1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *
4 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
6
7#include <linux/types.h>
8#include <linux/string.h>
9#include <linux/kvm.h>
10#include <linux/kvm_host.h>
11#include <linux/anon_inodes.h>
12#include <linux/file.h>
13#include <linux/debugfs.h>
14#include <linux/pgtable.h>
15
16#include <asm/kvm_ppc.h>
17#include <asm/kvm_book3s.h>
18#include "book3s_hv.h"
19#include <asm/page.h>
20#include <asm/mmu.h>
21#include <asm/pgalloc.h>
22#include <asm/pte-walk.h>
23#include <asm/ultravisor.h>
24#include <asm/kvm_book3s_uvmem.h>
25#include <asm/plpar_wrappers.h>
26#include <asm/firmware.h>
27
28/*
29 * Supported radix tree geometry.
30 * Like p9, we support either 5 or 9 bits at the first (lowest) level,
31 * for a page size of 64k or 4k.
32 */
33static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 };
34
35unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid,
36					      gva_t eaddr, void *to, void *from,
37					      unsigned long n)
38{
39	int old_pid, old_lpid;
40	unsigned long quadrant, ret = n;
41	bool is_load = !!to;
42
43	/* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */
44	if (kvmhv_on_pseries())
45		return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr,
46					  (to != NULL) ? __pa(to): 0,
47					  (from != NULL) ? __pa(from): 0, n);
48
49	if (eaddr & (0xFFFUL << 52))
50		return ret;
51
52	quadrant = 1;
53	if (!pid)
54		quadrant = 2;
55	if (is_load)
56		from = (void *) (eaddr | (quadrant << 62));
57	else
58		to = (void *) (eaddr | (quadrant << 62));
59
60	preempt_disable();
61
62	asm volatile("hwsync" ::: "memory");
63	isync();
64	/* switch the lpid first to avoid running host with unallocated pid */
65	old_lpid = mfspr(SPRN_LPID);
66	if (old_lpid != lpid)
67		mtspr(SPRN_LPID, lpid);
68	if (quadrant == 1) {
69		old_pid = mfspr(SPRN_PID);
70		if (old_pid != pid)
71			mtspr(SPRN_PID, pid);
72	}
73	isync();
74
75	pagefault_disable();
76	if (is_load)
77		ret = __copy_from_user_inatomic(to, (const void __user *)from, n);
78	else
79		ret = __copy_to_user_inatomic((void __user *)to, from, n);
80	pagefault_enable();
81
82	asm volatile("hwsync" ::: "memory");
83	isync();
84	/* switch the pid first to avoid running host with unallocated pid */
85	if (quadrant == 1 && pid != old_pid)
86		mtspr(SPRN_PID, old_pid);
87	if (lpid != old_lpid)
88		mtspr(SPRN_LPID, old_lpid);
89	isync();
90
91	preempt_enable();
92
93	return ret;
94}
95
96static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr,
97					  void *to, void *from, unsigned long n)
98{
99	int lpid = vcpu->kvm->arch.lpid;
100	int pid = vcpu->arch.pid;
101
102	/* This would cause a data segment intr so don't allow the access */
103	if (eaddr & (0x3FFUL << 52))
104		return -EINVAL;
105
106	/* Should we be using the nested lpid */
107	if (vcpu->arch.nested)
108		lpid = vcpu->arch.nested->shadow_lpid;
109
110	/* If accessing quadrant 3 then pid is expected to be 0 */
111	if (((eaddr >> 62) & 0x3) == 0x3)
112		pid = 0;
113
114	eaddr &= ~(0xFFFUL << 52);
115
116	return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n);
117}
118
119long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to,
120				 unsigned long n)
121{
122	long ret;
123
