1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4 *   {mikejc|engebret}@us.ibm.com
5 *
6 *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 *
8 * SMP scalability work:
9 *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10 *
11 *    Module name: htab.c
12 *
13 *    Description:
14 *      PowerPC Hashed Page Table functions
15 */
16
17#undef DEBUG
18#undef DEBUG_LOW
19
20#define pr_fmt(fmt) "hash-mmu: " fmt
21#include <linux/spinlock.h>
22#include <linux/errno.h>
23#include <linux/sched/mm.h>
24#include <linux/proc_fs.h>
25#include <linux/stat.h>
26#include <linux/sysctl.h>
27#include <linux/export.h>
28#include <linux/ctype.h>
29#include <linux/cache.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/memblock.h>
33#include <linux/context_tracking.h>
34#include <linux/libfdt.h>
35#include <linux/pkeys.h>
36#include <linux/hugetlb.h>
37#include <linux/cpu.h>
38#include <linux/pgtable.h>
39#include <linux/debugfs.h>
40#include <linux/random.h>
41#include <linux/elf-randomize.h>
42#include <linux/of_fdt.h>
43
44#include <asm/interrupt.h>
45#include <asm/processor.h>
46#include <asm/mmu.h>
47#include <asm/mmu_context.h>
48#include <asm/page.h>
49#include <asm/types.h>
50#include <linux/uaccess.h>
51#include <asm/machdep.h>
52#include <asm/io.h>
53#include <asm/eeh.h>
54#include <asm/tlb.h>
55#include <asm/cacheflush.h>
56#include <asm/cputable.h>
57#include <asm/sections.h>
58#include <asm/copro.h>
59#include <asm/udbg.h>
60#include <asm/code-patching.h>
61#include <asm/fadump.h>
62#include <asm/firmware.h>
63#include <asm/tm.h>
64#include <asm/trace.h>
65#include <asm/ps3.h>
66#include <asm/pte-walk.h>
67#include <asm/asm-prototypes.h>
68#include <asm/ultravisor.h>
69
70#include <mm/mmu_decl.h>
71
72#include "internal.h"
73
74
75#ifdef DEBUG
76#define DBG(fmt...) udbg_printf(fmt)
77#else
78#define DBG(fmt...)
79#endif
80
81#ifdef DEBUG_LOW
82#define DBG_LOW(fmt...) udbg_printf(fmt)
83#else
84#define DBG_LOW(fmt...)
85#endif
86
87#define KB (1024)
88#define MB (1024*KB)
89#define GB (1024L*MB)
90
91/*
92 * Note:  pte   --> Linux PTE
93 *        HPTE  --> PowerPC Hashed Page Table Entry
94 *
95 * Execution context:
96 *   htab_initialize is called with the MMU off (of course), but
97 *   the kernel has been copied down to zero so it can directly
98 *   reference global data.  At this point it is very difficult
99 *   to print debug info.
100 *
101 */
102
103static unsigned long _SDR1;
104
105u8 hpte_page_sizes[1 << LP_BITS];
106EXPORT_SYMBOL_GPL(hpte_page_sizes);
107
108struct hash_pte *htab_address;
109unsigned long htab_size_bytes;
110unsigned long htab_hash_mask;
111EXPORT_SYMBOL_GPL(htab_hash_mask);
112int mmu_linear_psize = MMU_PAGE_4K;
113EXPORT_SYMBOL_GPL(mmu_linear_psize);
114int mmu_virtual_psize = MMU_PAGE_4K;
115int mmu_vmalloc_psize = MMU_PAGE_4K;
116EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
117int mmu_io_psize = MMU_PAGE_4K;
118int mmu_kernel_ssize = MMU_SEGSIZE_256M;
119EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
120int mmu_highuser_ssize = MMU_SEGSIZE_256M;
121u16 mmu_slb_size = 64;
122EXPORT_SYMBOL_GPL(mmu_slb_size);
123#ifdef CONFIG_PPC_64K_PAGES
124int mmu_ci_restrictions;
125#endif
126static u8 *linear_map_hash_slots;
127static unsigned long linear_map_hash_count;
128struct mmu_hash_ops mmu_hash_ops;
129EXPORT_SYMBOL(mmu_hash_ops);
130
131/*
132 * These are definitions of page sizes arrays to be used when none
133 * is provided by the firmware.
134 */
135
136/*
137 * Fallback (4k pages only)
138 */
139static struct mmu_psize_def mmu_psize_defaults[] = {
140	[MMU_PAGE_4K] = {
141		.shift	= 12,
142		.sllp	= 0,
143		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
144		.avpnm	= 0,
145		.tlbiel = 0,
146	},
147};
148
149/*
150 * POWER4, GPUL, POWER5
151 *
152 * Support for 16Mb large pages
153 */
154static struct mmu_psize_def mmu_psize_defaults_gp[] = {
155	[MMU_PAGE_4K] = {
156		.shift	= 12,
157		.sllp	= 0,
158		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
159		.avpnm	= 0,
160		.tlbiel = 1,
161	},
162	[MMU_PAGE_16M] = {
163		.shift	= 24,
164		.sllp	= SLB_VSID_L,
165		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
166			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
167		.avpnm	= 0x1UL,
168		.tlbiel = 0,
169	},
170};
171
172static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is)
173{
174	unsigned long rb;
175
176	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
177
178	asm volatile("tlbiel %0" : : "r" (rb));
179}
180
181/*
182 * tlbiel instruction for hash, set invalidation
183 * i.e., r=1 and is=01 or is=10 or is=11
184 */
185static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is,
186					unsigned int pid,
187					unsigned int ric, unsigned int prs)
188{
189	unsigned long rb;
190	unsigned long rs;
191	unsigned int r = 0; /* hash format */
192
193	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
194	rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
195
196	asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4)
197		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r)
198		     : "memory");
199}
200
201
202static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is)
203{
204	unsigned int set;
205
206	asm volatile("ptesync": : :"memory");
207
208	for (set = 0; set < num_sets; set++)
209		tlbiel_hash_set_isa206(set, is);
210
211	ppc_after_tlbiel_barrier();
212}
213
214static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
215{
216	unsigned int set;
217
218	asm volatile("ptesync": : :"memory");
219
220	/*
221	 * Flush the partition table cache if this is HV mode.
222	 */
223	if (early_cpu_has_feature(CPU_FTR_HVMODE))
224		tlbiel_hash_set_isa300(0, is, 0, 2, 0);
225
226	/*
227	 * Now invalidate the process table cache. UPRT=0 HPT modes (what
228	 * current hardware implements) do not use the process table, but
229	 * add the flushes anyway.
230	 *
231	 * From ISA v3.0B p. 1078:
232	 *     The following forms are invalid.
233	 *      * PRS=1, R=0, and RIC!=2 (The only process-scoped
234	 *        HPT caching is of the Process Table.)
235	 */
236	tlbiel_hash_set_isa300(0, is, 0, 2, 1);
237
238	/*
239	 * Then flush the sets of the TLB proper. Hash mode uses
240	 * partition scoped TLB translations, which may be flushed
241	 * in !HV mode.
242	 */
243	for (set = 0; set < num_sets; set++)
244		tlbiel_hash_set_isa300(set, is, 0, 0, 0);
245
246	ppc_after_tlbiel_barrier();
247
248	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
249}
250
251void hash__tlbiel_all(unsigned int action)
252{
253	unsigned int is;
254
255	switch (action) {
256	case TLB_INVAL_SCOPE_GLOBAL:
257		is = 3;
258		break;
259	case TLB_INVAL_SCOPE_LPID:
260		is = 2;
261		break;
262	default:
263		BUG();
264	}
265
266	if (early_cpu_has_feature(CPU_FTR_ARCH_300))
267		tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is);
268	else if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
269		tlbiel_all_isa206(POWER8_TLB_SETS, is);
270	else if (early_cpu_has_feature(CPU_FTR_ARCH_206))
271		tlbiel_all_isa206(POWER7_TLB_SETS, is);
272	else
273		WARN(1, "%s called on pre-POWER7 CPU\n", __func__);
274}
275
276/*
277 * 'R' and 'C' update notes:
278 *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
279 *     create writeable HPTEs without C set, because the hcall H_PROTECT
280 *     that we use in that case will not update C
281 *  - The above is however not a problem, because we also don't do that
282 *     fancy "no flush" variant of eviction and we use H_REMOVE which will
283 *     do the right thing and thus we don't have the race I described earlier
284 *
285 *    - Under bare metal,  we do have the race, so we need R and C set
286 *    - We make sure R is always set and never lost
287 *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
288 */
289unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
290{
291	unsigned long rflags = 0;
292
293	/* _PAGE_EXEC -> NOEXEC */
294	if ((pteflags & _PAGE_EXEC) == 0)
295		rflags |= HPTE_R_N;
296	/*
297	 * PPP bits:
298	 * Linux uses slb key 0 for kernel and 1 for user.
