1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
4 * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
5 *
6 * Authors:
7 *    Paul Mackerras <paulus@au1.ibm.com>
8 *    Alexander Graf <agraf@suse.de>
9 *    Kevin Wolf <mail@kevin-wolf.de>
10 *
11 * Description: KVM functions specific to running on Book 3S
12 * processors in hypervisor mode (specifically POWER7 and later).
13 *
14 * This file is derived from arch/powerpc/kvm/book3s.c,
15 * by Alexander Graf <agraf@suse.de>.
16 */
17
18#include <linux/kvm_host.h>
19#include <linux/kernel.h>
20#include <linux/err.h>
21#include <linux/slab.h>
22#include <linux/preempt.h>
23#include <linux/sched/signal.h>
24#include <linux/sched/stat.h>
25#include <linux/delay.h>
26#include <linux/export.h>
27#include <linux/fs.h>
28#include <linux/anon_inodes.h>
29#include <linux/cpu.h>
30#include <linux/cpumask.h>
31#include <linux/spinlock.h>
32#include <linux/page-flags.h>
33#include <linux/srcu.h>
34#include <linux/miscdevice.h>
35#include <linux/debugfs.h>
36#include <linux/gfp.h>
37#include <linux/vmalloc.h>
38#include <linux/highmem.h>
39#include <linux/hugetlb.h>
40#include <linux/kvm_irqfd.h>
41#include <linux/irqbypass.h>
42#include <linux/module.h>
43#include <linux/compiler.h>
44#include <linux/of.h>
45#include <linux/irqdomain.h>
46#include <linux/smp.h>
47
48#include <asm/ftrace.h>
49#include <asm/reg.h>
50#include <asm/ppc-opcode.h>
51#include <asm/asm-prototypes.h>
52#include <asm/archrandom.h>
53#include <asm/debug.h>
54#include <asm/disassemble.h>
55#include <asm/cputable.h>
56#include <asm/cacheflush.h>
57#include <linux/uaccess.h>
58#include <asm/interrupt.h>
59#include <asm/io.h>
60#include <asm/kvm_ppc.h>
61#include <asm/kvm_book3s.h>
62#include <asm/mmu_context.h>
63#include <asm/lppaca.h>
64#include <asm/pmc.h>
65#include <asm/processor.h>
66#include <asm/cputhreads.h>
67#include <asm/page.h>
68#include <asm/hvcall.h>
69#include <asm/switch_to.h>
70#include <asm/smp.h>
71#include <asm/dbell.h>
72#include <asm/hmi.h>
73#include <asm/pnv-pci.h>
74#include <asm/mmu.h>
75#include <asm/opal.h>
76#include <asm/xics.h>
77#include <asm/xive.h>
78#include <asm/hw_breakpoint.h>
79#include <asm/kvm_book3s_uvmem.h>
80#include <asm/ultravisor.h>
81#include <asm/dtl.h>
82#include <asm/plpar_wrappers.h>
83
84#include <trace/events/ipi.h>
85
86#include "book3s.h"
87#include "book3s_hv.h"
88
89#define CREATE_TRACE_POINTS
90#include "trace_hv.h"
91
92/* #define EXIT_DEBUG */
93/* #define EXIT_DEBUG_SIMPLE */
94/* #define EXIT_DEBUG_INT */
95
96/* Used to indicate that a guest page fault needs to be handled */
97#define RESUME_PAGE_FAULT	(RESUME_GUEST | RESUME_FLAG_ARCH1)
98/* Used to indicate that a guest passthrough interrupt needs to be handled */
99#define RESUME_PASSTHROUGH	(RESUME_GUEST | RESUME_FLAG_ARCH2)
100
101/* Used as a "null" value for timebase values */
102#define TB_NIL	(~(u64)0)
103
104static DECLARE_BITMAP(default_enabled_hcalls, MAX_HCALL_OPCODE/4 + 1);
105
106static int dynamic_mt_modes = 6;
107module_param(dynamic_mt_modes, int, 0644);
108MODULE_PARM_DESC(dynamic_mt_modes, "Set of allowed dynamic micro-threading modes: 0 (= none), 2, 4, or 6 (= 2 or 4)");
109static int target_smt_mode;
110module_param(target_smt_mode, int, 0644);
111MODULE_PARM_DESC(target_smt_mode, "Target threads per core (0 = max)");
112
113static bool one_vm_per_core;
114module_param(one_vm_per_core, bool, S_IRUGO | S_IWUSR);
115MODULE_PARM_DESC(one_vm_per_core, "Only run vCPUs from the same VM on a core (requires POWER8 or older)");
116
117#ifdef CONFIG_KVM_XICS
118static const struct kernel_param_ops module_param_ops = {
119	.set = param_set_int,
120	.get = param_get_int,
121};
122
123module_param_cb(kvm_irq_bypass, &module_param_ops, &kvm_irq_bypass, 0644);
124MODULE_PARM_DESC(kvm_irq_bypass, "Bypass passthrough interrupt optimization");
125
126module_param_cb(h_ipi_redirect, &module_param_ops, &h_ipi_redirect, 0644);
127MODULE_PARM_DESC(h_ipi_redirect, "Redirect H_IPI wakeup to a free host core");
128#endif
129
130/* If set, guests are allowed to create and control nested guests */
131static bool nested = true;
132module_param(nested, bool, S_IRUGO | S_IWUSR);
133MODULE_PARM_DESC(nested, "Enable nested virtualization (only on POWER9)");
134
135static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
136
137/*
138 * RWMR values for POWER8.  These control the rate at which PURR
139 * and SPURR count and should be set according to the number of
140 * online threads in the vcore being run.
141 */
142#define RWMR_RPA_P8_1THREAD	0x164520C62609AECAUL
143#define RWMR_RPA_P8_2THREAD	0x7FFF2908450D8DA9UL
144#define RWMR_RPA_P8_3THREAD	0x164520C62609AECAUL
145#define RWMR_RPA_P8_4THREAD	0x199A421245058DA9UL
146#define RWMR_RPA_P8_5THREAD	0x164520C62609AECAUL
147#define RWMR_RPA_P8_6THREAD	0x164520C62609AECAUL
148#define RWMR_RPA_P8_7THREAD	0x164520C62609AECAUL
149#define RWMR_RPA_P8_8THREAD	0x164520C62609AECAUL
150
151static unsigned long p8_rwmr_values[MAX_SMT_THREADS + 1] = {
152	RWMR_RPA_P8_1THREAD,
153	RWMR_RPA_P8_1THREAD,
154	RWMR_RPA_P8_2THREAD,
155	RWMR_RPA_P8_3THREAD,
156	RWMR_RPA_P8_4THREAD,
157	RWMR_RPA_P8_5THREAD,
158	RWMR_RPA_P8_6THREAD,
159	RWMR_RPA_P8_7THREAD,
160	RWMR_RPA_P8_8THREAD,
161};
162
163static inline struct kvm_vcpu *next_runnable_thread(struct kvmppc_vcore *vc,
164		int *ip)
165{
166	int i = *ip;
167	struct kvm_vcpu *vcpu;
168
169	while (++i < MAX_SMT_THREADS) {
170		vcpu = READ_ONCE(vc->runnable_threads[i]);
171		if (vcpu) {
172			*ip = i;
173			return vcpu;
174		}
175	}
176	return NULL;
177}
178
179/* Used to traverse the list of runnable threads for a given vcore */
180#define for_each_runnable_thread(i, vcpu, vc) \
181	for (i = -1; (vcpu = next_runnable_thread(vc, &i)); )
182
183static bool kvmppc_ipi_thread(int cpu)
184{
185	unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER);
186
187	/* If we're a nested hypervisor, fall back to ordinary IPIs for now */
188	if (kvmhv_on_pseries())
189		return false;
190
191	/* On POWER9 we can use msgsnd to IPI any cpu */
192	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
193		msg |= get_hard_smp_processor_id(cpu);
194		smp_mb();
195		__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
196		return true;
197	}
198
199	/* On POWER8 for IPIs to threads in the same core, use msgsnd */
200	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
201		preempt_disable();
202		if (cpu_first_thread_sibling(cpu) ==
203		    cpu_first_thread_sibling(smp_processor_id())) {
204			msg |= cpu_thread_in_core(cpu);
205			smp_mb();
206			__asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg));
207			preempt_enable();
208			return true;
209		}
210		preempt_enable();
211	}
212
213#if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
214	if (cpu >= 0 && cpu < nr_cpu_ids) {
215		if (paca_ptrs[cpu]->kvm_hstate.xics_phys) {
216			xics_wake_cpu(cpu);
217			return true;
218		}
219		opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY);
220		return true;
221	}
222#endif
223
224	return false;
225}
226
227static void kvmppc_fast_vcpu_kick_hv(struct kvm_vcpu *vcpu)
228{
229	int cpu;
230	struct rcuwait *waitp;
231
232	/*
233	 * rcuwait_wake_up contains smp_mb() which orders prior stores that
234	 * create pending work vs below loads of cpu fields. The other side
235	 * is the barrier in vcpu run that orders setting the cpu fields vs
236	 * testing for pending work.
237	 */
238
239	waitp = kvm_arch_vcpu_get_wait(vcpu);
240	if (rcuwait_wake_up(waitp))
241		++vcpu->stat.generic.halt_wakeup;
242
243	cpu = READ_ONCE(vcpu->arch.thread_cpu);
244	if (cpu >= 0 && kvmppc_ipi_thread(cpu))
245		return;
246
247	/* CPU points to the first thread of the core */
248	cpu = vcpu->cpu;
249	if (cpu >= 0 && cpu < nr_cpu_ids && cpu_online(cpu))
250		smp_send_reschedule(cpu);
251}
252
253/*
254 * We use the vcpu_load/put functions to measure stolen time.
255 *
256 * Stolen time is counted as time when either the vcpu is able to
257 * run as part of a virtual core, but the task running the vcore
258 * is preempted or sleeping, or when the vcpu needs something done
259 * in the kernel by the task running the vcpu, but that task is
260 * preempted or sleeping.  Those two things have to be counted
261 * separately, since one of the vcpu tasks will take on the job
262 * of running the core, and the other vcpu tasks in the vcore will
263 * sleep waiting for it to do that, but that sleep shouldn't count
264 * as stolen time.
265 *
266 * Hence we accumulate stolen time when the vcpu can run as part of
267 * a vcore using vc->stolen_tb, and the stolen time when the vcpu
268 * needs its task to do other things in the kernel (for example,
269 * service a page fault) in busy_stolen.  We don't accumulate
270 * stolen time for a vcore when it is inactive, or for a vcpu
271 * when it is in state RUNNING or NOTREADY.  NOTREADY is a bit of
272 * a misnomer; it means that the vcpu task is not executing in
273 * the KVM_VCPU_RUN ioctl, i.e. it is in userspace or elsewhere in
274 * the kernel.  We don't have any way of dividing up that time
275 * between time that the vcpu is genuinely stopped, time that
276 * the task is actively working on behalf of the vcpu, and time
277 * that the task is preempted, so we don't count any of it as
278 * stolen.
279 *
280 * Updates to busy_stolen are protected by arch.tbacct_lock;
281 * updates to vc->stolen_tb are protected by the vcore->stoltb_lock
282 * lock.  The stolen times are measured in units of timebase ticks.
283 * (Note that the != TB_NIL checks below are purely defensive;
284 * they should never fail.)
285 *
286 * The POWER9 path is simpler, one vcpu per virtual core so the
287 * former case does not exist. If a vcpu is preempted when it is
288 * BUSY_IN_HOST and not ceded or otherwise blocked, then accumulate
289 * the stolen cycles in busy_stolen. RUNNING is not a preemptible
290 * state in the P9 path.
291 */
292
293static void kvmppc_core_start_stolen(struct kvmppc_vcore *vc, u64 tb)
294{
295	unsigned long flags;
296
297	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
298
299	spin_lock_irqsave(&vc->stoltb_lock, flags);
300	vc->preempt_tb = tb;
301	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
302}
303
304static void kvmppc_core_end_stolen(struct kvmppc_vcore *vc, u64 tb)
305{
306	unsigned long flags;
307
308	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
309
310	spin_lock_irqsave(&vc->stoltb_lock, flags);
311	if (vc->preempt_tb != TB_NIL) {
312		vc->stolen_tb += tb - vc->preempt_tb;
313		vc->preempt_tb = TB_NIL;
314	}
315	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
316}
317
318static void kvmppc_core_vcpu_load_hv(struct kvm_vcpu *vcpu, int cpu)
319{
320	struct kvmppc_vcore *vc = vcpu->arch.vcore;
321	unsigned long flags;
322	u64 now;
323
324	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
325		if (vcpu->arch.busy_preempt != TB_NIL) {
326			WARN_ON_ONCE(vcpu->arch.state != KVMPPC_VCPU_BUSY_IN_HOST);
327			vc->stolen_tb += mftb() - vcpu->arch.busy_preempt;
328			vcpu->arch.busy_preempt = TB_NIL;
329		}
330		return;
331	}
332
333	now = mftb();
334
335	/*
336	 * We can test vc->runner without taking the vcore lock,
337	 * because only this task ever sets vc->runner to this
338	 * vcpu, and once it is set to this vcpu, only this task
339	 * ever sets it to NULL.
340	 */
341	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
342		kvmppc_core_end_stolen(vc, now);
343
344	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
345	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST &&
346	    vcpu->arch.busy_preempt != TB_NIL) {
347		vcpu->arch.busy_stolen += now - vcpu->arch.busy_preempt;
348		vcpu->arch.busy_preempt = TB_NIL;
349	}
350	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
351}
352
353static void kvmppc_core_vcpu_put_hv(struct kvm_vcpu *vcpu)
354{
355	struct kvmppc_vcore *vc = vcpu->arch.vcore;
356	unsigned long flags;
357	u64 now;
358
359	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
360		/*
361		 * In the P9 path, RUNNABLE is not preemptible
362		 * (nor takes host interrupts)
363		 */
364		WARN_ON_ONCE(vcpu->arch.state == KVMPPC_VCPU_RUNNABLE);
365		/*
366		 * Account stolen time when preempted while the vcpu task is
367		 * running in the kernel (but not in qemu, which is INACTIVE).
368		 */
369		if (task_is_running(current) &&
370				vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
371			vcpu->arch.busy_preempt = mftb();
372		return;
373	}
374
375	now = mftb();
376
377	if (vc->runner == vcpu && vc->vcore_state >= VCORE_SLEEPING)
378		kvmppc_core_start_stolen(vc, now);
379
380	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
381	if (vcpu->arch.state == KVMPPC_VCPU_BUSY_IN_HOST)
382		vcpu->arch.busy_preempt = now;
383	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
384}
385
386static void kvmppc_set_pvr_hv(struct kvm_vcpu *vcpu, u32 pvr)
387{
388	vcpu->arch.pvr = pvr;
389}
390
391/* Dummy value used in computing PCR value below */
392#define PCR_ARCH_31    (PCR_ARCH_300 << 1)
393
394static int kvmppc_set_arch_compat(struct kvm_vcpu *vcpu, u32 arch_compat)
395{
396	unsigned long host_pcr_bit = 0, guest_pcr_bit = 0;
397	struct kvmppc_vcore *vc = vcpu->arch.vcore;
398
399	/* We can (emulate) our own architecture version and anything older */
400	if (cpu_has_feature(CPU_FTR_ARCH_31))
401		host_pcr_bit = PCR_ARCH_31;
402	else if (cpu_has_feature(CPU_FTR_ARCH_300))
403		host_pcr_bit = PCR_ARCH_300;
404	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
405		host_pcr_bit = PCR_ARCH_207;
406	else if (cpu_has_feature(CPU_FTR_ARCH_206))
407		host_pcr_bit = PCR_ARCH_206;
408	else
409		host_pcr_bit = PCR_ARCH_205;
410
411	/* Determine lowest PCR bit needed to run guest in given PVR level */
412	guest_pcr_bit = host_pcr_bit;
413	if (arch_compat) {
414		switch (arch_compat) {
415		case PVR_ARCH_205:
416			guest_pcr_bit = PCR_ARCH_205;
417			break;
418		case PVR_ARCH_206:
419		case PVR_ARCH_206p:
420			guest_pcr_bit = PCR_ARCH_206;
421			break;
422		case PVR_ARCH_207:
423			guest_pcr_bit = PCR_ARCH_207;
424			break;
425		case PVR_ARCH_300:
426			guest_pcr_bit = PCR_ARCH_300;
427			break;
428		case PVR_ARCH_31:
429			guest_pcr_bit = PCR_ARCH_31;
430			break;
431		default:
432			return -EINVAL;
433		}
434	}
435
436	/* Check requested PCR bits don't exceed our capabilities */
437	if (guest_pcr_bit > host_pcr_bit)
438		return -EINVAL;
439
440	spin_lock(&vc->lock);
441	vc->arch_compat = arch_compat;
442	/*
443	 * Set all PCR bits for which guest_pcr_bit <= bit < host_pcr_bit
444	 * Also set all reserved PCR bits
445	 */
446	vc->pcr = (host_pcr_bit - guest_pcr_bit) | PCR_MASK;
447	spin_unlock(&vc->lock);
448
449	return 0;
450}
451
452static void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
453{
454	int r;
455
456	pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
457	pr_err("pc  = %.16lx  msr = %.16llx  trap = %x\n",
458	       vcpu->arch.regs.nip, vcpu->arch.shregs.msr, vcpu->arch.trap);
459	for (r = 0; r < 16; ++r)
460		pr_err("r%2d = %.16lx  r%d = %.16lx\n",
461		       r, kvmppc_get_gpr(vcpu, r),
462		       r+16, kvmppc_get_gpr(vcpu, r+16));
463	pr_err("ctr = %.16lx  lr  = %.16lx\n",
464	       vcpu->arch.regs.ctr, vcpu->arch.regs.link);
465	pr_err("srr0 = %.16llx srr1 = %.16llx\n",
466	       vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
467	pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
468	       vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
469	pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
470	       vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
471	pr_err("cr = %.8lx  xer = %.16lx  dsisr = %.8x\n",
472	       vcpu->arch.regs.ccr, vcpu->arch.regs.xer, vcpu->arch.shregs.dsisr);
473	pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
474	pr_err("fault dar = %.16lx dsisr = %.8x\n",
475	       vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
476	pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
477	for (r = 0; r < vcpu->arch.slb_max; ++r)
478		pr_err("  ESID = %.16llx VSID = %.16llx\n",
479		       vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
480	pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.16lx\n",
481	       vcpu->arch.vcore->lpcr, vcpu->kvm->arch.sdr1,
482	       vcpu->arch.last_inst);
483}
484
485static struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
486{
487	return kvm_get_vcpu_by_id(kvm, id);
488}
489
490static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
491{
492	vpa->__old_status |= LPPACA_OLD_SHARED_PROC;
493	vpa->yield_count = cpu_to_be32(1);
494}
495
496static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
497		   unsigned long addr, unsigned long len)
498{
499	/* check address is cacheline aligned */
500	if (addr & (L1_CACHE_BYTES - 1))
501		return -EINVAL;
502	spin_lock(&vcpu->arch.vpa_update_lock);
503	if (v->next_gpa != addr || v->len != len) {
504		v->next_gpa = addr;
505		v->len = addr ? len : 0;
506		v->update_pending = 1;
507	}
508	spin_unlock(&vcpu->arch.vpa_update_lock);
509	return 0;
510}
511
512/* Length for a per-processor buffer is passed in at offset 4 in the buffer */
513struct reg_vpa {
514	u32 dummy;
515	union {
516		__be16 hword;
517		__be32 word;
518	} length;
519};
520
521static int vpa_is_registered(struct kvmppc_vpa *vpap)
522{
523	if (vpap->update_pending)
524		return vpap->next_gpa != 0;
525	return vpap->pinned_addr != NULL;
526}
527
528static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
529				       unsigned long flags,
530				       unsigned long vcpuid, unsigned long vpa)
531{
532	struct kvm *kvm = vcpu->kvm;
533	unsigned long len, nb;
534	void *va;
535	struct kvm_vcpu *tvcpu;
536	int err;
537	int subfunc;
538	struct kvmppc_vpa *vpap;
539
540	tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
541	if (!tvcpu)
542		return H_PARAMETER;
543
544	subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
545	if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
546	    subfunc == H_VPA_REG_SLB) {
547		/* Registering new area - address must be cache-line aligned */
548		if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
549			return H_PARAMETER;
550
551		/* convert logical addr to kernel addr and read length */
552		va = kvmppc_pin_guest_page(kvm, vpa, &nb);
553		if (va == NULL)
554			return H_PARAMETER;
555		if (subfunc == H_VPA_REG_VPA)
556			len = be16_to_cpu(((struct reg_vpa *)va)->length.hword);
557		else
558			len = be32_to_cpu(((struct reg_vpa *)va)->length.word);
559		kvmppc_unpin_guest_page(kvm, va, vpa, false);
560
561		/* Check length */
562		if (len > nb || len < sizeof(struct reg_vpa))
563			return H_PARAMETER;
564	} else {
565		vpa = 0;
566		len = 0;
567	}
568
569	err = H_PARAMETER;
570	vpap = NULL;
571	spin_lock(&tvcpu->arch.vpa_update_lock);
572
573	switch (subfunc) {
574	case H_VPA_REG_VPA:		/* register VPA */
575		/*
576		 * The size of our lppaca is 1kB because of the way we align
577		 * it for the guest to avoid crossing a 4kB boundary. We only
578		 * use 640 bytes of the structure though, so we should accept
579		 * clients that set a size of 640.
580		 */
581		BUILD_BUG_ON(sizeof(struct lppaca) != 640);
582		if (len < sizeof(struct lppaca))
583			break;
584		vpap = &tvcpu->arch.vpa;
585		err = 0;
586		break;
587
588	case H_VPA_REG_DTL:		/* register DTL */
589		if (len < sizeof(struct dtl_entry))
590			break;
591		len -= len % sizeof(struct dtl_entry);
592
593		/* Check that they have previously registered a VPA */
594		err = H_RESOURCE;
595		if (!vpa_is_registered(&tvcpu->arch.vpa))
596			break;
597
598		vpap = &tvcpu->arch.dtl;
599		err = 0;
600		break;
601
602	case H_VPA_REG_SLB:		/* register SLB shadow buffer */
603		/* Check that they have previously registered a VPA */
604		err = H_RESOURCE;
605		if (!vpa_is_registered(&tvcpu->arch.vpa))
606			break;
607
608		vpap = &tvcpu->arch.slb_shadow;
609		err = 0;
610		break;
611
612	case H_VPA_DEREG_VPA:		/* deregister VPA */
613		/* Check they don't still have a DTL or SLB buf registered */
614		err = H_RESOURCE;
615		if (vpa_is_registered(&tvcpu->arch.dtl) ||
616		    vpa_is_registered(&tvcpu->arch.slb_shadow))
617			break;
618
619		vpap = &tvcpu->arch.vpa;
620		err = 0;
621		break;
622
623	case H_VPA_DEREG_DTL:		/* deregister DTL */
624		vpap = &tvcpu->arch.dtl;
625		err = 0;
626		break;
627
628	case H_VPA_DEREG_SLB:		/* deregister SLB shadow buffer */
629		vpap = &tvcpu->arch.slb_shadow;
630		err = 0;
631		break;
632	}
633
634	if (vpap) {
635		vpap->next_gpa = vpa;
636		vpap->len = len;
637		vpap->update_pending = 1;
638	}
639
640	spin_unlock(&tvcpu->arch.vpa_update_lock);
641
642	return err;
643}
644
645static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
646{
647	struct kvm *kvm = vcpu->kvm;
648	void *va;
649	unsigned long nb;
650	unsigned long gpa;
651
652	/*
653	 * We need to pin the page pointed to by vpap->next_gpa,
654	 * but we can't call kvmppc_pin_guest_page under the lock
655	 * as it does get_user_pages() and down_read().  So we
656	 * have to drop the lock, pin the page, then get the lock
657	 * again and check that a new area didn't get registered
658	 * in the meantime.
659	 */
660	for (;;) {
661		gpa = vpap->next_gpa;
662		spin_unlock(&vcpu->arch.vpa_update_lock);
663		va = NULL;
664		nb = 0;
665		if (gpa)
666			va = kvmppc_pin_guest_page(kvm, gpa, &nb);
667		spin_lock(&vcpu->arch.vpa_update_lock);
668		if (gpa == vpap->next_gpa)
669			break;
670		/* sigh... unpin that one and try again */
671		if (va)
672			kvmppc_unpin_guest_page(kvm, va, gpa, false);
673	}
674
675	vpap->update_pending = 0;
676	if (va && nb < vpap->len) {
677		/*
678		 * If it's now too short, it must be that userspace
679		 * has changed the mappings underlying guest memory,
680		 * so unregister the region.
681		 */
682		kvmppc_unpin_guest_page(kvm, va, gpa, false);
683		va = NULL;
684	}
685	if (vpap->pinned_addr)
686		kvmppc_unpin_guest_page(kvm, vpap->pinned_addr, vpap->gpa,
687					vpap->dirty);
688	vpap->gpa = gpa;
689	vpap->pinned_addr = va;
690	vpap->dirty = false;
691	if (va)
692		vpap->pinned_end = va + vpap->len;
693}
694
695static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
696{
697	if (!(vcpu->arch.vpa.update_pending ||
698	      vcpu->arch.slb_shadow.update_pending ||
699	      vcpu->arch.dtl.update_pending))
700		return;
701
702	spin_lock(&vcpu->arch.vpa_update_lock);
703	if (vcpu->arch.vpa.update_pending) {
704		kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
705		if (vcpu->arch.vpa.pinned_addr)
706			init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
707	}
708	if (vcpu->arch.dtl.update_pending) {
709		kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
710		vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
711		vcpu->arch.dtl_index = 0;
712	}
713	if (vcpu->arch.slb_shadow.update_pending)
714		kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
715	spin_unlock(&vcpu->arch.vpa_update_lock);
716}
717
718/*
719 * Return the accumulated stolen time for the vcore up until `now'.
720 * The caller should hold the vcore lock.
721 */
722static u64 vcore_stolen_time(struct kvmppc_vcore *vc, u64 now)
723{
724	u64 p;
725	unsigned long flags;
726
727	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
728
729	spin_lock_irqsave(&vc->stoltb_lock, flags);
730	p = vc->stolen_tb;
731	if (vc->vcore_state != VCORE_INACTIVE &&
732	    vc->preempt_tb != TB_NIL)
733		p += now - vc->preempt_tb;
734	spin_unlock_irqrestore(&vc->stoltb_lock, flags);
735	return p;
736}
737
738static void __kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
739					struct lppaca *vpa,
740					unsigned int pcpu, u64 now,
741					unsigned long stolen)
742{
743	struct dtl_entry *dt;
744
745	dt = vcpu->arch.dtl_ptr;
746
747	if (!dt)
748		return;
749
750	dt->dispatch_reason = 7;
751	dt->preempt_reason = 0;
752	dt->processor_id = cpu_to_be16(pcpu + vcpu->arch.ptid);
753	dt->enqueue_to_dispatch_time = cpu_to_be32(stolen);
754	dt->ready_to_enqueue_time = 0;
755	dt->waiting_to_ready_time = 0;
756	dt->timebase = cpu_to_be64(now);
757	dt->fault_addr = 0;
758	dt->srr0 = cpu_to_be64(kvmppc_get_pc(vcpu));
759	dt->srr1 = cpu_to_be64(vcpu->arch.shregs.msr);
760
761	++dt;
762	if (dt == vcpu->arch.dtl.pinned_end)
763		dt = vcpu->arch.dtl.pinned_addr;
764	vcpu->arch.dtl_ptr = dt;
765	/* order writing *dt vs. writing vpa->dtl_idx */
766	smp_wmb();
767	vpa->dtl_idx = cpu_to_be64(++vcpu->arch.dtl_index);
768
769	/* vcpu->arch.dtl.dirty is set by the caller */
770}
771
772static void kvmppc_update_vpa_dispatch(struct kvm_vcpu *vcpu,
773				       struct kvmppc_vcore *vc)
774{
775	struct lppaca *vpa;
776	unsigned long stolen;
777	unsigned long core_stolen;
778	u64 now;
779	unsigned long flags;
780
781	vpa = vcpu->arch.vpa.pinned_addr;
782	if (!vpa)
783		return;
784
785	now = mftb();
786
787	core_stolen = vcore_stolen_time(vc, now);
788	stolen = core_stolen - vcpu->arch.stolen_logged;
789	vcpu->arch.stolen_logged = core_stolen;
790	spin_lock_irqsave(&vcpu->arch.tbacct_lock, flags);
791	stolen += vcpu->arch.busy_stolen;
792	vcpu->arch.busy_stolen = 0;
793	spin_unlock_irqrestore(&vcpu->arch.tbacct_lock, flags);
794
795	vpa->enqueue_dispatch_tb = cpu_to_be64(be64_to_cpu(vpa->enqueue_dispatch_tb) + stolen);
796
797	__kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now + vc->tb_offset, stolen);
798
799	vcpu->arch.vpa.dirty = true;
800}
801
802static void kvmppc_update_vpa_dispatch_p9(struct kvm_vcpu *vcpu,
803				       struct kvmppc_vcore *vc,
804				       u64 now)
805{
806	struct lppaca *vpa;
807	unsigned long stolen;
808	unsigned long stolen_delta;
809
810	vpa = vcpu->arch.vpa.pinned_addr;
811	if (!vpa)
812		return;
813
814	stolen = vc->stolen_tb;
815	stolen_delta = stolen - vcpu->arch.stolen_logged;
816	vcpu->arch.stolen_logged = stolen;
817
818	vpa->enqueue_dispatch_tb = cpu_to_be64(stolen);
819
820	__kvmppc_create_dtl_entry(vcpu, vpa, vc->pcpu, now, stolen_delta);
821
822	vcpu->arch.vpa.dirty = true;
823}
824
825/* See if there is a doorbell interrupt pending for a vcpu */
826static bool kvmppc_doorbell_pending(struct kvm_vcpu *vcpu)
827{
828	int thr;
829	struct kvmppc_vcore *vc;
830
831	if (vcpu->arch.doorbell_request)
832		return true;
833	if (cpu_has_feature(CPU_FTR_ARCH_300))
834		return false;
835	/*
836	 * Ensure that the read of vcore->dpdes comes after the read
837	 * of vcpu->doorbell_request.  This barrier matches the
838	 * smp_wmb() in kvmppc_guest_entry_inject().
