162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci *  MMU context allocation for 64-bit kernels.
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci *  Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
662306a36Sopenharmony_ci */
762306a36Sopenharmony_ci
862306a36Sopenharmony_ci#include <linux/sched.h>
962306a36Sopenharmony_ci#include <linux/kernel.h>
1062306a36Sopenharmony_ci#include <linux/errno.h>
1162306a36Sopenharmony_ci#include <linux/string.h>
1262306a36Sopenharmony_ci#include <linux/types.h>
1362306a36Sopenharmony_ci#include <linux/mm.h>
1462306a36Sopenharmony_ci#include <linux/pkeys.h>
1562306a36Sopenharmony_ci#include <linux/spinlock.h>
1662306a36Sopenharmony_ci#include <linux/idr.h>
1762306a36Sopenharmony_ci#include <linux/export.h>
1862306a36Sopenharmony_ci#include <linux/gfp.h>
1962306a36Sopenharmony_ci#include <linux/slab.h>
2062306a36Sopenharmony_ci#include <linux/cpu.h>
2162306a36Sopenharmony_ci
2262306a36Sopenharmony_ci#include <asm/mmu_context.h>
2362306a36Sopenharmony_ci#include <asm/pgalloc.h>
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_ci#include "internal.h"
2662306a36Sopenharmony_ci
2762306a36Sopenharmony_cistatic DEFINE_IDA(mmu_context_ida);
2862306a36Sopenharmony_ci
2962306a36Sopenharmony_cistatic int alloc_context_id(int min_id, int max_id)
3062306a36Sopenharmony_ci{
3162306a36Sopenharmony_ci	return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
3262306a36Sopenharmony_ci}
3362306a36Sopenharmony_ci
3462306a36Sopenharmony_ci#ifdef CONFIG_PPC_64S_HASH_MMU
3562306a36Sopenharmony_civoid __init hash__reserve_context_id(int id)
3662306a36Sopenharmony_ci{
3762306a36Sopenharmony_ci	int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
3862306a36Sopenharmony_ci
3962306a36Sopenharmony_ci	WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
4062306a36Sopenharmony_ci}
4162306a36Sopenharmony_ci
4262306a36Sopenharmony_ciint hash__alloc_context_id(void)
4362306a36Sopenharmony_ci{
4462306a36Sopenharmony_ci	unsigned long max;
4562306a36Sopenharmony_ci
4662306a36Sopenharmony_ci	if (mmu_has_feature(MMU_FTR_68_BIT_VA))
4762306a36Sopenharmony_ci		max = MAX_USER_CONTEXT;
4862306a36Sopenharmony_ci	else
4962306a36Sopenharmony_ci		max = MAX_USER_CONTEXT_65BIT_VA;
5062306a36Sopenharmony_ci
5162306a36Sopenharmony_ci	return alloc_context_id(MIN_USER_CONTEXT, max);
5262306a36Sopenharmony_ci}
5362306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(hash__alloc_context_id);
5462306a36Sopenharmony_ci#endif
5562306a36Sopenharmony_ci
5662306a36Sopenharmony_ci#ifdef CONFIG_PPC_64S_HASH_MMU
5762306a36Sopenharmony_cistatic int realloc_context_ids(mm_context_t *ctx)
5862306a36Sopenharmony_ci{
5962306a36Sopenharmony_ci	int i, id;
6062306a36Sopenharmony_ci
6162306a36Sopenharmony_ci	/*
6262306a36Sopenharmony_ci	 * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
6362306a36Sopenharmony_ci	 * there wasn't one allocated previously (which happens in the exec
6462306a36Sopenharmony_ci	 * case where ctx is newly allocated).
6562306a36Sopenharmony_ci	 *
6662306a36Sopenharmony_ci	 * We have to be a bit careful here. We must keep the existing ids in
6762306a36Sopenharmony_ci	 * the array, so that we can test if they're non-zero to decide if we
6862306a36Sopenharmony_ci	 * need to allocate a new one. However in case of error we must free the
6962306a36Sopenharmony_ci	 * ids we've allocated but *not* any of the existing ones (or risk a
7062306a36Sopenharmony_ci	 * UAF). That's why we decrement i at the start of the error handling
7162306a36Sopenharmony_ci	 * loop, to skip the id that we just tested but couldn't reallocate.