299	 * kernel RW areas are mapped with PPP=0b000
300	 * User area is mapped with PPP=0b010 for read/write
301	 * or PPP=0b011 for read-only (including writeable but clean pages).
302	 */
303	if (pteflags & _PAGE_PRIVILEGED) {
304		/*
305		 * Kernel read only mapped with ppp bits 0b110
306		 */
307		if (!(pteflags & _PAGE_WRITE)) {
308			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
309				rflags |= (HPTE_R_PP0 | 0x2);
310			else
311				rflags |= 0x3;
312		}
313	} else {
314		if (pteflags & _PAGE_RWX)
315			rflags |= 0x2;
316		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
317			rflags |= 0x1;
318	}
319	/*
320	 * We can't allow hardware to update hpte bits. Hence always
321	 * set 'R' bit and set 'C' if it is a write fault
322	 */
323	rflags |=  HPTE_R_R;
324
325	if (pteflags & _PAGE_DIRTY)
326		rflags |= HPTE_R_C;
327	/*
328	 * Add in WIG bits
329	 */
330
331	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
332		rflags |= HPTE_R_I;
333	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
334		rflags |= (HPTE_R_I | HPTE_R_G);
335	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
336		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
337	else
338		/*
339		 * Add memory coherence if cache inhibited is not set
340		 */
341		rflags |= HPTE_R_M;
342
343	rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
344	return rflags;
345}
346
347int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
348		      unsigned long pstart, unsigned long prot,
349		      int psize, int ssize)
350{
351	unsigned long vaddr, paddr;
352	unsigned int step, shift;
353	int ret = 0;
354
355	shift = mmu_psize_defs[psize].shift;
356	step = 1 << shift;
357
358	prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
359
360	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
361	    vstart, vend, pstart, prot, psize, ssize);
362
363	/* Carefully map only the possible range */
364	vaddr = ALIGN(vstart, step);
365	paddr = ALIGN(pstart, step);
366	vend  = ALIGN_DOWN(vend, step);
367
368	for (; vaddr < vend; vaddr += step, paddr += step) {
369		unsigned long hash, hpteg;
370		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
371		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
372		unsigned long tprot = prot;
373		bool secondary_hash = false;
374
375		/*
376		 * If we hit a bad address return error.
377		 */
378		if (!vsid)
379			return -1;
380		/* Make kernel text executable */
381		if (overlaps_kernel_text(vaddr, vaddr + step))
382			tprot &= ~HPTE_R_N;
383
384		/*
385		 * If relocatable, check if it overlaps interrupt vectors that
386		 * are copied down to real 0. For relocatable kernel
387		 * (e.g. kdump case) we copy interrupt vectors down to real
388		 * address 0. Mark that region as executable. This is
389		 * because on p8 system with relocation on exception feature
390		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
391		 * in order to execute the interrupt handlers in virtual
392		 * mode the vector region need to be marked as executable.
393		 */
394		if ((PHYSICAL_START > MEMORY_START) &&
395			overlaps_interrupt_vector_text(vaddr, vaddr + step))
396				tprot &= ~HPTE_R_N;
397
398		hash = hpt_hash(vpn, shift, ssize);
399		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
400
401		BUG_ON(!mmu_hash_ops.hpte_insert);
402repeat:
403		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
404					       HPTE_V_BOLTED, psize, psize,
405					       ssize);
406		if (ret == -1) {
407			/*
408			 * Try to keep bolted entries in primary.
409			 * Remove non bolted entries and try insert again
410			 */
411			ret = mmu_hash_ops.hpte_remove(hpteg);
412			if (ret != -1)
413				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
414							       HPTE_V_BOLTED, psize, psize,
415							       ssize);
416			if (ret == -1 && !secondary_hash) {
417				secondary_hash = true;
418				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
419				goto repeat;
420			}
421		}
422
423		if (ret < 0)
424			break;
425
426		cond_resched();
427		if (debug_pagealloc_enabled_or_kfence() &&
428			(paddr >> PAGE_SHIFT) < linear_map_hash_count)
429			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
430	}
431	return ret < 0 ? ret : 0;
432}
433
434int htab_remove_mapping(unsigned long vstart, unsigned long vend,
435		      int psize, int ssize)
436{
437	unsigned long vaddr, time_limit;
438	unsigned int step, shift;
439	int rc;
440	int ret = 0;
441
442	shift = mmu_psize_defs[psize].shift;
443	step = 1 << shift;
444
445	if (!mmu_hash_ops.hpte_removebolted)
446		return -ENODEV;
447
448	/* Unmap the full range specificied */
449	vaddr = ALIGN_DOWN(vstart, step);
450	time_limit = jiffies + HZ;
451
452	for (;vaddr < vend; vaddr += step) {
453		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
454
455		/*
456		 * For large number of mappings introduce a cond_resched()
457		 * to prevent softlockup warnings.
458		 */
459		if (time_after(jiffies, time_limit)) {
460			cond_resched();
461			time_limit = jiffies + HZ;
462		}
463		if (rc == -ENOENT) {
464			ret = -ENOENT;
465			continue;
466		}
467		if (rc < 0)
468			return rc;
469	}
470
471	return ret;
472}
473
474static bool disable_1tb_segments __ro_after_init;
475
476static int __init parse_disable_1tb_segments(char *p)
477{
478	disable_1tb_segments = true;
479	return 0;
480}
481early_param("disable_1tb_segments", parse_disable_1tb_segments);
482
483bool stress_hpt_enabled __initdata;
484
485static int __init parse_stress_hpt(char *p)
486{
487	stress_hpt_enabled = true;
488	return 0;
489}
490early_param("stress_hpt", parse_stress_hpt);
491
492__ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key);
493
494/*
495 * per-CPU array allocated if we enable stress_hpt.
496 */
497#define STRESS_MAX_GROUPS 16
498struct stress_hpt_struct {
499	unsigned long last_group[STRESS_MAX_GROUPS];
500};
501
502static inline int stress_nr_groups(void)
503{
504	/*
505	 * LPAR H_REMOVE flushes TLB, so need some number > 1 of entries
506	 * to allow practical forward progress. Bare metal returns 1, which
507	 * seems to help uncover more bugs.
508	 */
509	if (firmware_has_feature(FW_FEATURE_LPAR))
510		return STRESS_MAX_GROUPS;
511	else
512		return 1;
513}
514
515static struct stress_hpt_struct *stress_hpt_struct;
516
517static int __init htab_dt_scan_seg_sizes(unsigned long node,
518					 const char *uname, int depth,
519					 void *data)
520{
521	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
522	const __be32 *prop;
523	int size = 0;
524
525	/* We are scanning "cpu" nodes only */
526	if (type == NULL || strcmp(type, "cpu") != 0)
527		return 0;
528
529	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
530	if (prop == NULL)
531		return 0;
532	for (; size >= 4; size -= 4, ++prop) {
533		if (be32_to_cpu(prop[0]) == 40) {
534			DBG("1T segment support detected\n");
535
536			if (disable_1tb_segments) {
537				DBG("1T segments disabled by command line\n");
538				break;
539			}
540
541			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
542			return 1;
543		}
544	}
545	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
546	return 0;
547}
548
549static int __init get_idx_from_shift(unsigned int shift)
550{
551	int idx = -1;
552
553	switch (shift) {
554	case 0xc:
555		idx = MMU_PAGE_4K;
556		break;
557	case 0x10:
558		idx = MMU_PAGE_64K;
559		break;
560	case 0x14:
561		idx = MMU_PAGE_1M;
562		break;
563	case 0x18:
564		idx = MMU_PAGE_16M;
565		break;
566	case 0x22:
567		idx = MMU_PAGE_16G;
568		break;
569	}
570	return idx;
571}
572
573static int __init htab_dt_scan_page_sizes(unsigned long node,
574					  const char *uname, int depth,
575					  void *data)
576{
577	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
578	const __be32 *prop;
579	int size = 0;
580
581	/* We are scanning "cpu" nodes only */
582	if (type == NULL || strcmp(type, "cpu") != 0)
583		return 0;
584
585	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
586	if (!prop)
587		return 0;
588
589	pr_info("Page sizes from device-tree:\n");
590	size /= 4;
591	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
592	while(size > 0) {
593		unsigned int base_shift = be32_to_cpu(prop[0]);
594		unsigned int slbenc = be32_to_cpu(prop[1]);
595		unsigned int lpnum = be32_to_cpu(prop[2]);
596		struct mmu_psize_def *def;
597		int idx, base_idx;
598
599		size -= 3; prop += 3;
600		base_idx = get_idx_from_shift(base_shift);
601		if (base_idx < 0) {
602			/* skip the pte encoding also */
603			prop += lpnum * 2; size -= lpnum * 2;
604			continue;
605		}
606		def = &mmu_psize_defs[base_idx];
607		if (base_idx == MMU_PAGE_16M)
608			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
609
610		def->shift = base_shift;
611		if (base_shift <= 23)
612			def->avpnm = 0;
613		else
614			def->avpnm = (1 << (base_shift - 23)) - 1;
615		def->sllp = slbenc;
616		/*
617		 * We don't know for sure what's up with tlbiel, so
618		 * for now we only set it for 4K and 64K pages
619		 */
620		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
621			def->tlbiel = 1;
622		else
623			def->tlbiel = 0;
624
625		while (size > 0 && lpnum) {
626			unsigned int shift = be32_to_cpu(prop[0]);
627			int penc  = be32_to_cpu(prop[1]);
628
629			prop += 2; size -= 2;
630			lpnum--;
631
632			idx = get_idx_from_shift(shift);
633			if (idx < 0)
634				continue;
635
636			if (penc == -1)
637				pr_err("Invalid penc for base_shift=%d "
638				       "shift=%d\n", base_shift, shift);
639
640			def->penc[idx] = penc;
641			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
642				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
643				base_shift, shift, def->sllp,
644				def->avpnm, def->tlbiel, def->penc[idx]);
645		}
646	}
647
648	return 1;
649}
650
651#ifdef CONFIG_HUGETLB_PAGE
652/*
653 * Scan for 16G memory blocks that have been set aside for huge pages
654 * and reserve those blocks for 16G huge pages.