124	ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n);
125	if (ret > 0)
126		memset(to + (n - ret), 0, ret);
127
128	return ret;
129}
130
131long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from,
132			       unsigned long n)
133{
134	return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n);
135}
136
137int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr,
138			       struct kvmppc_pte *gpte, u64 root,
139			       u64 *pte_ret_p)
140{
141	struct kvm *kvm = vcpu->kvm;
142	int ret, level, ps;
143	unsigned long rts, bits, offset, index;
144	u64 pte, base, gpa;
145	__be64 rpte;
146
147	rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) |
148		((root & RTS2_MASK) >> RTS2_SHIFT);
149	bits = root & RPDS_MASK;
150	base = root & RPDB_MASK;
151
152	offset = rts + 31;
153
154	/* Current implementations only support 52-bit space */
155	if (offset != 52)
156		return -EINVAL;
157
158	/* Walk each level of the radix tree */
159	for (level = 3; level >= 0; --level) {
160		u64 addr;
161		/* Check a valid size */
162		if (level && bits != p9_supported_radix_bits[level])
163			return -EINVAL;
164		if (level == 0 && !(bits == 5 || bits == 9))
165			return -EINVAL;
166		offset -= bits;
167		index = (eaddr >> offset) & ((1UL << bits) - 1);
168		/* Check that low bits of page table base are zero */
169		if (base & ((1UL << (bits + 3)) - 1))
170			return -EINVAL;
171		/* Read the entry from guest memory */
172		addr = base + (index * sizeof(rpte));
173
174		kvm_vcpu_srcu_read_lock(vcpu);
175		ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte));
176		kvm_vcpu_srcu_read_unlock(vcpu);
177		if (ret) {
178			if (pte_ret_p)
179				*pte_ret_p = addr;
180			return ret;
181		}
182		pte = __be64_to_cpu(rpte);
183		if (!(pte & _PAGE_PRESENT))
184			return -ENOENT;
185		/* Check if a leaf entry */
186		if (pte & _PAGE_PTE)
187			break;
188		/* Get ready to walk the next level */
189		base = pte & RPDB_MASK;
190		bits = pte & RPDS_MASK;
191	}
192
193	/* Need a leaf at lowest level; 512GB pages not supported */
194	if (level < 0 || level == 3)
195		return -EINVAL;
196
197	/* We found a valid leaf PTE */
198	/* Offset is now log base 2 of the page size */
199	gpa = pte & 0x01fffffffffff000ul;
200	if (gpa & ((1ul << offset) - 1))
201		return -EINVAL;
202	gpa |= eaddr & ((1ul << offset) - 1);
203	for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps)
204		if (offset == mmu_psize_defs[ps].shift)
205			break;
206	gpte->page_size = ps;
207	gpte->page_shift = offset;
208
209	gpte->eaddr = eaddr;
210	gpte->raddr = gpa;
211
212	/* Work out permissions */
213	gpte->may_read = !!(pte & _PAGE_READ);
214	gpte->may_write = !!(pte & _PAGE_WRITE);
215	gpte->may_execute = !!(pte & _PAGE_EXEC);
216
217	gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY);
218
219	if (pte_ret_p)
220		*pte_ret_p = pte;
221
222	return 0;
223}
224
225/*
226 * Used to walk a partition or process table radix tree in guest memory
227 * Note: We exploit the fact that a partition table and a process
228 * table have the same layout, a partition-scoped page table and a
229 * process-scoped page table have the same layout, and the 2nd
230 * doubleword of a partition table entry has the same layout as
231 * the PTCR register.