839	 */
840	smp_rmb();
841	vc = vcpu->arch.vcore;
842	thr = vcpu->vcpu_id - vc->first_vcpuid;
843	return !!(vc->dpdes & (1 << thr));
844}
845
846static bool kvmppc_power8_compatible(struct kvm_vcpu *vcpu)
847{
848	if (vcpu->arch.vcore->arch_compat >= PVR_ARCH_207)
849		return true;
850	if ((!vcpu->arch.vcore->arch_compat) &&
851	    cpu_has_feature(CPU_FTR_ARCH_207S))
852		return true;
853	return false;
854}
855
856static int kvmppc_h_set_mode(struct kvm_vcpu *vcpu, unsigned long mflags,
857			     unsigned long resource, unsigned long value1,
858			     unsigned long value2)
859{
860	switch (resource) {
861	case H_SET_MODE_RESOURCE_SET_CIABR:
862		if (!kvmppc_power8_compatible(vcpu))
863			return H_P2;
864		if (value2)
865			return H_P4;
866		if (mflags)
867			return H_UNSUPPORTED_FLAG_START;
868		/* Guests can't breakpoint the hypervisor */
869		if ((value1 & CIABR_PRIV) == CIABR_PRIV_HYPER)
870			return H_P3;
871		kvmppc_set_ciabr_hv(vcpu, value1);
872		return H_SUCCESS;
873	case H_SET_MODE_RESOURCE_SET_DAWR0:
874		if (!kvmppc_power8_compatible(vcpu))
875			return H_P2;
876		if (!ppc_breakpoint_available())
877			return H_P2;
878		if (mflags)
879			return H_UNSUPPORTED_FLAG_START;
880		if (value2 & DABRX_HYP)
881			return H_P4;
882		kvmppc_set_dawr0_hv(vcpu, value1);
883		kvmppc_set_dawrx0_hv(vcpu, value2);
884		return H_SUCCESS;
885	case H_SET_MODE_RESOURCE_SET_DAWR1:
886		if (!kvmppc_power8_compatible(vcpu))
887			return H_P2;
888		if (!ppc_breakpoint_available())
889			return H_P2;
890		if (!cpu_has_feature(CPU_FTR_DAWR1))
891			return H_P2;
892		if (!vcpu->kvm->arch.dawr1_enabled)
893			return H_FUNCTION;
894		if (mflags)
895			return H_UNSUPPORTED_FLAG_START;
896		if (value2 & DABRX_HYP)
897			return H_P4;
898		kvmppc_set_dawr1_hv(vcpu, value1);
899		kvmppc_set_dawrx1_hv(vcpu, value2);
900		return H_SUCCESS;
901	case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
902		/*
903		 * KVM does not support mflags=2 (AIL=2) and AIL=1 is reserved.
904		 * Keep this in synch with kvmppc_filter_guest_lpcr_hv.
905		 */
906		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
907				kvmhv_vcpu_is_radix(vcpu) && mflags == 3)
908			return H_UNSUPPORTED_FLAG_START;
909		return H_TOO_HARD;
910	default:
911		return H_TOO_HARD;
912	}
913}
914
915/* Copy guest memory in place - must reside within a single memslot */
916static int kvmppc_copy_guest(struct kvm *kvm, gpa_t to, gpa_t from,
917				  unsigned long len)
918{
919	struct kvm_memory_slot *to_memslot = NULL;
920	struct kvm_memory_slot *from_memslot = NULL;
921	unsigned long to_addr, from_addr;
922	int r;
923
924	/* Get HPA for from address */
925	from_memslot = gfn_to_memslot(kvm, from >> PAGE_SHIFT);
926	if (!from_memslot)
927		return -EFAULT;
928	if ((from + len) >= ((from_memslot->base_gfn + from_memslot->npages)
929			     << PAGE_SHIFT))
930		return -EINVAL;
931	from_addr = gfn_to_hva_memslot(from_memslot, from >> PAGE_SHIFT);
932	if (kvm_is_error_hva(from_addr))
933		return -EFAULT;
934	from_addr |= (from & (PAGE_SIZE - 1));
935
936	/* Get HPA for to address */
937	to_memslot = gfn_to_memslot(kvm, to >> PAGE_SHIFT);
938	if (!to_memslot)
939		return -EFAULT;
940	if ((to + len) >= ((to_memslot->base_gfn + to_memslot->npages)
941			   << PAGE_SHIFT))
942		return -EINVAL;
943	to_addr = gfn_to_hva_memslot(to_memslot, to >> PAGE_SHIFT);
944	if (kvm_is_error_hva(to_addr))
945		return -EFAULT;
946	to_addr |= (to & (PAGE_SIZE - 1));
947
948	/* Perform copy */
949	r = raw_copy_in_user((void __user *)to_addr, (void __user *)from_addr,
950			     len);
951	if (r)
952		return -EFAULT;
953	mark_page_dirty(kvm, to >> PAGE_SHIFT);
954	return 0;
955}
956
957static long kvmppc_h_page_init(struct kvm_vcpu *vcpu, unsigned long flags,
958			       unsigned long dest, unsigned long src)
959{
960	u64 pg_sz = SZ_4K;		/* 4K page size */
961	u64 pg_mask = SZ_4K - 1;
962	int ret;
963
964	/* Check for invalid flags (H_PAGE_SET_LOANED covers all CMO flags) */
965	if (flags & ~(H_ICACHE_INVALIDATE | H_ICACHE_SYNCHRONIZE |
966		      H_ZERO_PAGE | H_COPY_PAGE | H_PAGE_SET_LOANED))
967		return H_PARAMETER;
968
969	/* dest (and src if copy_page flag set) must be page aligned */
970	if ((dest & pg_mask) || ((flags & H_COPY_PAGE) && (src & pg_mask)))
971		return H_PARAMETER;
972
973	/* zero and/or copy the page as determined by the flags */
974	if (flags & H_COPY_PAGE) {
975		ret = kvmppc_copy_guest(vcpu->kvm, dest, src, pg_sz);
976		if (ret < 0)
977			return H_PARAMETER;
978	} else if (flags & H_ZERO_PAGE) {
979		ret = kvm_clear_guest(vcpu->kvm, dest, pg_sz);
980		if (ret < 0)
981			return H_PARAMETER;
982	}
983
984	/* We can ignore the remaining flags */
985
986	return H_SUCCESS;
987}
988
989static int kvm_arch_vcpu_yield_to(struct kvm_vcpu *target)
990{
991	struct kvmppc_vcore *vcore = target->arch.vcore;
992
993	/*
994	 * We expect to have been called by the real mode handler
995	 * (kvmppc_rm_h_confer()) which would have directly returned
996	 * H_SUCCESS if the source vcore wasn't idle (e.g. if it may
997	 * have useful work to do and should not confer) so we don't
998	 * recheck that here.
999	 *
1000	 * In the case of the P9 single vcpu per vcore case, the real
1001	 * mode handler is not called but no other threads are in the
1002	 * source vcore.
1003	 */
1004	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1005		spin_lock(&vcore->lock);
1006		if (target->arch.state == KVMPPC_VCPU_RUNNABLE &&
1007		    vcore->vcore_state != VCORE_INACTIVE &&
1008		    vcore->runner)
1009			target = vcore->runner;
1010		spin_unlock(&vcore->lock);
1011	}
1012
1013	return kvm_vcpu_yield_to(target);
1014}
1015
1016static int kvmppc_get_yield_count(struct kvm_vcpu *vcpu)
1017{
1018	int yield_count = 0;
1019	struct lppaca *lppaca;
1020
1021	spin_lock(&vcpu->arch.vpa_update_lock);
1022	lppaca = (struct lppaca *)vcpu->arch.vpa.pinned_addr;
1023	if (lppaca)
1024		yield_count = be32_to_cpu(lppaca->yield_count);
1025	spin_unlock(&vcpu->arch.vpa_update_lock);
1026	return yield_count;
1027}
1028
1029/*
1030 * H_RPT_INVALIDATE hcall handler for nested guests.
1031 *
1032 * Handles only nested process-scoped invalidation requests in L0.
1033 */
1034static int kvmppc_nested_h_rpt_invalidate(struct kvm_vcpu *vcpu)
1035{
1036	unsigned long type = kvmppc_get_gpr(vcpu, 6);
1037	unsigned long pid, pg_sizes, start, end;
1038
1039	/*
1040	 * The partition-scoped invalidations aren't handled here in L0.
1041	 */
1042	if (type & H_RPTI_TYPE_NESTED)
1043		return RESUME_HOST;
1044
1045	pid = kvmppc_get_gpr(vcpu, 4);
1046	pg_sizes = kvmppc_get_gpr(vcpu, 7);
1047	start = kvmppc_get_gpr(vcpu, 8);
1048	end = kvmppc_get_gpr(vcpu, 9);
1049
1050	do_h_rpt_invalidate_prt(pid, vcpu->arch.nested->shadow_lpid,
1051				type, pg_sizes, start, end);
1052
1053	kvmppc_set_gpr(vcpu, 3, H_SUCCESS);
1054	return RESUME_GUEST;
1055}
1056
1057static long kvmppc_h_rpt_invalidate(struct kvm_vcpu *vcpu,
1058				    unsigned long id, unsigned long target,
1059				    unsigned long type, unsigned long pg_sizes,
1060				    unsigned long start, unsigned long end)
1061{
1062	if (!kvm_is_radix(vcpu->kvm))
1063		return H_UNSUPPORTED;
1064
1065	if (end < start)
1066		return H_P5;
1067
1068	/*
1069	 * Partition-scoped invalidation for nested guests.
1070	 */
1071	if (type & H_RPTI_TYPE_NESTED) {
1072		if (!nesting_enabled(vcpu->kvm))
1073			return H_FUNCTION;
1074
1075		/* Support only cores as target */
1076		if (target != H_RPTI_TARGET_CMMU)
1077			return H_P2;
1078
1079		return do_h_rpt_invalidate_pat(vcpu, id, type, pg_sizes,
1080					       start, end);
1081	}
1082
1083	/*
1084	 * Process-scoped invalidation for L1 guests.
1085	 */
1086	do_h_rpt_invalidate_prt(id, vcpu->kvm->arch.lpid,
1087				type, pg_sizes, start, end);
1088	return H_SUCCESS;
1089}
1090
1091int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
1092{
1093	struct kvm *kvm = vcpu->kvm;
1094	unsigned long req = kvmppc_get_gpr(vcpu, 3);
1095	unsigned long target, ret = H_SUCCESS;
1096	int yield_count;
1097	struct kvm_vcpu *tvcpu;
1098	int idx, rc;
1099
1100	if (req <= MAX_HCALL_OPCODE &&
1101	    !test_bit(req/4, vcpu->kvm->arch.enabled_hcalls))
1102		return RESUME_HOST;
1103
1104	switch (req) {
1105	case H_REMOVE:
1106		ret = kvmppc_h_remove(vcpu, kvmppc_get_gpr(vcpu, 4),
1107					kvmppc_get_gpr(vcpu, 5),
1108					kvmppc_get_gpr(vcpu, 6));
1109		if (ret == H_TOO_HARD)
1110			return RESUME_HOST;
1111		break;
1112	case H_ENTER:
1113		ret = kvmppc_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
1114					kvmppc_get_gpr(vcpu, 5),
1115					kvmppc_get_gpr(vcpu, 6),
1116					kvmppc_get_gpr(vcpu, 7));
1117		if (ret == H_TOO_HARD)
1118			return RESUME_HOST;
1119		break;
1120	case H_READ:
1121		ret = kvmppc_h_read(vcpu, kvmppc_get_gpr(vcpu, 4),
1122					kvmppc_get_gpr(vcpu, 5));
1123		if (ret == H_TOO_HARD)
1124			return RESUME_HOST;
1125		break;
1126	case H_CLEAR_MOD:
1127		ret = kvmppc_h_clear_mod(vcpu, kvmppc_get_gpr(vcpu, 4),
1128					kvmppc_get_gpr(vcpu, 5));
1129		if (ret == H_TOO_HARD)
1130			return RESUME_HOST;
1131		break;
1132	case H_CLEAR_REF:
1133		ret = kvmppc_h_clear_ref(vcpu, kvmppc_get_gpr(vcpu, 4),
1134					kvmppc_get_gpr(vcpu, 5));
1135		if (ret == H_TOO_HARD)
1136			return RESUME_HOST;
1137		break;
1138	case H_PROTECT:
1139		ret = kvmppc_h_protect(vcpu, kvmppc_get_gpr(vcpu, 4),
1140					kvmppc_get_gpr(vcpu, 5),
1141					kvmppc_get_gpr(vcpu, 6));
1142		if (ret == H_TOO_HARD)
1143			return RESUME_HOST;
1144		break;
1145	case H_BULK_REMOVE:
1146		ret = kvmppc_h_bulk_remove(vcpu);
1147		if (ret == H_TOO_HARD)
1148			return RESUME_HOST;
1149		break;
1150
1151	case H_CEDE:
1152		break;
1153	case H_PROD:
1154		target = kvmppc_get_gpr(vcpu, 4);
1155		tvcpu = kvmppc_find_vcpu(kvm, target);
1156		if (!tvcpu) {
1157			ret = H_PARAMETER;
1158			break;
1159		}
1160		tvcpu->arch.prodded = 1;
1161		smp_mb(); /* This orders prodded store vs ceded load */
1162		if (tvcpu->arch.ceded)
1163			kvmppc_fast_vcpu_kick_hv(tvcpu);
1164		break;
1165	case H_CONFER:
1166		target = kvmppc_get_gpr(vcpu, 4);
1167		if (target == -1)
1168			break;
1169		tvcpu = kvmppc_find_vcpu(kvm, target);
1170		if (!tvcpu) {
1171			ret = H_PARAMETER;
1172			break;
1173		}
1174		yield_count = kvmppc_get_gpr(vcpu, 5);
1175		if (kvmppc_get_yield_count(tvcpu) != yield_count)
1176			break;
1177		kvm_arch_vcpu_yield_to(tvcpu);
1178		break;
1179	case H_REGISTER_VPA:
1180		ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
1181					kvmppc_get_gpr(vcpu, 5),
1182					kvmppc_get_gpr(vcpu, 6));
1183		break;
1184	case H_RTAS:
1185		if (list_empty(&kvm->arch.rtas_tokens))
1186			return RESUME_HOST;
1187
1188		idx = srcu_read_lock(&kvm->srcu);
1189		rc = kvmppc_rtas_hcall(vcpu);
1190		srcu_read_unlock(&kvm->srcu, idx);
1191
1192		if (rc == -ENOENT)
1193			return RESUME_HOST;
1194		else if (rc == 0)
1195			break;
1196
1197		/* Send the error out to userspace via KVM_RUN */
1198		return rc;
1199	case H_LOGICAL_CI_LOAD:
1200		ret = kvmppc_h_logical_ci_load(vcpu);
1201		if (ret == H_TOO_HARD)
1202			return RESUME_HOST;
1203		break;
1204	case H_LOGICAL_CI_STORE:
1205		ret = kvmppc_h_logical_ci_store(vcpu);
1206		if (ret == H_TOO_HARD)
1207			return RESUME_HOST;
1208		break;
1209	case H_SET_MODE:
1210		ret = kvmppc_h_set_mode(vcpu, kvmppc_get_gpr(vcpu, 4),
1211					kvmppc_get_gpr(vcpu, 5),
1212					kvmppc_get_gpr(vcpu, 6),
1213					kvmppc_get_gpr(vcpu, 7));
1214		if (ret == H_TOO_HARD)
1215			return RESUME_HOST;
1216		break;
1217	case H_XIRR:
1218	case H_CPPR:
1219	case H_EOI:
1220	case H_IPI:
1221	case H_IPOLL:
1222	case H_XIRR_X:
1223		if (kvmppc_xics_enabled(vcpu)) {
1224			if (xics_on_xive()) {
1225				ret = H_NOT_AVAILABLE;
1226				return RESUME_GUEST;
1227			}
1228			ret = kvmppc_xics_hcall(vcpu, req);
1229			break;
1230		}
1231		return RESUME_HOST;
1232	case H_SET_DABR:
1233		ret = kvmppc_h_set_dabr(vcpu, kvmppc_get_gpr(vcpu, 4));
1234		break;
1235	case H_SET_XDABR:
1236		ret = kvmppc_h_set_xdabr(vcpu, kvmppc_get_gpr(vcpu, 4),
1237						kvmppc_get_gpr(vcpu, 5));
1238		break;
1239#ifdef CONFIG_SPAPR_TCE_IOMMU
1240	case H_GET_TCE:
1241		ret = kvmppc_h_get_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1242						kvmppc_get_gpr(vcpu, 5));
1243		if (ret == H_TOO_HARD)
1244			return RESUME_HOST;
1245		break;
1246	case H_PUT_TCE:
1247		ret = kvmppc_h_put_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1248						kvmppc_get_gpr(vcpu, 5),
1249						kvmppc_get_gpr(vcpu, 6));
1250		if (ret == H_TOO_HARD)
1251			return RESUME_HOST;
1252		break;
1253	case H_PUT_TCE_INDIRECT:
1254		ret = kvmppc_h_put_tce_indirect(vcpu, kvmppc_get_gpr(vcpu, 4),
1255						kvmppc_get_gpr(vcpu, 5),
1256						kvmppc_get_gpr(vcpu, 6),
1257						kvmppc_get_gpr(vcpu, 7));
1258		if (ret == H_TOO_HARD)
1259			return RESUME_HOST;
1260		break;
1261	case H_STUFF_TCE:
1262		ret = kvmppc_h_stuff_tce(vcpu, kvmppc_get_gpr(vcpu, 4),
1263						kvmppc_get_gpr(vcpu, 5),
1264						kvmppc_get_gpr(vcpu, 6),
1265						kvmppc_get_gpr(vcpu, 7));
1266		if (ret == H_TOO_HARD)
1267			return RESUME_HOST;
1268		break;
1269#endif
1270	case H_RANDOM:
1271		if (!arch_get_random_seed_longs(&vcpu->arch.regs.gpr[4], 1))
1272			ret = H_HARDWARE;
1273		break;
1274	case H_RPT_INVALIDATE:
1275		ret = kvmppc_h_rpt_invalidate(vcpu, kvmppc_get_gpr(vcpu, 4),
1276					      kvmppc_get_gpr(vcpu, 5),
1277					      kvmppc_get_gpr(vcpu, 6),
1278					      kvmppc_get_gpr(vcpu, 7),
1279					      kvmppc_get_gpr(vcpu, 8),
1280					      kvmppc_get_gpr(vcpu, 9));
1281		break;
1282
1283	case H_SET_PARTITION_TABLE:
1284		ret = H_FUNCTION;
1285		if (nesting_enabled(kvm))
1286			ret = kvmhv_set_partition_table(vcpu);
1287		break;
1288	case H_ENTER_NESTED:
1289		ret = H_FUNCTION;
1290		if (!nesting_enabled(kvm))
1291			break;
1292		ret = kvmhv_enter_nested_guest(vcpu);
1293		if (ret == H_INTERRUPT) {
1294			kvmppc_set_gpr(vcpu, 3, 0);
1295			vcpu->arch.hcall_needed = 0;
1296			return -EINTR;
1297		} else if (ret == H_TOO_HARD) {
1298			kvmppc_set_gpr(vcpu, 3, 0);
1299			vcpu->arch.hcall_needed = 0;
1300			return RESUME_HOST;
1301		}
1302		break;
1303	case H_TLB_INVALIDATE:
1304		ret = H_FUNCTION;
1305		if (nesting_enabled(kvm))
1306			ret = kvmhv_do_nested_tlbie(vcpu);
1307		break;
1308	case H_COPY_TOFROM_GUEST:
1309		ret = H_FUNCTION;
1310		if (nesting_enabled(kvm))
1311			ret = kvmhv_copy_tofrom_guest_nested(vcpu);
1312		break;
1313	case H_PAGE_INIT:
1314		ret = kvmppc_h_page_init(vcpu, kvmppc_get_gpr(vcpu, 4),
1315					 kvmppc_get_gpr(vcpu, 5),
1316					 kvmppc_get_gpr(vcpu, 6));
1317		break;
1318	case H_SVM_PAGE_IN:
1319		ret = H_UNSUPPORTED;
1320		if (kvmppc_get_srr1(vcpu) & MSR_S)
1321			ret = kvmppc_h_svm_page_in(kvm,
1322						   kvmppc_get_gpr(vcpu, 4),
1323						   kvmppc_get_gpr(vcpu, 5),
1324						   kvmppc_get_gpr(vcpu, 6));
1325		break;
1326	case H_SVM_PAGE_OUT:
1327		ret = H_UNSUPPORTED;
1328		if (kvmppc_get_srr1(vcpu) & MSR_S)
1329			ret = kvmppc_h_svm_page_out(kvm,
1330						    kvmppc_get_gpr(vcpu, 4),
1331						    kvmppc_get_gpr(vcpu, 5),
1332						    kvmppc_get_gpr(vcpu, 6));
1333		break;
1334	case H_SVM_INIT_START:
1335		ret = H_UNSUPPORTED;
1336		if (kvmppc_get_srr1(vcpu) & MSR_S)
1337			ret = kvmppc_h_svm_init_start(kvm);
1338		break;
1339	case H_SVM_INIT_DONE:
1340		ret = H_UNSUPPORTED;
1341		if (kvmppc_get_srr1(vcpu) & MSR_S)
1342			ret = kvmppc_h_svm_init_done(kvm);
1343		break;
1344	case H_SVM_INIT_ABORT:
1345		/*
1346		 * Even if that call is made by the Ultravisor, the SSR1 value
1347		 * is the guest context one, with the secure bit clear as it has
1348		 * not yet been secured. So we can't check it here.
1349		 * Instead the kvm->arch.secure_guest flag is checked inside
1350		 * kvmppc_h_svm_init_abort().
1351		 */
1352		ret = kvmppc_h_svm_init_abort(kvm);
1353		break;
1354
1355	default:
1356		return RESUME_HOST;
1357	}
1358	WARN_ON_ONCE(ret == H_TOO_HARD);
1359	kvmppc_set_gpr(vcpu, 3, ret);
1360	vcpu->arch.hcall_needed = 0;
1361	return RESUME_GUEST;
1362}
1363
1364/*
1365 * Handle H_CEDE in the P9 path where we don't call the real-mode hcall
1366 * handlers in book3s_hv_rmhandlers.S.
1367 *
1368 * This has to be done early, not in kvmppc_pseries_do_hcall(), so
1369 * that the cede logic in kvmppc_run_single_vcpu() works properly.
1370 */
1371static void kvmppc_cede(struct kvm_vcpu *vcpu)
1372{
1373	__kvmppc_set_msr_hv(vcpu, __kvmppc_get_msr_hv(vcpu) | MSR_EE);
1374	vcpu->arch.ceded = 1;
1375	smp_mb();
1376	if (vcpu->arch.prodded) {
1377		vcpu->arch.prodded = 0;
1378		smp_mb();
1379		vcpu->arch.ceded = 0;
1380	}
1381}
1382
1383static int kvmppc_hcall_impl_hv(unsigned long cmd)
1384{
1385	switch (cmd) {
1386	case H_CEDE:
1387	case H_PROD:
1388	case H_CONFER:
1389	case H_REGISTER_VPA:
1390	case H_SET_MODE:
1391#ifdef CONFIG_SPAPR_TCE_IOMMU
1392	case H_GET_TCE:
1393	case H_PUT_TCE:
1394	case H_PUT_TCE_INDIRECT:
1395	case H_STUFF_TCE:
1396#endif
1397	case H_LOGICAL_CI_LOAD:
1398	case H_LOGICAL_CI_STORE:
1399#ifdef CONFIG_KVM_XICS
1400	case H_XIRR:
1401	case H_CPPR:
1402	case H_EOI:
1403	case H_IPI:
1404	case H_IPOLL:
1405	case H_XIRR_X:
1406#endif
1407	case H_PAGE_INIT:
1408	case H_RPT_INVALIDATE:
1409		return 1;
1410	}
1411
1412	/* See if it's in the real-mode table */
1413	return kvmppc_hcall_impl_hv_realmode(cmd);
1414}
1415
1416static int kvmppc_emulate_debug_inst(struct kvm_vcpu *vcpu)
1417{
1418	ppc_inst_t last_inst;
1419
1420	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
1421					EMULATE_DONE) {
1422		/*
1423		 * Fetch failed, so return to guest and
1424		 * try executing it again.
1425		 */
1426		return RESUME_GUEST;
1427	}
1428
1429	if (ppc_inst_val(last_inst) == KVMPPC_INST_SW_BREAKPOINT) {
1430		vcpu->run->exit_reason = KVM_EXIT_DEBUG;
1431		vcpu->run->debug.arch.address = kvmppc_get_pc(vcpu);
1432		return RESUME_HOST;
1433	} else {
1434		kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1435				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1436		return RESUME_GUEST;
1437	}
1438}
1439
1440static void do_nothing(void *x)
1441{
1442}
1443
1444static unsigned long kvmppc_read_dpdes(struct kvm_vcpu *vcpu)
1445{
1446	int thr, cpu, pcpu, nthreads;
1447	struct kvm_vcpu *v;
1448	unsigned long dpdes;
1449
1450	nthreads = vcpu->kvm->arch.emul_smt_mode;
1451	dpdes = 0;
1452	cpu = vcpu->vcpu_id & ~(nthreads - 1);
1453	for (thr = 0; thr < nthreads; ++thr, ++cpu) {
1454		v = kvmppc_find_vcpu(vcpu->kvm, cpu);
1455		if (!v)
1456			continue;
1457		/*
1458		 * If the vcpu is currently running on a physical cpu thread,
1459		 * interrupt it in order to pull it out of the guest briefly,
1460		 * which will update its vcore->dpdes value.
1461		 */
1462		pcpu = READ_ONCE(v->cpu);
1463		if (pcpu >= 0)
1464			smp_call_function_single(pcpu, do_nothing, NULL, 1);
1465		if (kvmppc_doorbell_pending(v))
1466			dpdes |= 1 << thr;
1467	}
1468	return dpdes;
1469}
1470
1471/*
1472 * On POWER9, emulate doorbell-related instructions in order to
1473 * give the guest the illusion of running on a multi-threaded core.
1474 * The instructions emulated are msgsndp, msgclrp, mfspr TIR,
1475 * and mfspr DPDES.
1476 */
1477static int kvmppc_emulate_doorbell_instr(struct kvm_vcpu *vcpu)
1478{
1479	u32 inst, rb, thr;
1480	unsigned long arg;
1481	struct kvm *kvm = vcpu->kvm;
1482	struct kvm_vcpu *tvcpu;
1483	ppc_inst_t pinst;
1484
1485	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst) != EMULATE_DONE)
1486		return RESUME_GUEST;
1487	inst = ppc_inst_val(pinst);
1488	if (get_op(inst) != 31)
1489		return EMULATE_FAIL;
1490	rb = get_rb(inst);
1491	thr = vcpu->vcpu_id & (kvm->arch.emul_smt_mode - 1);
1492	switch (get_xop(inst)) {
1493	case OP_31_XOP_MSGSNDP:
1494		arg = kvmppc_get_gpr(vcpu, rb);
1495		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1496			break;
1497		arg &= 0x7f;
1498		if (arg >= kvm->arch.emul_smt_mode)
1499			break;
1500		tvcpu = kvmppc_find_vcpu(kvm, vcpu->vcpu_id - thr + arg);
1501		if (!tvcpu)
1502			break;
1503		if (!tvcpu->arch.doorbell_request) {
1504			tvcpu->arch.doorbell_request = 1;
1505			kvmppc_fast_vcpu_kick_hv(tvcpu);
1506		}
1507		break;
1508	case OP_31_XOP_MSGCLRP:
1509		arg = kvmppc_get_gpr(vcpu, rb);
1510		if (((arg >> 27) & 0x1f) != PPC_DBELL_SERVER)
1511			break;
1512		vcpu->arch.vcore->dpdes = 0;
1513		vcpu->arch.doorbell_request = 0;
1514		break;
1515	case OP_31_XOP_MFSPR:
1516		switch (get_sprn(inst)) {
1517		case SPRN_TIR:
1518			arg = thr;
1519			break;
1520		case SPRN_DPDES:
1521			arg = kvmppc_read_dpdes(vcpu);
1522			break;
1523		default:
1524			return EMULATE_FAIL;
1525		}
1526		kvmppc_set_gpr(vcpu, get_rt(inst), arg);
1527		break;
1528	default:
1529		return EMULATE_FAIL;
1530	}
1531	kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
1532	return RESUME_GUEST;
1533}
1534
1535/*
1536 * If the lppaca had pmcregs_in_use clear when we exited the guest, then
1537 * HFSCR_PM is cleared for next entry. If the guest then tries to access
1538 * the PMU SPRs, we get this facility unavailable interrupt. Putting HFSCR_PM
1539 * back in the guest HFSCR will cause the next entry to load the PMU SPRs and
1540 * allow the guest access to continue.
1541 */
1542static int kvmppc_pmu_unavailable(struct kvm_vcpu *vcpu)
1543{
1544	if (!(vcpu->arch.hfscr_permitted & HFSCR_PM))
1545		return EMULATE_FAIL;
1546
1547	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PM);
1548
1549	return RESUME_GUEST;
1550}
1551
1552static int kvmppc_ebb_unavailable(struct kvm_vcpu *vcpu)
1553{
1554	if (!(vcpu->arch.hfscr_permitted & HFSCR_EBB))
1555		return EMULATE_FAIL;
1556
1557	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_EBB);
1558
1559	return RESUME_GUEST;
1560}
1561
1562static int kvmppc_tm_unavailable(struct kvm_vcpu *vcpu)
1563{
1564	if (!(vcpu->arch.hfscr_permitted & HFSCR_TM))
1565		return EMULATE_FAIL;
1566
1567	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
1568
1569	return RESUME_GUEST;
1570}
1571
1572static int kvmppc_handle_exit_hv(struct kvm_vcpu *vcpu,
1573				 struct task_struct *tsk)
1574{
1575	struct kvm_run *run = vcpu->run;
1576	int r = RESUME_HOST;
1577
1578	vcpu->stat.sum_exits++;
1579
1580	/*
1581	 * This can happen if an interrupt occurs in the last stages
1582	 * of guest entry or the first stages of guest exit (i.e. after
1583	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1584	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1585	 * That can happen due to a bug, or due to a machine check
1586	 * occurring at just the wrong time.
1587	 */
1588	if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1589		printk(KERN_EMERG "KVM trap in HV mode!\n");
1590		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1591			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1592			vcpu->arch.shregs.msr);
1593		kvmppc_dump_regs(vcpu);
1594		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1595		run->hw.hardware_exit_reason = vcpu->arch.trap;
1596		return RESUME_HOST;
1597	}
1598	run->exit_reason = KVM_EXIT_UNKNOWN;
1599	run->ready_for_interrupt_injection = 1;
1600	switch (vcpu->arch.trap) {
1601	/* We're good on these - the host merely wanted to get our attention */
1602	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1603		WARN_ON_ONCE(1); /* Should never happen */
1604		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1605		fallthrough;
1606	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1607		vcpu->stat.dec_exits++;
1608		r = RESUME_GUEST;
1609		break;
1610	case BOOK3S_INTERRUPT_EXTERNAL:
1611	case BOOK3S_INTERRUPT_H_DOORBELL:
1612	case BOOK3S_INTERRUPT_H_VIRT:
1613		vcpu->stat.ext_intr_exits++;
1614		r = RESUME_GUEST;
1615		break;
1616	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1617	case BOOK3S_INTERRUPT_HMI:
1618	case BOOK3S_INTERRUPT_PERFMON:
1619	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1620		r = RESUME_GUEST;
1621		break;
1622	case BOOK3S_INTERRUPT_MACHINE_CHECK: {
1623		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1624					      DEFAULT_RATELIMIT_BURST);
1625		/*
1626		 * Print the MCE event to host console. Ratelimit so the guest
1627		 * can't flood the host log.