655 */
656static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
657					const char *uname, int depth,
658					void *data) {
659	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
660	const __be64 *addr_prop;
661	const __be32 *page_count_prop;
662	unsigned int expected_pages;
663	long unsigned int phys_addr;
664	long unsigned int block_size;
665
666	/* We are scanning "memory" nodes only */
667	if (type == NULL || strcmp(type, "memory") != 0)
668		return 0;
669
670	/*
671	 * This property is the log base 2 of the number of virtual pages that
672	 * will represent this memory block.
673	 */
674	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
675	if (page_count_prop == NULL)
676		return 0;
677	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
678	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
679	if (addr_prop == NULL)
680		return 0;
681	phys_addr = be64_to_cpu(addr_prop[0]);
682	block_size = be64_to_cpu(addr_prop[1]);
683	if (block_size != (16 * GB))
684		return 0;
685	printk(KERN_INFO "Huge page(16GB) memory: "
686			"addr = 0x%lX size = 0x%lX pages = %d\n",
687			phys_addr, block_size, expected_pages);
688	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
689		memblock_reserve(phys_addr, block_size * expected_pages);
690		pseries_add_gpage(phys_addr, block_size, expected_pages);
691	}
692	return 0;
693}
694#endif /* CONFIG_HUGETLB_PAGE */
695
696static void __init mmu_psize_set_default_penc(void)
697{
698	int bpsize, apsize;
699	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
700		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
701			mmu_psize_defs[bpsize].penc[apsize] = -1;
702}
703
704#ifdef CONFIG_PPC_64K_PAGES
705
706static bool __init might_have_hea(void)
707{
708	/*
709	 * The HEA ethernet adapter requires awareness of the
710	 * GX bus. Without that awareness we can easily assume
711	 * we will never see an HEA ethernet device.
712	 */
713#ifdef CONFIG_IBMEBUS
714	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
715		firmware_has_feature(FW_FEATURE_SPLPAR);
716#else
717	return false;
718#endif
719}
720
721#endif /* #ifdef CONFIG_PPC_64K_PAGES */
722
723static void __init htab_scan_page_sizes(void)
724{
725	int rc;
726
727	/* se the invalid penc to -1 */
728	mmu_psize_set_default_penc();
729
730	/* Default to 4K pages only */
731	memcpy(mmu_psize_defs, mmu_psize_defaults,
732	       sizeof(mmu_psize_defaults));
733
734	/*
735	 * Try to find the available page sizes in the device-tree
736	 */
737	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
738	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
739		/*
740		 * Nothing in the device-tree, but the CPU supports 16M pages,
741		 * so let's fallback on a known size list for 16M capable CPUs.
742		 */
743		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
744		       sizeof(mmu_psize_defaults_gp));
745	}
746
747#ifdef CONFIG_HUGETLB_PAGE
748	if (!hugetlb_disabled && !early_radix_enabled() ) {
749		/* Reserve 16G huge page memory sections for huge pages */
750		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
751	}
752#endif /* CONFIG_HUGETLB_PAGE */
753}
754
755/*
756 * Fill in the hpte_page_sizes[] array.
757 * We go through the mmu_psize_defs[] array looking for all the
758 * supported base/actual page size combinations.  Each combination
759 * has a unique pagesize encoding (penc) value in the low bits of
760 * the LP field of the HPTE.  For actual page sizes less than 1MB,
761 * some of the upper LP bits are used for RPN bits, meaning that
762 * we need to fill in several entries in hpte_page_sizes[].
763 *
764 * In diagrammatic form, with r = RPN bits and z = page size bits:
765 *        PTE LP     actual page size
766 *    rrrr rrrz		>=8KB
767 *    rrrr rrzz		>=16KB
768 *    rrrr rzzz		>=32KB
769 *    rrrr zzzz		>=64KB
770 *    ...
771 *
772 * The zzzz bits are implementation-specific but are chosen so that
773 * no encoding for a larger page size uses the same value in its
774 * low-order N bits as the encoding for the 2^(12+N) byte page size
775 * (if it exists).
776 */
777static void __init init_hpte_page_sizes(void)
778{
779	long int ap, bp;
780	long int shift, penc;
781
782	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
783		if (!mmu_psize_defs[bp].shift)
784			continue;	/* not a supported page size */
785		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
786			penc = mmu_psize_defs[bp].penc[ap];
787			if (penc == -1 || !mmu_psize_defs[ap].shift)
788				continue;
789			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
790			if (shift <= 0)
791				continue;	/* should never happen */
792			/*
793			 * For page sizes less than 1MB, this loop
794			 * replicates the entry for all possible values
795			 * of the rrrr bits.
796			 */
797			while (penc < (1 << LP_BITS)) {
798				hpte_page_sizes[penc] = (ap << 4) | bp;
799				penc += 1 << shift;
800			}
801		}
802	}
803}
804
805static void __init htab_init_page_sizes(void)
806{
807	bool aligned = true;
808	init_hpte_page_sizes();
809
810	if (!debug_pagealloc_enabled_or_kfence()) {
811		/*
812		 * Pick a size for the linear mapping. Currently, we only
813		 * support 16M, 1M and 4K which is the default
814		 */
815		if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
816		    (unsigned long)_stext % 0x1000000) {
817			if (mmu_psize_defs[MMU_PAGE_16M].shift)
818				pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
819			aligned = false;
820		}
821
822		if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
823			mmu_linear_psize = MMU_PAGE_16M;
824		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
825			mmu_linear_psize = MMU_PAGE_1M;
826	}
827
828#ifdef CONFIG_PPC_64K_PAGES
829	/*
830	 * Pick a size for the ordinary pages. Default is 4K, we support
831	 * 64K for user mappings and vmalloc if supported by the processor.
832	 * We only use 64k for ioremap if the processor
833	 * (and firmware) support cache-inhibited large pages.
834	 * If not, we use 4k and set mmu_ci_restrictions so that
835	 * hash_page knows to switch processes that use cache-inhibited
836	 * mappings to 4k pages.
837	 */
838	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
839		mmu_virtual_psize = MMU_PAGE_64K;
840		mmu_vmalloc_psize = MMU_PAGE_64K;
841		if (mmu_linear_psize == MMU_PAGE_4K)
842			mmu_linear_psize = MMU_PAGE_64K;
843		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
844			/*
845			 * When running on pSeries using 64k pages for ioremap
846			 * would stop us accessing the HEA ethernet. So if we
847			 * have the chance of ever seeing one, stay at 4k.