232 */
233int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr,
234				     struct kvmppc_pte *gpte, u64 table,
235				     int table_index, u64 *pte_ret_p)
236{
237	struct kvm *kvm = vcpu->kvm;
238	int ret;
239	unsigned long size, ptbl, root;
240	struct prtb_entry entry;
241
242	if ((table & PRTS_MASK) > 24)
243		return -EINVAL;
244	size = 1ul << ((table & PRTS_MASK) + 12);
245
246	/* Is the table big enough to contain this entry? */
247	if ((table_index * sizeof(entry)) >= size)
248		return -EINVAL;
249
250	/* Read the table to find the root of the radix tree */
251	ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry));
252	kvm_vcpu_srcu_read_lock(vcpu);
253	ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry));
254	kvm_vcpu_srcu_read_unlock(vcpu);
255	if (ret)
256		return ret;
257
258	/* Root is stored in the first double word */
259	root = be64_to_cpu(entry.prtb0);
260
261	return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p);
262}
263
264int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
265			   struct kvmppc_pte *gpte, bool data, bool iswrite)
266{
267	u32 pid;
268	u64 pte;
269	int ret;
270
271	/* Work out effective PID */
272	switch (eaddr >> 62) {
273	case 0:
274		pid = vcpu->arch.pid;
275		break;
276	case 3:
277		pid = 0;
278		break;
279	default:
280		return -EINVAL;
281	}
282
283	ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte,
284				vcpu->kvm->arch.process_table, pid, &pte);
285	if (ret)
286		return ret;
287
288	/* Check privilege (applies only to process scoped translations) */
289	if (kvmppc_get_msr(vcpu) & MSR_PR) {
290		if (pte & _PAGE_PRIVILEGED) {
291			gpte->may_read = 0;
292			gpte->may_write = 0;
293			gpte->may_execute = 0;
294		}
295	} else {
296		if (!(pte & _PAGE_PRIVILEGED)) {
297			/* Check AMR/IAMR to see if strict mode is in force */
298			if (kvmppc_get_amr_hv(vcpu) & (1ul << 62))
299				gpte->may_read = 0;
300			if (kvmppc_get_amr_hv(vcpu) & (1ul << 63))
301				gpte->may_write = 0;
302			if (vcpu->arch.iamr & (1ul << 62))
303				gpte->may_execute = 0;
304		}
305	}
306
307	return 0;
308}
309
310void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr,
311			     unsigned int pshift, unsigned int lpid)
312{
313	unsigned long psize = PAGE_SIZE;
314	int psi;
315	long rc;
316	unsigned long rb;
317
318	if (pshift)
319		psize = 1UL << pshift;
320	else
321		pshift = PAGE_SHIFT;
322
323	addr &= ~(psize - 1);
324
325	if (!kvmhv_on_pseries()) {
326		radix__flush_tlb_lpid_page(lpid, addr, psize);
327		return;
328	}
329
330	psi = shift_to_mmu_psize(pshift);
331
332	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE)) {
333		rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58));
334		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1),
335					lpid, rb);
336	} else {
337		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
338					    H_RPTI_TYPE_NESTED |
339					    H_RPTI_TYPE_TLB,
340					    psize_to_rpti_pgsize(psi),
341					    addr, addr + psize);
342	}
343
344	if (rc)
345		pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc);
346}
347
348static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid)
349{
350	long rc;
351
352	if (!kvmhv_on_pseries()) {
353		radix__flush_pwc_lpid(lpid);
354		return;
355	}
356
357	if (!firmware_has_feature(FW_FEATURE_RPT_INVALIDATE))
358		rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1),
359					lpid, TLBIEL_INVAL_SET_LPID);
360	else
361		rc = pseries_rpt_invalidate(lpid, H_RPTI_TARGET_CMMU,