7262306a36Sopenharmony_ci	 */
7362306a36Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
7462306a36Sopenharmony_ci		if (i == 0 || ctx->extended_id[i]) {
7562306a36Sopenharmony_ci			id = hash__alloc_context_id();
7662306a36Sopenharmony_ci			if (id < 0)
7762306a36Sopenharmony_ci				goto error;
7862306a36Sopenharmony_ci
7962306a36Sopenharmony_ci			ctx->extended_id[i] = id;
8062306a36Sopenharmony_ci		}
8162306a36Sopenharmony_ci	}
8262306a36Sopenharmony_ci
8362306a36Sopenharmony_ci	/* The caller expects us to return id */
8462306a36Sopenharmony_ci	return ctx->id;
8562306a36Sopenharmony_ci
8662306a36Sopenharmony_cierror:
8762306a36Sopenharmony_ci	for (i--; i >= 0; i--) {
8862306a36Sopenharmony_ci		if (ctx->extended_id[i])
8962306a36Sopenharmony_ci			ida_free(&mmu_context_ida, ctx->extended_id[i]);
9062306a36Sopenharmony_ci	}
9162306a36Sopenharmony_ci
9262306a36Sopenharmony_ci	return id;
9362306a36Sopenharmony_ci}
9462306a36Sopenharmony_ci
9562306a36Sopenharmony_cistatic int hash__init_new_context(struct mm_struct *mm)
9662306a36Sopenharmony_ci{
9762306a36Sopenharmony_ci	int index;
9862306a36Sopenharmony_ci
9962306a36Sopenharmony_ci	mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
10062306a36Sopenharmony_ci					   GFP_KERNEL);
10162306a36Sopenharmony_ci	if (!mm->context.hash_context)
10262306a36Sopenharmony_ci		return -ENOMEM;
10362306a36Sopenharmony_ci
10462306a36Sopenharmony_ci	/*
10562306a36Sopenharmony_ci	 * The old code would re-promote on fork, we don't do that when using
10662306a36Sopenharmony_ci	 * slices as it could cause problem promoting slices that have been
10762306a36Sopenharmony_ci	 * forced down to 4K.
10862306a36Sopenharmony_ci	 *
10962306a36Sopenharmony_ci	 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
11062306a36Sopenharmony_ci	 * explicitly against context.id == 0. This ensures that we properly
11162306a36Sopenharmony_ci	 * initialize context slice details for newly allocated mm's (which will
11262306a36Sopenharmony_ci	 * have id == 0) and don't alter context slice inherited via fork (which
11362306a36Sopenharmony_ci	 * will have id != 0).
11462306a36Sopenharmony_ci	 *
11562306a36Sopenharmony_ci	 * We should not be calling init_new_context() on init_mm. Hence a
11662306a36Sopenharmony_ci	 * check against 0 is OK.
11762306a36Sopenharmony_ci	 */
11862306a36Sopenharmony_ci	if (mm->context.id == 0) {
11962306a36Sopenharmony_ci		memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
12062306a36Sopenharmony_ci		slice_init_new_context_exec(mm);
12162306a36Sopenharmony_ci	} else {
12262306a36Sopenharmony_ci		/* This is fork. Copy hash_context details from current->mm */
12362306a36Sopenharmony_ci		memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
12462306a36Sopenharmony_ci#ifdef CONFIG_PPC_SUBPAGE_PROT
12562306a36Sopenharmony_ci		/* inherit subpage prot details if we have one. */
12662306a36Sopenharmony_ci		if (current->mm->context.hash_context->spt) {
12762306a36Sopenharmony_ci			mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
12862306a36Sopenharmony_ci								GFP_KERNEL);
12962306a36Sopenharmony_ci			if (!mm->context.hash_context->spt) {
13062306a36Sopenharmony_ci				kfree(mm->context.hash_context);
13162306a36Sopenharmony_ci				return -ENOMEM;
13262306a36Sopenharmony_ci			}
13362306a36Sopenharmony_ci		}
13462306a36Sopenharmony_ci#endif
13562306a36Sopenharmony_ci	}
13662306a36Sopenharmony_ci
13762306a36Sopenharmony_ci	index = realloc_context_ids(&mm->context);
13862306a36Sopenharmony_ci	if (index < 0) {