848			 */
849			if (!might_have_hea())
850				mmu_io_psize = MMU_PAGE_64K;
851		} else
852			mmu_ci_restrictions = 1;
853	}
854#endif /* CONFIG_PPC_64K_PAGES */
855
856#ifdef CONFIG_SPARSEMEM_VMEMMAP
857	/*
858	 * We try to use 16M pages for vmemmap if that is supported
859	 * and we have at least 1G of RAM at boot
860	 */
861	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
862	    memblock_phys_mem_size() >= 0x40000000)
863		mmu_vmemmap_psize = MMU_PAGE_16M;
864	else
865		mmu_vmemmap_psize = mmu_virtual_psize;
866#endif /* CONFIG_SPARSEMEM_VMEMMAP */
867
868	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
869	       "virtual = %d, io = %d"
870#ifdef CONFIG_SPARSEMEM_VMEMMAP
871	       ", vmemmap = %d"
872#endif
873	       "\n",
874	       mmu_psize_defs[mmu_linear_psize].shift,
875	       mmu_psize_defs[mmu_virtual_psize].shift,
876	       mmu_psize_defs[mmu_io_psize].shift
877#ifdef CONFIG_SPARSEMEM_VMEMMAP
878	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
879#endif
880	       );
881}
882
883static int __init htab_dt_scan_pftsize(unsigned long node,
884				       const char *uname, int depth,
885				       void *data)
886{
887	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
888	const __be32 *prop;
889
890	/* We are scanning "cpu" nodes only */
891	if (type == NULL || strcmp(type, "cpu") != 0)
892		return 0;
893
894	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
895	if (prop != NULL) {
896		/* pft_size[0] is the NUMA CEC cookie */
897		ppc64_pft_size = be32_to_cpu(prop[1]);
898		return 1;
899	}
900	return 0;
901}
902
903unsigned htab_shift_for_mem_size(unsigned long mem_size)
904{
905	unsigned memshift = __ilog2(mem_size);
906	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
907	unsigned pteg_shift;
908
909	/* round mem_size up to next power of 2 */
910	if ((1UL << memshift) < mem_size)
911		memshift += 1;
912
913	/* aim for 2 pages / pteg */
914	pteg_shift = memshift - (pshift + 1);
915
916	/*
917	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
918	 * size permitted by the architecture.
919	 */
920	return max(pteg_shift + 7, 18U);
921}
922
923static unsigned long __init htab_get_table_size(void)
924{
925	/*
926	 * If hash size isn't already provided by the platform, we try to
927	 * retrieve it from the device-tree. If it's not there neither, we
928	 * calculate it now based on the total RAM size
929	 */
930	if (ppc64_pft_size == 0)
931		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
932	if (ppc64_pft_size)
933		return 1UL << ppc64_pft_size;
934
935	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
936}
937
938#ifdef CONFIG_MEMORY_HOTPLUG
939static int resize_hpt_for_hotplug(unsigned long new_mem_size)
940{
941	unsigned target_hpt_shift;
942
943	if (!mmu_hash_ops.resize_hpt)
944		return 0;
945
946	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
947
948	/*
949	 * To avoid lots of HPT resizes if memory size is fluctuating
950	 * across a boundary, we deliberately have some hysterisis
951	 * here: we immediately increase the HPT size if the target
952	 * shift exceeds the current shift, but we won't attempt to
953	 * reduce unless the target shift is at least 2 below the
954	 * current shift
955	 */
956	if (target_hpt_shift > ppc64_pft_size ||
957	    target_hpt_shift < ppc64_pft_size - 1)
958		return mmu_hash_ops.resize_hpt(target_hpt_shift);
959
960	return 0;
961}
962
963int hash__create_section_mapping(unsigned long start, unsigned long end,
964				 int nid, pgprot_t prot)
965{
966	int rc;
967
968	if (end >= H_VMALLOC_START) {
969		pr_warn("Outside the supported range\n");
970		return -1;
971	}
972
973	resize_hpt_for_hotplug(memblock_phys_mem_size());
974
975	rc = htab_bolt_mapping(start, end, __pa(start),
976			       pgprot_val(prot), mmu_linear_psize,
977			       mmu_kernel_ssize);
978
979	if (rc < 0) {
980		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
981					      mmu_kernel_ssize);
982		BUG_ON(rc2 && (rc2 != -ENOENT));
983	}
984	return rc;
985}
986
987int hash__remove_section_mapping(unsigned long start, unsigned long end)
988{
989	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
990				     mmu_kernel_ssize);
991
992	if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
993		pr_warn("Hash collision while resizing HPT\n");
994
995	return rc;
996}
997#endif /* CONFIG_MEMORY_HOTPLUG */
998
999static void __init hash_init_partition_table(phys_addr_t hash_table,
1000					     unsigned long htab_size)
1001{
1002	mmu_partition_table_init();
1003
1004	/*
1005	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
1006	 * For now, UPRT is 0 and we have no segment table.
1007	 */
1008	htab_size =  __ilog2(htab_size) - 18;
1009	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
1010	pr_info("Partition table %p\n", partition_tb);
1011}
1012
1013void hpt_clear_stress(void);
1014static struct timer_list stress_hpt_timer;
1015static void stress_hpt_timer_fn(struct timer_list *timer)
1016{
1017	int next_cpu;
1018
1019	hpt_clear_stress();
1020	if (!firmware_has_feature(FW_FEATURE_LPAR))
1021		tlbiel_all();
1022
1023	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
1024	if (next_cpu >= nr_cpu_ids)
1025		next_cpu = cpumask_first(cpu_online_mask);
1026	stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1027	add_timer_on(&stress_hpt_timer, next_cpu);
1028}
1029
1030static void __init htab_initialize(void)
1031{
1032	unsigned long table;
1033	unsigned long pteg_count;
1034	unsigned long prot;
1035	phys_addr_t base = 0, size = 0, end;
1036	u64 i;
1037
1038	DBG(" -> htab_initialize()\n");
1039
1040	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
1041		mmu_kernel_ssize = MMU_SEGSIZE_1T;
1042		mmu_highuser_ssize = MMU_SEGSIZE_1T;
1043		printk(KERN_INFO "Using 1TB segments\n");
1044	}
1045
1046	if (stress_slb_enabled)
1047		static_branch_enable(&stress_slb_key);
1048
1049	if (stress_hpt_enabled) {
1050		unsigned long tmp;
1051		static_branch_enable(&stress_hpt_key);
1052		// Too early to use nr_cpu_ids, so use NR_CPUS
1053		tmp = memblock_phys_alloc_range(sizeof(struct stress_hpt_struct) * NR_CPUS,
1054						__alignof__(struct stress_hpt_struct),
1055						0, MEMBLOCK_ALLOC_ANYWHERE);
1056		memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS);
1057		stress_hpt_struct = __va(tmp);
1058
1059		timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0);
1060		stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1061		add_timer(&stress_hpt_timer);
1062	}
1063
1064	/*
1065	 * Calculate the required size of the htab.  We want the number of
1066	 * PTEGs to equal one half the number of real pages.
1067	 */
1068	htab_size_bytes = htab_get_table_size();
1069	pteg_count = htab_size_bytes >> 7;
1070
1071	htab_hash_mask = pteg_count - 1;
1072
1073	if (firmware_has_feature(FW_FEATURE_LPAR) ||
1074	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
1075		/* Using a hypervisor which owns the htab */
1076		htab_address = NULL;
1077		_SDR1 = 0;
1078#ifdef CONFIG_FA_DUMP
1079		/*
1080		 * If firmware assisted dump is active firmware preserves
1081		 * the contents of htab along with entire partition memory.
1082		 * Clear the htab if firmware assisted dump is active so
1083		 * that we dont end up using old mappings.
1084		 */
1085		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
1086			mmu_hash_ops.hpte_clear_all();
1087#endif
1088	} else {
1089		unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
1090
1091#ifdef CONFIG_PPC_CELL
1092		/*
1093		 * Cell may require the hash table down low when using the
1094		 * Axon IOMMU in order to fit the dynamic region over it, see
1095		 * comments in cell/iommu.c
1096		 */
1097		if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
1098			limit = 0x80000000;
1099			pr_info("Hash table forced below 2G for Axon IOMMU\n");
1100		}
1101#endif /* CONFIG_PPC_CELL */
1102
1103		table = memblock_phys_alloc_range(htab_size_bytes,
1104						  htab_size_bytes,
1105						  0, limit);
1106		if (!table)
1107			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
1108			      &htab_size_bytes, &limit);
1109
1110		DBG("Hash table allocated at %lx, size: %lx\n", table,
1111		    htab_size_bytes);
1112
1113		htab_address = __va(table);
1114
1115		/* htab absolute addr + encoded htabsize */
1116		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
1117
1118		/* Initialize the HPT with no entries */
1119		memset((void *)table, 0, htab_size_bytes);
1120
1121		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1122			/* Set SDR1 */
1123			mtspr(SPRN_SDR1, _SDR1);
1124		else
1125			hash_init_partition_table(table, htab_size_bytes);
1126	}
1127
1128	prot = pgprot_val(PAGE_KERNEL);
1129
1130	if (debug_pagealloc_enabled_or_kfence()) {
1131		linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
1132		linear_map_hash_slots = memblock_alloc_try_nid(
1133				linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
1134				ppc64_rma_size,	NUMA_NO_NODE);
1135		if (!linear_map_hash_slots)
1136			panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
1137			      __func__, linear_map_hash_count, &ppc64_rma_size);
1138	}
1139
1140	/* create bolted the linear mapping in the hash table */
1141	for_each_mem_range(i, &base, &end) {
1142		size = end - base;
1143		base = (unsigned long)__va(base);
1144
1145		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
1146		    base, size, prot);
1147
1148		if ((base + size) >= H_VMALLOC_START) {
1149			pr_warn("Outside the supported range\n");
1150			continue;
1151		}
1152
1153		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
1154				prot, mmu_linear_psize, mmu_kernel_ssize));
1155	}
1156	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
1157
1158	/*
1159	 * If we have a memory_limit and we've allocated TCEs then we need to
1160	 * explicitly map the TCE area at the top of RAM. We also cope with the
1161	 * case that the TCEs start below memory_limit.