362					    H_RPTI_TYPE_NESTED |
363					    H_RPTI_TYPE_PWC, H_RPTI_PAGE_ALL,
364					    0, -1UL);
365	if (rc)
366		pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc);
367}
368
369static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep,
370				      unsigned long clr, unsigned long set,
371				      unsigned long addr, unsigned int shift)
372{
373	return __radix_pte_update(ptep, clr, set);
374}
375
376static void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr,
377			     pte_t *ptep, pte_t pte)
378{
379	radix__set_pte_at(kvm->mm, addr, ptep, pte, 0);
380}
381
382static struct kmem_cache *kvm_pte_cache;
383static struct kmem_cache *kvm_pmd_cache;
384
385static pte_t *kvmppc_pte_alloc(void)
386{
387	pte_t *pte;
388
389	pte = kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL);
390	/* pmd_populate() will only reference _pa(pte). */
391	kmemleak_ignore(pte);
392
393	return pte;
394}
395
396static void kvmppc_pte_free(pte_t *ptep)
397{
398	kmem_cache_free(kvm_pte_cache, ptep);
399}
400
401static pmd_t *kvmppc_pmd_alloc(void)
402{
403	pmd_t *pmd;
404
405	pmd = kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL);
406	/* pud_populate() will only reference _pa(pmd). */
407	kmemleak_ignore(pmd);
408
409	return pmd;
410}
411
412static void kvmppc_pmd_free(pmd_t *pmdp)
413{
414	kmem_cache_free(kvm_pmd_cache, pmdp);
415}
416
417/* Called with kvm->mmu_lock held */
418void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa,
419		      unsigned int shift,
420		      const struct kvm_memory_slot *memslot,
421		      unsigned int lpid)
422
423{
424	unsigned long old;
425	unsigned long gfn = gpa >> PAGE_SHIFT;
426	unsigned long page_size = PAGE_SIZE;
427	unsigned long hpa;
428
429	old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift);
430	kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid);
431
432	/* The following only applies to L1 entries */
433	if (lpid != kvm->arch.lpid)
434		return;
435
436	if (!memslot) {
437		memslot = gfn_to_memslot(kvm, gfn);
438		if (!memslot)
439			return;
440	}
441	if (shift) { /* 1GB or 2MB page */
442		page_size = 1ul << shift;
443		if (shift == PMD_SHIFT)
444			kvm->stat.num_2M_pages--;
445		else if (shift == PUD_SHIFT)
446			kvm->stat.num_1G_pages--;
447	}
448
449	gpa &= ~(page_size - 1);
450	hpa = old & PTE_RPN_MASK;
451	kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size);
452
453	if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap)
454		kvmppc_update_dirty_map(memslot, gfn, page_size);
455}
456
457/*
458 * kvmppc_free_p?d are used to free existing page tables, and recursively
459 * descend and clear and free children.
460 * Callers are responsible for flushing the PWC.
461 *
462 * When page tables are being unmapped/freed as part of page fault path
463 * (full == false), valid ptes are generally not expected; however, there
464 * is one situation where they arise, which is when dirty page logging is
465 * turned off for a memslot while the VM is running.  The new memslot
466 * becomes visible to page faults before the memslot commit function
467 * gets to flush the memslot, which can lead to a 2MB page mapping being
468 * installed for a guest physical address where there are already 64kB
469 * (or 4kB) mappings (of sub-pages of the same 2MB page).
470 */
471static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full,
472				  unsigned int lpid)
473{
474	if (full) {