1628		 */
1629		if (__ratelimit(&rs))
1630			machine_check_print_event_info(&vcpu->arch.mce_evt,false, true);
1631
1632		/*
1633		 * If the guest can do FWNMI, exit to userspace so it can
1634		 * deliver a FWNMI to the guest.
1635		 * Otherwise we synthesize a machine check for the guest
1636		 * so that it knows that the machine check occurred.
1637		 */
1638		if (!vcpu->kvm->arch.fwnmi_enabled) {
1639			ulong flags = (__kvmppc_get_msr_hv(vcpu) & 0x083c0000) |
1640					(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1641			kvmppc_core_queue_machine_check(vcpu, flags);
1642			r = RESUME_GUEST;
1643			break;
1644		}
1645
1646		/* Exit to guest with KVM_EXIT_NMI as exit reason */
1647		run->exit_reason = KVM_EXIT_NMI;
1648		run->hw.hardware_exit_reason = vcpu->arch.trap;
1649		/* Clear out the old NMI status from run->flags */
1650		run->flags &= ~KVM_RUN_PPC_NMI_DISP_MASK;
1651		/* Now set the NMI status */
1652		if (vcpu->arch.mce_evt.disposition == MCE_DISPOSITION_RECOVERED)
1653			run->flags |= KVM_RUN_PPC_NMI_DISP_FULLY_RECOV;
1654		else
1655			run->flags |= KVM_RUN_PPC_NMI_DISP_NOT_RECOV;
1656
1657		r = RESUME_HOST;
1658		break;
1659	}
1660	case BOOK3S_INTERRUPT_PROGRAM:
1661	{
1662		ulong flags;
1663		/*
1664		 * Normally program interrupts are delivered directly
1665		 * to the guest by the hardware, but we can get here
1666		 * as a result of a hypervisor emulation interrupt
1667		 * (e40) getting turned into a 700 by BML RTAS.
1668		 */
1669		flags = (__kvmppc_get_msr_hv(vcpu) & 0x1f0000ull) |
1670			(kvmppc_get_msr(vcpu) & SRR1_PREFIXED);
1671		kvmppc_core_queue_program(vcpu, flags);
1672		r = RESUME_GUEST;
1673		break;
1674	}
1675	case BOOK3S_INTERRUPT_SYSCALL:
1676	{
1677		int i;
1678
1679		if (unlikely(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
1680			/*
1681			 * Guest userspace executed sc 1. This can only be
1682			 * reached by the P9 path because the old path
1683			 * handles this case in realmode hcall handlers.
1684			 */
1685			if (!kvmhv_vcpu_is_radix(vcpu)) {
1686				/*
1687				 * A guest could be running PR KVM, so this
1688				 * may be a PR KVM hcall. It must be reflected
1689				 * to the guest kernel as a sc interrupt.
1690				 */
1691				kvmppc_core_queue_syscall(vcpu);
1692			} else {
1693				/*
1694				 * Radix guests can not run PR KVM or nested HV
1695				 * hash guests which might run PR KVM, so this
1696				 * is always a privilege fault. Send a program
1697				 * check to guest kernel.
1698				 */
1699				kvmppc_core_queue_program(vcpu, SRR1_PROGPRIV);
1700			}
1701			r = RESUME_GUEST;
1702			break;
1703		}
1704
1705		/*
1706		 * hcall - gather args and set exit_reason. This will next be
1707		 * handled by kvmppc_pseries_do_hcall which may be able to deal
1708		 * with it and resume guest, or may punt to userspace.
1709		 */
1710		run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
1711		for (i = 0; i < 9; ++i)
1712			run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
1713		run->exit_reason = KVM_EXIT_PAPR_HCALL;
1714		vcpu->arch.hcall_needed = 1;
1715		r = RESUME_HOST;
1716		break;
1717	}
1718	/*
1719	 * We get these next two if the guest accesses a page which it thinks
1720	 * it has mapped but which is not actually present, either because
1721	 * it is for an emulated I/O device or because the corresonding
1722	 * host page has been paged out.
1723	 *
1724	 * Any other HDSI/HISI interrupts have been handled already for P7/8
1725	 * guests. For POWER9 hash guests not using rmhandlers, basic hash
1726	 * fault handling is done here.
1727	 */
1728	case BOOK3S_INTERRUPT_H_DATA_STORAGE: {
1729		unsigned long vsid;
1730		long err;
1731
1732		if (cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG) &&
1733		    unlikely(vcpu->arch.fault_dsisr == HDSISR_CANARY)) {
1734			r = RESUME_GUEST; /* Just retry if it's the canary */
1735			break;
1736		}
1737
1738		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1739			/*
1740			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1741			 * already attempted to handle this in rmhandlers. The
1742			 * hash fault handling below is v3 only (it uses ASDR
1743			 * via fault_gpa).
1744			 */
1745			r = RESUME_PAGE_FAULT;
1746			break;
1747		}
1748
1749		if (!(vcpu->arch.fault_dsisr & (DSISR_NOHPTE | DSISR_PROTFAULT))) {
1750			kvmppc_core_queue_data_storage(vcpu,
1751				kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1752				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
1753			r = RESUME_GUEST;
1754			break;
1755		}
1756
1757		if (!(__kvmppc_get_msr_hv(vcpu) & MSR_DR))
1758			vsid = vcpu->kvm->arch.vrma_slb_v;
1759		else
1760			vsid = vcpu->arch.fault_gpa;
1761
1762		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1763				vsid, vcpu->arch.fault_dsisr, true);
1764		if (err == 0) {
1765			r = RESUME_GUEST;
1766		} else if (err == -1 || err == -2) {
1767			r = RESUME_PAGE_FAULT;
1768		} else {
1769			kvmppc_core_queue_data_storage(vcpu,
1770				kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
1771				vcpu->arch.fault_dar, err);
1772			r = RESUME_GUEST;
1773		}
1774		break;
1775	}
1776	case BOOK3S_INTERRUPT_H_INST_STORAGE: {
1777		unsigned long vsid;
1778		long err;
1779
1780		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1781		vcpu->arch.fault_dsisr = __kvmppc_get_msr_hv(vcpu) &
1782			DSISR_SRR1_MATCH_64S;
1783		if (kvm_is_radix(vcpu->kvm) || !cpu_has_feature(CPU_FTR_ARCH_300)) {
1784			/*
1785			 * Radix doesn't require anything, and pre-ISAv3.0 hash
1786			 * already attempted to handle this in rmhandlers. The
1787			 * hash fault handling below is v3 only (it uses ASDR
1788			 * via fault_gpa).
1789			 */
1790			if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1791				vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1792			r = RESUME_PAGE_FAULT;
1793			break;
1794		}
1795
1796		if (!(vcpu->arch.fault_dsisr & SRR1_ISI_NOPT)) {
1797			kvmppc_core_queue_inst_storage(vcpu,
1798				vcpu->arch.fault_dsisr |
1799				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1800			r = RESUME_GUEST;
1801			break;
1802		}
1803
1804		if (!(__kvmppc_get_msr_hv(vcpu) & MSR_IR))
1805			vsid = vcpu->kvm->arch.vrma_slb_v;
1806		else
1807			vsid = vcpu->arch.fault_gpa;
1808
1809		err = kvmppc_hpte_hv_fault(vcpu, vcpu->arch.fault_dar,
1810				vsid, vcpu->arch.fault_dsisr, false);
1811		if (err == 0) {
1812			r = RESUME_GUEST;
1813		} else if (err == -1) {
1814			r = RESUME_PAGE_FAULT;
1815		} else {
1816			kvmppc_core_queue_inst_storage(vcpu,
1817				err | (kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1818			r = RESUME_GUEST;
1819		}
1820		break;
1821	}
1822
1823	/*
1824	 * This occurs if the guest executes an illegal instruction.
1825	 * If the guest debug is disabled, generate a program interrupt
1826	 * to the guest. If guest debug is enabled, we need to check
1827	 * whether the instruction is a software breakpoint instruction.
1828	 * Accordingly return to Guest or Host.
1829	 */
1830	case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
1831		if (vcpu->arch.emul_inst != KVM_INST_FETCH_FAILED)
1832			vcpu->arch.last_inst = kvmppc_need_byteswap(vcpu) ?
1833				swab32(vcpu->arch.emul_inst) :
1834				vcpu->arch.emul_inst;
1835		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) {
1836			r = kvmppc_emulate_debug_inst(vcpu);
1837		} else {
1838			kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1839				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1840			r = RESUME_GUEST;
1841		}
1842		break;
1843
1844#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1845	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1846		/*
1847		 * This occurs for various TM-related instructions that
1848		 * we need to emulate on POWER9 DD2.2.  We have already
1849		 * handled the cases where the guest was in real-suspend
1850		 * mode and was transitioning to transactional state.
1851		 */
1852		r = kvmhv_p9_tm_emulation(vcpu);
1853		if (r != -1)
1854			break;
1855		fallthrough; /* go to facility unavailable handler */
1856#endif
1857
1858	/*
1859	 * This occurs if the guest (kernel or userspace), does something that
1860	 * is prohibited by HFSCR.
1861	 * On POWER9, this could be a doorbell instruction that we need
1862	 * to emulate.
1863	 * Otherwise, we just generate a program interrupt to the guest.
1864	 */
1865	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
1866		u64 cause = kvmppc_get_hfscr_hv(vcpu) >> 56;
1867
1868		r = EMULATE_FAIL;
1869		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1870			if (cause == FSCR_MSGP_LG)
1871				r = kvmppc_emulate_doorbell_instr(vcpu);
1872			if (cause == FSCR_PM_LG)
1873				r = kvmppc_pmu_unavailable(vcpu);
1874			if (cause == FSCR_EBB_LG)
1875				r = kvmppc_ebb_unavailable(vcpu);
1876			if (cause == FSCR_TM_LG)
1877				r = kvmppc_tm_unavailable(vcpu);
1878		}
1879		if (r == EMULATE_FAIL) {
1880			kvmppc_core_queue_program(vcpu, SRR1_PROGILL |
1881				(kvmppc_get_msr(vcpu) & SRR1_PREFIXED));
1882			r = RESUME_GUEST;
1883		}
1884		break;
1885	}
1886
1887	case BOOK3S_INTERRUPT_HV_RM_HARD:
1888		r = RESUME_PASSTHROUGH;
1889		break;
1890	default:
1891		kvmppc_dump_regs(vcpu);
1892		printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1893			vcpu->arch.trap, kvmppc_get_pc(vcpu),
1894			__kvmppc_get_msr_hv(vcpu));
1895		run->hw.hardware_exit_reason = vcpu->arch.trap;
1896		r = RESUME_HOST;
1897		break;
1898	}
1899
1900	return r;
1901}
1902
1903static int kvmppc_handle_nested_exit(struct kvm_vcpu *vcpu)
1904{
1905	int r;
1906	int srcu_idx;
1907
1908	vcpu->stat.sum_exits++;
1909
1910	/*
1911	 * This can happen if an interrupt occurs in the last stages
1912	 * of guest entry or the first stages of guest exit (i.e. after
1913	 * setting paca->kvm_hstate.in_guest to KVM_GUEST_MODE_GUEST_HV
1914	 * and before setting it to KVM_GUEST_MODE_HOST_HV).
1915	 * That can happen due to a bug, or due to a machine check
1916	 * occurring at just the wrong time.
1917	 */
1918	if (__kvmppc_get_msr_hv(vcpu) & MSR_HV) {
1919		pr_emerg("KVM trap in HV mode while nested!\n");
1920		pr_emerg("trap=0x%x | pc=0x%lx | msr=0x%llx\n",
1921			 vcpu->arch.trap, kvmppc_get_pc(vcpu),
1922			 __kvmppc_get_msr_hv(vcpu));
1923		kvmppc_dump_regs(vcpu);
1924		return RESUME_HOST;
1925	}
1926	switch (vcpu->arch.trap) {
1927	/* We're good on these - the host merely wanted to get our attention */
1928	case BOOK3S_INTERRUPT_HV_DECREMENTER:
1929		vcpu->stat.dec_exits++;
1930		r = RESUME_GUEST;
1931		break;
1932	case BOOK3S_INTERRUPT_EXTERNAL:
1933		vcpu->stat.ext_intr_exits++;
1934		r = RESUME_HOST;
1935		break;
1936	case BOOK3S_INTERRUPT_H_DOORBELL:
1937	case BOOK3S_INTERRUPT_H_VIRT:
1938		vcpu->stat.ext_intr_exits++;
1939		r = RESUME_GUEST;
1940		break;
1941	/* These need to go to the nested HV */
1942	case BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER:
1943		vcpu->arch.trap = BOOK3S_INTERRUPT_HV_DECREMENTER;
1944		vcpu->stat.dec_exits++;
1945		r = RESUME_HOST;
1946		break;
1947	/* SR/HMI/PMI are HV interrupts that host has handled. Resume guest.*/
1948	case BOOK3S_INTERRUPT_HMI:
1949	case BOOK3S_INTERRUPT_PERFMON:
1950	case BOOK3S_INTERRUPT_SYSTEM_RESET:
1951		r = RESUME_GUEST;
1952		break;
1953	case BOOK3S_INTERRUPT_MACHINE_CHECK:
1954	{
1955		static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1956					      DEFAULT_RATELIMIT_BURST);
1957		/* Pass the machine check to the L1 guest */
1958		r = RESUME_HOST;
1959		/* Print the MCE event to host console. */
1960		if (__ratelimit(&rs))
1961			machine_check_print_event_info(&vcpu->arch.mce_evt, false, true);
1962		break;
1963	}
1964	/*
1965	 * We get these next two if the guest accesses a page which it thinks
1966	 * it has mapped but which is not actually present, either because
1967	 * it is for an emulated I/O device or because the corresonding
1968	 * host page has been paged out.
1969	 */
1970	case BOOK3S_INTERRUPT_H_DATA_STORAGE:
1971		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1972		r = kvmhv_nested_page_fault(vcpu);
1973		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1974		break;
1975	case BOOK3S_INTERRUPT_H_INST_STORAGE:
1976		vcpu->arch.fault_dar = kvmppc_get_pc(vcpu);
1977		vcpu->arch.fault_dsisr = kvmppc_get_msr(vcpu) &
1978					 DSISR_SRR1_MATCH_64S;
1979		if (__kvmppc_get_msr_hv(vcpu) & HSRR1_HISI_WRITE)
1980			vcpu->arch.fault_dsisr |= DSISR_ISSTORE;
1981		srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1982		r = kvmhv_nested_page_fault(vcpu);
1983		srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
1984		break;
1985
1986#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1987	case BOOK3S_INTERRUPT_HV_SOFTPATCH:
1988		/*
1989		 * This occurs for various TM-related instructions that
1990		 * we need to emulate on POWER9 DD2.2.  We have already
1991		 * handled the cases where the guest was in real-suspend
1992		 * mode and was transitioning to transactional state.
1993		 */
1994		r = kvmhv_p9_tm_emulation(vcpu);
1995		if (r != -1)
1996			break;
1997		fallthrough; /* go to facility unavailable handler */
1998#endif
1999
2000	case BOOK3S_INTERRUPT_H_FAC_UNAVAIL: {
2001		u64 cause = vcpu->arch.hfscr >> 56;
2002
2003		/*
2004		 * Only pass HFU interrupts to the L1 if the facility is
2005		 * permitted but disabled by the L1's HFSCR, otherwise
2006		 * the interrupt does not make sense to the L1 so turn
2007		 * it into a HEAI.
2008		 */
2009		if (!(vcpu->arch.hfscr_permitted & (1UL << cause)) ||
2010				(vcpu->arch.nested_hfscr & (1UL << cause))) {
2011			ppc_inst_t pinst;
2012			vcpu->arch.trap = BOOK3S_INTERRUPT_H_EMUL_ASSIST;
2013
2014			/*
2015			 * If the fetch failed, return to guest and
2016			 * try executing it again.
2017			 */
2018			r = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
2019			vcpu->arch.emul_inst = ppc_inst_val(pinst);
2020			if (r != EMULATE_DONE)
2021				r = RESUME_GUEST;
2022			else
2023				r = RESUME_HOST;
2024		} else {
2025			r = RESUME_HOST;
2026		}
2027
2028		break;
2029	}
2030
2031	case BOOK3S_INTERRUPT_HV_RM_HARD:
2032		vcpu->arch.trap = 0;
2033		r = RESUME_GUEST;
2034		if (!xics_on_xive())
2035			kvmppc_xics_rm_complete(vcpu, 0);
2036		break;
2037	case BOOK3S_INTERRUPT_SYSCALL:
2038	{
2039		unsigned long req = kvmppc_get_gpr(vcpu, 3);
2040
2041		/*
2042		 * The H_RPT_INVALIDATE hcalls issued by nested
2043		 * guests for process-scoped invalidations when
2044		 * GTSE=0, are handled here in L0.
2045		 */
2046		if (req == H_RPT_INVALIDATE) {
2047			r = kvmppc_nested_h_rpt_invalidate(vcpu);
2048			break;
2049		}
2050
2051		r = RESUME_HOST;
2052		break;
2053	}
2054	default:
2055		r = RESUME_HOST;
2056		break;
2057	}
2058
2059	return r;
2060}
2061
2062static int kvm_arch_vcpu_ioctl_get_sregs_hv(struct kvm_vcpu *vcpu,
2063					    struct kvm_sregs *sregs)
2064{
2065	int i;
2066
2067	memset(sregs, 0, sizeof(struct kvm_sregs));
2068	sregs->pvr = vcpu->arch.pvr;
2069	for (i = 0; i < vcpu->arch.slb_max; i++) {
2070		sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
2071		sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
2072	}
2073
2074	return 0;
2075}
2076
2077static int kvm_arch_vcpu_ioctl_set_sregs_hv(struct kvm_vcpu *vcpu,
2078					    struct kvm_sregs *sregs)
2079{
2080	int i, j;
2081
2082	/* Only accept the same PVR as the host's, since we can't spoof it */
2083	if (sregs->pvr != vcpu->arch.pvr)
2084		return -EINVAL;
2085
2086	j = 0;
2087	for (i = 0; i < vcpu->arch.slb_nr; i++) {
2088		if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
2089			vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
2090			vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
2091			++j;
2092		}
2093	}
2094	vcpu->arch.slb_max = j;
2095
2096	return 0;
2097}
2098
2099/*
2100 * Enforce limits on guest LPCR values based on hardware availability,
2101 * guest configuration, and possibly hypervisor support and security
2102 * concerns.
2103 */
2104unsigned long kvmppc_filter_lpcr_hv(struct kvm *kvm, unsigned long lpcr)
2105{
2106	/* LPCR_TC only applies to HPT guests */
2107	if (kvm_is_radix(kvm))
2108		lpcr &= ~LPCR_TC;
2109
2110	/* On POWER8 and above, userspace can modify AIL */
2111	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
2112		lpcr &= ~LPCR_AIL;
2113	if ((lpcr & LPCR_AIL) != LPCR_AIL_3)
2114		lpcr &= ~LPCR_AIL; /* LPCR[AIL]=1/2 is disallowed */
2115	/*
2116	 * On some POWER9s we force AIL off for radix guests to prevent
2117	 * executing in MSR[HV]=1 mode with the MMU enabled and PIDR set to
2118	 * guest, which can result in Q0 translations with LPID=0 PID=PIDR to
2119	 * be cached, which the host TLB management does not expect.
2120	 */
2121	if (kvm_is_radix(kvm) && cpu_has_feature(CPU_FTR_P9_RADIX_PREFETCH_BUG))
2122		lpcr &= ~LPCR_AIL;
2123
2124	/*
2125	 * On POWER9, allow userspace to enable large decrementer for the
2126	 * guest, whether or not the host has it enabled.
2127	 */
2128	if (!cpu_has_feature(CPU_FTR_ARCH_300))
2129		lpcr &= ~LPCR_LD;
2130
2131	return lpcr;
2132}
2133
2134static void verify_lpcr(struct kvm *kvm, unsigned long lpcr)
2135{
2136	if (lpcr != kvmppc_filter_lpcr_hv(kvm, lpcr)) {
2137		WARN_ONCE(1, "lpcr 0x%lx differs from filtered 0x%lx\n",
2138			  lpcr, kvmppc_filter_lpcr_hv(kvm, lpcr));
2139	}
2140}
2141
2142static void kvmppc_set_lpcr(struct kvm_vcpu *vcpu, u64 new_lpcr,
2143		bool preserve_top32)
2144{
2145	struct kvm *kvm = vcpu->kvm;
2146	struct kvmppc_vcore *vc = vcpu->arch.vcore;
2147	u64 mask;
2148
2149	spin_lock(&vc->lock);
2150
2151	/*
2152	 * Userspace can only modify
2153	 * DPFD (default prefetch depth), ILE (interrupt little-endian),
2154	 * TC (translation control), AIL (alternate interrupt location),
2155	 * LD (large decrementer).
2156	 * These are subject to restrictions from kvmppc_filter_lcpr_hv().
2157	 */
2158	mask = LPCR_DPFD | LPCR_ILE | LPCR_TC | LPCR_AIL | LPCR_LD;
2159
2160	/* Broken 32-bit version of LPCR must not clear top bits */
2161	if (preserve_top32)
2162		mask &= 0xFFFFFFFF;
2163
2164	new_lpcr = kvmppc_filter_lpcr_hv(kvm,
2165			(vc->lpcr & ~mask) | (new_lpcr & mask));
2166
2167	/*
2168	 * If ILE (interrupt little-endian) has changed, update the
2169	 * MSR_LE bit in the intr_msr for each vcpu in this vcore.
2170	 */
2171	if ((new_lpcr & LPCR_ILE) != (vc->lpcr & LPCR_ILE)) {
2172		struct kvm_vcpu *vcpu;
2173		unsigned long i;
2174
2175		kvm_for_each_vcpu(i, vcpu, kvm) {
2176			if (vcpu->arch.vcore != vc)
2177				continue;
2178			if (new_lpcr & LPCR_ILE)
2179				vcpu->arch.intr_msr |= MSR_LE;
2180			else
2181				vcpu->arch.intr_msr &= ~MSR_LE;
2182		}
2183	}
2184
2185	vc->lpcr = new_lpcr;
2186
2187	spin_unlock(&vc->lock);
2188}
2189
2190static int kvmppc_get_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2191				 union kvmppc_one_reg *val)
2192{
2193	int r = 0;
2194	long int i;
2195
2196	switch (id) {
2197	case KVM_REG_PPC_DEBUG_INST:
2198		*val = get_reg_val(id, KVMPPC_INST_SW_BREAKPOINT);
2199		break;
2200	case KVM_REG_PPC_HIOR:
2201		*val = get_reg_val(id, 0);
2202		break;
2203	case KVM_REG_PPC_DABR:
2204		*val = get_reg_val(id, vcpu->arch.dabr);
2205		break;
2206	case KVM_REG_PPC_DABRX:
2207		*val = get_reg_val(id, vcpu->arch.dabrx);
2208		break;
2209	case KVM_REG_PPC_DSCR:
2210		*val = get_reg_val(id, kvmppc_get_dscr_hv(vcpu));
2211		break;
2212	case KVM_REG_PPC_PURR:
2213		*val = get_reg_val(id, kvmppc_get_purr_hv(vcpu));
2214		break;
2215	case KVM_REG_PPC_SPURR:
2216		*val = get_reg_val(id, kvmppc_get_spurr_hv(vcpu));
2217		break;
2218	case KVM_REG_PPC_AMR:
2219		*val = get_reg_val(id, kvmppc_get_amr_hv(vcpu));
2220		break;
2221	case KVM_REG_PPC_UAMOR:
2222		*val = get_reg_val(id, kvmppc_get_uamor_hv(vcpu));
2223		break;
2224	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2225		i = id - KVM_REG_PPC_MMCR0;
2226		*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, i));
2227		break;
2228	case KVM_REG_PPC_MMCR2:
2229		*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 2));
2230		break;
2231	case KVM_REG_PPC_MMCRA:
2232		*val = get_reg_val(id, kvmppc_get_mmcra_hv(vcpu));
2233		break;
2234	case KVM_REG_PPC_MMCRS:
2235		*val = get_reg_val(id, vcpu->arch.mmcrs);
2236		break;
2237	case KVM_REG_PPC_MMCR3:
2238		*val = get_reg_val(id, kvmppc_get_mmcr_hv(vcpu, 3));
2239		break;
2240	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2241		i = id - KVM_REG_PPC_PMC1;
2242		*val = get_reg_val(id, kvmppc_get_pmc_hv(vcpu, i));
2243		break;
2244	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2245		i = id - KVM_REG_PPC_SPMC1;
2246		*val = get_reg_val(id, vcpu->arch.spmc[i]);
2247		break;
2248	case KVM_REG_PPC_SIAR:
2249		*val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2250		break;
2251	case KVM_REG_PPC_SDAR:
2252		*val = get_reg_val(id, kvmppc_get_siar_hv(vcpu));
2253		break;
2254	case KVM_REG_PPC_SIER:
2255		*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 0));
2256		break;
2257	case KVM_REG_PPC_SIER2:
2258		*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 1));
2259		break;
2260	case KVM_REG_PPC_SIER3:
2261		*val = get_reg_val(id, kvmppc_get_sier_hv(vcpu, 2));
2262		break;
2263	case KVM_REG_PPC_IAMR:
2264		*val = get_reg_val(id, kvmppc_get_iamr_hv(vcpu));
2265		break;
2266	case KVM_REG_PPC_PSPB:
2267		*val = get_reg_val(id, kvmppc_get_pspb_hv(vcpu));
2268		break;
2269	case KVM_REG_PPC_DPDES:
2270		/*
2271		 * On POWER9, where we are emulating msgsndp etc.,
2272		 * we return 1 bit for each vcpu, which can come from
2273		 * either vcore->dpdes or doorbell_request.
2274		 * On POWER8, doorbell_request is 0.