1162	 * tce_alloc_start/end are 16MB aligned so the mapping should work
1163	 * for either 4K or 16MB pages.
1164	 */
1165	if (tce_alloc_start) {
1166		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1167		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1168
1169		if (base + size >= tce_alloc_start)
1170			tce_alloc_start = base + size + 1;
1171
1172		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1173					 __pa(tce_alloc_start), prot,
1174					 mmu_linear_psize, mmu_kernel_ssize));
1175	}
1176
1177
1178	DBG(" <- htab_initialize()\n");
1179}
1180#undef KB
1181#undef MB
1182
1183void __init hash__early_init_devtree(void)
1184{
1185	/* Initialize segment sizes */
1186	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1187
1188	/* Initialize page sizes */
1189	htab_scan_page_sizes();
1190}
1191
1192static struct hash_mm_context init_hash_mm_context;
1193void __init hash__early_init_mmu(void)
1194{
1195#ifndef CONFIG_PPC_64K_PAGES
1196	/*
1197	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1198	 * do the following:
1199	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1200	 *
1201	 * Where the slot number is between 0-15, and values of 8-15 indicate
1202	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1203	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1204	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1205	 * with a BUILD_BUG_ON().
1206	 */
1207	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1208#endif /* CONFIG_PPC_64K_PAGES */
1209
1210	htab_init_page_sizes();
1211
1212	/*
1213	 * initialize page table size
1214	 */
1215	__pte_frag_nr = H_PTE_FRAG_NR;
1216	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1217	__pmd_frag_nr = H_PMD_FRAG_NR;
1218	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1219
1220	__pte_index_size = H_PTE_INDEX_SIZE;
1221	__pmd_index_size = H_PMD_INDEX_SIZE;
1222	__pud_index_size = H_PUD_INDEX_SIZE;
1223	__pgd_index_size = H_PGD_INDEX_SIZE;
1224	__pud_cache_index = H_PUD_CACHE_INDEX;
1225	__pte_table_size = H_PTE_TABLE_SIZE;
1226	__pmd_table_size = H_PMD_TABLE_SIZE;
1227	__pud_table_size = H_PUD_TABLE_SIZE;
1228	__pgd_table_size = H_PGD_TABLE_SIZE;
1229	/*
1230	 * 4k use hugepd format, so for hash set then to
1231	 * zero
1232	 */
1233	__pmd_val_bits = HASH_PMD_VAL_BITS;
1234	__pud_val_bits = HASH_PUD_VAL_BITS;
1235	__pgd_val_bits = HASH_PGD_VAL_BITS;
1236
1237	__kernel_virt_start = H_KERN_VIRT_START;
1238	__vmalloc_start = H_VMALLOC_START;
1239	__vmalloc_end = H_VMALLOC_END;
1240	__kernel_io_start = H_KERN_IO_START;
1241	__kernel_io_end = H_KERN_IO_END;
1242	vmemmap = (struct page *)H_VMEMMAP_START;
1243	ioremap_bot = IOREMAP_BASE;
1244
1245#ifdef CONFIG_PCI
1246	pci_io_base = ISA_IO_BASE;
1247#endif
1248
1249	/* Select appropriate backend */
1250	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1251		ps3_early_mm_init();
1252	else if (firmware_has_feature(FW_FEATURE_LPAR))
1253		hpte_init_pseries();
1254	else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE))
1255		hpte_init_native();
1256
1257	if (!mmu_hash_ops.hpte_insert)
1258		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1259
1260	/*
1261	 * Initialize the MMU Hash table and create the linear mapping
1262	 * of memory. Has to be done before SLB initialization as this is
1263	 * currently where the page size encoding is obtained.
1264	 */
1265	htab_initialize();
1266
1267	init_mm.context.hash_context = &init_hash_mm_context;
1268	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1269
1270	pr_info("Initializing hash mmu with SLB\n");
1271	/* Initialize SLB management */
1272	slb_initialize();
1273
1274	if (cpu_has_feature(CPU_FTR_ARCH_206)
1275			&& cpu_has_feature(CPU_FTR_HVMODE))
1276		tlbiel_all();
1277}
1278
1279#ifdef CONFIG_SMP
1280void hash__early_init_mmu_secondary(void)
1281{
1282	/* Initialize hash table for that CPU */
1283	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1284
1285		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1286			mtspr(SPRN_SDR1, _SDR1);
1287		else
1288			set_ptcr_when_no_uv(__pa(partition_tb) |
1289					    (PATB_SIZE_SHIFT - 12));
1290	}
1291	/* Initialize SLB */
1292	slb_initialize();
1293
1294	if (cpu_has_feature(CPU_FTR_ARCH_206)
1295			&& cpu_has_feature(CPU_FTR_HVMODE))
1296		tlbiel_all();
1297
1298#ifdef CONFIG_PPC_MEM_KEYS
1299	if (mmu_has_feature(MMU_FTR_PKEY))
1300		mtspr(SPRN_UAMOR, default_uamor);
1301#endif
1302}
1303#endif /* CONFIG_SMP */
1304
1305/*
1306 * Called by asm hashtable.S for doing lazy icache flush
1307 */
1308unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1309{
1310	struct folio *folio;
1311
1312	if (!pfn_valid(pte_pfn(pte)))
1313		return pp;
1314
1315	folio = page_folio(pte_page(pte));
1316
1317	/* page is dirty */
1318	if (!test_bit(PG_dcache_clean, &folio->flags) &&
1319	    !folio_test_reserved(folio)) {
1320		if (trap == INTERRUPT_INST_STORAGE) {
1321			flush_dcache_icache_folio(folio);
1322			set_bit(PG_dcache_clean, &folio->flags);
1323		} else
1324			pp |= HPTE_R_N;
1325	}
1326	return pp;
1327}
1328
1329static unsigned int get_paca_psize(unsigned long addr)
1330{
1331	unsigned char *psizes;
1332	unsigned long index, mask_index;
1333
1334	if (addr < SLICE_LOW_TOP) {
1335		psizes = get_paca()->mm_ctx_low_slices_psize;
1336		index = GET_LOW_SLICE_INDEX(addr);
1337	} else {
1338		psizes = get_paca()->mm_ctx_high_slices_psize;
1339		index = GET_HIGH_SLICE_INDEX(addr);
1340	}
1341	mask_index = index & 0x1;
1342	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1343}
1344
1345
1346/*
1347 * Demote a segment to using 4k pages.
1348 * For now this makes the whole process use 4k pages.
1349 */
1350#ifdef CONFIG_PPC_64K_PAGES
1351void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1352{
1353	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1354		return;
1355	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1356	copro_flush_all_slbs(mm);
1357	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1358
1359		copy_mm_to_paca(mm);
1360		slb_flush_and_restore_bolted();
1361	}
1362}
1363#endif /* CONFIG_PPC_64K_PAGES */
1364
1365#ifdef CONFIG_PPC_SUBPAGE_PROT
1366/*
1367 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1368 * Userspace sets the subpage permissions using the subpage_prot system call.
1369 *
1370 * Result is 0: full permissions, _PAGE_RW: read-only,
1371 * _PAGE_RWX: no access.
1372 */
1373static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1374{
1375	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1376	u32 spp = 0;
1377	u32 **sbpm, *sbpp;
1378
1379	if (!spt)
1380		return 0;
1381
1382	if (ea >= spt->maxaddr)
1383		return 0;
1384	if (ea < 0x100000000UL) {
1385		/* addresses below 4GB use spt->low_prot */
1386		sbpm = spt->low_prot;
1387	} else {
1388		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1389		if (!sbpm)
1390			return 0;
1391	}
1392	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1393	if (!sbpp)
1394		return 0;
1395	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1396
1397	/* extract 2-bit bitfield for this 4k subpage */
1398	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1399
1400	/*
1401	 * 0 -> full permission
1402	 * 1 -> Read only
1403	 * 2 -> no access.
1404	 * We return the flag that need to be cleared.