475		memset(pte, 0, sizeof(long) << RADIX_PTE_INDEX_SIZE);
476	} else {
477		pte_t *p = pte;
478		unsigned long it;
479
480		for (it = 0; it < PTRS_PER_PTE; ++it, ++p) {
481			if (pte_val(*p) == 0)
482				continue;
483			kvmppc_unmap_pte(kvm, p,
484					 pte_pfn(*p) << PAGE_SHIFT,
485					 PAGE_SHIFT, NULL, lpid);
486		}
487	}
488
489	kvmppc_pte_free(pte);
490}
491
492static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full,
493				  unsigned int lpid)
494{
495	unsigned long im;
496	pmd_t *p = pmd;
497
498	for (im = 0; im < PTRS_PER_PMD; ++im, ++p) {
499		if (!pmd_present(*p))
500			continue;
501		if (pmd_is_leaf(*p)) {
502			if (full) {
503				pmd_clear(p);
504			} else {
505				WARN_ON_ONCE(1);
506				kvmppc_unmap_pte(kvm, (pte_t *)p,
507					 pte_pfn(*(pte_t *)p) << PAGE_SHIFT,
508					 PMD_SHIFT, NULL, lpid);
509			}
510		} else {
511			pte_t *pte;
512
513			pte = pte_offset_kernel(p, 0);
514			kvmppc_unmap_free_pte(kvm, pte, full, lpid);
515			pmd_clear(p);
516		}
517	}
518	kvmppc_pmd_free(pmd);
519}
520
521static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud,
522				  unsigned int lpid)
523{
524	unsigned long iu;
525	pud_t *p = pud;
526
527	for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) {
528		if (!pud_present(*p))
529			continue;
530		if (pud_is_leaf(*p)) {
531			pud_clear(p);
532		} else {
533			pmd_t *pmd;
534
535			pmd = pmd_offset(p, 0);
536			kvmppc_unmap_free_pmd(kvm, pmd, true, lpid);
537			pud_clear(p);
538		}
539	}
540	pud_free(kvm->mm, pud);
541}
542
543void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid)
544{
545	unsigned long ig;
546
547	for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) {
548		p4d_t *p4d = p4d_offset(pgd, 0);
549		pud_t *pud;
550
551		if (!p4d_present(*p4d))
552			continue;
553		pud = pud_offset(p4d, 0);
554		kvmppc_unmap_free_pud(kvm, pud, lpid);
555		p4d_clear(p4d);
556	}
557}
558
559void kvmppc_free_radix(struct kvm *kvm)
560{
561	if (kvm->arch.pgtable) {
562		kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable,
563					  kvm->arch.lpid);
564		pgd_free(kvm->mm, kvm->arch.pgtable);
565		kvm->arch.pgtable = NULL;
566	}
567}
568
569static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd,
570					unsigned long gpa, unsigned int lpid)
571{
572	pte_t *pte = pte_offset_kernel(pmd, 0);
573
574	/*
575	 * Clearing the pmd entry then flushing the PWC ensures that the pte
576	 * page no longer be cached by the MMU, so can be freed without
577	 * flushing the PWC again.
578	 */
579	pmd_clear(pmd);
580	kvmppc_radix_flush_pwc(kvm, lpid);
581
582	kvmppc_unmap_free_pte(kvm, pte, false, lpid);
583}
584
585static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud,
586					unsigned long gpa, unsigned int lpid)
587{
588	pmd_t *pmd = pmd_offset(pud, 0);
589
590	/*
591	 * Clearing the pud entry then flushing the PWC ensures that the pmd
592	 * page and any children pte pages will no longer be cached by the MMU,
593	 * so can be freed without flushing the PWC again.
594	 */
595	pud_clear(pud);
596	kvmppc_radix_flush_pwc(kvm, lpid);
597
598	kvmppc_unmap_free_pmd(kvm, pmd, false, lpid);
599}
600
601/*
602 * There are a number of bits which may differ between different faults to
603 * the same partition scope entry. RC bits, in the course of cleaning and
604 * aging. And the write bit can change, either the access could have been
605 * upgraded, or a read fault could happen concurrently with a write fault
606 * that sets those bits first.