2275		 */
2276		if (cpu_has_feature(CPU_FTR_ARCH_300))
2277			*val = get_reg_val(id, vcpu->arch.doorbell_request);
2278		else
2279			*val = get_reg_val(id, vcpu->arch.vcore->dpdes);
2280		break;
2281	case KVM_REG_PPC_VTB:
2282		*val = get_reg_val(id, vcpu->arch.vcore->vtb);
2283		break;
2284	case KVM_REG_PPC_DAWR:
2285		*val = get_reg_val(id, kvmppc_get_dawr0_hv(vcpu));
2286		break;
2287	case KVM_REG_PPC_DAWRX:
2288		*val = get_reg_val(id, kvmppc_get_dawrx0_hv(vcpu));
2289		break;
2290	case KVM_REG_PPC_DAWR1:
2291		*val = get_reg_val(id, kvmppc_get_dawr1_hv(vcpu));
2292		break;
2293	case KVM_REG_PPC_DAWRX1:
2294		*val = get_reg_val(id, kvmppc_get_dawrx1_hv(vcpu));
2295		break;
2296	case KVM_REG_PPC_CIABR:
2297		*val = get_reg_val(id, kvmppc_get_ciabr_hv(vcpu));
2298		break;
2299	case KVM_REG_PPC_CSIGR:
2300		*val = get_reg_val(id, vcpu->arch.csigr);
2301		break;
2302	case KVM_REG_PPC_TACR:
2303		*val = get_reg_val(id, vcpu->arch.tacr);
2304		break;
2305	case KVM_REG_PPC_TCSCR:
2306		*val = get_reg_val(id, vcpu->arch.tcscr);
2307		break;
2308	case KVM_REG_PPC_PID:
2309		*val = get_reg_val(id, vcpu->arch.pid);
2310		break;
2311	case KVM_REG_PPC_ACOP:
2312		*val = get_reg_val(id, vcpu->arch.acop);
2313		break;
2314	case KVM_REG_PPC_WORT:
2315		*val = get_reg_val(id, kvmppc_get_wort_hv(vcpu));
2316		break;
2317	case KVM_REG_PPC_TIDR:
2318		*val = get_reg_val(id, vcpu->arch.tid);
2319		break;
2320	case KVM_REG_PPC_PSSCR:
2321		*val = get_reg_val(id, vcpu->arch.psscr);
2322		break;
2323	case KVM_REG_PPC_VPA_ADDR:
2324		spin_lock(&vcpu->arch.vpa_update_lock);
2325		*val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
2326		spin_unlock(&vcpu->arch.vpa_update_lock);
2327		break;
2328	case KVM_REG_PPC_VPA_SLB:
2329		spin_lock(&vcpu->arch.vpa_update_lock);
2330		val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
2331		val->vpaval.length = vcpu->arch.slb_shadow.len;
2332		spin_unlock(&vcpu->arch.vpa_update_lock);
2333		break;
2334	case KVM_REG_PPC_VPA_DTL:
2335		spin_lock(&vcpu->arch.vpa_update_lock);
2336		val->vpaval.addr = vcpu->arch.dtl.next_gpa;
2337		val->vpaval.length = vcpu->arch.dtl.len;
2338		spin_unlock(&vcpu->arch.vpa_update_lock);
2339		break;
2340	case KVM_REG_PPC_TB_OFFSET:
2341		*val = get_reg_val(id, vcpu->arch.vcore->tb_offset);
2342		break;
2343	case KVM_REG_PPC_LPCR:
2344	case KVM_REG_PPC_LPCR_64:
2345		*val = get_reg_val(id, vcpu->arch.vcore->lpcr);
2346		break;
2347	case KVM_REG_PPC_PPR:
2348		*val = get_reg_val(id, kvmppc_get_ppr_hv(vcpu));
2349		break;
2350#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2351	case KVM_REG_PPC_TFHAR:
2352		*val = get_reg_val(id, vcpu->arch.tfhar);
2353		break;
2354	case KVM_REG_PPC_TFIAR:
2355		*val = get_reg_val(id, vcpu->arch.tfiar);
2356		break;
2357	case KVM_REG_PPC_TEXASR:
2358		*val = get_reg_val(id, vcpu->arch.texasr);
2359		break;
2360	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2361		i = id - KVM_REG_PPC_TM_GPR0;
2362		*val = get_reg_val(id, vcpu->arch.gpr_tm[i]);
2363		break;
2364	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2365	{
2366		int j;
2367		i = id - KVM_REG_PPC_TM_VSR0;
2368		if (i < 32)
2369			for (j = 0; j < TS_FPRWIDTH; j++)
2370				val->vsxval[j] = vcpu->arch.fp_tm.fpr[i][j];
2371		else {
2372			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2373				val->vval = vcpu->arch.vr_tm.vr[i-32];
2374			else
2375				r = -ENXIO;
2376		}
2377		break;
2378	}
2379	case KVM_REG_PPC_TM_CR:
2380		*val = get_reg_val(id, vcpu->arch.cr_tm);
2381		break;
2382	case KVM_REG_PPC_TM_XER:
2383		*val = get_reg_val(id, vcpu->arch.xer_tm);
2384		break;
2385	case KVM_REG_PPC_TM_LR:
2386		*val = get_reg_val(id, vcpu->arch.lr_tm);
2387		break;
2388	case KVM_REG_PPC_TM_CTR:
2389		*val = get_reg_val(id, vcpu->arch.ctr_tm);
2390		break;
2391	case KVM_REG_PPC_TM_FPSCR:
2392		*val = get_reg_val(id, vcpu->arch.fp_tm.fpscr);
2393		break;
2394	case KVM_REG_PPC_TM_AMR:
2395		*val = get_reg_val(id, vcpu->arch.amr_tm);
2396		break;
2397	case KVM_REG_PPC_TM_PPR:
2398		*val = get_reg_val(id, vcpu->arch.ppr_tm);
2399		break;
2400	case KVM_REG_PPC_TM_VRSAVE:
2401		*val = get_reg_val(id, vcpu->arch.vrsave_tm);
2402		break;
2403	case KVM_REG_PPC_TM_VSCR:
2404		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2405			*val = get_reg_val(id, vcpu->arch.vr_tm.vscr.u[3]);
2406		else
2407			r = -ENXIO;
2408		break;
2409	case KVM_REG_PPC_TM_DSCR:
2410		*val = get_reg_val(id, vcpu->arch.dscr_tm);
2411		break;
2412	case KVM_REG_PPC_TM_TAR:
2413		*val = get_reg_val(id, vcpu->arch.tar_tm);
2414		break;
2415#endif
2416	case KVM_REG_PPC_ARCH_COMPAT:
2417		*val = get_reg_val(id, vcpu->arch.vcore->arch_compat);
2418		break;
2419	case KVM_REG_PPC_DEC_EXPIRY:
2420		*val = get_reg_val(id, vcpu->arch.dec_expires);
2421		break;
2422	case KVM_REG_PPC_ONLINE:
2423		*val = get_reg_val(id, vcpu->arch.online);
2424		break;
2425	case KVM_REG_PPC_PTCR:
2426		*val = get_reg_val(id, vcpu->kvm->arch.l1_ptcr);
2427		break;
2428	case KVM_REG_PPC_FSCR:
2429		*val = get_reg_val(id, kvmppc_get_fscr_hv(vcpu));
2430		break;
2431	default:
2432		r = -EINVAL;
2433		break;
2434	}
2435
2436	return r;
2437}
2438
2439static int kvmppc_set_one_reg_hv(struct kvm_vcpu *vcpu, u64 id,
2440				 union kvmppc_one_reg *val)
2441{
2442	int r = 0;
2443	long int i;
2444	unsigned long addr, len;
2445
2446	switch (id) {
2447	case KVM_REG_PPC_HIOR:
2448		/* Only allow this to be set to zero */
2449		if (set_reg_val(id, *val))
2450			r = -EINVAL;
2451		break;
2452	case KVM_REG_PPC_DABR:
2453		vcpu->arch.dabr = set_reg_val(id, *val);
2454		break;
2455	case KVM_REG_PPC_DABRX:
2456		vcpu->arch.dabrx = set_reg_val(id, *val) & ~DABRX_HYP;
2457		break;
2458	case KVM_REG_PPC_DSCR:
2459		kvmppc_set_dscr_hv(vcpu, set_reg_val(id, *val));
2460		break;
2461	case KVM_REG_PPC_PURR:
2462		kvmppc_set_purr_hv(vcpu, set_reg_val(id, *val));
2463		break;
2464	case KVM_REG_PPC_SPURR:
2465		kvmppc_set_spurr_hv(vcpu, set_reg_val(id, *val));
2466		break;
2467	case KVM_REG_PPC_AMR:
2468		kvmppc_set_amr_hv(vcpu, set_reg_val(id, *val));
2469		break;
2470	case KVM_REG_PPC_UAMOR:
2471		kvmppc_set_uamor_hv(vcpu, set_reg_val(id, *val));
2472		break;
2473	case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCR1:
2474		i = id - KVM_REG_PPC_MMCR0;
2475		kvmppc_set_mmcr_hv(vcpu, i, set_reg_val(id, *val));
2476		break;
2477	case KVM_REG_PPC_MMCR2:
2478		kvmppc_set_mmcr_hv(vcpu, 2, set_reg_val(id, *val));
2479		break;
2480	case KVM_REG_PPC_MMCRA:
2481		kvmppc_set_mmcra_hv(vcpu, set_reg_val(id, *val));
2482		break;
2483	case KVM_REG_PPC_MMCRS:
2484		vcpu->arch.mmcrs = set_reg_val(id, *val);
2485		break;
2486	case KVM_REG_PPC_MMCR3:
2487		*val = get_reg_val(id, vcpu->arch.mmcr[3]);
2488		break;
2489	case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
2490		i = id - KVM_REG_PPC_PMC1;
2491		kvmppc_set_pmc_hv(vcpu, i, set_reg_val(id, *val));
2492		break;
2493	case KVM_REG_PPC_SPMC1 ... KVM_REG_PPC_SPMC2:
2494		i = id - KVM_REG_PPC_SPMC1;
2495		vcpu->arch.spmc[i] = set_reg_val(id, *val);
2496		break;
2497	case KVM_REG_PPC_SIAR:
2498		kvmppc_set_siar_hv(vcpu, set_reg_val(id, *val));
2499		break;
2500	case KVM_REG_PPC_SDAR:
2501		kvmppc_set_sdar_hv(vcpu, set_reg_val(id, *val));
2502		break;
2503	case KVM_REG_PPC_SIER:
2504		kvmppc_set_sier_hv(vcpu, 0, set_reg_val(id, *val));
2505		break;
2506	case KVM_REG_PPC_SIER2:
2507		kvmppc_set_sier_hv(vcpu, 1, set_reg_val(id, *val));
2508		break;
2509	case KVM_REG_PPC_SIER3:
2510		kvmppc_set_sier_hv(vcpu, 2, set_reg_val(id, *val));
2511		break;
2512	case KVM_REG_PPC_IAMR:
2513		kvmppc_set_iamr_hv(vcpu, set_reg_val(id, *val));
2514		break;
2515	case KVM_REG_PPC_PSPB:
2516		kvmppc_set_pspb_hv(vcpu, set_reg_val(id, *val));
2517		break;
2518	case KVM_REG_PPC_DPDES:
2519		if (cpu_has_feature(CPU_FTR_ARCH_300))
2520			vcpu->arch.doorbell_request = set_reg_val(id, *val) & 1;
2521		else
2522			vcpu->arch.vcore->dpdes = set_reg_val(id, *val);
2523		break;
2524	case KVM_REG_PPC_VTB:
2525		vcpu->arch.vcore->vtb = set_reg_val(id, *val);
2526		break;
2527	case KVM_REG_PPC_DAWR:
2528		kvmppc_set_dawr0_hv(vcpu, set_reg_val(id, *val));
2529		break;
2530	case KVM_REG_PPC_DAWRX:
2531		kvmppc_set_dawrx0_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2532		break;
2533	case KVM_REG_PPC_DAWR1:
2534		kvmppc_set_dawr1_hv(vcpu, set_reg_val(id, *val));
2535		break;
2536	case KVM_REG_PPC_DAWRX1:
2537		kvmppc_set_dawrx1_hv(vcpu, set_reg_val(id, *val) & ~DAWRX_HYP);
2538		break;
2539	case KVM_REG_PPC_CIABR:
2540		kvmppc_set_ciabr_hv(vcpu, set_reg_val(id, *val));
2541		/* Don't allow setting breakpoints in hypervisor code */
2542		if ((kvmppc_get_ciabr_hv(vcpu) & CIABR_PRIV) == CIABR_PRIV_HYPER)
2543			kvmppc_set_ciabr_hv(vcpu, kvmppc_get_ciabr_hv(vcpu) & ~CIABR_PRIV);
2544		break;
2545	case KVM_REG_PPC_CSIGR:
2546		vcpu->arch.csigr = set_reg_val(id, *val);
2547		break;
2548	case KVM_REG_PPC_TACR:
2549		vcpu->arch.tacr = set_reg_val(id, *val);
2550		break;
2551	case KVM_REG_PPC_TCSCR:
2552		vcpu->arch.tcscr = set_reg_val(id, *val);
2553		break;
2554	case KVM_REG_PPC_PID:
2555		vcpu->arch.pid = set_reg_val(id, *val);
2556		break;
2557	case KVM_REG_PPC_ACOP:
2558		vcpu->arch.acop = set_reg_val(id, *val);
2559		break;
2560	case KVM_REG_PPC_WORT:
2561		kvmppc_set_wort_hv(vcpu, set_reg_val(id, *val));
2562		break;
2563	case KVM_REG_PPC_TIDR:
2564		vcpu->arch.tid = set_reg_val(id, *val);
2565		break;
2566	case KVM_REG_PPC_PSSCR:
2567		vcpu->arch.psscr = set_reg_val(id, *val) & PSSCR_GUEST_VIS;
2568		break;
2569	case KVM_REG_PPC_VPA_ADDR:
2570		addr = set_reg_val(id, *val);
2571		r = -EINVAL;
2572		if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
2573			      vcpu->arch.dtl.next_gpa))
2574			break;
2575		r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
2576		break;
2577	case KVM_REG_PPC_VPA_SLB:
2578		addr = val->vpaval.addr;
2579		len = val->vpaval.length;
2580		r = -EINVAL;
2581		if (addr && !vcpu->arch.vpa.next_gpa)
2582			break;
2583		r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
2584		break;
2585	case KVM_REG_PPC_VPA_DTL:
2586		addr = val->vpaval.addr;
2587		len = val->vpaval.length;
2588		r = -EINVAL;
2589		if (addr && (len < sizeof(struct dtl_entry) ||
2590			     !vcpu->arch.vpa.next_gpa))
2591			break;
2592		len -= len % sizeof(struct dtl_entry);
2593		r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
2594		break;
2595	case KVM_REG_PPC_TB_OFFSET:
2596	{
2597		/* round up to multiple of 2^24 */
2598		u64 tb_offset = ALIGN(set_reg_val(id, *val), 1UL << 24);
2599
2600		/*
2601		 * Now that we know the timebase offset, update the
2602		 * decrementer expiry with a guest timebase value. If
2603		 * the userspace does not set DEC_EXPIRY, this ensures
2604		 * a migrated vcpu at least starts with an expired
2605		 * decrementer, which is better than a large one that
2606		 * causes a hang.
2607		 */
2608		if (!vcpu->arch.dec_expires && tb_offset)
2609			vcpu->arch.dec_expires = get_tb() + tb_offset;
2610
2611		vcpu->arch.vcore->tb_offset = tb_offset;
2612		break;
2613	}
2614	case KVM_REG_PPC_LPCR:
2615		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), true);
2616		break;
2617	case KVM_REG_PPC_LPCR_64:
2618		kvmppc_set_lpcr(vcpu, set_reg_val(id, *val), false);
2619		break;
2620	case KVM_REG_PPC_PPR:
2621		kvmppc_set_ppr_hv(vcpu, set_reg_val(id, *val));
2622		break;
2623#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2624	case KVM_REG_PPC_TFHAR:
2625		vcpu->arch.tfhar = set_reg_val(id, *val);
2626		break;
2627	case KVM_REG_PPC_TFIAR:
2628		vcpu->arch.tfiar = set_reg_val(id, *val);
2629		break;
2630	case KVM_REG_PPC_TEXASR:
2631		vcpu->arch.texasr = set_reg_val(id, *val);
2632		break;
2633	case KVM_REG_PPC_TM_GPR0 ... KVM_REG_PPC_TM_GPR31:
2634		i = id - KVM_REG_PPC_TM_GPR0;
2635		vcpu->arch.gpr_tm[i] = set_reg_val(id, *val);
2636		break;
2637	case KVM_REG_PPC_TM_VSR0 ... KVM_REG_PPC_TM_VSR63:
2638	{
2639		int j;
2640		i = id - KVM_REG_PPC_TM_VSR0;
2641		if (i < 32)
2642			for (j = 0; j < TS_FPRWIDTH; j++)
2643				vcpu->arch.fp_tm.fpr[i][j] = val->vsxval[j];
2644		else
2645			if (cpu_has_feature(CPU_FTR_ALTIVEC))
2646				vcpu->arch.vr_tm.vr[i-32] = val->vval;
2647			else
2648				r = -ENXIO;
2649		break;
2650	}
2651	case KVM_REG_PPC_TM_CR:
2652		vcpu->arch.cr_tm = set_reg_val(id, *val);
2653		break;
2654	case KVM_REG_PPC_TM_XER:
2655		vcpu->arch.xer_tm = set_reg_val(id, *val);
2656		break;
2657	case KVM_REG_PPC_TM_LR:
2658		vcpu->arch.lr_tm = set_reg_val(id, *val);
2659		break;
2660	case KVM_REG_PPC_TM_CTR:
2661		vcpu->arch.ctr_tm = set_reg_val(id, *val);
2662		break;
2663	case KVM_REG_PPC_TM_FPSCR:
2664		vcpu->arch.fp_tm.fpscr = set_reg_val(id, *val);
2665		break;
2666	case KVM_REG_PPC_TM_AMR:
2667		vcpu->arch.amr_tm = set_reg_val(id, *val);
2668		break;
2669	case KVM_REG_PPC_TM_PPR:
2670		vcpu->arch.ppr_tm = set_reg_val(id, *val);
2671		break;
2672	case KVM_REG_PPC_TM_VRSAVE:
2673		vcpu->arch.vrsave_tm = set_reg_val(id, *val);
2674		break;
2675	case KVM_REG_PPC_TM_VSCR:
2676		if (cpu_has_feature(CPU_FTR_ALTIVEC))
2677			vcpu->arch.vr.vscr.u[3] = set_reg_val(id, *val);
2678		else
2679			r = - ENXIO;
2680		break;
2681	case KVM_REG_PPC_TM_DSCR:
2682		vcpu->arch.dscr_tm = set_reg_val(id, *val);
2683		break;
2684	case KVM_REG_PPC_TM_TAR:
2685		vcpu->arch.tar_tm = set_reg_val(id, *val);
2686		break;
2687#endif
2688	case KVM_REG_PPC_ARCH_COMPAT:
2689		r = kvmppc_set_arch_compat(vcpu, set_reg_val(id, *val));
2690		break;
2691	case KVM_REG_PPC_DEC_EXPIRY:
2692		vcpu->arch.dec_expires = set_reg_val(id, *val);
2693		break;
2694	case KVM_REG_PPC_ONLINE:
2695		i = set_reg_val(id, *val);
2696		if (i && !vcpu->arch.online)
2697			atomic_inc(&vcpu->arch.vcore->online_count);
2698		else if (!i && vcpu->arch.online)
2699			atomic_dec(&vcpu->arch.vcore->online_count);
2700		vcpu->arch.online = i;
2701		break;
2702	case KVM_REG_PPC_PTCR:
2703		vcpu->kvm->arch.l1_ptcr = set_reg_val(id, *val);
2704		break;
2705	case KVM_REG_PPC_FSCR:
2706		kvmppc_set_fscr_hv(vcpu, set_reg_val(id, *val));
2707		break;
2708	default:
2709		r = -EINVAL;
2710		break;
2711	}
2712
2713	return r;
2714}
2715
2716/*
2717 * On POWER9, threads are independent and can be in different partitions.
2718 * Therefore we consider each thread to be a subcore.
2719 * There is a restriction that all threads have to be in the same
2720 * MMU mode (radix or HPT), unfortunately, but since we only support
2721 * HPT guests on a HPT host so far, that isn't an impediment yet.
2722 */
2723static int threads_per_vcore(struct kvm *kvm)
2724{
2725	if (cpu_has_feature(CPU_FTR_ARCH_300))
2726		return 1;
2727	return threads_per_subcore;
2728}
2729
2730static struct kvmppc_vcore *kvmppc_vcore_create(struct kvm *kvm, int id)
2731{
2732	struct kvmppc_vcore *vcore;
2733
2734	vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
2735
2736	if (vcore == NULL)
2737		return NULL;
2738
2739	spin_lock_init(&vcore->lock);
2740	spin_lock_init(&vcore->stoltb_lock);
2741	rcuwait_init(&vcore->wait);
2742	vcore->preempt_tb = TB_NIL;
2743	vcore->lpcr = kvm->arch.lpcr;
2744	vcore->first_vcpuid = id;
2745	vcore->kvm = kvm;
2746	INIT_LIST_HEAD(&vcore->preempt_list);
2747
2748	return vcore;
2749}
2750
2751#ifdef CONFIG_KVM_BOOK3S_HV_EXIT_TIMING
2752static struct debugfs_timings_element {
2753	const char *name;
2754	size_t offset;
2755} timings[] = {
2756#ifdef CONFIG_KVM_BOOK3S_HV_P9_TIMING
2757	{"vcpu_entry",	offsetof(struct kvm_vcpu, arch.vcpu_entry)},
2758	{"guest_entry",	offsetof(struct kvm_vcpu, arch.guest_entry)},
2759	{"in_guest",	offsetof(struct kvm_vcpu, arch.in_guest)},
2760	{"guest_exit",	offsetof(struct kvm_vcpu, arch.guest_exit)},
2761	{"vcpu_exit",	offsetof(struct kvm_vcpu, arch.vcpu_exit)},
2762	{"hypercall",	offsetof(struct kvm_vcpu, arch.hcall)},
2763	{"page_fault",	offsetof(struct kvm_vcpu, arch.pg_fault)},
2764#else
2765	{"rm_entry",	offsetof(struct kvm_vcpu, arch.rm_entry)},
2766	{"rm_intr",	offsetof(struct kvm_vcpu, arch.rm_intr)},
2767	{"rm_exit",	offsetof(struct kvm_vcpu, arch.rm_exit)},
2768	{"guest",	offsetof(struct kvm_vcpu, arch.guest_time)},
2769	{"cede",	offsetof(struct kvm_vcpu, arch.cede_time)},
2770#endif
2771};
2772
2773#define N_TIMINGS	(ARRAY_SIZE(timings))
2774
2775struct debugfs_timings_state {
2776	struct kvm_vcpu	*vcpu;
2777	unsigned int	buflen;
2778	char		buf[N_TIMINGS * 100];
2779};
2780
2781static int debugfs_timings_open(struct inode *inode, struct file *file)
2782{
2783	struct kvm_vcpu *vcpu = inode->i_private;
2784	struct debugfs_timings_state *p;
2785
2786	p = kzalloc(sizeof(*p), GFP_KERNEL);
2787	if (!p)
2788		return -ENOMEM;
2789
2790	kvm_get_kvm(vcpu->kvm);
2791	p->vcpu = vcpu;
2792	file->private_data = p;
2793
2794	return nonseekable_open(inode, file);
2795}
2796
2797static int debugfs_timings_release(struct inode *inode, struct file *file)
2798{
2799	struct debugfs_timings_state *p = file->private_data;
2800
2801	kvm_put_kvm(p->vcpu->kvm);
2802	kfree(p);
2803	return 0;
2804}
2805
2806static ssize_t debugfs_timings_read(struct file *file, char __user *buf,
2807				    size_t len, loff_t *ppos)
2808{
2809	struct debugfs_timings_state *p = file->private_data;
2810	struct kvm_vcpu *vcpu = p->vcpu;
2811	char *s, *buf_end;
2812	struct kvmhv_tb_accumulator tb;
2813	u64 count;
2814	loff_t pos;
2815	ssize_t n;
2816	int i, loops;
2817	bool ok;
2818
2819	if (!p->buflen) {
2820		s = p->buf;
2821		buf_end = s + sizeof(p->buf);
2822		for (i = 0; i < N_TIMINGS; ++i) {
2823			struct kvmhv_tb_accumulator *acc;
2824
2825			acc = (struct kvmhv_tb_accumulator *)
2826				((unsigned long)vcpu + timings[i].offset);
2827			ok = false;
2828			for (loops = 0; loops < 1000; ++loops) {
2829				count = acc->seqcount;
2830				if (!(count & 1)) {
2831					smp_rmb();
2832					tb = *acc;
2833					smp_rmb();
2834					if (count == acc->seqcount) {
2835						ok = true;
2836						break;
2837					}
2838				}
2839				udelay(1);
2840			}
2841			if (!ok)
2842				snprintf(s, buf_end - s, "%s: stuck\n",
2843					timings[i].name);
2844			else
2845				snprintf(s, buf_end - s,
2846					"%s: %llu %llu %llu %llu\n",
2847					timings[i].name, count / 2,
2848					tb_to_ns(tb.tb_total),
2849					tb_to_ns(tb.tb_min),
2850					tb_to_ns(tb.tb_max));
2851			s += strlen(s);
2852		}
2853		p->buflen = s - p->buf;
2854	}
2855
2856	pos = *ppos;
2857	if (pos >= p->buflen)
2858		return 0;
2859	if (len > p->buflen - pos)
2860		len = p->buflen - pos;
2861	n = copy_to_user(buf, p->buf + pos, len);
2862	if (n) {
2863		if (n == len)
2864			return -EFAULT;
2865		len -= n;
2866	}
2867	*ppos = pos + len;
2868	return len;
2869}
2870
2871static ssize_t debugfs_timings_write(struct file *file, const char __user *buf,
2872				     size_t len, loff_t *ppos)
2873{
2874	return -EACCES;
2875}
2876
2877static const struct file_operations debugfs_timings_ops = {
2878	.owner	 = THIS_MODULE,
2879	.open	 = debugfs_timings_open,
2880	.release = debugfs_timings_release,
2881	.read	 = debugfs_timings_read,
2882	.write	 = debugfs_timings_write,
2883	.llseek	 = generic_file_llseek,
2884};
2885
2886/* Create a debugfs directory for the vcpu */
2887static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2888{
2889	if (cpu_has_feature(CPU_FTR_ARCH_300) == IS_ENABLED(CONFIG_KVM_BOOK3S_HV_P9_TIMING))
2890		debugfs_create_file("timings", 0444, debugfs_dentry, vcpu,
2891				    &debugfs_timings_ops);
2892	return 0;
2893}
2894
2895#else /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2896static int kvmppc_arch_create_vcpu_debugfs_hv(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry)
2897{
2898	return 0;
2899}
2900#endif /* CONFIG_KVM_BOOK3S_HV_EXIT_TIMING */
2901
2902static int kvmppc_core_vcpu_create_hv(struct kvm_vcpu *vcpu)
2903{
2904	int err;
2905	int core;
2906	struct kvmppc_vcore *vcore;
2907	struct kvm *kvm;
2908	unsigned int id;
2909
2910	kvm = vcpu->kvm;
2911	id = vcpu->vcpu_id;
2912
2913	vcpu->arch.shared = &vcpu->arch.shregs;
2914#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
2915	/*
2916	 * The shared struct is never shared on HV,
2917	 * so we can always use host endianness
2918	 */
2919#ifdef __BIG_ENDIAN__
2920	vcpu->arch.shared_big_endian = true;
2921#else
2922	vcpu->arch.shared_big_endian = false;
2923#endif
2924#endif
2925	kvmppc_set_mmcr_hv(vcpu, 0, MMCR0_FC);
2926
2927	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
2928		kvmppc_set_mmcr_hv(vcpu, 0, kvmppc_get_mmcr_hv(vcpu, 0) | MMCR0_PMCCEXT);
2929		kvmppc_set_mmcra_hv(vcpu, MMCRA_BHRB_DISABLE);
2930	}
2931
2932	kvmppc_set_ctrl_hv(vcpu, CTRL_RUNLATCH);
2933	/* default to host PVR, since we can't spoof it */
2934	kvmppc_set_pvr_hv(vcpu, mfspr(SPRN_PVR));
2935	spin_lock_init(&vcpu->arch.vpa_update_lock);
2936	spin_lock_init(&vcpu->arch.tbacct_lock);
2937	vcpu->arch.busy_preempt = TB_NIL;
2938	__kvmppc_set_msr_hv(vcpu, MSR_ME);
2939	vcpu->arch.intr_msr = MSR_SF | MSR_ME;
2940
2941	/*
2942	 * Set the default HFSCR for the guest from the host value.
2943	 * This value is only used on POWER9 and later.
2944	 * On >= POWER9, we want to virtualize the doorbell facility, so we
2945	 * don't set the HFSCR_MSGP bit, and that causes those instructions
2946	 * to trap and then we emulate them.
2947	 */
2948	kvmppc_set_hfscr_hv(vcpu, HFSCR_TAR | HFSCR_EBB | HFSCR_PM | HFSCR_BHRB |
2949			    HFSCR_DSCR | HFSCR_VECVSX | HFSCR_FP);
2950
2951	/* On POWER10 and later, allow prefixed instructions */
2952	if (cpu_has_feature(CPU_FTR_ARCH_31))
2953		kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_PREFIX);
2954
2955	if (cpu_has_feature(CPU_FTR_HVMODE)) {
2956		kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & mfspr(SPRN_HFSCR));
2957
2958#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
2959		if (cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST))
2960			kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) | HFSCR_TM);
2961#endif
2962	}
2963	if (cpu_has_feature(CPU_FTR_TM_COMP))
2964		vcpu->arch.hfscr |= HFSCR_TM;
2965
2966	vcpu->arch.hfscr_permitted = kvmppc_get_hfscr_hv(vcpu);
2967
2968	/*
2969	 * PM, EBB, TM are demand-faulted so start with it clear.
2970	 */
2971	kvmppc_set_hfscr_hv(vcpu, kvmppc_get_hfscr_hv(vcpu) & ~(HFSCR_PM | HFSCR_EBB | HFSCR_TM));
2972
2973	kvmppc_mmu_book3s_hv_init(vcpu);
2974
2975	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
2976
2977	init_waitqueue_head(&vcpu->arch.cpu_run);
2978
2979	mutex_lock(&kvm->lock);
2980	vcore = NULL;
2981	err = -EINVAL;
2982	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
2983		if (id >= (KVM_MAX_VCPUS * kvm->arch.emul_smt_mode)) {
2984			pr_devel("KVM: VCPU ID too high\n");
2985			core = KVM_MAX_VCORES;
2986		} else {
2987			BUG_ON(kvm->arch.smt_mode != 1);
2988			core = kvmppc_pack_vcpu_id(kvm, id);
2989		}
2990	} else {
2991		core = id / kvm->arch.smt_mode;
2992	}
2993	if (core < KVM_MAX_VCORES) {
2994		vcore = kvm->arch.vcores[core];
2995		if (vcore && cpu_has_feature(CPU_FTR_ARCH_300)) {
2996			pr_devel("KVM: collision on id %u", id);
2997			vcore = NULL;
2998		} else if (!vcore) {
2999			/*
3000			 * Take mmu_setup_lock for mutual exclusion
3001			 * with kvmppc_update_lpcr().
3002			 */
3003			err = -ENOMEM;
3004			vcore = kvmppc_vcore_create(kvm,
3005					id & ~(kvm->arch.smt_mode - 1));
3006			mutex_lock(&kvm->arch.mmu_setup_lock);
3007			kvm->arch.vcores[core] = vcore;
3008			kvm->arch.online_vcores++;
3009			mutex_unlock(&kvm->arch.mmu_setup_lock);
3010		}
3011	}
3012	mutex_unlock(&kvm->lock);
3013
3014	if (!vcore)
3015		return err;
3016
3017	spin_lock(&vcore->lock);
3018	++vcore->num_threads;
3019	spin_unlock(&vcore->lock);
3020	vcpu->arch.vcore = vcore;
3021	vcpu->arch.ptid = vcpu->vcpu_id - vcore->first_vcpuid;
3022	vcpu->arch.thread_cpu = -1;
3023	vcpu->arch.prev_cpu = -1;
3024
3025	vcpu->arch.cpu_type = KVM_CPU_3S_64;
3026	kvmppc_sanity_check(vcpu);
3027
3028	return 0;
3029}
3030
3031static int kvmhv_set_smt_mode(struct kvm *kvm, unsigned long smt_mode,
3032			      unsigned long flags)
3033{
3034	int err;
3035	int esmt = 0;
3036
3037	if (flags)
3038		return -EINVAL;
3039	if (smt_mode > MAX_SMT_THREADS || !is_power_of_2(smt_mode))
3040		return -EINVAL;
3041	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
3042		/*
3043		 * On POWER8 (or POWER7), the threading mode is "strict",
3044		 * so we pack smt_mode vcpus per vcore.
3045		 */
3046		if (smt_mode > threads_per_subcore)
3047			return -EINVAL;
3048	} else {
3049		/*
3050		 * On POWER9, the threading mode is "loose",
3051		 * so each vcpu gets its own vcore.
3052		 */
3053		esmt = smt_mode;
3054		smt_mode = 1;
3055	}
3056	mutex_lock(&kvm->lock);
3057	err = -EBUSY;
3058	if (!kvm->arch.online_vcores) {
3059		kvm->arch.smt_mode = smt_mode;
3060		kvm->arch.emul_smt_mode = esmt;
3061		err = 0;
3062	}
3063	mutex_unlock(&kvm->lock);
3064
3065	return err;
3066}
3067
3068static void unpin_vpa(struct kvm *kvm, struct kvmppc_vpa *vpa)
3069{
3070	if (vpa->pinned_addr)
3071		kvmppc_unpin_guest_page(kvm, vpa->pinned_addr, vpa->gpa,
3072					vpa->dirty);
3073}
3074
3075static void kvmppc_core_vcpu_free_hv(struct kvm_vcpu *vcpu)
3076{
3077	spin_lock(&vcpu->arch.vpa_update_lock);
3078	unpin_vpa(vcpu->kvm, &vcpu->arch.dtl);
3079	unpin_vpa(vcpu->kvm, &vcpu->arch.slb_shadow);
3080	unpin_vpa(vcpu->kvm, &vcpu->arch.vpa);
3081	spin_unlock(&vcpu->arch.vpa_update_lock);
3082}
3083
3084static int kvmppc_core_check_requests_hv(struct kvm_vcpu *vcpu)
3085{
3086	/* Indicate we want to get back into the guest */
3087	return 1;
3088}
3089
3090static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
3091{
3092	unsigned long dec_nsec, now;
3093
3094	now = get_tb();
3095	if (now > kvmppc_dec_expires_host_tb(vcpu)) {
3096		/* decrementer has already gone negative */
3097		kvmppc_core_queue_dec(vcpu);
3098		kvmppc_core_prepare_to_enter(vcpu);
3099		return;
3100	}
3101	dec_nsec = tb_to_ns(kvmppc_dec_expires_host_tb(vcpu) - now);
3102	hrtimer_start(&vcpu->arch.dec_timer, dec_nsec, HRTIMER_MODE_REL);
3103	vcpu->arch.timer_running = 1;
3104}
3105
3106extern int __kvmppc_vcore_entry(void);
3107
3108static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
3109				   struct kvm_vcpu *vcpu, u64 tb)
3110{
3111	u64 now;
3112
3113	if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
3114		return;
3115	spin_lock_irq(&vcpu->arch.tbacct_lock);
3116	now = tb;
3117	vcpu->arch.busy_stolen += vcore_stolen_time(vc, now) -
3118		vcpu->arch.stolen_logged;
3119	vcpu->arch.busy_preempt = now;
3120	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
3121	spin_unlock_irq(&vcpu->arch.tbacct_lock);
3122	--vc->n_runnable;
3123	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], NULL);
3124}
3125
3126static int kvmppc_grab_hwthread(int cpu)
3127{
3128	struct paca_struct *tpaca;
3129	long timeout = 10000;
3130
3131	tpaca = paca_ptrs[cpu];
3132
3133	/* Ensure the thread won't go into the kernel if it wakes */
3134	tpaca->kvm_hstate.kvm_vcpu = NULL;
3135	tpaca->kvm_hstate.kvm_vcore = NULL;
3136	tpaca->kvm_hstate.napping = 0;
3137	smp_wmb();
3138	tpaca->kvm_hstate.hwthread_req = 1;
3139
3140	/*
3141	 * If the thread is already executing in the kernel (e.g. handling
3142	 * a stray interrupt), wait for it to get back to nap mode.