1405	 */
1406	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1407	return spp;
1408}
1409
1410#else /* CONFIG_PPC_SUBPAGE_PROT */
1411static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1412{
1413	return 0;
1414}
1415#endif
1416
1417void hash_failure_debug(unsigned long ea, unsigned long access,
1418			unsigned long vsid, unsigned long trap,
1419			int ssize, int psize, int lpsize, unsigned long pte)
1420{
1421	if (!printk_ratelimit())
1422		return;
1423	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1424		ea, access, current->comm);
1425	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1426		trap, vsid, ssize, psize, lpsize, pte);
1427}
1428
1429static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1430			     int psize, bool user_region)
1431{
1432	if (user_region) {
1433		if (psize != get_paca_psize(ea)) {
1434			copy_mm_to_paca(mm);
1435			slb_flush_and_restore_bolted();
1436		}
1437	} else if (get_paca()->vmalloc_sllp !=
1438		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1439		get_paca()->vmalloc_sllp =
1440			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1441		slb_vmalloc_update();
1442	}
1443}
1444
1445/*
1446 * Result code is:
1447 *  0 - handled
1448 *  1 - normal page fault
1449 * -1 - critical hash insertion error
1450 * -2 - access not permitted by subpage protection mechanism
1451 */
1452int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1453		 unsigned long access, unsigned long trap,
1454		 unsigned long flags)
1455{
1456	bool is_thp;
1457	pgd_t *pgdir;
1458	unsigned long vsid;
1459	pte_t *ptep;
1460	unsigned hugeshift;
1461	int rc, user_region = 0;
1462	int psize, ssize;
1463
1464	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1465		ea, access, trap);
1466	trace_hash_fault(ea, access, trap);
1467
1468	/* Get region & vsid */
1469	switch (get_region_id(ea)) {
1470	case USER_REGION_ID:
1471		user_region = 1;
1472		if (! mm) {
1473			DBG_LOW(" user region with no mm !\n");
1474			rc = 1;
1475			goto bail;
1476		}
1477		psize = get_slice_psize(mm, ea);
1478		ssize = user_segment_size(ea);
1479		vsid = get_user_vsid(&mm->context, ea, ssize);
1480		break;
1481	case VMALLOC_REGION_ID:
1482		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1483		psize = mmu_vmalloc_psize;
1484		ssize = mmu_kernel_ssize;
1485		flags |= HPTE_USE_KERNEL_KEY;
1486		break;
1487
1488	case IO_REGION_ID:
1489		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1490		psize = mmu_io_psize;
1491		ssize = mmu_kernel_ssize;
1492		flags |= HPTE_USE_KERNEL_KEY;
1493		break;
1494	default:
1495		/*
1496		 * Not a valid range
1497		 * Send the problem up to do_page_fault()
1498		 */
1499		rc = 1;
1500		goto bail;
1501	}
1502	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1503
1504	/* Bad address. */
1505	if (!vsid) {
1506		DBG_LOW("Bad address!\n");
1507		rc = 1;
1508		goto bail;
1509	}
1510	/* Get pgdir */
1511	pgdir = mm->pgd;
1512	if (pgdir == NULL) {
1513		rc = 1;
1514		goto bail;
1515	}
1516
1517	/* Check CPU locality */
1518	if (user_region && mm_is_thread_local(mm))
1519		flags |= HPTE_LOCAL_UPDATE;
1520
1521#ifndef CONFIG_PPC_64K_PAGES
1522	/*
1523	 * If we use 4K pages and our psize is not 4K, then we might
1524	 * be hitting a special driver mapping, and need to align the
1525	 * address before we fetch the PTE.
1526	 *
1527	 * It could also be a hugepage mapping, in which case this is
1528	 * not necessary, but it's not harmful, either.
1529	 */
1530	if (psize != MMU_PAGE_4K)
1531		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1532#endif /* CONFIG_PPC_64K_PAGES */
1533
1534	/* Get PTE and page size from page tables */
1535	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1536	if (ptep == NULL || !pte_present(*ptep)) {
1537		DBG_LOW(" no PTE !\n");
1538		rc = 1;
1539		goto bail;
1540	}
1541
1542	/*
1543	 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1544	 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1545	 *
1546	 * We can safely use the return pte address in rest of the function
1547	 * because we do set H_PAGE_BUSY which prevents further updates to pte
1548	 * from generic code.
1549	 */
1550	access |= _PAGE_PRESENT | _PAGE_PTE;
1551
1552	/*
1553	 * Pre-check access permissions (will be re-checked atomically
1554	 * in __hash_page_XX but this pre-check is a fast path
1555	 */
1556	if (!check_pte_access(access, pte_val(*ptep))) {
1557		DBG_LOW(" no access !\n");
1558		rc = 1;
1559		goto bail;
1560	}
1561
1562	if (hugeshift) {
1563		if (is_thp)
1564			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1565					     trap, flags, ssize, psize);
1566#ifdef CONFIG_HUGETLB_PAGE
1567		else
1568			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1569					      flags, ssize, hugeshift, psize);
1570#else
1571		else {
1572			/*
1573			 * if we have hugeshift, and is not transhuge with
1574			 * hugetlb disabled, something is really wrong.
1575			 */
1576			rc = 1;
1577			WARN_ON(1);
1578		}
1579#endif
1580		if (current->mm == mm)
1581			check_paca_psize(ea, mm, psize, user_region);
1582
1583		goto bail;
1584	}
1585
1586#ifndef CONFIG_PPC_64K_PAGES
1587	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1588#else
1589	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1590		pte_val(*(ptep + PTRS_PER_PTE)));
1591#endif
1592	/* Do actual hashing */
1593#ifdef CONFIG_PPC_64K_PAGES
1594	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1595	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1596		demote_segment_4k(mm, ea);
1597		psize = MMU_PAGE_4K;
1598	}
1599
1600	/*
1601	 * If this PTE is non-cacheable and we have restrictions on
1602	 * using non cacheable large pages, then we switch to 4k
1603	 */
1604	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1605		if (user_region) {
1606			demote_segment_4k(mm, ea);
1607			psize = MMU_PAGE_4K;
1608		} else if (ea < VMALLOC_END) {
1609			/*
1610			 * some driver did a non-cacheable mapping
1611			 * in vmalloc space, so switch vmalloc
1612			 * to 4k pages
1613			 */
1614			printk(KERN_ALERT "Reducing vmalloc segment "
1615			       "to 4kB pages because of "
1616			       "non-cacheable mapping\n");
1617			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1618			copro_flush_all_slbs(mm);
1619		}
1620	}
1621
1622#endif /* CONFIG_PPC_64K_PAGES */
1623
1624	if (current->mm == mm)
1625		check_paca_psize(ea, mm, psize, user_region);
1626
1627#ifdef CONFIG_PPC_64K_PAGES
1628	if (psize == MMU_PAGE_64K)
1629		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1630				     flags, ssize);
1631	else
1632#endif /* CONFIG_PPC_64K_PAGES */
1633	{
1634		int spp = subpage_protection(mm, ea);
1635		if (access & spp)
1636			rc = -2;
1637		else
1638			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1639					    flags, ssize, spp);
1640	}
1641
1642	/*
1643	 * Dump some info in case of hash insertion failure, they should
1644	 * never happen so it is really useful to know if/when they do
1645	 */
1646	if (rc == -1)
1647		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1648				   psize, pte_val(*ptep));
1649#ifndef CONFIG_PPC_64K_PAGES
1650	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1651#else
1652	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1653		pte_val(*(ptep + PTRS_PER_PTE)));
1654#endif
1655	DBG_LOW(" -> rc=%d\n", rc);
1656
1657bail:
1658	return rc;
1659}
1660EXPORT_SYMBOL_GPL(hash_page_mm);
1661
1662int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1663	      unsigned long dsisr)
1664{
1665	unsigned long flags = 0;
1666	struct mm_struct *mm = current->mm;
1667
1668	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1669	    (get_region_id(ea) == IO_REGION_ID))
1670		mm = &init_mm;
1671
1672	if (dsisr & DSISR_NOHPTE)
1673		flags |= HPTE_NOHPTE_UPDATE;
1674
1675	return hash_page_mm(mm, ea, access, trap, flags);
1676}
1677EXPORT_SYMBOL_GPL(hash_page);
1678
1679DEFINE_INTERRUPT_HANDLER(do_hash_fault)
1680{
1681	unsigned long ea = regs->dar;
1682	unsigned long dsisr = regs->dsisr;
1683	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1684	unsigned long flags = 0;
1685	struct mm_struct *mm;
1686	unsigned int region_id;
1687	long err;
1688
1689	if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1690		hash__do_page_fault(regs);
1691		return;
1692	}
1693
1694	region_id = get_region_id(ea);
1695	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1696		mm = &init_mm;
1697	else
1698		mm = current->mm;
1699
1700	if (dsisr & DSISR_NOHPTE)
1701		flags |= HPTE_NOHPTE_UPDATE;
1702
1703	if (dsisr & DSISR_ISSTORE)
1704		access |= _PAGE_WRITE;
1705	/*
1706	 * We set _PAGE_PRIVILEGED only when
1707	 * kernel mode access kernel space.
1708	 *
1709	 * _PAGE_PRIVILEGED is NOT set
1710	 * 1) when kernel mode access user space
1711	 * 2) user space access kernel space.