13962306a36Sopenharmony_ci#ifdef CONFIG_PPC_SUBPAGE_PROT
14062306a36Sopenharmony_ci		kfree(mm->context.hash_context->spt);
14162306a36Sopenharmony_ci#endif
14262306a36Sopenharmony_ci		kfree(mm->context.hash_context);
14362306a36Sopenharmony_ci		return index;
14462306a36Sopenharmony_ci	}
14562306a36Sopenharmony_ci
14662306a36Sopenharmony_ci	pkey_mm_init(mm);
14762306a36Sopenharmony_ci	return index;
14862306a36Sopenharmony_ci}
14962306a36Sopenharmony_ci
15062306a36Sopenharmony_civoid hash__setup_new_exec(void)
15162306a36Sopenharmony_ci{
15262306a36Sopenharmony_ci	slice_setup_new_exec();
15362306a36Sopenharmony_ci
15462306a36Sopenharmony_ci	slb_setup_new_exec();
15562306a36Sopenharmony_ci}
15662306a36Sopenharmony_ci#else
15762306a36Sopenharmony_cistatic inline int hash__init_new_context(struct mm_struct *mm)
15862306a36Sopenharmony_ci{
15962306a36Sopenharmony_ci	BUILD_BUG();
16062306a36Sopenharmony_ci	return 0;
16162306a36Sopenharmony_ci}
16262306a36Sopenharmony_ci#endif
16362306a36Sopenharmony_ci
16462306a36Sopenharmony_cistatic int radix__init_new_context(struct mm_struct *mm)
16562306a36Sopenharmony_ci{
16662306a36Sopenharmony_ci	unsigned long rts_field;
16762306a36Sopenharmony_ci	int index, max_id;
16862306a36Sopenharmony_ci
16962306a36Sopenharmony_ci	max_id = (1 << mmu_pid_bits) - 1;
17062306a36Sopenharmony_ci	index = alloc_context_id(mmu_base_pid, max_id);
17162306a36Sopenharmony_ci	if (index < 0)
17262306a36Sopenharmony_ci		return index;
17362306a36Sopenharmony_ci
17462306a36Sopenharmony_ci	/*
17562306a36Sopenharmony_ci	 * set the process table entry,
17662306a36Sopenharmony_ci	 */
17762306a36Sopenharmony_ci	rts_field = radix__get_tree_size();
17862306a36Sopenharmony_ci	process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
17962306a36Sopenharmony_ci
18062306a36Sopenharmony_ci	/*
18162306a36Sopenharmony_ci	 * Order the above store with subsequent update of the PID
18262306a36Sopenharmony_ci	 * register (at which point HW can start loading/caching
18362306a36Sopenharmony_ci	 * the entry) and the corresponding load by the MMU from
18462306a36Sopenharmony_ci	 * the L2 cache.
18562306a36Sopenharmony_ci	 */
18662306a36Sopenharmony_ci	asm volatile("ptesync;isync" : : : "memory");
18762306a36Sopenharmony_ci
18862306a36Sopenharmony_ci#ifdef CONFIG_PPC_64S_HASH_MMU
18962306a36Sopenharmony_ci	mm->context.hash_context = NULL;
19062306a36Sopenharmony_ci#endif
19162306a36Sopenharmony_ci
19262306a36Sopenharmony_ci	return index;
19362306a36Sopenharmony_ci}
19462306a36Sopenharmony_ci
19562306a36Sopenharmony_ciint init_new_context(struct task_struct *tsk, struct mm_struct *mm)
19662306a36Sopenharmony_ci{
19762306a36Sopenharmony_ci	int index;
19862306a36Sopenharmony_ci
19962306a36Sopenharmony_ci	if (radix_enabled())
20062306a36Sopenharmony_ci		index = radix__init_new_context(mm);
20162306a36Sopenharmony_ci	else
20262306a36Sopenharmony_ci		index = hash__init_new_context(mm);
20362306a36Sopenharmony_ci
20462306a36Sopenharmony_ci	if (index < 0)
20562306a36Sopenharmony_ci		return index;
20662306a36Sopenharmony_ci
20762306a36Sopenharmony_ci	mm->context.id = index;
20862306a36Sopenharmony_ci
20962306a36Sopenharmony_ci	mm->context.pte_frag = NULL;
21062306a36Sopenharmony_ci	mm->context.pmd_frag = NULL;
21162306a36Sopenharmony_ci#ifdef CONFIG_SPAPR_TCE_IOMMU
21262306a36Sopenharmony_ci	mm_iommu_init(mm);
21362306a36Sopenharmony_ci#endif
21462306a36Sopenharmony_ci	atomic_set(&mm->context.active_cpus, 0);
21562306a36Sopenharmony_ci	atomic_set(&mm->context.copros, 0);