3143	 * The smp_mb() is to ensure that our setting of hwthread_req
3144	 * is visible before we look at hwthread_state, so if this
3145	 * races with the code at system_reset_pSeries and the thread
3146	 * misses our setting of hwthread_req, we are sure to see its
3147	 * setting of hwthread_state, and vice versa.
3148	 */
3149	smp_mb();
3150	while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
3151		if (--timeout <= 0) {
3152			pr_err("KVM: couldn't grab cpu %d\n", cpu);
3153			return -EBUSY;
3154		}
3155		udelay(1);
3156	}
3157	return 0;
3158}
3159
3160static void kvmppc_release_hwthread(int cpu)
3161{
3162	struct paca_struct *tpaca;
3163
3164	tpaca = paca_ptrs[cpu];
3165	tpaca->kvm_hstate.hwthread_req = 0;
3166	tpaca->kvm_hstate.kvm_vcpu = NULL;
3167	tpaca->kvm_hstate.kvm_vcore = NULL;
3168	tpaca->kvm_hstate.kvm_split_mode = NULL;
3169}
3170
3171static DEFINE_PER_CPU(struct kvm *, cpu_in_guest);
3172
3173static void radix_flush_cpu(struct kvm *kvm, int cpu, struct kvm_vcpu *vcpu)
3174{
3175	struct kvm_nested_guest *nested = vcpu->arch.nested;
3176	cpumask_t *need_tlb_flush;
3177	int i;
3178
3179	if (nested)
3180		need_tlb_flush = &nested->need_tlb_flush;
3181	else
3182		need_tlb_flush = &kvm->arch.need_tlb_flush;
3183
3184	cpu = cpu_first_tlb_thread_sibling(cpu);
3185	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3186					i += cpu_tlb_thread_sibling_step())
3187		cpumask_set_cpu(i, need_tlb_flush);
3188
3189	/*
3190	 * Make sure setting of bit in need_tlb_flush precedes testing of
3191	 * cpu_in_guest. The matching barrier on the other side is hwsync
3192	 * when switching to guest MMU mode, which happens between
3193	 * cpu_in_guest being set to the guest kvm, and need_tlb_flush bit
3194	 * being tested.
3195	 */
3196	smp_mb();
3197
3198	for (i = cpu; i <= cpu_last_tlb_thread_sibling(cpu);
3199					i += cpu_tlb_thread_sibling_step()) {
3200		struct kvm *running = *per_cpu_ptr(&cpu_in_guest, i);
3201
3202		if (running == kvm)
3203			smp_call_function_single(i, do_nothing, NULL, 1);
3204	}
3205}
3206
3207static void do_migrate_away_vcpu(void *arg)
3208{
3209	struct kvm_vcpu *vcpu = arg;
3210	struct kvm *kvm = vcpu->kvm;
3211
3212	/*
3213	 * If the guest has GTSE, it may execute tlbie, so do a eieio; tlbsync;
3214	 * ptesync sequence on the old CPU before migrating to a new one, in
3215	 * case we interrupted the guest between a tlbie ; eieio ;
3216	 * tlbsync; ptesync sequence.
3217	 *
3218	 * Otherwise, ptesync is sufficient for ordering tlbiel sequences.
3219	 */
3220	if (kvm->arch.lpcr & LPCR_GTSE)
3221		asm volatile("eieio; tlbsync; ptesync");
3222	else
3223		asm volatile("ptesync");
3224}
3225
3226static void kvmppc_prepare_radix_vcpu(struct kvm_vcpu *vcpu, int pcpu)
3227{
3228	struct kvm_nested_guest *nested = vcpu->arch.nested;
3229	struct kvm *kvm = vcpu->kvm;
3230	int prev_cpu;
3231
3232	if (!cpu_has_feature(CPU_FTR_HVMODE))
3233		return;
3234
3235	if (nested)
3236		prev_cpu = nested->prev_cpu[vcpu->arch.nested_vcpu_id];
3237	else
3238		prev_cpu = vcpu->arch.prev_cpu;
3239
3240	/*
3241	 * With radix, the guest can do TLB invalidations itself,
3242	 * and it could choose to use the local form (tlbiel) if
3243	 * it is invalidating a translation that has only ever been
3244	 * used on one vcpu.  However, that doesn't mean it has
3245	 * only ever been used on one physical cpu, since vcpus
3246	 * can move around between pcpus.  To cope with this, when
3247	 * a vcpu moves from one pcpu to another, we need to tell
3248	 * any vcpus running on the same core as this vcpu previously
3249	 * ran to flush the TLB.
3250	 */
3251	if (prev_cpu != pcpu) {
3252		if (prev_cpu >= 0) {
3253			if (cpu_first_tlb_thread_sibling(prev_cpu) !=
3254			    cpu_first_tlb_thread_sibling(pcpu))
3255				radix_flush_cpu(kvm, prev_cpu, vcpu);
3256
3257			smp_call_function_single(prev_cpu,
3258					do_migrate_away_vcpu, vcpu, 1);
3259		}
3260		if (nested)
3261			nested->prev_cpu[vcpu->arch.nested_vcpu_id] = pcpu;
3262		else
3263			vcpu->arch.prev_cpu = pcpu;
3264	}
3265}
3266
3267static void kvmppc_start_thread(struct kvm_vcpu *vcpu, struct kvmppc_vcore *vc)
3268{
3269	int cpu;
3270	struct paca_struct *tpaca;
3271
3272	cpu = vc->pcpu;
3273	if (vcpu) {
3274		if (vcpu->arch.timer_running) {
3275			hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
3276			vcpu->arch.timer_running = 0;
3277		}
3278		cpu += vcpu->arch.ptid;
3279		vcpu->cpu = vc->pcpu;
3280		vcpu->arch.thread_cpu = cpu;
3281	}
3282	tpaca = paca_ptrs[cpu];
3283	tpaca->kvm_hstate.kvm_vcpu = vcpu;
3284	tpaca->kvm_hstate.ptid = cpu - vc->pcpu;
3285	tpaca->kvm_hstate.fake_suspend = 0;
3286	/* Order stores to hstate.kvm_vcpu etc. before store to kvm_vcore */
3287	smp_wmb();
3288	tpaca->kvm_hstate.kvm_vcore = vc;
3289	if (cpu != smp_processor_id())
3290		kvmppc_ipi_thread(cpu);
3291}
3292
3293static void kvmppc_wait_for_nap(int n_threads)
3294{
3295	int cpu = smp_processor_id();
3296	int i, loops;
3297
3298	if (n_threads <= 1)
3299		return;
3300	for (loops = 0; loops < 1000000; ++loops) {
3301		/*
3302		 * Check if all threads are finished.
3303		 * We set the vcore pointer when starting a thread
3304		 * and the thread clears it when finished, so we look
3305		 * for any threads that still have a non-NULL vcore ptr.
3306		 */
3307		for (i = 1; i < n_threads; ++i)
3308			if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3309				break;
3310		if (i == n_threads) {
3311			HMT_medium();
3312			return;
3313		}
3314		HMT_low();
3315	}
3316	HMT_medium();
3317	for (i = 1; i < n_threads; ++i)
3318		if (paca_ptrs[cpu + i]->kvm_hstate.kvm_vcore)
3319			pr_err("KVM: CPU %d seems to be stuck\n", cpu + i);
3320}
3321
3322/*
3323 * Check that we are on thread 0 and that any other threads in
3324 * this core are off-line.  Then grab the threads so they can't
3325 * enter the kernel.
3326 */
3327static int on_primary_thread(void)
3328{
3329	int cpu = smp_processor_id();
3330	int thr;
3331
3332	/* Are we on a primary subcore? */
3333	if (cpu_thread_in_subcore(cpu))
3334		return 0;
3335
3336	thr = 0;
3337	while (++thr < threads_per_subcore)
3338		if (cpu_online(cpu + thr))
3339			return 0;
3340
3341	/* Grab all hw threads so they can't go into the kernel */
3342	for (thr = 1; thr < threads_per_subcore; ++thr) {
3343		if (kvmppc_grab_hwthread(cpu + thr)) {
3344			/* Couldn't grab one; let the others go */
3345			do {
3346				kvmppc_release_hwthread(cpu + thr);
3347			} while (--thr > 0);
3348			return 0;
3349		}
3350	}
3351	return 1;
3352}
3353
3354/*
3355 * A list of virtual cores for each physical CPU.
3356 * These are vcores that could run but their runner VCPU tasks are
3357 * (or may be) preempted.
3358 */
3359struct preempted_vcore_list {
3360	struct list_head	list;
3361	spinlock_t		lock;
3362};
3363
3364static DEFINE_PER_CPU(struct preempted_vcore_list, preempted_vcores);
3365
3366static void init_vcore_lists(void)
3367{
3368	int cpu;
3369
3370	for_each_possible_cpu(cpu) {
3371		struct preempted_vcore_list *lp = &per_cpu(preempted_vcores, cpu);
3372		spin_lock_init(&lp->lock);
3373		INIT_LIST_HEAD(&lp->list);
3374	}
3375}
3376
3377static void kvmppc_vcore_preempt(struct kvmppc_vcore *vc)
3378{
3379	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3380
3381	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3382
3383	vc->vcore_state = VCORE_PREEMPT;
3384	vc->pcpu = smp_processor_id();
3385	if (vc->num_threads < threads_per_vcore(vc->kvm)) {
3386		spin_lock(&lp->lock);
3387		list_add_tail(&vc->preempt_list, &lp->list);
3388		spin_unlock(&lp->lock);
3389	}
3390
3391	/* Start accumulating stolen time */
3392	kvmppc_core_start_stolen(vc, mftb());
3393}
3394
3395static void kvmppc_vcore_end_preempt(struct kvmppc_vcore *vc)
3396{
3397	struct preempted_vcore_list *lp;
3398
3399	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
3400
3401	kvmppc_core_end_stolen(vc, mftb());
3402	if (!list_empty(&vc->preempt_list)) {
3403		lp = &per_cpu(preempted_vcores, vc->pcpu);
3404		spin_lock(&lp->lock);
3405		list_del_init(&vc->preempt_list);
3406		spin_unlock(&lp->lock);
3407	}
3408	vc->vcore_state = VCORE_INACTIVE;
3409}
3410
3411/*
3412 * This stores information about the virtual cores currently
3413 * assigned to a physical core.
3414 */
3415struct core_info {
3416	int		n_subcores;
3417	int		max_subcore_threads;
3418	int		total_threads;
3419	int		subcore_threads[MAX_SUBCORES];
3420	struct kvmppc_vcore *vc[MAX_SUBCORES];
3421};
3422
3423/*
3424 * This mapping means subcores 0 and 1 can use threads 0-3 and 4-7
3425 * respectively in 2-way micro-threading (split-core) mode on POWER8.
3426 */
3427static int subcore_thread_map[MAX_SUBCORES] = { 0, 4, 2, 6 };
3428
3429static void init_core_info(struct core_info *cip, struct kvmppc_vcore *vc)
3430{
3431	memset(cip, 0, sizeof(*cip));
3432	cip->n_subcores = 1;
3433	cip->max_subcore_threads = vc->num_threads;
3434	cip->total_threads = vc->num_threads;
3435	cip->subcore_threads[0] = vc->num_threads;
3436	cip->vc[0] = vc;
3437}
3438
3439static bool subcore_config_ok(int n_subcores, int n_threads)
3440{
3441	/*
3442	 * POWER9 "SMT4" cores are permanently in what is effectively a 4-way
3443	 * split-core mode, with one thread per subcore.
3444	 */
3445	if (cpu_has_feature(CPU_FTR_ARCH_300))
3446		return n_subcores <= 4 && n_threads == 1;
3447
3448	/* On POWER8, can only dynamically split if unsplit to begin with */
3449	if (n_subcores > 1 && threads_per_subcore < MAX_SMT_THREADS)
3450		return false;
3451	if (n_subcores > MAX_SUBCORES)
3452		return false;
3453	if (n_subcores > 1) {
3454		if (!(dynamic_mt_modes & 2))
3455			n_subcores = 4;
3456		if (n_subcores > 2 && !(dynamic_mt_modes & 4))
3457			return false;
3458	}
3459
3460	return n_subcores * roundup_pow_of_two(n_threads) <= MAX_SMT_THREADS;
3461}
3462
3463static void init_vcore_to_run(struct kvmppc_vcore *vc)
3464{
3465	vc->entry_exit_map = 0;
3466	vc->in_guest = 0;
3467	vc->napping_threads = 0;
3468	vc->conferring_threads = 0;
3469	vc->tb_offset_applied = 0;
3470}
3471
3472static bool can_dynamic_split(struct kvmppc_vcore *vc, struct core_info *cip)
3473{
3474	int n_threads = vc->num_threads;
3475	int sub;
3476
3477	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
3478		return false;
3479
3480	/* In one_vm_per_core mode, require all vcores to be from the same vm */
3481	if (one_vm_per_core && vc->kvm != cip->vc[0]->kvm)
3482		return false;
3483
3484	if (n_threads < cip->max_subcore_threads)
3485		n_threads = cip->max_subcore_threads;
3486	if (!subcore_config_ok(cip->n_subcores + 1, n_threads))
3487		return false;
3488	cip->max_subcore_threads = n_threads;
3489
3490	sub = cip->n_subcores;
3491	++cip->n_subcores;
3492	cip->total_threads += vc->num_threads;
3493	cip->subcore_threads[sub] = vc->num_threads;
3494	cip->vc[sub] = vc;
3495	init_vcore_to_run(vc);
3496	list_del_init(&vc->preempt_list);
3497
3498	return true;
3499}
3500
3501/*
3502 * Work out whether it is possible to piggyback the execution of
3503 * vcore *pvc onto the execution of the other vcores described in *cip.
3504 */
3505static bool can_piggyback(struct kvmppc_vcore *pvc, struct core_info *cip,
3506			  int target_threads)
3507{
3508	if (cip->total_threads + pvc->num_threads > target_threads)
3509		return false;
3510
3511	return can_dynamic_split(pvc, cip);
3512}
3513
3514static void prepare_threads(struct kvmppc_vcore *vc)
3515{
3516	int i;
3517	struct kvm_vcpu *vcpu;
3518
3519	for_each_runnable_thread(i, vcpu, vc) {
3520		if (signal_pending(vcpu->arch.run_task))
3521			vcpu->arch.ret = -EINTR;
3522		else if (vcpu->arch.vpa.update_pending ||
3523			 vcpu->arch.slb_shadow.update_pending ||
3524			 vcpu->arch.dtl.update_pending)
3525			vcpu->arch.ret = RESUME_GUEST;
3526		else
3527			continue;
3528		kvmppc_remove_runnable(vc, vcpu, mftb());
3529		wake_up(&vcpu->arch.cpu_run);
3530	}
3531}
3532
3533static void collect_piggybacks(struct core_info *cip, int target_threads)
3534{
3535	struct preempted_vcore_list *lp = this_cpu_ptr(&preempted_vcores);
3536	struct kvmppc_vcore *pvc, *vcnext;
3537
3538	spin_lock(&lp->lock);
3539	list_for_each_entry_safe(pvc, vcnext, &lp->list, preempt_list) {
3540		if (!spin_trylock(&pvc->lock))
3541			continue;
3542		prepare_threads(pvc);
3543		if (!pvc->n_runnable || !pvc->kvm->arch.mmu_ready) {
3544			list_del_init(&pvc->preempt_list);
3545			if (pvc->runner == NULL) {
3546				pvc->vcore_state = VCORE_INACTIVE;
3547				kvmppc_core_end_stolen(pvc, mftb());
3548			}
3549			spin_unlock(&pvc->lock);
3550			continue;
3551		}
3552		if (!can_piggyback(pvc, cip, target_threads)) {
3553			spin_unlock(&pvc->lock);
3554			continue;
3555		}
3556		kvmppc_core_end_stolen(pvc, mftb());
3557		pvc->vcore_state = VCORE_PIGGYBACK;
3558		if (cip->total_threads >= target_threads)
3559			break;
3560	}
3561	spin_unlock(&lp->lock);
3562}
3563
3564static bool recheck_signals_and_mmu(struct core_info *cip)
3565{
3566	int sub, i;
3567	struct kvm_vcpu *vcpu;
3568	struct kvmppc_vcore *vc;
3569
3570	for (sub = 0; sub < cip->n_subcores; ++sub) {
3571		vc = cip->vc[sub];
3572		if (!vc->kvm->arch.mmu_ready)
3573			return true;
3574		for_each_runnable_thread(i, vcpu, vc)
3575			if (signal_pending(vcpu->arch.run_task))
3576				return true;
3577	}
3578	return false;
3579}
3580
3581static void post_guest_process(struct kvmppc_vcore *vc, bool is_master)
3582{
3583	int still_running = 0, i;
3584	u64 now;
3585	long ret;
3586	struct kvm_vcpu *vcpu;
3587
3588	spin_lock(&vc->lock);
3589	now = get_tb();
3590	for_each_runnable_thread(i, vcpu, vc) {
3591		/*
3592		 * It's safe to unlock the vcore in the loop here, because
3593		 * for_each_runnable_thread() is safe against removal of
3594		 * the vcpu, and the vcore state is VCORE_EXITING here,
3595		 * so any vcpus becoming runnable will have their arch.trap
3596		 * set to zero and can't actually run in the guest.
3597		 */
3598		spin_unlock(&vc->lock);
3599		/* cancel pending dec exception if dec is positive */
3600		if (now < kvmppc_dec_expires_host_tb(vcpu) &&
3601		    kvmppc_core_pending_dec(vcpu))
3602			kvmppc_core_dequeue_dec(vcpu);
3603
3604		trace_kvm_guest_exit(vcpu);
3605
3606		ret = RESUME_GUEST;
3607		if (vcpu->arch.trap)
3608			ret = kvmppc_handle_exit_hv(vcpu,
3609						    vcpu->arch.run_task);
3610
3611		vcpu->arch.ret = ret;
3612		vcpu->arch.trap = 0;
3613
3614		spin_lock(&vc->lock);
3615		if (is_kvmppc_resume_guest(vcpu->arch.ret)) {
3616			if (vcpu->arch.pending_exceptions)
3617				kvmppc_core_prepare_to_enter(vcpu);
3618			if (vcpu->arch.ceded)
3619				kvmppc_set_timer(vcpu);
3620			else
3621				++still_running;
3622		} else {
3623			kvmppc_remove_runnable(vc, vcpu, mftb());
3624			wake_up(&vcpu->arch.cpu_run);
3625		}
3626	}
3627	if (!is_master) {
3628		if (still_running > 0) {
3629			kvmppc_vcore_preempt(vc);
3630		} else if (vc->runner) {
3631			vc->vcore_state = VCORE_PREEMPT;
3632			kvmppc_core_start_stolen(vc, mftb());
3633		} else {
3634			vc->vcore_state = VCORE_INACTIVE;
3635		}
3636		if (vc->n_runnable > 0 && vc->runner == NULL) {
3637			/* make sure there's a candidate runner awake */
3638			i = -1;
3639			vcpu = next_runnable_thread(vc, &i);
3640			wake_up(&vcpu->arch.cpu_run);
3641		}
3642	}
3643	spin_unlock(&vc->lock);
3644}
3645
3646/*
3647 * Clear core from the list of active host cores as we are about to
3648 * enter the guest. Only do this if it is the primary thread of the
3649 * core (not if a subcore) that is entering the guest.
3650 */
3651static inline int kvmppc_clear_host_core(unsigned int cpu)
3652{
3653	int core;
3654
3655	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3656		return 0;
3657	/*
3658	 * Memory barrier can be omitted here as we will do a smp_wmb()
3659	 * later in kvmppc_start_thread and we need ensure that state is
3660	 * visible to other CPUs only after we enter guest.
3661	 */
3662	core = cpu >> threads_shift;
3663	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 0;
3664	return 0;
3665}
3666
3667/*
3668 * Advertise this core as an active host core since we exited the guest
3669 * Only need to do this if it is the primary thread of the core that is
3670 * exiting.
3671 */
3672static inline int kvmppc_set_host_core(unsigned int cpu)
3673{
3674	int core;
3675
3676	if (!kvmppc_host_rm_ops_hv || cpu_thread_in_core(cpu))
3677		return 0;
3678
3679	/*
3680	 * Memory barrier can be omitted here because we do a spin_unlock
3681	 * immediately after this which provides the memory barrier.
3682	 */
3683	core = cpu >> threads_shift;
3684	kvmppc_host_rm_ops_hv->rm_core[core].rm_state.in_host = 1;
3685	return 0;
3686}
3687
3688static void set_irq_happened(int trap)
3689{
3690	switch (trap) {
3691	case BOOK3S_INTERRUPT_EXTERNAL:
3692		local_paca->irq_happened |= PACA_IRQ_EE;
3693		break;
3694	case BOOK3S_INTERRUPT_H_DOORBELL:
3695		local_paca->irq_happened |= PACA_IRQ_DBELL;
3696		break;
3697	case BOOK3S_INTERRUPT_HMI:
3698		local_paca->irq_happened |= PACA_IRQ_HMI;
3699		break;
3700	case BOOK3S_INTERRUPT_SYSTEM_RESET:
3701		replay_system_reset();
3702		break;
3703	}
3704}
3705
3706/*
3707 * Run a set of guest threads on a physical core.
3708 * Called with vc->lock held.
3709 */
3710static noinline void kvmppc_run_core(struct kvmppc_vcore *vc)
3711{
3712	struct kvm_vcpu *vcpu;
3713	int i;
3714	int srcu_idx;
3715	struct core_info core_info;
3716	struct kvmppc_vcore *pvc;
3717	struct kvm_split_mode split_info, *sip;
3718	int split, subcore_size, active;
3719	int sub;
3720	bool thr0_done;
3721	unsigned long cmd_bit, stat_bit;
3722	int pcpu, thr;
3723	int target_threads;
3724	int controlled_threads;
3725	int trap;
3726	bool is_power8;
3727
3728	if (WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300)))
3729		return;
3730
3731	/*
3732	 * Remove from the list any threads that have a signal pending
3733	 * or need a VPA update done
3734	 */
3735	prepare_threads(vc);
3736
3737	/* if the runner is no longer runnable, let the caller pick a new one */
3738	if (vc->runner->arch.state != KVMPPC_VCPU_RUNNABLE)
3739		return;
3740
3741	/*
3742	 * Initialize *vc.
3743	 */
3744	init_vcore_to_run(vc);
3745	vc->preempt_tb = TB_NIL;
3746
3747	/*
3748	 * Number of threads that we will be controlling: the same as
3749	 * the number of threads per subcore, except on POWER9,
3750	 * where it's 1 because the threads are (mostly) independent.
3751	 */
3752	controlled_threads = threads_per_vcore(vc->kvm);
3753
3754	/*
3755	 * Make sure we are running on primary threads, and that secondary
3756	 * threads are offline.  Also check if the number of threads in this
3757	 * guest are greater than the current system threads per guest.
3758	 */
3759	if ((controlled_threads > 1) &&
3760	    ((vc->num_threads > threads_per_subcore) || !on_primary_thread())) {
3761		for_each_runnable_thread(i, vcpu, vc) {
3762			vcpu->arch.ret = -EBUSY;
3763			kvmppc_remove_runnable(vc, vcpu, mftb());
3764			wake_up(&vcpu->arch.cpu_run);
3765		}
3766		goto out;
3767	}
3768
3769	/*
3770	 * See if we could run any other vcores on the physical core
3771	 * along with this one.
3772	 */
3773	init_core_info(&core_info, vc);
3774	pcpu = smp_processor_id();
3775	target_threads = controlled_threads;
3776	if (target_smt_mode && target_smt_mode < target_threads)
3777		target_threads = target_smt_mode;
3778	if (vc->num_threads < target_threads)
3779		collect_piggybacks(&core_info, target_threads);
3780
3781	/*
3782	 * Hard-disable interrupts, and check resched flag and signals.
3783	 * If we need to reschedule or deliver a signal, clean up
3784	 * and return without going into the guest(s).
3785	 * If the mmu_ready flag has been cleared, don't go into the
3786	 * guest because that means a HPT resize operation is in progress.
3787	 */
3788	local_irq_disable();
3789	hard_irq_disable();
3790	if (lazy_irq_pending() || need_resched() ||
3791	    recheck_signals_and_mmu(&core_info)) {
3792		local_irq_enable();
3793		vc->vcore_state = VCORE_INACTIVE;
3794		/* Unlock all except the primary vcore */
3795		for (sub = 1; sub < core_info.n_subcores; ++sub) {
3796			pvc = core_info.vc[sub];
3797			/* Put back on to the preempted vcores list */
3798			kvmppc_vcore_preempt(pvc);
3799			spin_unlock(&pvc->lock);
3800		}
3801		for (i = 0; i < controlled_threads; ++i)
3802			kvmppc_release_hwthread(pcpu + i);
3803		return;
3804	}
3805
3806	kvmppc_clear_host_core(pcpu);
3807
3808	/* Decide on micro-threading (split-core) mode */
3809	subcore_size = threads_per_subcore;
3810	cmd_bit = stat_bit = 0;
3811	split = core_info.n_subcores;
3812	sip = NULL;
3813	is_power8 = cpu_has_feature(CPU_FTR_ARCH_207S);
3814
3815	if (split > 1) {
3816		sip = &split_info;
3817		memset(&split_info, 0, sizeof(split_info));
3818		for (sub = 0; sub < core_info.n_subcores; ++sub)
3819			split_info.vc[sub] = core_info.vc[sub];
3820
3821		if (is_power8) {
3822			if (split == 2 && (dynamic_mt_modes & 2)) {
3823				cmd_bit = HID0_POWER8_1TO2LPAR;
3824				stat_bit = HID0_POWER8_2LPARMODE;
3825			} else {
3826				split = 4;
3827				cmd_bit = HID0_POWER8_1TO4LPAR;
3828				stat_bit = HID0_POWER8_4LPARMODE;
3829			}
3830			subcore_size = MAX_SMT_THREADS / split;
3831			split_info.rpr = mfspr(SPRN_RPR);
3832			split_info.pmmar = mfspr(SPRN_PMMAR);
3833			split_info.ldbar = mfspr(SPRN_LDBAR);
3834			split_info.subcore_size = subcore_size;
3835		} else {
3836			split_info.subcore_size = 1;
3837		}
3838
3839		/* order writes to split_info before kvm_split_mode pointer */
3840		smp_wmb();
3841	}
3842
3843	for (thr = 0; thr < controlled_threads; ++thr) {
3844		struct paca_struct *paca = paca_ptrs[pcpu + thr];
3845
3846		paca->kvm_hstate.napping = 0;
3847		paca->kvm_hstate.kvm_split_mode = sip;
3848	}
3849
3850	/* Initiate micro-threading (split-core) on POWER8 if required */
3851	if (cmd_bit) {
3852		unsigned long hid0 = mfspr(SPRN_HID0);
3853
3854		hid0 |= cmd_bit | HID0_POWER8_DYNLPARDIS;
3855		mb();
3856		mtspr(SPRN_HID0, hid0);
3857		isync();
3858		for (;;) {
3859			hid0 = mfspr(SPRN_HID0);
3860			if (hid0 & stat_bit)
3861				break;
3862			cpu_relax();
3863		}
3864	}
3865
3866	/*
3867	 * On POWER8, set RWMR register.
3868	 * Since it only affects PURR and SPURR, it doesn't affect
3869	 * the host, so we don't save/restore the host value.
3870	 */
3871	if (is_power8) {
3872		unsigned long rwmr_val = RWMR_RPA_P8_8THREAD;
3873		int n_online = atomic_read(&vc->online_count);
3874
3875		/*
3876		 * Use the 8-thread value if we're doing split-core
3877		 * or if the vcore's online count looks bogus.
3878		 */
3879		if (split == 1 && threads_per_subcore == MAX_SMT_THREADS &&
3880		    n_online >= 1 && n_online <= MAX_SMT_THREADS)
3881			rwmr_val = p8_rwmr_values[n_online];
3882		mtspr(SPRN_RWMR, rwmr_val);
3883	}
3884
3885	/* Start all the threads */
3886	active = 0;
3887	for (sub = 0; sub < core_info.n_subcores; ++sub) {
3888		thr = is_power8 ? subcore_thread_map[sub] : sub;
3889		thr0_done = false;
3890		active |= 1 << thr;
3891		pvc = core_info.vc[sub];
3892		pvc->pcpu = pcpu + thr;
3893		for_each_runnable_thread(i, vcpu, pvc) {
3894			/*
3895			 * XXX: is kvmppc_start_thread called too late here?
3896			 * It updates vcpu->cpu and vcpu->arch.thread_cpu
3897			 * which are used by kvmppc_fast_vcpu_kick_hv(), but
3898			 * kick is called after new exceptions become available
3899			 * and exceptions are checked earlier than here, by
3900			 * kvmppc_core_prepare_to_enter.
3901			 */
3902			kvmppc_start_thread(vcpu, pvc);
3903			kvmppc_update_vpa_dispatch(vcpu, pvc);
3904			trace_kvm_guest_enter(vcpu);
3905			if (!vcpu->arch.ptid)
3906				thr0_done = true;
3907			active |= 1 << (thr + vcpu->arch.ptid);
3908		}
3909		/*
3910		 * We need to start the first thread of each subcore
3911		 * even if it doesn't have a vcpu.
3912		 */
3913		if (!thr0_done)
3914			kvmppc_start_thread(NULL, pvc);
3915	}
3916
3917	/*
3918	 * Ensure that split_info.do_nap is set after setting
3919	 * the vcore pointer in the PACA of the secondaries.
3920	 */
3921	smp_mb();
3922
3923	/*
3924	 * When doing micro-threading, poke the inactive threads as well.
3925	 * This gets them to the nap instruction after kvm_do_nap,
3926	 * which reduces the time taken to unsplit later.