1712	 */
1713	access |= _PAGE_PRIVILEGED;
1714	if (user_mode(regs) || (region_id == USER_REGION_ID))
1715		access &= ~_PAGE_PRIVILEGED;
1716
1717	if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1718		access |= _PAGE_EXEC;
1719
1720	err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1721	if (unlikely(err < 0)) {
1722		// failed to insert a hash PTE due to an hypervisor error
1723		if (user_mode(regs)) {
1724			if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
1725				_exception(SIGSEGV, regs, SEGV_ACCERR, ea);
1726			else
1727				_exception(SIGBUS, regs, BUS_ADRERR, ea);
1728		} else {
1729			bad_page_fault(regs, SIGBUS);
1730		}
1731		err = 0;
1732
1733	} else if (err) {
1734		hash__do_page_fault(regs);
1735	}
1736}
1737
1738static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1739{
1740	int psize = get_slice_psize(mm, ea);
1741
1742	/* We only prefault standard pages for now */
1743	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
1744		return false;
1745
1746	/*
1747	 * Don't prefault if subpage protection is enabled for the EA.
1748	 */
1749	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1750		return false;
1751
1752	return true;
1753}
1754
1755static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
1756			 bool is_exec, unsigned long trap)
1757{
1758	unsigned long vsid;
1759	pgd_t *pgdir;
1760	int rc, ssize, update_flags = 0;
1761	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
1762	unsigned long flags;
1763
1764	BUG_ON(get_region_id(ea) != USER_REGION_ID);
1765
1766	if (!should_hash_preload(mm, ea))
1767		return;
1768
1769	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1770		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1771
1772	/* Get Linux PTE if available */
1773	pgdir = mm->pgd;
1774	if (pgdir == NULL)
1775		return;
1776
1777	/* Get VSID */
1778	ssize = user_segment_size(ea);
1779	vsid = get_user_vsid(&mm->context, ea, ssize);
1780	if (!vsid)
1781		return;
1782
1783#ifdef CONFIG_PPC_64K_PAGES
1784	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1785	 * a 64K kernel), then we don't preload, hash_page() will take
1786	 * care of it once we actually try to access the page.
1787	 * That way we don't have to duplicate all of the logic for segment
1788	 * page size demotion here
1789	 * Called with  PTL held, hence can be sure the value won't change in
1790	 * between.
1791	 */
1792	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1793		return;
1794#endif /* CONFIG_PPC_64K_PAGES */
1795
1796	/*
1797	 * __hash_page_* must run with interrupts off, including PMI interrupts
1798	 * off, as it sets the H_PAGE_BUSY bit.
1799	 *
1800	 * It's otherwise possible for perf interrupts to hit at any time and
1801	 * may take a hash fault reading the user stack, which could take a
1802	 * hash miss and deadlock on the same H_PAGE_BUSY bit.
1803	 *
1804	 * Interrupts must also be off for the duration of the
1805	 * mm_is_thread_local test and update, to prevent preempt running the
1806	 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
1807	 */
1808	powerpc_local_irq_pmu_save(flags);
1809
1810	/* Is that local to this CPU ? */
1811	if (mm_is_thread_local(mm))
1812		update_flags |= HPTE_LOCAL_UPDATE;
1813
1814	/* Hash it in */
1815#ifdef CONFIG_PPC_64K_PAGES
1816	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
1817		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1818				     update_flags, ssize);
1819	else
1820#endif /* CONFIG_PPC_64K_PAGES */
1821		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1822				    ssize, subpage_protection(mm, ea));
1823
1824	/* Dump some info in case of hash insertion failure, they should
1825	 * never happen so it is really useful to know if/when they do
1826	 */
1827	if (rc == -1)
1828		hash_failure_debug(ea, access, vsid, trap, ssize,
1829				   mm_ctx_user_psize(&mm->context),
1830				   mm_ctx_user_psize(&mm->context),
1831				   pte_val(*ptep));
1832
1833	powerpc_local_irq_pmu_restore(flags);
1834}
1835
1836/*
1837 * This is called at the end of handling a user page fault, when the
1838 * fault has been handled by updating a PTE in the linux page tables.
1839 * We use it to preload an HPTE into the hash table corresponding to
1840 * the updated linux PTE.
1841 *
1842 * This must always be called with the pte lock held.
1843 */
1844void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
1845		      pte_t *ptep)
1846{
1847	/*
1848	 * We don't need to worry about _PAGE_PRESENT here because we are
1849	 * called with either mm->page_table_lock held or ptl lock held
1850	 */
1851	unsigned long trap;
1852	bool is_exec;
1853
1854	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
1855	if (!pte_young(*ptep) || address >= TASK_SIZE)
1856		return;
1857
1858	/*
1859	 * We try to figure out if we are coming from an instruction
1860	 * access fault and pass that down to __hash_page so we avoid
1861	 * double-faulting on execution of fresh text. We have to test
1862	 * for regs NULL since init will get here first thing at boot.
1863	 *
1864	 * We also avoid filling the hash if not coming from a fault.
1865	 */
1866
1867	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
1868	switch (trap) {
1869	case 0x300:
1870		is_exec = false;
1871		break;
1872	case 0x400:
1873		is_exec = true;
1874		break;
1875	default:
1876		return;
1877	}
1878
1879	hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
1880}
1881
1882#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1883static inline void tm_flush_hash_page(int local)
1884{
1885	/*
1886	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1887	 * page back to a block device w/PIO could pick up transactional data
1888	 * (bad!) so we force an abort here. Before the sync the page will be
1889	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1890	 * kernel uses a page from userspace without unmapping it first, it may
1891	 * see the speculated version.
1892	 */
1893	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1894	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
1895		tm_enable();
1896		tm_abort(TM_CAUSE_TLBI);
1897	}
1898}
1899#else
1900static inline void tm_flush_hash_page(int local)
1901{
1902}
1903#endif
1904
1905/*
1906 * Return the global hash slot, corresponding to the given PTE, which contains
1907 * the HPTE.
1908 */
1909unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1910		int ssize, real_pte_t rpte, unsigned int subpg_index)
1911{
1912	unsigned long hash, gslot, hidx;
1913
1914	hash = hpt_hash(vpn, shift, ssize);
1915	hidx = __rpte_to_hidx(rpte, subpg_index);
1916	if (hidx & _PTEIDX_SECONDARY)
1917		hash = ~hash;
1918	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1919	gslot += hidx & _PTEIDX_GROUP_IX;
1920	return gslot;
1921}
1922
1923void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1924		     unsigned long flags)
1925{
1926	unsigned long index, shift, gslot;
1927	int local = flags & HPTE_LOCAL_UPDATE;
1928
1929	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1930	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1931		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1932		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1933		/*
1934		 * We use same base page size and actual psize, because we don't
1935		 * use these functions for hugepage
1936		 */
1937		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1938					     ssize, local);
1939	} pte_iterate_hashed_end();
1940
1941	tm_flush_hash_page(local);
1942}
1943
1944#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1945void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1946			 pmd_t *pmdp, unsigned int psize, int ssize,
1947			 unsigned long flags)
1948{
1949	int i, max_hpte_count, valid;
1950	unsigned long s_addr;
1951	unsigned char *hpte_slot_array;
1952	unsigned long hidx, shift, vpn, hash, slot;
1953	int local = flags & HPTE_LOCAL_UPDATE;
1954
1955	s_addr = addr & HPAGE_PMD_MASK;
1956	hpte_slot_array = get_hpte_slot_array(pmdp);
1957	/*
1958	 * IF we try to do a HUGE PTE update after a withdraw is done.
