopenharmony_ci */ 106962306a36Sopenharmony_ci seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n", 107062306a36Sopenharmony_ci LOAD_INT(a), LOAD_FRAC(a), 107162306a36Sopenharmony_ci LOAD_INT(b), LOAD_FRAC(b), 107262306a36Sopenharmony_ci LOAD_INT(c), LOAD_FRAC(c), 107362306a36Sopenharmony_ci count_active_contexts(), 107462306a36Sopenharmony_ci atomic_read(&nr_spu_contexts), 107562306a36Sopenharmony_ci idr_get_cursor(&task_active_pid_ns(current)->idr) - 1); 107662306a36Sopenharmony_ci return 0; 107762306a36Sopenharmony_ci} 107862306a36Sopenharmony_ci#endif 107962306a36Sopenharmony_ci 108062306a36Sopenharmony_ciint __init spu_sched_init(void) 108162306a36Sopenharmony_ci{ 108262306a36Sopenharmony_ci struct proc_dir_entry *entry; 108362306a36Sopenharmony_ci int err = -ENOMEM, i; 108462306a36Sopenharmony_ci 108562306a36Sopenharmony_ci spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL); 108662306a36Sopenharmony_ci if (!spu_prio) 108762306a36Sopenharmony_ci goto out; 108862306a36Sopenharmony_ci 108962306a36Sopenharmony_ci for (i = 0; i < MAX_PRIO; i++) { 109062306a36Sopenharmony_ci INIT_LIST_HEAD(&spu_prio->runq[i]); 109162306a36Sopenharmony_ci __clear_bit(i, spu_prio->bitmap); 109262306a36Sopenharmony_ci } 109362306a36Sopenharmony_ci spin_lock_init(&spu_prio->runq_lock); 109462306a36Sopenharmony_ci 109562306a36Sopenharmony_ci timer_setup(&spusched_timer, spusched_wake, 0); 109662306a36Sopenharmony_ci timer_setup(&spuloadavg_timer, spuloadavg_wake, 0); 109762306a36Sopenharmony_ci 109862306a36Sopenharmony_ci spusched_task = kthread_run(spusched_thread, NULL, "spusched"); 109962306a36Sopenharmony_ci if (IS_ERR(spusched_task)) { 110062306a36Sopenharmony_ci err = PTR_ERR(spusched_task); 110162306a36Sopenharmony_ci goto out_free_spu_prio; 110262306a36Sopenharmony_ci } 110362306a36Sopenharmony_ci 110462306a36Sopenharmony_ci mod_timer(&spuloadavg_timer, 0); 110562306a36Sopenharmony_ci 110662306a36Sopenharmony_ci entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg); 110762306a36Sopenharmony_ci if (!entry) 110862306a36Sopenharmony_ci goto out_stop_kthread; 110962306a36Sopenharmony_ci 111062306a36Sopenharmony_ci pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n", 111162306a36Sopenharmony_ci SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE); 111262306a36Sopenharmony_ci return 0; 111362306a36Sopenharmony_ci 111462306a36Sopenharmony_ci out_stop_kthread: 111562306a36Sopenharmony_ci kthread_stop(spusched_task); 111662306a36Sopenharmony_ci out_free_spu_prio: 111762306a36Sopenharmony_ci kfree(spu_prio); 111862306a36Sopenharmony_ci out: 111962306a36Sopenharmony_ci return err; 112062306a36Sopenharmony_ci} 112162306a36Sopenharmony_ci 112262306a36Sopenharmony_civoid spu_sched_exit(void) 112362306a36Sopenharmony_ci{ 112462306a36Sopenharmony_ci struct spu *spu; 112562306a36Sopenharmony_ci int node; 112662306a36Sopenharmony_ci 112762306a36Sopenharmony_ci remove_proc_entry("spu_loadavg", NULL); 112862306a36Sopenharmony_ci 112962306a36Sopenharmony_ci del_timer_sync(&spusched_timer); 113062306a36Sopenharmony_ci del_timer_sync(&spuloadavg_timer); 113162306a36Sopenharmony_ci kthread_stop(spusched_task); 113262306a36Sopenharmony_ci 113362306a36Sopenharmony_ci for (node = 0; node < MAX_NUMNODES; node++) { 113462306a36Sopenharmony_ci mutex_lock(&cbe_spu_info[node].list_mutex); 113562306a36Sopenharmony_ci list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) 113662306a36Sopenharmony_ci if (spu->alloc_state != SPU_FREE) 113762306a36Sopenharmony_ci spu->alloc_state = SPU_FREE; 113862306a36Sopenharmony_ci mutex_unlock(&cbe_spu_info[node].list_mutex); 113962306a36Sopenharmony_ci } 114062306a36Sopenharmony_ci kfree(spu_prio); 114162306a36Sopenharmony_ci} 1142