3927	 */
3928	if (cmd_bit) {
3929		split_info.do_nap = 1;	/* ask secondaries to nap when done */
3930		for (thr = 1; thr < threads_per_subcore; ++thr)
3931			if (!(active & (1 << thr)))
3932				kvmppc_ipi_thread(pcpu + thr);
3933	}
3934
3935	vc->vcore_state = VCORE_RUNNING;
3936	preempt_disable();
3937
3938	trace_kvmppc_run_core(vc, 0);
3939
3940	for (sub = 0; sub < core_info.n_subcores; ++sub)
3941		spin_unlock(&core_info.vc[sub]->lock);
3942
3943	guest_timing_enter_irqoff();
3944
3945	srcu_idx = srcu_read_lock(&vc->kvm->srcu);
3946
3947	guest_state_enter_irqoff();
3948	this_cpu_disable_ftrace();
3949
3950	trap = __kvmppc_vcore_entry();
3951
3952	this_cpu_enable_ftrace();
3953	guest_state_exit_irqoff();
3954
3955	srcu_read_unlock(&vc->kvm->srcu, srcu_idx);
3956
3957	set_irq_happened(trap);
3958
3959	spin_lock(&vc->lock);
3960	/* prevent other vcpu threads from doing kvmppc_start_thread() now */
3961	vc->vcore_state = VCORE_EXITING;
3962
3963	/* wait for secondary threads to finish writing their state to memory */
3964	kvmppc_wait_for_nap(controlled_threads);
3965
3966	/* Return to whole-core mode if we split the core earlier */
3967	if (cmd_bit) {
3968		unsigned long hid0 = mfspr(SPRN_HID0);
3969		unsigned long loops = 0;
3970
3971		hid0 &= ~HID0_POWER8_DYNLPARDIS;
3972		stat_bit = HID0_POWER8_2LPARMODE | HID0_POWER8_4LPARMODE;
3973		mb();
3974		mtspr(SPRN_HID0, hid0);
3975		isync();
3976		for (;;) {
3977			hid0 = mfspr(SPRN_HID0);
3978			if (!(hid0 & stat_bit))
3979				break;
3980			cpu_relax();
3981			++loops;
3982		}
3983		split_info.do_nap = 0;
3984	}
3985
3986	kvmppc_set_host_core(pcpu);
3987
3988	if (!vtime_accounting_enabled_this_cpu()) {
3989		local_irq_enable();
3990		/*
3991		 * Service IRQs here before guest_timing_exit_irqoff() so any
3992		 * ticks that occurred while running the guest are accounted to
3993		 * the guest. If vtime accounting is enabled, accounting uses
3994		 * TB rather than ticks, so it can be done without enabling
3995		 * interrupts here, which has the problem that it accounts
3996		 * interrupt processing overhead to the host.
3997		 */
3998		local_irq_disable();
3999	}
4000	guest_timing_exit_irqoff();
4001
4002	local_irq_enable();
4003
4004	/* Let secondaries go back to the offline loop */
4005	for (i = 0; i < controlled_threads; ++i) {
4006		kvmppc_release_hwthread(pcpu + i);
4007		if (sip && sip->napped[i])
4008			kvmppc_ipi_thread(pcpu + i);
4009	}
4010
4011	spin_unlock(&vc->lock);
4012
4013	/* make sure updates to secondary vcpu structs are visible now */
4014	smp_mb();
4015
4016	preempt_enable();
4017
4018	for (sub = 0; sub < core_info.n_subcores; ++sub) {
4019		pvc = core_info.vc[sub];
4020		post_guest_process(pvc, pvc == vc);
4021	}
4022
4023	spin_lock(&vc->lock);
4024
4025 out:
4026	vc->vcore_state = VCORE_INACTIVE;
4027	trace_kvmppc_run_core(vc, 1);
4028}
4029
4030static inline bool hcall_is_xics(unsigned long req)
4031{
4032	return req == H_EOI || req == H_CPPR || req == H_IPI ||
4033		req == H_IPOLL || req == H_XIRR || req == H_XIRR_X;
4034}
4035
4036static void vcpu_vpa_increment_dispatch(struct kvm_vcpu *vcpu)
4037{
4038	struct lppaca *lp = vcpu->arch.vpa.pinned_addr;
4039	if (lp) {
4040		u32 yield_count = be32_to_cpu(lp->yield_count) + 1;
4041		lp->yield_count = cpu_to_be32(yield_count);
4042		vcpu->arch.vpa.dirty = 1;
4043	}
4044}
4045
4046/* call our hypervisor to load up HV regs and go */
4047static int kvmhv_vcpu_entry_p9_nested(struct kvm_vcpu *vcpu, u64 time_limit, unsigned long lpcr, u64 *tb)
4048{
4049	struct kvmppc_vcore *vc = vcpu->arch.vcore;
4050	unsigned long host_psscr;
4051	unsigned long msr;
4052	struct hv_guest_state hvregs;
4053	struct p9_host_os_sprs host_os_sprs;
4054	s64 dec;
4055	int trap;
4056
4057	msr = mfmsr();
4058
4059	save_p9_host_os_sprs(&host_os_sprs);
4060
4061	/*
4062	 * We need to save and restore the guest visible part of the
4063	 * psscr (i.e. using SPRN_PSSCR_PR) since the hypervisor
4064	 * doesn't do this for us. Note only required if pseries since
4065	 * this is done in kvmhv_vcpu_entry_p9() below otherwise.
4066	 */
4067	host_psscr = mfspr(SPRN_PSSCR_PR);
4068
4069	kvmppc_msr_hard_disable_set_facilities(vcpu, msr);
4070	if (lazy_irq_pending())
4071		return 0;
4072
4073	if (unlikely(load_vcpu_state(vcpu, &host_os_sprs)))
4074		msr = mfmsr(); /* TM restore can update msr */
4075
4076	if (vcpu->arch.psscr != host_psscr)
4077		mtspr(SPRN_PSSCR_PR, vcpu->arch.psscr);
4078
4079	kvmhv_save_hv_regs(vcpu, &hvregs);
4080	hvregs.lpcr = lpcr;
4081	hvregs.amor = ~0;
4082	vcpu->arch.regs.msr = vcpu->arch.shregs.msr;
4083	hvregs.version = HV_GUEST_STATE_VERSION;
4084	if (vcpu->arch.nested) {
4085		hvregs.lpid = vcpu->arch.nested->shadow_lpid;
4086		hvregs.vcpu_token = vcpu->arch.nested_vcpu_id;
4087	} else {
4088		hvregs.lpid = vcpu->kvm->arch.lpid;
4089		hvregs.vcpu_token = vcpu->vcpu_id;
4090	}
4091	hvregs.hdec_expiry = time_limit;
4092
4093	/*
4094	 * When setting DEC, we must always deal with irq_work_raise
4095	 * via NMI vs setting DEC. The problem occurs right as we
4096	 * switch into guest mode if a NMI hits and sets pending work
4097	 * and sets DEC, then that will apply to the guest and not
4098	 * bring us back to the host.
4099	 *
4100	 * irq_work_raise could check a flag (or possibly LPCR[HDICE]
4101	 * for example) and set HDEC to 1? That wouldn't solve the
4102	 * nested hv case which needs to abort the hcall or zero the
4103	 * time limit.
4104	 *
4105	 * XXX: Another day's problem.
4106	 */
4107	mtspr(SPRN_DEC, kvmppc_dec_expires_host_tb(vcpu) - *tb);
4108
4109	mtspr(SPRN_DAR, vcpu->arch.shregs.dar);
4110	mtspr(SPRN_DSISR, vcpu->arch.shregs.dsisr);
4111	switch_pmu_to_guest(vcpu, &host_os_sprs);
4112	accumulate_time(vcpu, &vcpu->arch.in_guest);
4113	trap = plpar_hcall_norets(H_ENTER_NESTED, __pa(&hvregs),
4114				  __pa(&vcpu->arch.regs));
4115	accumulate_time(vcpu, &vcpu->arch.guest_exit);
4116	kvmhv_restore_hv_return_state(vcpu, &hvregs);
4117	switch_pmu_to_host(vcpu, &host_os_sprs);
4118	vcpu->arch.shregs.msr = vcpu->arch.regs.msr;
4119	vcpu->arch.shregs.dar = mfspr(SPRN_DAR);
4120	vcpu->arch.shregs.dsisr = mfspr(SPRN_DSISR);
4121	vcpu->arch.psscr = mfspr(SPRN_PSSCR_PR);
4122
4123	store_vcpu_state(vcpu);
4124
4125	dec = mfspr(SPRN_DEC);
4126	if (!(lpcr & LPCR_LD)) /* Sign extend if not using large decrementer */
4127		dec = (s32) dec;
4128	*tb = mftb();
4129	vcpu->arch.dec_expires = dec + (*tb + vc->tb_offset);
4130
4131	timer_rearm_host_dec(*tb);
4132
4133	restore_p9_host_os_sprs(vcpu, &host_os_sprs);
4134	if (vcpu->arch.psscr != host_psscr)
4135		mtspr(SPRN_PSSCR_PR, host_psscr);
4136
4137	return trap;
4138}
4139
4140/*
4141 * Guest entry for POWER9 and later CPUs.
4142 */
4143static int kvmhv_p9_guest_entry(struct kvm_vcpu *vcpu, u64 time_limit,
4144			 unsigned long lpcr, u64 *tb)
4145{
4146	struct kvm *kvm = vcpu->kvm;
4147	struct kvm_nested_guest *nested = vcpu->arch.nested;
4148	u64 next_timer;
4149	int trap;
4150
4151	next_timer = timer_get_next_tb();
4152	if (*tb >= next_timer)
4153		return BOOK3S_INTERRUPT_HV_DECREMENTER;
4154	if (next_timer < time_limit)
4155		time_limit = next_timer;
4156	else if (*tb >= time_limit) /* nested time limit */
4157		return BOOK3S_INTERRUPT_NESTED_HV_DECREMENTER;
4158
4159	vcpu->arch.ceded = 0;
4160
4161	vcpu_vpa_increment_dispatch(vcpu);
4162
4163	if (kvmhv_on_pseries()) {
4164		trap = kvmhv_vcpu_entry_p9_nested(vcpu, time_limit, lpcr, tb);
4165
4166		/* H_CEDE has to be handled now, not later */
4167		if (trap == BOOK3S_INTERRUPT_SYSCALL && !nested &&
4168		    kvmppc_get_gpr(vcpu, 3) == H_CEDE) {
4169			kvmppc_cede(vcpu);
4170			kvmppc_set_gpr(vcpu, 3, 0);
4171			trap = 0;
4172		}
4173
4174	} else if (nested) {
4175		__this_cpu_write(cpu_in_guest, kvm);
4176		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4177		__this_cpu_write(cpu_in_guest, NULL);
4178
4179	} else {
4180		kvmppc_xive_push_vcpu(vcpu);
4181
4182		__this_cpu_write(cpu_in_guest, kvm);
4183		trap = kvmhv_vcpu_entry_p9(vcpu, time_limit, lpcr, tb);
4184		__this_cpu_write(cpu_in_guest, NULL);
4185
4186		if (trap == BOOK3S_INTERRUPT_SYSCALL &&
4187		    !(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4188			unsigned long req = kvmppc_get_gpr(vcpu, 3);
4189
4190			/*
4191			 * XIVE rearm and XICS hcalls must be handled
4192			 * before xive context is pulled (is this
4193			 * true?)
4194			 */
4195			if (req == H_CEDE) {
4196				/* H_CEDE has to be handled now */
4197				kvmppc_cede(vcpu);
4198				if (!kvmppc_xive_rearm_escalation(vcpu)) {
4199					/*
4200					 * Pending escalation so abort
4201					 * the cede.
4202					 */
4203					vcpu->arch.ceded = 0;
4204				}
4205				kvmppc_set_gpr(vcpu, 3, 0);
4206				trap = 0;
4207
4208			} else if (req == H_ENTER_NESTED) {
4209				/*
4210				 * L2 should not run with the L1
4211				 * context so rearm and pull it.
4212				 */
4213				if (!kvmppc_xive_rearm_escalation(vcpu)) {
4214					/*
4215					 * Pending escalation so abort
4216					 * H_ENTER_NESTED.
4217					 */
4218					kvmppc_set_gpr(vcpu, 3, 0);
4219					trap = 0;
4220				}
4221
4222			} else if (hcall_is_xics(req)) {
4223				int ret;
4224
4225				ret = kvmppc_xive_xics_hcall(vcpu, req);
4226				if (ret != H_TOO_HARD) {
4227					kvmppc_set_gpr(vcpu, 3, ret);
4228					trap = 0;
4229				}
4230			}
4231		}
4232		kvmppc_xive_pull_vcpu(vcpu);
4233
4234		if (kvm_is_radix(kvm))
4235			vcpu->arch.slb_max = 0;
4236	}
4237
4238	vcpu_vpa_increment_dispatch(vcpu);
4239
4240	return trap;
4241}
4242
4243/*
4244 * Wait for some other vcpu thread to execute us, and
4245 * wake us up when we need to handle something in the host.
4246 */
4247static void kvmppc_wait_for_exec(struct kvmppc_vcore *vc,
4248				 struct kvm_vcpu *vcpu, int wait_state)
4249{
4250	DEFINE_WAIT(wait);
4251
4252	prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
4253	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4254		spin_unlock(&vc->lock);
4255		schedule();
4256		spin_lock(&vc->lock);
4257	}
4258	finish_wait(&vcpu->arch.cpu_run, &wait);
4259}
4260
4261static void grow_halt_poll_ns(struct kvmppc_vcore *vc)
4262{
4263	if (!halt_poll_ns_grow)
4264		return;
4265
4266	vc->halt_poll_ns *= halt_poll_ns_grow;
4267	if (vc->halt_poll_ns < halt_poll_ns_grow_start)
4268		vc->halt_poll_ns = halt_poll_ns_grow_start;
4269}
4270
4271static void shrink_halt_poll_ns(struct kvmppc_vcore *vc)
4272{
4273	if (halt_poll_ns_shrink == 0)
4274		vc->halt_poll_ns = 0;
4275	else
4276		vc->halt_poll_ns /= halt_poll_ns_shrink;
4277}
4278
4279#ifdef CONFIG_KVM_XICS
4280static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4281{
4282	if (!xics_on_xive())
4283		return false;
4284	return vcpu->arch.irq_pending || vcpu->arch.xive_saved_state.pipr <
4285		vcpu->arch.xive_saved_state.cppr;
4286}
4287#else
4288static inline bool xive_interrupt_pending(struct kvm_vcpu *vcpu)
4289{
4290	return false;
4291}
4292#endif /* CONFIG_KVM_XICS */
4293
4294static bool kvmppc_vcpu_woken(struct kvm_vcpu *vcpu)
4295{
4296	if (vcpu->arch.pending_exceptions || vcpu->arch.prodded ||
4297	    kvmppc_doorbell_pending(vcpu) || xive_interrupt_pending(vcpu))
4298		return true;
4299
4300	return false;
4301}
4302
4303static bool kvmppc_vcpu_check_block(struct kvm_vcpu *vcpu)
4304{
4305	if (!vcpu->arch.ceded || kvmppc_vcpu_woken(vcpu))
4306		return true;
4307	return false;
4308}
4309
4310/*
4311 * Check to see if any of the runnable vcpus on the vcore have pending
4312 * exceptions or are no longer ceded
4313 */
4314static int kvmppc_vcore_check_block(struct kvmppc_vcore *vc)
4315{
4316	struct kvm_vcpu *vcpu;
4317	int i;
4318
4319	for_each_runnable_thread(i, vcpu, vc) {
4320		if (kvmppc_vcpu_check_block(vcpu))
4321			return 1;
4322	}
4323
4324	return 0;
4325}
4326
4327/*
4328 * All the vcpus in this vcore are idle, so wait for a decrementer
4329 * or external interrupt to one of the vcpus.  vc->lock is held.
4330 */
4331static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
4332{
4333	ktime_t cur, start_poll, start_wait;
4334	int do_sleep = 1;
4335	u64 block_ns;
4336
4337	WARN_ON_ONCE(cpu_has_feature(CPU_FTR_ARCH_300));
4338
4339	/* Poll for pending exceptions and ceded state */
4340	cur = start_poll = ktime_get();
4341	if (vc->halt_poll_ns) {
4342		ktime_t stop = ktime_add_ns(start_poll, vc->halt_poll_ns);
4343		++vc->runner->stat.generic.halt_attempted_poll;
4344
4345		vc->vcore_state = VCORE_POLLING;
4346		spin_unlock(&vc->lock);
4347
4348		do {
4349			if (kvmppc_vcore_check_block(vc)) {
4350				do_sleep = 0;
4351				break;
4352			}
4353			cur = ktime_get();
4354		} while (kvm_vcpu_can_poll(cur, stop));
4355
4356		spin_lock(&vc->lock);
4357		vc->vcore_state = VCORE_INACTIVE;
4358
4359		if (!do_sleep) {
4360			++vc->runner->stat.generic.halt_successful_poll;
4361			goto out;
4362		}
4363	}
4364
4365	prepare_to_rcuwait(&vc->wait);
4366	set_current_state(TASK_INTERRUPTIBLE);
4367	if (kvmppc_vcore_check_block(vc)) {
4368		finish_rcuwait(&vc->wait);
4369		do_sleep = 0;
4370		/* If we polled, count this as a successful poll */
4371		if (vc->halt_poll_ns)
4372			++vc->runner->stat.generic.halt_successful_poll;
4373		goto out;
4374	}
4375
4376	start_wait = ktime_get();
4377
4378	vc->vcore_state = VCORE_SLEEPING;
4379	trace_kvmppc_vcore_blocked(vc->runner, 0);
4380	spin_unlock(&vc->lock);
4381	schedule();
4382	finish_rcuwait(&vc->wait);
4383	spin_lock(&vc->lock);
4384	vc->vcore_state = VCORE_INACTIVE;
4385	trace_kvmppc_vcore_blocked(vc->runner, 1);
4386	++vc->runner->stat.halt_successful_wait;
4387
4388	cur = ktime_get();
4389
4390out:
4391	block_ns = ktime_to_ns(cur) - ktime_to_ns(start_poll);
4392
4393	/* Attribute wait time */
4394	if (do_sleep) {
4395		vc->runner->stat.generic.halt_wait_ns +=
4396			ktime_to_ns(cur) - ktime_to_ns(start_wait);
4397		KVM_STATS_LOG_HIST_UPDATE(
4398				vc->runner->stat.generic.halt_wait_hist,
4399				ktime_to_ns(cur) - ktime_to_ns(start_wait));
4400		/* Attribute failed poll time */
4401		if (vc->halt_poll_ns) {
4402			vc->runner->stat.generic.halt_poll_fail_ns +=
4403				ktime_to_ns(start_wait) -
4404				ktime_to_ns(start_poll);
4405			KVM_STATS_LOG_HIST_UPDATE(
4406				vc->runner->stat.generic.halt_poll_fail_hist,
4407				ktime_to_ns(start_wait) -
4408				ktime_to_ns(start_poll));
4409		}
4410	} else {
4411		/* Attribute successful poll time */
4412		if (vc->halt_poll_ns) {
4413			vc->runner->stat.generic.halt_poll_success_ns +=
4414				ktime_to_ns(cur) -
4415				ktime_to_ns(start_poll);
4416			KVM_STATS_LOG_HIST_UPDATE(
4417				vc->runner->stat.generic.halt_poll_success_hist,
4418				ktime_to_ns(cur) - ktime_to_ns(start_poll));
4419		}
4420	}
4421
4422	/* Adjust poll time */
4423	if (halt_poll_ns) {
4424		if (block_ns <= vc->halt_poll_ns)
4425			;
4426		/* We slept and blocked for longer than the max halt time */
4427		else if (vc->halt_poll_ns && block_ns > halt_poll_ns)
4428			shrink_halt_poll_ns(vc);
4429		/* We slept and our poll time is too small */
4430		else if (vc->halt_poll_ns < halt_poll_ns &&
4431				block_ns < halt_poll_ns)
4432			grow_halt_poll_ns(vc);
4433		if (vc->halt_poll_ns > halt_poll_ns)
4434			vc->halt_poll_ns = halt_poll_ns;
4435	} else
4436		vc->halt_poll_ns = 0;
4437
4438	trace_kvmppc_vcore_wakeup(do_sleep, block_ns);
4439}
4440
4441/*
4442 * This never fails for a radix guest, as none of the operations it does
4443 * for a radix guest can fail or have a way to report failure.
4444 */
4445static int kvmhv_setup_mmu(struct kvm_vcpu *vcpu)
4446{
4447	int r = 0;
4448	struct kvm *kvm = vcpu->kvm;
4449
4450	mutex_lock(&kvm->arch.mmu_setup_lock);
4451	if (!kvm->arch.mmu_ready) {
4452		if (!kvm_is_radix(kvm))
4453			r = kvmppc_hv_setup_htab_rma(vcpu);
4454		if (!r) {
4455			if (cpu_has_feature(CPU_FTR_ARCH_300))
4456				kvmppc_setup_partition_table(kvm);
4457			kvm->arch.mmu_ready = 1;
4458		}
4459	}
4460	mutex_unlock(&kvm->arch.mmu_setup_lock);
4461	return r;
4462}
4463
4464static int kvmppc_run_vcpu(struct kvm_vcpu *vcpu)
4465{
4466	struct kvm_run *run = vcpu->run;
4467	int n_ceded, i, r;
4468	struct kvmppc_vcore *vc;
4469	struct kvm_vcpu *v;
4470
4471	trace_kvmppc_run_vcpu_enter(vcpu);
4472
4473	run->exit_reason = 0;
4474	vcpu->arch.ret = RESUME_GUEST;
4475	vcpu->arch.trap = 0;
4476	kvmppc_update_vpas(vcpu);
4477
4478	/*
4479	 * Synchronize with other threads in this virtual core
4480	 */
4481	vc = vcpu->arch.vcore;
4482	spin_lock(&vc->lock);
4483	vcpu->arch.ceded = 0;
4484	vcpu->arch.run_task = current;
4485	vcpu->arch.stolen_logged = vcore_stolen_time(vc, mftb());
4486	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4487	vcpu->arch.busy_preempt = TB_NIL;
4488	WRITE_ONCE(vc->runnable_threads[vcpu->arch.ptid], vcpu);
4489	++vc->n_runnable;
4490
4491	/*
4492	 * This happens the first time this is called for a vcpu.
4493	 * If the vcore is already running, we may be able to start
4494	 * this thread straight away and have it join in.
4495	 */
4496	if (!signal_pending(current)) {
4497		if ((vc->vcore_state == VCORE_PIGGYBACK ||
4498		     vc->vcore_state == VCORE_RUNNING) &&
4499			   !VCORE_IS_EXITING(vc)) {
4500			kvmppc_update_vpa_dispatch(vcpu, vc);
4501			kvmppc_start_thread(vcpu, vc);
4502			trace_kvm_guest_enter(vcpu);
4503		} else if (vc->vcore_state == VCORE_SLEEPING) {
4504		        rcuwait_wake_up(&vc->wait);
4505		}
4506
4507	}
4508
4509	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4510	       !signal_pending(current)) {
4511		/* See if the MMU is ready to go */
4512		if (!vcpu->kvm->arch.mmu_ready) {
4513			spin_unlock(&vc->lock);
4514			r = kvmhv_setup_mmu(vcpu);
4515			spin_lock(&vc->lock);
4516			if (r) {
4517				run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4518				run->fail_entry.
4519					hardware_entry_failure_reason = 0;
4520				vcpu->arch.ret = r;
4521				break;
4522			}
4523		}
4524
4525		if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4526			kvmppc_vcore_end_preempt(vc);
4527
4528		if (vc->vcore_state != VCORE_INACTIVE) {
4529			kvmppc_wait_for_exec(vc, vcpu, TASK_INTERRUPTIBLE);
4530			continue;
4531		}
4532		for_each_runnable_thread(i, v, vc) {
4533			kvmppc_core_prepare_to_enter(v);
4534			if (signal_pending(v->arch.run_task)) {
4535				kvmppc_remove_runnable(vc, v, mftb());
4536				v->stat.signal_exits++;
4537				v->run->exit_reason = KVM_EXIT_INTR;
4538				v->arch.ret = -EINTR;
4539				wake_up(&v->arch.cpu_run);
4540			}
4541		}
4542		if (!vc->n_runnable || vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
4543			break;
4544		n_ceded = 0;
4545		for_each_runnable_thread(i, v, vc) {
4546			if (!kvmppc_vcpu_woken(v))
4547				n_ceded += v->arch.ceded;
4548			else
4549				v->arch.ceded = 0;
4550		}
4551		vc->runner = vcpu;
4552		if (n_ceded == vc->n_runnable) {
4553			kvmppc_vcore_blocked(vc);
4554		} else if (need_resched()) {
4555			kvmppc_vcore_preempt(vc);
4556			/* Let something else run */
4557			cond_resched_lock(&vc->lock);
4558			if (vc->vcore_state == VCORE_PREEMPT)
4559				kvmppc_vcore_end_preempt(vc);
4560		} else {
4561			kvmppc_run_core(vc);
4562		}
4563		vc->runner = NULL;
4564	}
4565
4566	while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
4567	       (vc->vcore_state == VCORE_RUNNING ||
4568		vc->vcore_state == VCORE_EXITING ||
4569		vc->vcore_state == VCORE_PIGGYBACK))
4570		kvmppc_wait_for_exec(vc, vcpu, TASK_UNINTERRUPTIBLE);
4571
4572	if (vc->vcore_state == VCORE_PREEMPT && vc->runner == NULL)
4573		kvmppc_vcore_end_preempt(vc);
4574
4575	if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
4576		kvmppc_remove_runnable(vc, vcpu, mftb());
4577		vcpu->stat.signal_exits++;
4578		run->exit_reason = KVM_EXIT_INTR;
4579		vcpu->arch.ret = -EINTR;
4580	}
4581
4582	if (vc->n_runnable && vc->vcore_state == VCORE_INACTIVE) {
4583		/* Wake up some vcpu to run the core */
4584		i = -1;
4585		v = next_runnable_thread(vc, &i);
4586		wake_up(&v->arch.cpu_run);
4587	}
4588
4589	trace_kvmppc_run_vcpu_exit(vcpu);
4590	spin_unlock(&vc->lock);
4591	return vcpu->arch.ret;
4592}
4593
4594int kvmhv_run_single_vcpu(struct kvm_vcpu *vcpu, u64 time_limit,
4595			  unsigned long lpcr)
4596{
4597	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
4598	struct kvm_run *run = vcpu->run;
4599	int trap, r, pcpu;
4600	int srcu_idx;
4601	struct kvmppc_vcore *vc;
4602	struct kvm *kvm = vcpu->kvm;
4603	struct kvm_nested_guest *nested = vcpu->arch.nested;
4604	unsigned long flags;
4605	u64 tb;
4606
4607	trace_kvmppc_run_vcpu_enter(vcpu);
4608
4609	run->exit_reason = 0;
4610	vcpu->arch.ret = RESUME_GUEST;
4611	vcpu->arch.trap = 0;
4612
4613	vc = vcpu->arch.vcore;
4614	vcpu->arch.ceded = 0;
4615	vcpu->arch.run_task = current;
4616	vcpu->arch.last_inst = KVM_INST_FETCH_FAILED;
4617
4618	/* See if the MMU is ready to go */
4619	if (unlikely(!kvm->arch.mmu_ready)) {
4620		r = kvmhv_setup_mmu(vcpu);
4621		if (r) {
4622			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4623			run->fail_entry.hardware_entry_failure_reason = 0;
4624			vcpu->arch.ret = r;
4625			return r;
4626		}
4627	}
4628
4629	if (need_resched())
4630		cond_resched();
4631
4632	kvmppc_update_vpas(vcpu);
4633
4634	preempt_disable();
4635	pcpu = smp_processor_id();
4636	if (kvm_is_radix(kvm))
4637		kvmppc_prepare_radix_vcpu(vcpu, pcpu);
4638
4639	/* flags save not required, but irq_pmu has no disable/enable API */
4640	powerpc_local_irq_pmu_save(flags);
4641
4642	vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
4643
4644	if (signal_pending(current))
4645		goto sigpend;
4646	if (need_resched() || !kvm->arch.mmu_ready)
4647		goto out;
4648
4649	vcpu->cpu = pcpu;
4650	vcpu->arch.thread_cpu = pcpu;
4651	vc->pcpu = pcpu;
4652	local_paca->kvm_hstate.kvm_vcpu = vcpu;
4653	local_paca->kvm_hstate.ptid = 0;
4654	local_paca->kvm_hstate.fake_suspend = 0;
4655
4656	/*
4657	 * Orders set cpu/thread_cpu vs testing for pending interrupts and
4658	 * doorbells below. The other side is when these fields are set vs
4659	 * kvmppc_fast_vcpu_kick_hv reading the cpu/thread_cpu fields to
4660	 * kick a vCPU to notice the pending interrupt.
4661	 */
4662	smp_mb();
4663
4664	if (!nested) {
4665		kvmppc_core_prepare_to_enter(vcpu);
4666		if (test_bit(BOOK3S_IRQPRIO_EXTERNAL,
4667			     &vcpu->arch.pending_exceptions) ||
4668		    xive_interrupt_pending(vcpu)) {
4669			/*
4670			 * For nested HV, don't synthesize but always pass MER,
4671			 * the L0 will be able to optimise that more
4672			 * effectively than manipulating registers directly.
4673			 */
4674			if (!kvmhv_on_pseries() && (__kvmppc_get_msr_hv(vcpu) & MSR_EE))
4675				kvmppc_inject_interrupt_hv(vcpu,
4676							   BOOK3S_INTERRUPT_EXTERNAL, 0);
4677			else
4678				lpcr |= LPCR_MER;
4679		}
4680	} else if (vcpu->arch.pending_exceptions ||
4681		   vcpu->arch.doorbell_request ||
4682		   xive_interrupt_pending(vcpu)) {
4683		vcpu->arch.ret = RESUME_HOST;
4684		goto out;
4685	}
4686
4687	if (vcpu->arch.timer_running) {
4688		hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
4689		vcpu->arch.timer_running = 0;
4690	}
4691
4692	tb = mftb();
4693
4694	kvmppc_update_vpa_dispatch_p9(vcpu, vc, tb + vc->tb_offset);
4695
4696	trace_kvm_guest_enter(vcpu);
4697
4698	guest_timing_enter_irqoff();
4699
4700	srcu_idx = srcu_read_lock(&kvm->srcu);
4701
4702	guest_state_enter_irqoff();
4703	this_cpu_disable_ftrace();
4704
4705	trap = kvmhv_p9_guest_entry(vcpu, time_limit, lpcr, &tb);
4706	vcpu->arch.trap = trap;
4707
4708	this_cpu_enable_ftrace();
4709	guest_state_exit_irqoff();
4710
4711	srcu_read_unlock(&kvm->srcu, srcu_idx);
4712
4713	set_irq_happened(trap);
4714
4715	vcpu->cpu = -1;
4716	vcpu->arch.thread_cpu = -1;
4717	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4718
4719	if (!vtime_accounting_enabled_this_cpu()) {
4720		powerpc_local_irq_pmu_restore(flags);
4721		/*
4722		 * Service IRQs here before guest_timing_exit_irqoff() so any
4723		 * ticks that occurred while running the guest are accounted to
4724		 * the guest. If vtime accounting is enabled, accounting uses
4725		 * TB rather than ticks, so it can be done without enabling
4726		 * interrupts here, which has the problem that it accounts
4727		 * interrupt processing overhead to the host.