21662306a36Sopenharmony_ci
21762306a36Sopenharmony_ci	return 0;
21862306a36Sopenharmony_ci}
21962306a36Sopenharmony_ci
22062306a36Sopenharmony_civoid __destroy_context(int context_id)
22162306a36Sopenharmony_ci{
22262306a36Sopenharmony_ci	ida_free(&mmu_context_ida, context_id);
22362306a36Sopenharmony_ci}
22462306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(__destroy_context);
22562306a36Sopenharmony_ci
22662306a36Sopenharmony_cistatic void destroy_contexts(mm_context_t *ctx)
22762306a36Sopenharmony_ci{
22862306a36Sopenharmony_ci	if (radix_enabled()) {
22962306a36Sopenharmony_ci		ida_free(&mmu_context_ida, ctx->id);
23062306a36Sopenharmony_ci	} else {
23162306a36Sopenharmony_ci#ifdef CONFIG_PPC_64S_HASH_MMU
23262306a36Sopenharmony_ci		int index, context_id;
23362306a36Sopenharmony_ci
23462306a36Sopenharmony_ci		for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
23562306a36Sopenharmony_ci			context_id = ctx->extended_id[index];
23662306a36Sopenharmony_ci			if (context_id)
23762306a36Sopenharmony_ci				ida_free(&mmu_context_ida, context_id);
23862306a36Sopenharmony_ci		}
23962306a36Sopenharmony_ci		kfree(ctx->hash_context);
24062306a36Sopenharmony_ci#else
24162306a36Sopenharmony_ci		BUILD_BUG(); // radix_enabled() should be constant true
24262306a36Sopenharmony_ci#endif
24362306a36Sopenharmony_ci	}
24462306a36Sopenharmony_ci}
24562306a36Sopenharmony_ci
24662306a36Sopenharmony_cistatic void pmd_frag_destroy(void *pmd_frag)
24762306a36Sopenharmony_ci{
24862306a36Sopenharmony_ci	int count;
24962306a36Sopenharmony_ci	struct ptdesc *ptdesc;
25062306a36Sopenharmony_ci
25162306a36Sopenharmony_ci	ptdesc = virt_to_ptdesc(pmd_frag);
25262306a36Sopenharmony_ci	/* drop all the pending references */
25362306a36Sopenharmony_ci	count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
25462306a36Sopenharmony_ci	/* We allow PTE_FRAG_NR fragments from a PTE page */
25562306a36Sopenharmony_ci	if (atomic_sub_and_test(PMD_FRAG_NR - count, &ptdesc->pt_frag_refcount)) {
25662306a36Sopenharmony_ci		pagetable_pmd_dtor(ptdesc);
25762306a36Sopenharmony_ci		pagetable_free(ptdesc);
25862306a36Sopenharmony_ci	}
25962306a36Sopenharmony_ci}
26062306a36Sopenharmony_ci
26162306a36Sopenharmony_cistatic void destroy_pagetable_cache(struct mm_struct *mm)
26262306a36Sopenharmony_ci{
26362306a36Sopenharmony_ci	void *frag;
26462306a36Sopenharmony_ci
26562306a36Sopenharmony_ci	frag = mm->context.pte_frag;
26662306a36Sopenharmony_ci	if (frag)
26762306a36Sopenharmony_ci		pte_frag_destroy(frag);
26862306a36Sopenharmony_ci
26962306a36Sopenharmony_ci	frag = mm->context.pmd_frag;
27062306a36Sopenharmony_ci	if (frag)
27162306a36Sopenharmony_ci		pmd_frag_destroy(frag);
27262306a36Sopenharmony_ci	return;
27362306a36Sopenharmony_ci}
27462306a36Sopenharmony_ci
27562306a36Sopenharmony_civoid destroy_context(struct mm_struct *mm)
27662306a36Sopenharmony_ci{
27762306a36Sopenharmony_ci#ifdef CONFIG_SPAPR_TCE_IOMMU
27862306a36Sopenharmony_ci	WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
27962306a36Sopenharmony_ci#endif
28062306a36Sopenharmony_ci	/*
28162306a36Sopenharmony_ci	 * For tasks which were successfully initialized we end up calling
28262306a36Sopenharmony_ci	 * arch_exit_mmap() which clears the process table entry. And
28362306a36Sopenharmony_ci	 * arch_exit_mmap() is called before the required fullmm TLB flush
28462306a36Sopenharmony_ci	 * which does a RIC=2 flush. Hence for an initialized task, we do clear
28562306a36Sopenharmony_ci	 * any cached process table entries.