1959	 * we will find the below NULL. This happens when we do
1960	 * split_huge_pmd
1961	 */
1962	if (!hpte_slot_array)
1963		return;
1964
1965	if (mmu_hash_ops.hugepage_invalidate) {
1966		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1967						 psize, ssize, local);
1968		goto tm_abort;
1969	}
1970	/*
1971	 * No bluk hpte removal support, invalidate each entry
1972	 */
1973	shift = mmu_psize_defs[psize].shift;
1974	max_hpte_count = HPAGE_PMD_SIZE >> shift;
1975	for (i = 0; i < max_hpte_count; i++) {
1976		/*
1977		 * 8 bits per each hpte entries
1978		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1979		 */
1980		valid = hpte_valid(hpte_slot_array, i);
1981		if (!valid)
1982			continue;
1983		hidx =  hpte_hash_index(hpte_slot_array, i);
1984
1985		/* get the vpn */
1986		addr = s_addr + (i * (1ul << shift));
1987		vpn = hpt_vpn(addr, vsid, ssize);
1988		hash = hpt_hash(vpn, shift, ssize);
1989		if (hidx & _PTEIDX_SECONDARY)
1990			hash = ~hash;
1991
1992		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1993		slot += hidx & _PTEIDX_GROUP_IX;
1994		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1995					     MMU_PAGE_16M, ssize, local);
1996	}
1997tm_abort:
1998	tm_flush_hash_page(local);
1999}
2000#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2001
2002void flush_hash_range(unsigned long number, int local)
2003{
2004	if (mmu_hash_ops.flush_hash_range)
2005		mmu_hash_ops.flush_hash_range(number, local);
2006	else {
2007		int i;
2008		struct ppc64_tlb_batch *batch =
2009			this_cpu_ptr(&ppc64_tlb_batch);
2010
2011		for (i = 0; i < number; i++)
2012			flush_hash_page(batch->vpn[i], batch->pte[i],
2013					batch->psize, batch->ssize, local);
2014	}
2015}
2016
2017long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
2018			   unsigned long pa, unsigned long rflags,
2019			   unsigned long vflags, int psize, int ssize)
2020{
2021	unsigned long hpte_group;
2022	long slot;
2023
2024repeat:
2025	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2026
2027	/* Insert into the hash table, primary slot */
2028	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
2029					psize, psize, ssize);
2030
2031	/* Primary is full, try the secondary */
2032	if (unlikely(slot == -1)) {
2033		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
2034		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
2035						vflags | HPTE_V_SECONDARY,
2036						psize, psize, ssize);
2037		if (slot == -1) {
2038			if (mftb() & 0x1)
2039				hpte_group = (hash & htab_hash_mask) *
2040						HPTES_PER_GROUP;
2041
2042			mmu_hash_ops.hpte_remove(hpte_group);
2043			goto repeat;
2044		}
2045	}
2046
2047	return slot;
2048}
2049
2050void hpt_clear_stress(void)
2051{
2052	int cpu = raw_smp_processor_id();
2053	int g;
2054
2055	for (g = 0; g < stress_nr_groups(); g++) {
2056		unsigned long last_group;
2057		last_group = stress_hpt_struct[cpu].last_group[g];
2058
2059		if (last_group != -1UL) {
2060			int i;
2061			for (i = 0; i < HPTES_PER_GROUP; i++) {
2062				if (mmu_hash_ops.hpte_remove(last_group) == -1)
2063					break;
2064			}
2065			stress_hpt_struct[cpu].last_group[g] = -1;
2066		}
2067	}
2068}
2069
2070void hpt_do_stress(unsigned long ea, unsigned long hpte_group)
2071{
2072	unsigned long last_group;
2073	int cpu = raw_smp_processor_id();
2074
2075	last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1];
2076	if (hpte_group == last_group)
2077		return;
2078
2079	if (last_group != -1UL) {
2080		int i;
2081		/*
2082		 * Concurrent CPUs might be inserting into this group, so
2083		 * give up after a number of iterations, to prevent a live
2084		 * lock.
2085		 */
2086		for (i = 0; i < HPTES_PER_GROUP; i++) {
2087			if (mmu_hash_ops.hpte_remove(last_group) == -1)
2088				break;
2089		}
2090		stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1;
2091	}
2092
2093	if (ea >= PAGE_OFFSET) {
2094		/*
2095		 * We would really like to prefetch to get the TLB loaded, then
2096		 * remove the PTE before returning from fault interrupt, to
2097		 * increase the hash fault rate.
2098		 *
2099		 * Unfortunately QEMU TCG does not model the TLB in a way that
2100		 * makes this possible, and systemsim (mambo) emulator does not
2101		 * bring in TLBs with prefetches (although loads/stores do
2102		 * work for non-CI PTEs).
2103		 *
2104		 * So remember this PTE and clear it on the next hash fault.
2105		 */
2106		memmove(&stress_hpt_struct[cpu].last_group[1],
2107			&stress_hpt_struct[cpu].last_group[0],
2108			(stress_nr_groups() - 1) * sizeof(unsigned long));
2109		stress_hpt_struct[cpu].last_group[0] = hpte_group;
2110	}
2111}
2112
2113#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
2114static DEFINE_RAW_SPINLOCK(linear_map_hash_lock);
2115
2116static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
2117{
2118	unsigned long hash;
2119	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2120	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2121	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
2122	long ret;
2123
2124	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2125
2126	/* Don't create HPTE entries for bad address */
2127	if (!vsid)
2128		return;
2129
2130	if (linear_map_hash_slots[lmi] & 0x80)
2131		return;
2132
2133	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
2134				    HPTE_V_BOLTED,
2135				    mmu_linear_psize, mmu_kernel_ssize);
2136
2137	BUG_ON (ret < 0);
2138	raw_spin_lock(&linear_map_hash_lock);
2139	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
2140	linear_map_hash_slots[lmi] = ret | 0x80;
2141	raw_spin_unlock(&linear_map_hash_lock);
2142}
2143
2144static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
2145{
2146	unsigned long hash, hidx, slot;
2147	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
2148	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
2149
2150	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
2151	raw_spin_lock(&linear_map_hash_lock);
2152	if (!(linear_map_hash_slots[lmi] & 0x80)) {
2153		raw_spin_unlock(&linear_map_hash_lock);
2154		return;
2155	}
2156	hidx = linear_map_hash_slots[lmi] & 0x7f;
2157	linear_map_hash_slots[lmi] = 0;
2158	raw_spin_unlock(&linear_map_hash_lock);
2159	if (hidx & _PTEIDX_SECONDARY)
2160		hash = ~hash;
2161	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2162	slot += hidx & _PTEIDX_GROUP_IX;
2163	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
2164				     mmu_linear_psize,
2165				     mmu_kernel_ssize, 0);
2166}
2167
2168void hash__kernel_map_pages(struct page *page, int numpages, int enable)
2169{
2170	unsigned long flags, vaddr, lmi;
2171	int i;
2172
2173	local_irq_save(flags);
2174	for (i = 0; i < numpages; i++, page++) {
2175		vaddr = (unsigned long)page_address(page);
2176		lmi = __pa(vaddr) >> PAGE_SHIFT;
2177		if (lmi >= linear_map_hash_count)
2178			continue;
2179		if (enable)
2180			kernel_map_linear_page(vaddr, lmi);
2181		else
2182			kernel_unmap_linear_page(vaddr, lmi);
2183	}
2184	local_irq_restore(flags);
2185}
2186#endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_KFENCE */
2187
2188void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2189				phys_addr_t first_memblock_size)
2190{
2191	/*
2192	 * We don't currently support the first MEMBLOCK not mapping 0
2193	 * physical on those processors
2194	 */
2195	BUG_ON(first_memblock_base != 0);
2196
2197	/*
2198	 * On virtualized systems the first entry is our RMA region aka VRMA,
2199	 * non-virtualized 64-bit hash MMU systems don't have a limitation
2200	 * on real mode access.
2201	 *
2202	 * For guests on platforms before POWER9, we clamp the it limit to 1G
2203	 * to avoid some funky things such as RTAS bugs etc...
2204	 *
2205	 * On POWER9 we limit to 1TB in case the host erroneously told us that
2206	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
2207	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2208	 * for virtual real mode addressing and so it doesn't make sense to
2209	 * have an area larger than 1TB as it can't be addressed.
2210	 */
2211	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2212		ppc64_rma_size = first_memblock_size;
2213		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2214			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2215		else
2216			ppc64_rma_size = min_t(u64, ppc64_rma_size,
2217					       1UL << SID_SHIFT_1T);
2218
2219		/* Finally limit subsequent allocations */
2220		memblock_set_current_limit(ppc64_rma_size);
2221	} else {
2222		ppc64_rma_size = ULONG_MAX;
2223	}
2224}
2225
2226#ifdef CONFIG_DEBUG_FS
2227
2228static int hpt_order_get(void *data, u64 *val)
2229{
2230	*val = ppc64_pft_size;
2231	return 0;
2232}
2233
2234static int hpt_order_set(void *data, u64 val)
2235{
2236	int ret;
2237
2238	if (!mmu_hash_ops.resize_hpt)
2239		return -ENODEV;
2240
2241	cpus_read_lock();
2242	ret = mmu_hash_ops.resize_hpt(val);
2243	cpus_read_unlock();
2244
2245	return ret;
2246}
2247
2248DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2249
2250static int __init hash64_debugfs(void)
2251{
2252	debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL,
2253			    &fops_hpt_order);
2254	return 0;
2255}
2256machine_device_initcall(pseries, hash64_debugfs);
2257#endif /* CONFIG_DEBUG_FS */
2258
2259void __init print_system_hash_info(void)
2260{
2261	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2262
2263	if (htab_hash_mask)
2264		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2265}
2266
2267unsigned long arch_randomize_brk(struct mm_struct *mm)
2268{
2269	/*
2270	 * If we are using 1TB segments and we are allowed to randomise
2271	 * the heap, we can put it above 1TB so it is backed by a 1TB
2272	 * segment. Otherwise the heap will be in the bottom 1TB
2273	 * which always uses 256MB segments and this may result in a
2274	 * performance penalty.
2275	 */
2276	if (is_32bit_task())
2277		return randomize_page(mm->brk, SZ_32M);
2278	else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T)
2279		return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G);
2280	else
2281		return randomize_page(mm->brk, SZ_1G);
2282}
2283