4728		 */
4729		powerpc_local_irq_pmu_save(flags);
4730	}
4731	guest_timing_exit_irqoff();
4732
4733	powerpc_local_irq_pmu_restore(flags);
4734
4735	preempt_enable();
4736
4737	/*
4738	 * cancel pending decrementer exception if DEC is now positive, or if
4739	 * entering a nested guest in which case the decrementer is now owned
4740	 * by L2 and the L1 decrementer is provided in hdec_expires
4741	 */
4742	if (kvmppc_core_pending_dec(vcpu) &&
4743			((tb < kvmppc_dec_expires_host_tb(vcpu)) ||
4744			 (trap == BOOK3S_INTERRUPT_SYSCALL &&
4745			  kvmppc_get_gpr(vcpu, 3) == H_ENTER_NESTED)))
4746		kvmppc_core_dequeue_dec(vcpu);
4747
4748	trace_kvm_guest_exit(vcpu);
4749	r = RESUME_GUEST;
4750	if (trap) {
4751		if (!nested)
4752			r = kvmppc_handle_exit_hv(vcpu, current);
4753		else
4754			r = kvmppc_handle_nested_exit(vcpu);
4755	}
4756	vcpu->arch.ret = r;
4757
4758	if (is_kvmppc_resume_guest(r) && !kvmppc_vcpu_check_block(vcpu)) {
4759		kvmppc_set_timer(vcpu);
4760
4761		prepare_to_rcuwait(wait);
4762		for (;;) {
4763			set_current_state(TASK_INTERRUPTIBLE);
4764			if (signal_pending(current)) {
4765				vcpu->stat.signal_exits++;
4766				run->exit_reason = KVM_EXIT_INTR;
4767				vcpu->arch.ret = -EINTR;
4768				break;
4769			}
4770
4771			if (kvmppc_vcpu_check_block(vcpu))
4772				break;
4773
4774			trace_kvmppc_vcore_blocked(vcpu, 0);
4775			schedule();
4776			trace_kvmppc_vcore_blocked(vcpu, 1);
4777		}
4778		finish_rcuwait(wait);
4779	}
4780	vcpu->arch.ceded = 0;
4781
4782 done:
4783	trace_kvmppc_run_vcpu_exit(vcpu);
4784
4785	return vcpu->arch.ret;
4786
4787 sigpend:
4788	vcpu->stat.signal_exits++;
4789	run->exit_reason = KVM_EXIT_INTR;
4790	vcpu->arch.ret = -EINTR;
4791 out:
4792	vcpu->cpu = -1;
4793	vcpu->arch.thread_cpu = -1;
4794	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4795	powerpc_local_irq_pmu_restore(flags);
4796	preempt_enable();
4797	goto done;
4798}
4799
4800static int kvmppc_vcpu_run_hv(struct kvm_vcpu *vcpu)
4801{
4802	struct kvm_run *run = vcpu->run;
4803	int r;
4804	int srcu_idx;
4805	struct kvm *kvm;
4806	unsigned long msr;
4807
4808	start_timing(vcpu, &vcpu->arch.vcpu_entry);
4809
4810	if (!vcpu->arch.sane) {
4811		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4812		return -EINVAL;
4813	}
4814
4815	/* No need to go into the guest when all we'll do is come back out */
4816	if (signal_pending(current)) {
4817		run->exit_reason = KVM_EXIT_INTR;
4818		return -EINTR;
4819	}
4820
4821#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
4822	/*
4823	 * Don't allow entry with a suspended transaction, because
4824	 * the guest entry/exit code will lose it.
4825	 */
4826	if (cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
4827	    (current->thread.regs->msr & MSR_TM)) {
4828		if (MSR_TM_ACTIVE(current->thread.regs->msr)) {
4829			run->exit_reason = KVM_EXIT_FAIL_ENTRY;
4830			run->fail_entry.hardware_entry_failure_reason = 0;
4831			return -EINVAL;
4832		}
4833	}
4834#endif
4835
4836	/*
4837	 * Force online to 1 for the sake of old userspace which doesn't
4838	 * set it.
4839	 */
4840	if (!vcpu->arch.online) {
4841		atomic_inc(&vcpu->arch.vcore->online_count);
4842		vcpu->arch.online = 1;
4843	}
4844
4845	kvmppc_core_prepare_to_enter(vcpu);
4846
4847	kvm = vcpu->kvm;
4848	atomic_inc(&kvm->arch.vcpus_running);
4849	/* Order vcpus_running vs. mmu_ready, see kvmppc_alloc_reset_hpt */
4850	smp_mb();
4851
4852	msr = 0;
4853	if (IS_ENABLED(CONFIG_PPC_FPU))
4854		msr |= MSR_FP;
4855	if (cpu_has_feature(CPU_FTR_ALTIVEC))
4856		msr |= MSR_VEC;
4857	if (cpu_has_feature(CPU_FTR_VSX))
4858		msr |= MSR_VSX;
4859	if ((cpu_has_feature(CPU_FTR_TM) ||
4860	    cpu_has_feature(CPU_FTR_P9_TM_HV_ASSIST)) &&
4861			(kvmppc_get_hfscr_hv(vcpu) & HFSCR_TM))
4862		msr |= MSR_TM;
4863	msr = msr_check_and_set(msr);
4864
4865	kvmppc_save_user_regs();
4866
4867	kvmppc_save_current_sprs();
4868
4869	if (!cpu_has_feature(CPU_FTR_ARCH_300))
4870		vcpu->arch.waitp = &vcpu->arch.vcore->wait;
4871	vcpu->arch.pgdir = kvm->mm->pgd;
4872	vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
4873
4874	do {
4875		accumulate_time(vcpu, &vcpu->arch.guest_entry);
4876		if (cpu_has_feature(CPU_FTR_ARCH_300))
4877			r = kvmhv_run_single_vcpu(vcpu, ~(u64)0,
4878						  vcpu->arch.vcore->lpcr);
4879		else
4880			r = kvmppc_run_vcpu(vcpu);
4881
4882		if (run->exit_reason == KVM_EXIT_PAPR_HCALL) {
4883			accumulate_time(vcpu, &vcpu->arch.hcall);
4884
4885			if (WARN_ON_ONCE(__kvmppc_get_msr_hv(vcpu) & MSR_PR)) {
4886				/*
4887				 * These should have been caught reflected
4888				 * into the guest by now. Final sanity check:
4889				 * don't allow userspace to execute hcalls in
4890				 * the hypervisor.
4891				 */
4892				r = RESUME_GUEST;
4893				continue;
4894			}
4895			trace_kvm_hcall_enter(vcpu);
4896			r = kvmppc_pseries_do_hcall(vcpu);
4897			trace_kvm_hcall_exit(vcpu, r);
4898			kvmppc_core_prepare_to_enter(vcpu);
4899		} else if (r == RESUME_PAGE_FAULT) {
4900			accumulate_time(vcpu, &vcpu->arch.pg_fault);
4901			srcu_idx = srcu_read_lock(&kvm->srcu);
4902			r = kvmppc_book3s_hv_page_fault(vcpu,
4903				vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
4904			srcu_read_unlock(&kvm->srcu, srcu_idx);
4905		} else if (r == RESUME_PASSTHROUGH) {
4906			if (WARN_ON(xics_on_xive()))
4907				r = H_SUCCESS;
4908			else
4909				r = kvmppc_xics_rm_complete(vcpu, 0);
4910		}
4911	} while (is_kvmppc_resume_guest(r));
4912	accumulate_time(vcpu, &vcpu->arch.vcpu_exit);
4913
4914	vcpu->arch.state = KVMPPC_VCPU_NOTREADY;
4915	atomic_dec(&kvm->arch.vcpus_running);
4916
4917	srr_regs_clobbered();
4918
4919	end_timing(vcpu);
4920
4921	return r;
4922}
4923
4924static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
4925				     int shift, int sllp)
4926{
4927	(*sps)->page_shift = shift;
4928	(*sps)->slb_enc = sllp;
4929	(*sps)->enc[0].page_shift = shift;
4930	(*sps)->enc[0].pte_enc = kvmppc_pgsize_lp_encoding(shift, shift);
4931	/*
4932	 * Add 16MB MPSS support (may get filtered out by userspace)
4933	 */
4934	if (shift != 24) {
4935		int penc = kvmppc_pgsize_lp_encoding(shift, 24);
4936		if (penc != -1) {
4937			(*sps)->enc[1].page_shift = 24;
4938			(*sps)->enc[1].pte_enc = penc;
4939		}
4940	}
4941	(*sps)++;
4942}
4943
4944static int kvm_vm_ioctl_get_smmu_info_hv(struct kvm *kvm,
4945					 struct kvm_ppc_smmu_info *info)
4946{
4947	struct kvm_ppc_one_seg_page_size *sps;
4948
4949	/*
4950	 * POWER7, POWER8 and POWER9 all support 32 storage keys for data.
4951	 * POWER7 doesn't support keys for instruction accesses,
4952	 * POWER8 and POWER9 do.
4953	 */
4954	info->data_keys = 32;
4955	info->instr_keys = cpu_has_feature(CPU_FTR_ARCH_207S) ? 32 : 0;
4956
4957	/* POWER7, 8 and 9 all have 1T segments and 32-entry SLB */
4958	info->flags = KVM_PPC_PAGE_SIZES_REAL | KVM_PPC_1T_SEGMENTS;
4959	info->slb_size = 32;
4960
4961	/* We only support these sizes for now, and no muti-size segments */
4962	sps = &info->sps[0];
4963	kvmppc_add_seg_page_size(&sps, 12, 0);
4964	kvmppc_add_seg_page_size(&sps, 16, SLB_VSID_L | SLB_VSID_LP_01);
4965	kvmppc_add_seg_page_size(&sps, 24, SLB_VSID_L);
4966
4967	/* If running as a nested hypervisor, we don't support HPT guests */
4968	if (kvmhv_on_pseries())
4969		info->flags |= KVM_PPC_NO_HASH;
4970
4971	return 0;
4972}
4973
4974/*
4975 * Get (and clear) the dirty memory log for a memory slot.
4976 */
4977static int kvm_vm_ioctl_get_dirty_log_hv(struct kvm *kvm,
4978					 struct kvm_dirty_log *log)
4979{
4980	struct kvm_memslots *slots;
4981	struct kvm_memory_slot *memslot;
4982	int r;
4983	unsigned long n, i;
4984	unsigned long *buf, *p;
4985	struct kvm_vcpu *vcpu;
4986
4987	mutex_lock(&kvm->slots_lock);
4988
4989	r = -EINVAL;
4990	if (log->slot >= KVM_USER_MEM_SLOTS)
4991		goto out;
4992
4993	slots = kvm_memslots(kvm);
4994	memslot = id_to_memslot(slots, log->slot);
4995	r = -ENOENT;
4996	if (!memslot || !memslot->dirty_bitmap)
4997		goto out;
4998
4999	/*
5000	 * Use second half of bitmap area because both HPT and radix
5001	 * accumulate bits in the first half.
5002	 */
5003	n = kvm_dirty_bitmap_bytes(memslot);
5004	buf = memslot->dirty_bitmap + n / sizeof(long);
5005	memset(buf, 0, n);
5006
5007	if (kvm_is_radix(kvm))
5008		r = kvmppc_hv_get_dirty_log_radix(kvm, memslot, buf);
5009	else
5010		r = kvmppc_hv_get_dirty_log_hpt(kvm, memslot, buf);
5011	if (r)
5012		goto out;
5013
5014	/*
5015	 * We accumulate dirty bits in the first half of the
5016	 * memslot's dirty_bitmap area, for when pages are paged
5017	 * out or modified by the host directly.  Pick up these
5018	 * bits and add them to the map.
5019	 */
5020	p = memslot->dirty_bitmap;
5021	for (i = 0; i < n / sizeof(long); ++i)
5022		buf[i] |= xchg(&p[i], 0);
5023
5024	/* Harvest dirty bits from VPA and DTL updates */
5025	/* Note: we never modify the SLB shadow buffer areas */
5026	kvm_for_each_vcpu(i, vcpu, kvm) {
5027		spin_lock(&vcpu->arch.vpa_update_lock);
5028		kvmppc_harvest_vpa_dirty(&vcpu->arch.vpa, memslot, buf);
5029		kvmppc_harvest_vpa_dirty(&vcpu->arch.dtl, memslot, buf);
5030		spin_unlock(&vcpu->arch.vpa_update_lock);
5031	}
5032
5033	r = -EFAULT;
5034	if (copy_to_user(log->dirty_bitmap, buf, n))
5035		goto out;
5036
5037	r = 0;
5038out:
5039	mutex_unlock(&kvm->slots_lock);
5040	return r;
5041}
5042
5043static void kvmppc_core_free_memslot_hv(struct kvm_memory_slot *slot)
5044{
5045	vfree(slot->arch.rmap);
5046	slot->arch.rmap = NULL;
5047}
5048
5049static int kvmppc_core_prepare_memory_region_hv(struct kvm *kvm,
5050				const struct kvm_memory_slot *old,
5051				struct kvm_memory_slot *new,
5052				enum kvm_mr_change change)
5053{
5054	if (change == KVM_MR_CREATE) {
5055		unsigned long size = array_size(new->npages, sizeof(*new->arch.rmap));
5056
5057		if ((size >> PAGE_SHIFT) > totalram_pages())
5058			return -ENOMEM;
5059
5060		new->arch.rmap = vzalloc(size);
5061		if (!new->arch.rmap)
5062			return -ENOMEM;
5063	} else if (change != KVM_MR_DELETE) {
5064		new->arch.rmap = old->arch.rmap;
5065	}
5066
5067	return 0;
5068}
5069
5070static void kvmppc_core_commit_memory_region_hv(struct kvm *kvm,
5071				struct kvm_memory_slot *old,
5072				const struct kvm_memory_slot *new,
5073				enum kvm_mr_change change)
5074{
5075	/*
5076	 * If we are creating or modifying a memslot, it might make
5077	 * some address that was previously cached as emulated
5078	 * MMIO be no longer emulated MMIO, so invalidate
5079	 * all the caches of emulated MMIO translations.
5080	 */
5081	if (change != KVM_MR_DELETE)
5082		atomic64_inc(&kvm->arch.mmio_update);
5083
5084	/*
5085	 * For change == KVM_MR_MOVE or KVM_MR_DELETE, higher levels
5086	 * have already called kvm_arch_flush_shadow_memslot() to
5087	 * flush shadow mappings.  For KVM_MR_CREATE we have no
5088	 * previous mappings.  So the only case to handle is
5089	 * KVM_MR_FLAGS_ONLY when the KVM_MEM_LOG_DIRTY_PAGES bit
5090	 * has been changed.
5091	 * For radix guests, we flush on setting KVM_MEM_LOG_DIRTY_PAGES
5092	 * to get rid of any THP PTEs in the partition-scoped page tables
5093	 * so we can track dirtiness at the page level; we flush when
5094	 * clearing KVM_MEM_LOG_DIRTY_PAGES so that we can go back to
5095	 * using THP PTEs.
5096	 */
5097	if (change == KVM_MR_FLAGS_ONLY && kvm_is_radix(kvm) &&
5098	    ((new->flags ^ old->flags) & KVM_MEM_LOG_DIRTY_PAGES))
5099		kvmppc_radix_flush_memslot(kvm, old);
5100	/*
5101	 * If UV hasn't yet called H_SVM_INIT_START, don't register memslots.
5102	 */
5103	if (!kvm->arch.secure_guest)
5104		return;
5105
5106	switch (change) {
5107	case KVM_MR_CREATE:
5108		/*
5109		 * @TODO kvmppc_uvmem_memslot_create() can fail and
5110		 * return error. Fix this.
5111		 */
5112		kvmppc_uvmem_memslot_create(kvm, new);
5113		break;
5114	case KVM_MR_DELETE:
5115		kvmppc_uvmem_memslot_delete(kvm, old);
5116		break;
5117	default:
5118		/* TODO: Handle KVM_MR_MOVE */
5119		break;
5120	}
5121}
5122
5123/*
5124 * Update LPCR values in kvm->arch and in vcores.
5125 * Caller must hold kvm->arch.mmu_setup_lock (for mutual exclusion
5126 * of kvm->arch.lpcr update).
5127 */
5128void kvmppc_update_lpcr(struct kvm *kvm, unsigned long lpcr, unsigned long mask)
5129{
5130	long int i;
5131	u32 cores_done = 0;
5132
5133	if ((kvm->arch.lpcr & mask) == lpcr)
5134		return;
5135
5136	kvm->arch.lpcr = (kvm->arch.lpcr & ~mask) | lpcr;
5137
5138	for (i = 0; i < KVM_MAX_VCORES; ++i) {
5139		struct kvmppc_vcore *vc = kvm->arch.vcores[i];
5140		if (!vc)
5141			continue;
5142
5143		spin_lock(&vc->lock);
5144		vc->lpcr = (vc->lpcr & ~mask) | lpcr;
5145		verify_lpcr(kvm, vc->lpcr);
5146		spin_unlock(&vc->lock);
5147		if (++cores_done >= kvm->arch.online_vcores)
5148			break;
5149	}
5150}
5151
5152void kvmppc_setup_partition_table(struct kvm *kvm)
5153{
5154	unsigned long dw0, dw1;
5155
5156	if (!kvm_is_radix(kvm)) {
5157		/* PS field - page size for VRMA */
5158		dw0 = ((kvm->arch.vrma_slb_v & SLB_VSID_L) >> 1) |
5159			((kvm->arch.vrma_slb_v & SLB_VSID_LP) << 1);
5160		/* HTABSIZE and HTABORG fields */
5161		dw0 |= kvm->arch.sdr1;
5162
5163		/* Second dword as set by userspace */
5164		dw1 = kvm->arch.process_table;
5165	} else {
5166		dw0 = PATB_HR | radix__get_tree_size() |
5167			__pa(kvm->arch.pgtable) | RADIX_PGD_INDEX_SIZE;
5168		dw1 = PATB_GR | kvm->arch.process_table;
5169	}
5170	kvmhv_set_ptbl_entry(kvm->arch.lpid, dw0, dw1);
5171}
5172
5173/*
5174 * Set up HPT (hashed page table) and RMA (real-mode area).
5175 * Must be called with kvm->arch.mmu_setup_lock held.
5176 */
5177static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
5178{
5179	int err = 0;
5180	struct kvm *kvm = vcpu->kvm;
5181	unsigned long hva;
5182	struct kvm_memory_slot *memslot;
5183	struct vm_area_struct *vma;
5184	unsigned long lpcr = 0, senc;
5185	unsigned long psize, porder;
5186	int srcu_idx;
5187
5188	/* Allocate hashed page table (if not done already) and reset it */
5189	if (!kvm->arch.hpt.virt) {
5190		int order = KVM_DEFAULT_HPT_ORDER;
5191		struct kvm_hpt_info info;
5192
5193		err = kvmppc_allocate_hpt(&info, order);
5194		/* If we get here, it means userspace didn't specify a
5195		 * size explicitly.  So, try successively smaller
5196		 * sizes if the default failed. */
5197		while ((err == -ENOMEM) && --order >= PPC_MIN_HPT_ORDER)
5198			err  = kvmppc_allocate_hpt(&info, order);
5199
5200		if (err < 0) {
5201			pr_err("KVM: Couldn't alloc HPT\n");
5202			goto out;
5203		}
5204
5205		kvmppc_set_hpt(kvm, &info);
5206	}
5207
5208	/* Look up the memslot for guest physical address 0 */
5209	srcu_idx = srcu_read_lock(&kvm->srcu);
5210	memslot = gfn_to_memslot(kvm, 0);
5211
5212	/* We must have some memory at 0 by now */
5213	err = -EINVAL;
5214	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
5215		goto out_srcu;
5216
5217	/* Look up the VMA for the start of this memory slot */
5218	hva = memslot->userspace_addr;
5219	mmap_read_lock(kvm->mm);
5220	vma = vma_lookup(kvm->mm, hva);
5221	if (!vma || (vma->vm_flags & VM_IO))
5222		goto up_out;
5223
5224	psize = vma_kernel_pagesize(vma);
5225
5226	mmap_read_unlock(kvm->mm);
5227
5228	/* We can handle 4k, 64k or 16M pages in the VRMA */
5229	if (psize >= 0x1000000)
5230		psize = 0x1000000;
5231	else if (psize >= 0x10000)
5232		psize = 0x10000;
5233	else
5234		psize = 0x1000;
5235	porder = __ilog2(psize);
5236
5237	senc = slb_pgsize_encoding(psize);
5238	kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
5239		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5240	/* Create HPTEs in the hash page table for the VRMA */
5241	kvmppc_map_vrma(vcpu, memslot, porder);
5242
5243	/* Update VRMASD field in the LPCR */
5244	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
5245		/* the -4 is to account for senc values starting at 0x10 */
5246		lpcr = senc << (LPCR_VRMASD_SH - 4);
5247		kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
5248	}
5249
5250	/* Order updates to kvm->arch.lpcr etc. vs. mmu_ready */
5251	smp_wmb();
5252	err = 0;
5253 out_srcu:
5254	srcu_read_unlock(&kvm->srcu, srcu_idx);
5255 out:
5256	return err;
5257
5258 up_out:
5259	mmap_read_unlock(kvm->mm);
5260	goto out_srcu;
5261}
5262
5263/*
5264 * Must be called with kvm->arch.mmu_setup_lock held and
5265 * mmu_ready = 0 and no vcpus running.
5266 */
5267int kvmppc_switch_mmu_to_hpt(struct kvm *kvm)
5268{
5269	unsigned long lpcr, lpcr_mask;
5270
5271	if (nesting_enabled(kvm))
5272		kvmhv_release_all_nested(kvm);
5273	kvmppc_rmap_reset(kvm);
5274	kvm->arch.process_table = 0;
5275	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5276	spin_lock(&kvm->mmu_lock);
5277	kvm->arch.radix = 0;
5278	spin_unlock(&kvm->mmu_lock);
5279	kvmppc_free_radix(kvm);
5280
5281	lpcr = LPCR_VPM1;
5282	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5283	if (cpu_has_feature(CPU_FTR_ARCH_31))
5284		lpcr_mask |= LPCR_HAIL;
5285	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5286
5287	return 0;
5288}
5289
5290/*
5291 * Must be called with kvm->arch.mmu_setup_lock held and
5292 * mmu_ready = 0 and no vcpus running.
5293 */
5294int kvmppc_switch_mmu_to_radix(struct kvm *kvm)
5295{
5296	unsigned long lpcr, lpcr_mask;
5297	int err;
5298
5299	err = kvmppc_init_vm_radix(kvm);
5300	if (err)
5301		return err;
5302	kvmppc_rmap_reset(kvm);
5303	/* Mutual exclusion with kvm_unmap_gfn_range etc. */
5304	spin_lock(&kvm->mmu_lock);
5305	kvm->arch.radix = 1;
5306	spin_unlock(&kvm->mmu_lock);
5307	kvmppc_free_hpt(&kvm->arch.hpt);
5308
5309	lpcr = LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5310	lpcr_mask = LPCR_VPM1 | LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5311	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5312		lpcr_mask |= LPCR_HAIL;
5313		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5314				(kvm->arch.host_lpcr & LPCR_HAIL))
5315			lpcr |= LPCR_HAIL;
5316	}
5317	kvmppc_update_lpcr(kvm, lpcr, lpcr_mask);
5318
5319	return 0;
5320}
5321
5322#ifdef CONFIG_KVM_XICS
5323/*
5324 * Allocate a per-core structure for managing state about which cores are
5325 * running in the host versus the guest and for exchanging data between
5326 * real mode KVM and CPU running in the host.
5327 * This is only done for the first VM.
5328 * The allocated structure stays even if all VMs have stopped.
5329 * It is only freed when the kvm-hv module is unloaded.
5330 * It's OK for this routine to fail, we just don't support host
5331 * core operations like redirecting H_IPI wakeups.
5332 */
5333void kvmppc_alloc_host_rm_ops(void)
5334{
5335	struct kvmppc_host_rm_ops *ops;
5336	unsigned long l_ops;
5337	int cpu, core;
5338	int size;
5339
5340	if (cpu_has_feature(CPU_FTR_ARCH_300))
5341		return;
5342
5343	/* Not the first time here ? */
5344	if (kvmppc_host_rm_ops_hv != NULL)
5345		return;
5346
5347	ops = kzalloc(sizeof(struct kvmppc_host_rm_ops), GFP_KERNEL);
5348	if (!ops)
5349		return;
5350
5351	size = cpu_nr_cores() * sizeof(struct kvmppc_host_rm_core);
5352	ops->rm_core = kzalloc(size, GFP_KERNEL);
5353
5354	if (!ops->rm_core) {
5355		kfree(ops);
5356		return;
5357	}
5358
5359	cpus_read_lock();
5360
5361	for (cpu = 0; cpu < nr_cpu_ids; cpu += threads_per_core) {
5362		if (!cpu_online(cpu))
5363			continue;
5364
5365		core = cpu >> threads_shift;
5366		ops->rm_core[core].rm_state.in_host = 1;
5367	}
5368
5369	ops->vcpu_kick = kvmppc_fast_vcpu_kick_hv;
5370
5371	/*
5372	 * Make the contents of the kvmppc_host_rm_ops structure visible
5373	 * to other CPUs before we assign it to the global variable.
5374	 * Do an atomic assignment (no locks used here), but if someone
5375	 * beats us to it, just free our copy and return.
5376	 */
5377	smp_wmb();
5378	l_ops = (unsigned long) ops;
5379
5380	if (cmpxchg64((unsigned long *)&kvmppc_host_rm_ops_hv, 0, l_ops)) {
5381		cpus_read_unlock();
5382		kfree(ops->rm_core);
5383		kfree(ops);
5384		return;
5385	}
5386
5387	cpuhp_setup_state_nocalls_cpuslocked(CPUHP_KVM_PPC_BOOK3S_PREPARE,
5388					     "ppc/kvm_book3s:prepare",
5389					     kvmppc_set_host_core,
5390					     kvmppc_clear_host_core);
5391	cpus_read_unlock();
5392}
5393
5394void kvmppc_free_host_rm_ops(void)
5395{
5396	if (kvmppc_host_rm_ops_hv) {
5397		cpuhp_remove_state_nocalls(CPUHP_KVM_PPC_BOOK3S_PREPARE);
5398		kfree(kvmppc_host_rm_ops_hv->rm_core);
5399		kfree(kvmppc_host_rm_ops_hv);
5400		kvmppc_host_rm_ops_hv = NULL;
5401	}
5402}
5403#endif
5404
5405static int kvmppc_core_init_vm_hv(struct kvm *kvm)
5406{
5407	unsigned long lpcr, lpid;
5408	int ret;
5409
5410	mutex_init(&kvm->arch.uvmem_lock);
5411	INIT_LIST_HEAD(&kvm->arch.uvmem_pfns);
5412	mutex_init(&kvm->arch.mmu_setup_lock);
5413
5414	/* Allocate the guest's logical partition ID */
5415
5416	lpid = kvmppc_alloc_lpid();
5417	if ((long)lpid < 0)
5418		return -ENOMEM;
5419	kvm->arch.lpid = lpid;
5420
5421	kvmppc_alloc_host_rm_ops();
5422
5423	kvmhv_vm_nested_init(kvm);
5424
5425	/*
5426	 * Since we don't flush the TLB when tearing down a VM,
5427	 * and this lpid might have previously been used,
5428	 * make sure we flush on each core before running the new VM.
5429	 * On POWER9, the tlbie in mmu_partition_table_set_entry()
5430	 * does this flush for us.
5431	 */
5432	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5433		cpumask_setall(&kvm->arch.need_tlb_flush);
5434
5435	/* Start out with the default set of hcalls enabled */
5436	memcpy(kvm->arch.enabled_hcalls, default_enabled_hcalls,
5437	       sizeof(kvm->arch.enabled_hcalls));
5438
5439	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5440		kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
5441
5442	/* Init LPCR for virtual RMA mode */
5443	if (cpu_has_feature(CPU_FTR_HVMODE)) {
5444		kvm->arch.host_lpid = mfspr(SPRN_LPID);
5445		kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
5446		lpcr &= LPCR_PECE | LPCR_LPES;
5447	} else {
5448		/*
5449		 * The L2 LPES mode will be set by the L0 according to whether
5450		 * or not it needs to take external interrupts in HV mode.
5451		 */
5452		lpcr = 0;
5453	}
5454	lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
5455		LPCR_VPM0 | LPCR_VPM1;
5456	kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
5457		(VRMA_VSID << SLB_VSID_SHIFT_1T);
5458	/* On POWER8 turn on online bit to enable PURR/SPURR */
5459	if (cpu_has_feature(CPU_FTR_ARCH_207S))
5460		lpcr |= LPCR_ONL;
5461	/*
5462	 * On POWER9, VPM0 bit is reserved (VPM0=1 behaviour is assumed)
5463	 * Set HVICE bit to enable hypervisor virtualization interrupts.
5464	 * Set HEIC to prevent OS interrupts to go to hypervisor (should
5465	 * be unnecessary but better safe than sorry in case we re-enable
5466	 * EE in HV mode with this LPCR still set)
5467	 */
5468	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5469		lpcr &= ~LPCR_VPM0;
5470		lpcr |= LPCR_HVICE | LPCR_HEIC;
5471
5472		/*
5473		 * If xive is enabled, we route 0x500 interrupts directly
5474		 * to the guest.
5475		 */
5476		if (xics_on_xive())
5477			lpcr |= LPCR_LPES;
5478	}
5479
5480	/*
5481	 * If the host uses radix, the guest starts out as radix.
5482	 */
5483	if (radix_enabled()) {
5484		kvm->arch.radix = 1;
5485		kvm->arch.mmu_ready = 1;
5486		lpcr &= ~LPCR_VPM1;
5487		lpcr |= LPCR_UPRT | LPCR_GTSE | LPCR_HR;
5488		if (cpu_has_feature(CPU_FTR_HVMODE) &&
5489		    cpu_has_feature(CPU_FTR_ARCH_31) &&
5490		    (kvm->arch.host_lpcr & LPCR_HAIL))
5491			lpcr |= LPCR_HAIL;
5492		ret = kvmppc_init_vm_radix(kvm);
5493		if (ret) {
5494			kvmppc_free_lpid(kvm->arch.lpid);
5495			return ret;
5496		}
5497		kvmppc_setup_partition_table(kvm);
5498	}
5499
5500	verify_lpcr(kvm, lpcr);
5501	kvm->arch.lpcr = lpcr;
5502
5503	/* Initialization for future HPT resizes */
5504	kvm->arch.resize_hpt = NULL;
5505
5506	/*
5507	 * Work out how many sets the TLB has, for the use of
5508	 * the TLB invalidation loop in book3s_hv_rmhandlers.S.