28662306a36Sopenharmony_ci	 *
28762306a36Sopenharmony_ci	 * The condition below handles the error case during task init. We have
28862306a36Sopenharmony_ci	 * set the process table entry early and if we fail a task
28962306a36Sopenharmony_ci	 * initialization, we need to ensure the process table entry is zeroed.
29062306a36Sopenharmony_ci	 * We need not worry about process table entry caches because the task
29162306a36Sopenharmony_ci	 * never ran with the PID value.
29262306a36Sopenharmony_ci	 */
29362306a36Sopenharmony_ci	if (radix_enabled())
29462306a36Sopenharmony_ci		process_tb[mm->context.id].prtb0 = 0;
29562306a36Sopenharmony_ci	else
29662306a36Sopenharmony_ci		subpage_prot_free(mm);
29762306a36Sopenharmony_ci	destroy_contexts(&mm->context);
29862306a36Sopenharmony_ci	mm->context.id = MMU_NO_CONTEXT;
29962306a36Sopenharmony_ci}
30062306a36Sopenharmony_ci
30162306a36Sopenharmony_civoid arch_exit_mmap(struct mm_struct *mm)
30262306a36Sopenharmony_ci{
30362306a36Sopenharmony_ci	destroy_pagetable_cache(mm);
30462306a36Sopenharmony_ci
30562306a36Sopenharmony_ci	if (radix_enabled()) {
30662306a36Sopenharmony_ci		/*
30762306a36Sopenharmony_ci		 * Radix doesn't have a valid bit in the process table
30862306a36Sopenharmony_ci		 * entries. However we know that at least P9 implementation
30962306a36Sopenharmony_ci		 * will avoid caching an entry with an invalid RTS field,
31062306a36Sopenharmony_ci		 * and 0 is invalid. So this will do.
31162306a36Sopenharmony_ci		 *
31262306a36Sopenharmony_ci		 * This runs before the "fullmm" tlb flush in exit_mmap,
31362306a36Sopenharmony_ci		 * which does a RIC=2 tlbie to clear the process table
31462306a36Sopenharmony_ci		 * entry. See the "fullmm" comments in tlb-radix.c.
31562306a36Sopenharmony_ci		 *
31662306a36Sopenharmony_ci		 * No barrier required here after the store because
31762306a36Sopenharmony_ci		 * this process will do the invalidate, which starts with
31862306a36Sopenharmony_ci		 * ptesync.
31962306a36Sopenharmony_ci		 */
32062306a36Sopenharmony_ci		process_tb[mm->context.id].prtb0 = 0;
32162306a36Sopenharmony_ci	}
32262306a36Sopenharmony_ci}
32362306a36Sopenharmony_ci
32462306a36Sopenharmony_ci#ifdef CONFIG_PPC_RADIX_MMU
32562306a36Sopenharmony_civoid radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
32662306a36Sopenharmony_ci{
32762306a36Sopenharmony_ci	mtspr(SPRN_PID, next->context.id);
32862306a36Sopenharmony_ci	isync();
32962306a36Sopenharmony_ci}
33062306a36Sopenharmony_ci#endif
33162306a36Sopenharmony_ci
33262306a36Sopenharmony_ci/**
33362306a36Sopenharmony_ci * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined)
33462306a36Sopenharmony_ci *
33562306a36Sopenharmony_ci * This clears the CPU from mm_cpumask for all processes, and then flushes the
33662306a36Sopenharmony_ci * local TLB to ensure TLB coherency in case the CPU is onlined again.
33762306a36Sopenharmony_ci *
33862306a36Sopenharmony_ci * KVM guest translations are not necessarily flushed here. If KVM started
33962306a36Sopenharmony_ci * using mm_cpumask or the Linux APIs which do, this would have to be resolved.
34062306a36Sopenharmony_ci */
34162306a36Sopenharmony_ci#ifdef CONFIG_HOTPLUG_CPU
34262306a36Sopenharmony_civoid cleanup_cpu_mmu_context(void)
34362306a36Sopenharmony_ci{
34462306a36Sopenharmony_ci	int cpu = smp_processor_id();
34562306a36Sopenharmony_ci
34662306a36Sopenharmony_ci	clear_tasks_mm_cpumask(cpu);
34762306a36Sopenharmony_ci	tlbiel_all();
34862306a36Sopenharmony_ci}
34962306a36Sopenharmony_ci#endif
350