5509	 */
5510	if (cpu_has_feature(CPU_FTR_ARCH_31)) {
5511		/*
5512		 * P10 will flush all the congruence class with a single tlbiel
5513		 */
5514		kvm->arch.tlb_sets = 1;
5515	} else if (radix_enabled())
5516		kvm->arch.tlb_sets = POWER9_TLB_SETS_RADIX;	/* 128 */
5517	else if (cpu_has_feature(CPU_FTR_ARCH_300))
5518		kvm->arch.tlb_sets = POWER9_TLB_SETS_HASH;	/* 256 */
5519	else if (cpu_has_feature(CPU_FTR_ARCH_207S))
5520		kvm->arch.tlb_sets = POWER8_TLB_SETS;		/* 512 */
5521	else
5522		kvm->arch.tlb_sets = POWER7_TLB_SETS;		/* 128 */
5523
5524	/*
5525	 * Track that we now have a HV mode VM active. This blocks secondary
5526	 * CPU threads from coming online.
5527	 */
5528	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5529		kvm_hv_vm_activated();
5530
5531	/*
5532	 * Initialize smt_mode depending on processor.
5533	 * POWER8 and earlier have to use "strict" threading, where
5534	 * all vCPUs in a vcore have to run on the same (sub)core,
5535	 * whereas on POWER9 the threads can each run a different
5536	 * guest.
5537	 */
5538	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5539		kvm->arch.smt_mode = threads_per_subcore;
5540	else
5541		kvm->arch.smt_mode = 1;
5542	kvm->arch.emul_smt_mode = 1;
5543
5544	return 0;
5545}
5546
5547static int kvmppc_arch_create_vm_debugfs_hv(struct kvm *kvm)
5548{
5549	kvmppc_mmu_debugfs_init(kvm);
5550	if (radix_enabled())
5551		kvmhv_radix_debugfs_init(kvm);
5552	return 0;
5553}
5554
5555static void kvmppc_free_vcores(struct kvm *kvm)
5556{
5557	long int i;
5558
5559	for (i = 0; i < KVM_MAX_VCORES; ++i)
5560		kfree(kvm->arch.vcores[i]);
5561	kvm->arch.online_vcores = 0;
5562}
5563
5564static void kvmppc_core_destroy_vm_hv(struct kvm *kvm)
5565{
5566	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5567		kvm_hv_vm_deactivated();
5568
5569	kvmppc_free_vcores(kvm);
5570
5571
5572	if (kvm_is_radix(kvm))
5573		kvmppc_free_radix(kvm);
5574	else
5575		kvmppc_free_hpt(&kvm->arch.hpt);
5576
5577	/* Perform global invalidation and return lpid to the pool */
5578	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
5579		if (nesting_enabled(kvm))
5580			kvmhv_release_all_nested(kvm);
5581		kvm->arch.process_table = 0;
5582		if (kvm->arch.secure_guest)
5583			uv_svm_terminate(kvm->arch.lpid);
5584		kvmhv_set_ptbl_entry(kvm->arch.lpid, 0, 0);
5585	}
5586
5587	kvmppc_free_lpid(kvm->arch.lpid);
5588
5589	kvmppc_free_pimap(kvm);
5590}
5591
5592/* We don't need to emulate any privileged instructions or dcbz */
5593static int kvmppc_core_emulate_op_hv(struct kvm_vcpu *vcpu,
5594				     unsigned int inst, int *advance)
5595{
5596	return EMULATE_FAIL;
5597}
5598
5599static int kvmppc_core_emulate_mtspr_hv(struct kvm_vcpu *vcpu, int sprn,
5600					ulong spr_val)
5601{
5602	return EMULATE_FAIL;
5603}
5604
5605static int kvmppc_core_emulate_mfspr_hv(struct kvm_vcpu *vcpu, int sprn,
5606					ulong *spr_val)
5607{
5608	return EMULATE_FAIL;
5609}
5610
5611static int kvmppc_core_check_processor_compat_hv(void)
5612{
5613	if (cpu_has_feature(CPU_FTR_HVMODE) &&
5614	    cpu_has_feature(CPU_FTR_ARCH_206))
5615		return 0;
5616
5617	/* POWER9 in radix mode is capable of being a nested hypervisor. */
5618	if (cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled())
5619		return 0;
5620
5621	return -EIO;
5622}
5623
5624#ifdef CONFIG_KVM_XICS
5625
5626void kvmppc_free_pimap(struct kvm *kvm)
5627{
5628	kfree(kvm->arch.pimap);
5629}
5630
5631static struct kvmppc_passthru_irqmap *kvmppc_alloc_pimap(void)
5632{
5633	return kzalloc(sizeof(struct kvmppc_passthru_irqmap), GFP_KERNEL);
5634}
5635
5636static int kvmppc_set_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5637{
5638	struct irq_desc *desc;
5639	struct kvmppc_irq_map *irq_map;
5640	struct kvmppc_passthru_irqmap *pimap;
5641	struct irq_chip *chip;
5642	int i, rc = 0;
5643	struct irq_data *host_data;
5644
5645	if (!kvm_irq_bypass)
5646		return 1;
5647
5648	desc = irq_to_desc(host_irq);
5649	if (!desc)
5650		return -EIO;
5651
5652	mutex_lock(&kvm->lock);
5653
5654	pimap = kvm->arch.pimap;
5655	if (pimap == NULL) {
5656		/* First call, allocate structure to hold IRQ map */
5657		pimap = kvmppc_alloc_pimap();
5658		if (pimap == NULL) {
5659			mutex_unlock(&kvm->lock);
5660			return -ENOMEM;
5661		}
5662		kvm->arch.pimap = pimap;
5663	}
5664
5665	/*
5666	 * For now, we only support interrupts for which the EOI operation
5667	 * is an OPAL call followed by a write to XIRR, since that's
5668	 * what our real-mode EOI code does, or a XIVE interrupt
5669	 */
5670	chip = irq_data_get_irq_chip(&desc->irq_data);
5671	if (!chip || !is_pnv_opal_msi(chip)) {
5672		pr_warn("kvmppc_set_passthru_irq_hv: Could not assign IRQ map for (%d,%d)\n",
5673			host_irq, guest_gsi);
5674		mutex_unlock(&kvm->lock);
5675		return -ENOENT;
5676	}
5677
5678	/*
5679	 * See if we already have an entry for this guest IRQ number.
5680	 * If it's mapped to a hardware IRQ number, that's an error,
5681	 * otherwise re-use this entry.
5682	 */
5683	for (i = 0; i < pimap->n_mapped; i++) {
5684		if (guest_gsi == pimap->mapped[i].v_hwirq) {
5685			if (pimap->mapped[i].r_hwirq) {
5686				mutex_unlock(&kvm->lock);
5687				return -EINVAL;
5688			}
5689			break;
5690		}
5691	}
5692
5693	if (i == KVMPPC_PIRQ_MAPPED) {
5694		mutex_unlock(&kvm->lock);
5695		return -EAGAIN;		/* table is full */
5696	}
5697
5698	irq_map = &pimap->mapped[i];
5699
5700	irq_map->v_hwirq = guest_gsi;
5701	irq_map->desc = desc;
5702
5703	/*
5704	 * Order the above two stores before the next to serialize with
5705	 * the KVM real mode handler.
5706	 */
5707	smp_wmb();
5708
5709	/*
5710	 * The 'host_irq' number is mapped in the PCI-MSI domain but
5711	 * the underlying calls, which will EOI the interrupt in real
5712	 * mode, need an HW IRQ number mapped in the XICS IRQ domain.
5713	 */
5714	host_data = irq_domain_get_irq_data(irq_get_default_host(), host_irq);
5715	irq_map->r_hwirq = (unsigned int)irqd_to_hwirq(host_data);
5716
5717	if (i == pimap->n_mapped)
5718		pimap->n_mapped++;
5719
5720	if (xics_on_xive())
5721		rc = kvmppc_xive_set_mapped(kvm, guest_gsi, host_irq);
5722	else
5723		kvmppc_xics_set_mapped(kvm, guest_gsi, irq_map->r_hwirq);
5724	if (rc)
5725		irq_map->r_hwirq = 0;
5726
5727	mutex_unlock(&kvm->lock);
5728
5729	return 0;
5730}
5731
5732static int kvmppc_clr_passthru_irq(struct kvm *kvm, int host_irq, int guest_gsi)
5733{
5734	struct irq_desc *desc;
5735	struct kvmppc_passthru_irqmap *pimap;
5736	int i, rc = 0;
5737
5738	if (!kvm_irq_bypass)
5739		return 0;
5740
5741	desc = irq_to_desc(host_irq);
5742	if (!desc)
5743		return -EIO;
5744
5745	mutex_lock(&kvm->lock);
5746	if (!kvm->arch.pimap)
5747		goto unlock;
5748
5749	pimap = kvm->arch.pimap;
5750
5751	for (i = 0; i < pimap->n_mapped; i++) {
5752		if (guest_gsi == pimap->mapped[i].v_hwirq)
5753			break;
5754	}
5755
5756	if (i == pimap->n_mapped) {
5757		mutex_unlock(&kvm->lock);
5758		return -ENODEV;
5759	}
5760
5761	if (xics_on_xive())
5762		rc = kvmppc_xive_clr_mapped(kvm, guest_gsi, host_irq);
5763	else
5764		kvmppc_xics_clr_mapped(kvm, guest_gsi, pimap->mapped[i].r_hwirq);
5765
5766	/* invalidate the entry (what to do on error from the above ?) */
5767	pimap->mapped[i].r_hwirq = 0;
5768
5769	/*
5770	 * We don't free this structure even when the count goes to
5771	 * zero. The structure is freed when we destroy the VM.
5772	 */
5773 unlock:
5774	mutex_unlock(&kvm->lock);
5775	return rc;
5776}
5777
5778static int kvmppc_irq_bypass_add_producer_hv(struct irq_bypass_consumer *cons,
5779					     struct irq_bypass_producer *prod)
5780{
5781	int ret = 0;
5782	struct kvm_kernel_irqfd *irqfd =
5783		container_of(cons, struct kvm_kernel_irqfd, consumer);
5784
5785	irqfd->producer = prod;
5786
5787	ret = kvmppc_set_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5788	if (ret)
5789		pr_info("kvmppc_set_passthru_irq (irq %d, gsi %d) fails: %d\n",
5790			prod->irq, irqfd->gsi, ret);
5791
5792	return ret;
5793}
5794
5795static void kvmppc_irq_bypass_del_producer_hv(struct irq_bypass_consumer *cons,
5796					      struct irq_bypass_producer *prod)
5797{
5798	int ret;
5799	struct kvm_kernel_irqfd *irqfd =
5800		container_of(cons, struct kvm_kernel_irqfd, consumer);
5801
5802	irqfd->producer = NULL;
5803
5804	/*
5805	 * When producer of consumer is unregistered, we change back to
5806	 * default external interrupt handling mode - KVM real mode
5807	 * will switch back to host.
5808	 */
5809	ret = kvmppc_clr_passthru_irq(irqfd->kvm, prod->irq, irqfd->gsi);
5810	if (ret)
5811		pr_warn("kvmppc_clr_passthru_irq (irq %d, gsi %d) fails: %d\n",
5812			prod->irq, irqfd->gsi, ret);
5813}
5814#endif
5815
5816static int kvm_arch_vm_ioctl_hv(struct file *filp,
5817				unsigned int ioctl, unsigned long arg)
5818{
5819	struct kvm *kvm __maybe_unused = filp->private_data;
5820	void __user *argp = (void __user *)arg;
5821	int r;
5822
5823	switch (ioctl) {
5824
5825	case KVM_PPC_ALLOCATE_HTAB: {
5826		u32 htab_order;
5827
5828		/* If we're a nested hypervisor, we currently only support radix */
5829		if (kvmhv_on_pseries()) {
5830			r = -EOPNOTSUPP;
5831			break;
5832		}
5833
5834		r = -EFAULT;
5835		if (get_user(htab_order, (u32 __user *)argp))
5836			break;
5837		r = kvmppc_alloc_reset_hpt(kvm, htab_order);
5838		if (r)
5839			break;
5840		r = 0;
5841		break;
5842	}
5843
5844	case KVM_PPC_GET_HTAB_FD: {
5845		struct kvm_get_htab_fd ghf;
5846
5847		r = -EFAULT;
5848		if (copy_from_user(&ghf, argp, sizeof(ghf)))
5849			break;
5850		r = kvm_vm_ioctl_get_htab_fd(kvm, &ghf);
5851		break;
5852	}
5853
5854	case KVM_PPC_RESIZE_HPT_PREPARE: {
5855		struct kvm_ppc_resize_hpt rhpt;
5856
5857		r = -EFAULT;
5858		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5859			break;
5860
5861		r = kvm_vm_ioctl_resize_hpt_prepare(kvm, &rhpt);
5862		break;
5863	}
5864
5865	case KVM_PPC_RESIZE_HPT_COMMIT: {
5866		struct kvm_ppc_resize_hpt rhpt;
5867
5868		r = -EFAULT;
5869		if (copy_from_user(&rhpt, argp, sizeof(rhpt)))
5870			break;
5871
5872		r = kvm_vm_ioctl_resize_hpt_commit(kvm, &rhpt);
5873		break;
5874	}
5875
5876	default:
5877		r = -ENOTTY;
5878	}
5879
5880	return r;
5881}
5882
5883/*
5884 * List of hcall numbers to enable by default.
5885 * For compatibility with old userspace, we enable by default
5886 * all hcalls that were implemented before the hcall-enabling
5887 * facility was added.  Note this list should not include H_RTAS.
5888 */
5889static unsigned int default_hcall_list[] = {
5890	H_REMOVE,
5891	H_ENTER,
5892	H_READ,
5893	H_PROTECT,
5894	H_BULK_REMOVE,
5895#ifdef CONFIG_SPAPR_TCE_IOMMU
5896	H_GET_TCE,
5897	H_PUT_TCE,
5898#endif
5899	H_SET_DABR,
5900	H_SET_XDABR,
5901	H_CEDE,
5902	H_PROD,
5903	H_CONFER,
5904	H_REGISTER_VPA,
5905#ifdef CONFIG_KVM_XICS
5906	H_EOI,
5907	H_CPPR,
5908	H_IPI,
5909	H_IPOLL,
5910	H_XIRR,
5911	H_XIRR_X,
5912#endif
5913	0
5914};
5915
5916static void init_default_hcalls(void)
5917{
5918	int i;
5919	unsigned int hcall;
5920
5921	for (i = 0; default_hcall_list[i]; ++i) {
5922		hcall = default_hcall_list[i];
5923		WARN_ON(!kvmppc_hcall_impl_hv(hcall));
5924		__set_bit(hcall / 4, default_enabled_hcalls);
5925	}
5926}
5927
5928static int kvmhv_configure_mmu(struct kvm *kvm, struct kvm_ppc_mmuv3_cfg *cfg)
5929{
5930	unsigned long lpcr;
5931	int radix;
5932	int err;
5933
5934	/* If not on a POWER9, reject it */
5935	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5936		return -ENODEV;
5937
5938	/* If any unknown flags set, reject it */
5939	if (cfg->flags & ~(KVM_PPC_MMUV3_RADIX | KVM_PPC_MMUV3_GTSE))
5940		return -EINVAL;
5941
5942	/* GR (guest radix) bit in process_table field must match */
5943	radix = !!(cfg->flags & KVM_PPC_MMUV3_RADIX);
5944	if (!!(cfg->process_table & PATB_GR) != radix)
5945		return -EINVAL;
5946
5947	/* Process table size field must be reasonable, i.e. <= 24 */
5948	if ((cfg->process_table & PRTS_MASK) > 24)
5949		return -EINVAL;
5950
5951	/* We can change a guest to/from radix now, if the host is radix */
5952	if (radix && !radix_enabled())
5953		return -EINVAL;
5954
5955	/* If we're a nested hypervisor, we currently only support radix */
5956	if (kvmhv_on_pseries() && !radix)
5957		return -EINVAL;
5958
5959	mutex_lock(&kvm->arch.mmu_setup_lock);
5960	if (radix != kvm_is_radix(kvm)) {
5961		if (kvm->arch.mmu_ready) {
5962			kvm->arch.mmu_ready = 0;
5963			/* order mmu_ready vs. vcpus_running */
5964			smp_mb();
5965			if (atomic_read(&kvm->arch.vcpus_running)) {
5966				kvm->arch.mmu_ready = 1;
5967				err = -EBUSY;
5968				goto out_unlock;
5969			}
5970		}
5971		if (radix)
5972			err = kvmppc_switch_mmu_to_radix(kvm);
5973		else
5974			err = kvmppc_switch_mmu_to_hpt(kvm);
5975		if (err)
5976			goto out_unlock;
5977	}
5978
5979	kvm->arch.process_table = cfg->process_table;
5980	kvmppc_setup_partition_table(kvm);
5981
5982	lpcr = (cfg->flags & KVM_PPC_MMUV3_GTSE) ? LPCR_GTSE : 0;
5983	kvmppc_update_lpcr(kvm, lpcr, LPCR_GTSE);
5984	err = 0;
5985
5986 out_unlock:
5987	mutex_unlock(&kvm->arch.mmu_setup_lock);
5988	return err;
5989}
5990
5991static int kvmhv_enable_nested(struct kvm *kvm)
5992{
5993	if (!nested)
5994		return -EPERM;
5995	if (!cpu_has_feature(CPU_FTR_ARCH_300))
5996		return -ENODEV;
5997	if (!radix_enabled())
5998		return -ENODEV;
5999
6000	/* kvm == NULL means the caller is testing if the capability exists */
6001	if (kvm)
6002		kvm->arch.nested_enable = true;
6003	return 0;
6004}
6005
6006static int kvmhv_load_from_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6007				 int size)
6008{
6009	int rc = -EINVAL;
6010
6011	if (kvmhv_vcpu_is_radix(vcpu)) {
6012		rc = kvmhv_copy_from_guest_radix(vcpu, *eaddr, ptr, size);
6013
6014		if (rc > 0)
6015			rc = -EINVAL;
6016	}
6017
6018	/* For now quadrants are the only way to access nested guest memory */
6019	if (rc && vcpu->arch.nested)
6020		rc = -EAGAIN;
6021
6022	return rc;
6023}
6024
6025static int kvmhv_store_to_eaddr(struct kvm_vcpu *vcpu, ulong *eaddr, void *ptr,
6026				int size)
6027{
6028	int rc = -EINVAL;
6029
6030	if (kvmhv_vcpu_is_radix(vcpu)) {
6031		rc = kvmhv_copy_to_guest_radix(vcpu, *eaddr, ptr, size);
6032
6033		if (rc > 0)
6034			rc = -EINVAL;
6035	}
6036
6037	/* For now quadrants are the only way to access nested guest memory */
6038	if (rc && vcpu->arch.nested)
6039		rc = -EAGAIN;
6040
6041	return rc;
6042}
6043
6044static void unpin_vpa_reset(struct kvm *kvm, struct kvmppc_vpa *vpa)
6045{
6046	unpin_vpa(kvm, vpa);
6047	vpa->gpa = 0;
6048	vpa->pinned_addr = NULL;
6049	vpa->dirty = false;
6050	vpa->update_pending = 0;
6051}
6052
6053/*
6054 * Enable a guest to become a secure VM, or test whether
6055 * that could be enabled.
6056 * Called when the KVM_CAP_PPC_SECURE_GUEST capability is
6057 * tested (kvm == NULL) or enabled (kvm != NULL).
6058 */
6059static int kvmhv_enable_svm(struct kvm *kvm)
6060{
6061	if (!kvmppc_uvmem_available())
6062		return -EINVAL;
6063	if (kvm)
6064		kvm->arch.svm_enabled = 1;
6065	return 0;
6066}
6067
6068/*
6069 *  IOCTL handler to turn off secure mode of guest
6070 *
6071 * - Release all device pages
6072 * - Issue ucall to terminate the guest on the UV side
6073 * - Unpin the VPA pages.
6074 * - Reinit the partition scoped page tables
6075 */
6076static int kvmhv_svm_off(struct kvm *kvm)
6077{
6078	struct kvm_vcpu *vcpu;
6079	int mmu_was_ready;
6080	int srcu_idx;
6081	int ret = 0;
6082	unsigned long i;
6083
6084	if (!(kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START))
6085		return ret;
6086
6087	mutex_lock(&kvm->arch.mmu_setup_lock);
6088	mmu_was_ready = kvm->arch.mmu_ready;
6089	if (kvm->arch.mmu_ready) {
6090		kvm->arch.mmu_ready = 0;
6091		/* order mmu_ready vs. vcpus_running */
6092		smp_mb();
6093		if (atomic_read(&kvm->arch.vcpus_running)) {
6094			kvm->arch.mmu_ready = 1;
6095			ret = -EBUSY;
6096			goto out;
6097		}
6098	}
6099
6100	srcu_idx = srcu_read_lock(&kvm->srcu);
6101	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6102		struct kvm_memory_slot *memslot;
6103		struct kvm_memslots *slots = __kvm_memslots(kvm, i);
6104		int bkt;
6105
6106		if (!slots)
6107			continue;
6108
6109		kvm_for_each_memslot(memslot, bkt, slots) {
6110			kvmppc_uvmem_drop_pages(memslot, kvm, true);
6111			uv_unregister_mem_slot(kvm->arch.lpid, memslot->id);
6112		}
6113	}
6114	srcu_read_unlock(&kvm->srcu, srcu_idx);
6115
6116	ret = uv_svm_terminate(kvm->arch.lpid);
6117	if (ret != U_SUCCESS) {
6118		ret = -EINVAL;
6119		goto out;
6120	}
6121
6122	/*
6123	 * When secure guest is reset, all the guest pages are sent
6124	 * to UV via UV_PAGE_IN before the non-boot vcpus get a
6125	 * chance to run and unpin their VPA pages. Unpinning of all
6126	 * VPA pages is done here explicitly so that VPA pages
6127	 * can be migrated to the secure side.
6128	 *
6129	 * This is required to for the secure SMP guest to reboot
6130	 * correctly.
6131	 */
6132	kvm_for_each_vcpu(i, vcpu, kvm) {
6133		spin_lock(&vcpu->arch.vpa_update_lock);
6134		unpin_vpa_reset(kvm, &vcpu->arch.dtl);
6135		unpin_vpa_reset(kvm, &vcpu->arch.slb_shadow);
6136		unpin_vpa_reset(kvm, &vcpu->arch.vpa);
6137		spin_unlock(&vcpu->arch.vpa_update_lock);
6138	}
6139
6140	kvmppc_setup_partition_table(kvm);
6141	kvm->arch.secure_guest = 0;
6142	kvm->arch.mmu_ready = mmu_was_ready;
6143out:
6144	mutex_unlock(&kvm->arch.mmu_setup_lock);
6145	return ret;
6146}
6147
6148static int kvmhv_enable_dawr1(struct kvm *kvm)
6149{
6150	if (!cpu_has_feature(CPU_FTR_DAWR1))
6151		return -ENODEV;
6152
6153	/* kvm == NULL means the caller is testing if the capability exists */
6154	if (kvm)
6155		kvm->arch.dawr1_enabled = true;
6156	return 0;
6157}
6158
6159static bool kvmppc_hash_v3_possible(void)
6160{
6161	if (!cpu_has_feature(CPU_FTR_ARCH_300))
6162		return false;
6163
6164	if (!cpu_has_feature(CPU_FTR_HVMODE))
6165		return false;
6166
6167	/*
6168	 * POWER9 chips before version 2.02 can't have some threads in
6169	 * HPT mode and some in radix mode on the same core.
6170	 */
6171	if (radix_enabled()) {
6172		unsigned int pvr = mfspr(SPRN_PVR);
6173		if ((pvr >> 16) == PVR_POWER9 &&
6174		    (((pvr & 0xe000) == 0 && (pvr & 0xfff) < 0x202) ||
6175		     ((pvr & 0xe000) == 0x2000 && (pvr & 0xfff) < 0x101)))
6176			return false;
6177	}
6178
6179	return true;
6180}
6181
6182static struct kvmppc_ops kvm_ops_hv = {
6183	.get_sregs = kvm_arch_vcpu_ioctl_get_sregs_hv,
6184	.set_sregs = kvm_arch_vcpu_ioctl_set_sregs_hv,
6185	.get_one_reg = kvmppc_get_one_reg_hv,
6186	.set_one_reg = kvmppc_set_one_reg_hv,
6187	.vcpu_load   = kvmppc_core_vcpu_load_hv,
6188	.vcpu_put    = kvmppc_core_vcpu_put_hv,
6189	.inject_interrupt = kvmppc_inject_interrupt_hv,
6190	.set_msr     = kvmppc_set_msr_hv,
6191	.vcpu_run    = kvmppc_vcpu_run_hv,
6192	.vcpu_create = kvmppc_core_vcpu_create_hv,
6193	.vcpu_free   = kvmppc_core_vcpu_free_hv,
6194	.check_requests = kvmppc_core_check_requests_hv,
6195	.get_dirty_log  = kvm_vm_ioctl_get_dirty_log_hv,
6196	.flush_memslot  = kvmppc_core_flush_memslot_hv,
6197	.prepare_memory_region = kvmppc_core_prepare_memory_region_hv,
6198	.commit_memory_region  = kvmppc_core_commit_memory_region_hv,
6199	.unmap_gfn_range = kvm_unmap_gfn_range_hv,
6200	.age_gfn = kvm_age_gfn_hv,
6201	.test_age_gfn = kvm_test_age_gfn_hv,
6202	.set_spte_gfn = kvm_set_spte_gfn_hv,
6203	.free_memslot = kvmppc_core_free_memslot_hv,
6204	.init_vm =  kvmppc_core_init_vm_hv,
6205	.destroy_vm = kvmppc_core_destroy_vm_hv,
6206	.get_smmu_info = kvm_vm_ioctl_get_smmu_info_hv,
6207	.emulate_op = kvmppc_core_emulate_op_hv,
6208	.emulate_mtspr = kvmppc_core_emulate_mtspr_hv,
6209	.emulate_mfspr = kvmppc_core_emulate_mfspr_hv,
6210	.fast_vcpu_kick = kvmppc_fast_vcpu_kick_hv,
6211	.arch_vm_ioctl  = kvm_arch_vm_ioctl_hv,
6212	.hcall_implemented = kvmppc_hcall_impl_hv,
6213#ifdef CONFIG_KVM_XICS
6214	.irq_bypass_add_producer = kvmppc_irq_bypass_add_producer_hv,
6215	.irq_bypass_del_producer = kvmppc_irq_bypass_del_producer_hv,
6216#endif
6217	.configure_mmu = kvmhv_configure_mmu,
6218	.get_rmmu_info = kvmhv_get_rmmu_info,
6219	.set_smt_mode = kvmhv_set_smt_mode,
6220	.enable_nested = kvmhv_enable_nested,
6221	.load_from_eaddr = kvmhv_load_from_eaddr,
6222	.store_to_eaddr = kvmhv_store_to_eaddr,
6223	.enable_svm = kvmhv_enable_svm,
6224	.svm_off = kvmhv_svm_off,
6225	.enable_dawr1 = kvmhv_enable_dawr1,
6226	.hash_v3_possible = kvmppc_hash_v3_possible,
6227	.create_vcpu_debugfs = kvmppc_arch_create_vcpu_debugfs_hv,
6228	.create_vm_debugfs = kvmppc_arch_create_vm_debugfs_hv,
6229};
6230
6231static int kvm_init_subcore_bitmap(void)
6232{
6233	int i, j;
6234	int nr_cores = cpu_nr_cores();
6235	struct sibling_subcore_state *sibling_subcore_state;
6236
6237	for (i = 0; i < nr_cores; i++) {
6238		int first_cpu = i * threads_per_core;
6239		int node = cpu_to_node(first_cpu);
6240
6241		/* Ignore if it is already allocated. */
6242		if (paca_ptrs[first_cpu]->sibling_subcore_state)
6243			continue;
6244
6245		sibling_subcore_state =
6246			kzalloc_node(sizeof(struct sibling_subcore_state),
6247							GFP_KERNEL, node);
6248		if (!sibling_subcore_state)
6249			return -ENOMEM;
6250
6251
6252		for (j = 0; j < threads_per_core; j++) {
6253			int cpu = first_cpu + j;
6254
6255			paca_ptrs[cpu]->sibling_subcore_state =
6256						sibling_subcore_state;
6257		}
6258	}
6259	return 0;
6260}
6261
6262static int kvmppc_radix_possible(void)
6263{
6264	return cpu_has_feature(CPU_FTR_ARCH_300) && radix_enabled();
6265}
6266
6267static int kvmppc_book3s_init_hv(void)
6268{
6269	int r;
6270
6271	if (!tlbie_capable) {
6272		pr_err("KVM-HV: Host does not support TLBIE\n");
6273		return -ENODEV;
6274	}
6275
6276	/*
6277	 * FIXME!! Do we need to check on all cpus ?
6278	 */
6279	r = kvmppc_core_check_processor_compat_hv();
6280	if (r < 0)
6281		return -ENODEV;
6282
6283	r = kvmhv_nested_init();
6284	if (r)
6285		return r;
6286
6287	if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
6288		r = kvm_init_subcore_bitmap();
6289		if (r)
6290			goto err;
6291	}
6292
6293	/*
6294	 * We need a way of accessing the XICS interrupt controller,
6295	 * either directly, via paca_ptrs[cpu]->kvm_hstate.xics_phys, or
6296	 * indirectly, via OPAL.
6297	 */
6298#ifdef CONFIG_SMP
6299	if (!xics_on_xive() && !kvmhv_on_pseries() &&
6300	    !local_paca->kvm_hstate.xics_phys) {
6301		struct device_node *np;
6302
6303		np = of_find_compatible_node(NULL, NULL, "ibm,opal-intc");
6304		if (!np) {
6305			pr_err("KVM-HV: Cannot determine method for accessing XICS\n");
6306			r = -ENODEV;
6307			goto err;
6308		}
6309		/* presence of intc confirmed - node can be dropped again */
6310		of_node_put(np);
6311	}
6312#endif
6313
6314	init_default_hcalls();
6315
6316	init_vcore_lists();
6317
6318	r = kvmppc_mmu_hv_init();
6319	if (r)
6320		goto err;
6321
6322	if (kvmppc_radix_possible()) {
6323		r = kvmppc_radix_init();
6324		if (r)
6325			goto err;
6326	}
6327
6328	r = kvmppc_uvmem_init();
6329	if (r < 0) {
6330		pr_err("KVM-HV: kvmppc_uvmem_init failed %d\n", r);
6331		return r;
6332	}
6333
6334	kvm_ops_hv.owner = THIS_MODULE;
6335	kvmppc_hv_ops = &kvm_ops_hv;
6336
6337	return 0;
6338
6339err:
6340	kvmhv_nested_exit();
6341	kvmppc_radix_exit();
6342
6343	return r;
6344}
6345
6346static void kvmppc_book3s_exit_hv(void)
6347{
6348	kvmppc_uvmem_free();
6349	kvmppc_free_host_rm_ops();
6350	if (kvmppc_radix_possible())
6351		kvmppc_radix_exit();
6352	kvmppc_hv_ops = NULL;
6353	kvmhv_nested_exit();
6354}
6355
6356module_init(kvmppc_book3s_init_hv);
6357module_exit(kvmppc_book3s_exit_hv);
6358MODULE_LICENSE("GPL");
6359MODULE_ALIAS_MISCDEV(KVM_MINOR);
6360MODULE_ALIAS("devname:kvm");
6361