607 */
608#define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED))
609
610int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
611		      unsigned long gpa, unsigned int level,
612		      unsigned long mmu_seq, unsigned int lpid,
613		      unsigned long *rmapp, struct rmap_nested **n_rmap)
614{
615	pgd_t *pgd;
616	p4d_t *p4d;
617	pud_t *pud, *new_pud = NULL;
618	pmd_t *pmd, *new_pmd = NULL;
619	pte_t *ptep, *new_ptep = NULL;
620	int ret;
621
622	/* Traverse the guest's 2nd-level tree, allocate new levels needed */
623	pgd = pgtable + pgd_index(gpa);
624	p4d = p4d_offset(pgd, gpa);
625
626	pud = NULL;
627	if (p4d_present(*p4d))
628		pud = pud_offset(p4d, gpa);
629	else
630		new_pud = pud_alloc_one(kvm->mm, gpa);
631
632	pmd = NULL;
633	if (pud && pud_present(*pud) && !pud_is_leaf(*pud))
634		pmd = pmd_offset(pud, gpa);
635	else if (level <= 1)
636		new_pmd = kvmppc_pmd_alloc();
637
638	if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd)))
639		new_ptep = kvmppc_pte_alloc();
640
641	/* Check if we might have been invalidated; let the guest retry if so */
642	spin_lock(&kvm->mmu_lock);
643	ret = -EAGAIN;
644	if (mmu_invalidate_retry(kvm, mmu_seq))
645		goto out_unlock;
646
647	/* Now traverse again under the lock and change the tree */
648	ret = -ENOMEM;
649	if (p4d_none(*p4d)) {
650		if (!new_pud)
651			goto out_unlock;
652		p4d_populate(kvm->mm, p4d, new_pud);
653		new_pud = NULL;
654	}
655	pud = pud_offset(p4d, gpa);
656	if (pud_is_leaf(*pud)) {
657		unsigned long hgpa = gpa & PUD_MASK;
658
659		/* Check if we raced and someone else has set the same thing */
660		if (level == 2) {
661			if (pud_raw(*pud) == pte_raw(pte)) {
662				ret = 0;
663				goto out_unlock;
664			}
665			/* Valid 1GB page here already, add our extra bits */
666			WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) &
667							PTE_BITS_MUST_MATCH);
668			kvmppc_radix_update_pte(kvm, (pte_t *)pud,
669					      0, pte_val(pte), hgpa, PUD_SHIFT);
670			ret = 0;
671			goto out_unlock;
672		}
673		/*
674		 * If we raced with another CPU which has just put
675		 * a 1GB pte in after we saw a pmd page, try again.
676		 */
677		if (!new_pmd) {
678			ret = -EAGAIN;
679			goto out_unlock;
680		}
681		/* Valid 1GB page here already, remove it */
682		kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL,
683				 lpid);
684	}
685	if (level == 2) {
686		if (!pud_none(*pud)) {
687			/*
688			 * There's a page table page here, but we wanted to
689			 * install a large page, so remove and free the page
690			 * table page.
691			 */
692			kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid);
693		}
694		kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte);
695		if (rmapp && n_rmap)
696			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
697		ret = 0;
698		goto out_unlock;
699	}
700	if (pud_none(*pud)) {
701		if (!new_pmd)
702			goto out_unlock;
703		pud_populate(kvm->mm, pud, new_pmd);
704		new_pmd = NULL;
705	}
706	pmd = pmd_offset(pud, gpa);
707	if (pmd_is_leaf(*pmd)) {
708		unsigned long lgpa = gpa & PMD_MASK;
709
710		/* Check if we raced and someone else has set the same thing */
711		if (level == 1) {
712			if (pmd_raw(*pmd) == pte_raw(pte)) {
713				ret = 0;
714				goto out_unlock;
715			}
716			/* Valid 2MB page here already, add our extra bits */
717			WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) &
718							PTE_BITS_MUST_MATCH);
719			kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd),
720					0, pte_val(pte), lgpa, PMD_SHIFT);
721			ret = 0;
722			goto out_unlock;
723		}
724
725		/*
726		 * If we raced with another CPU which has just put
727		 * a 2MB pte in after we saw a pte page, try again.
728		 */
729		if (!new_ptep) {
730			ret = -EAGAIN;
731			goto out_unlock;
732		}
733		/* Valid 2MB page here already, remove it */
734		kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL,
735				 lpid);
736	}
737	if (level == 1) {
738		if (!pmd_none(*pmd)) {
739			/*
740			 * There's a page table page here, but we wanted to
741			 * install a large page, so remove and free the page
742			 * table page.
743			 */
744			kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid);
745		}
746		kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte);
747		if (rmapp && n_rmap)
748			kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
749		ret = 0;
750		goto out_unlock;
751	}
752	if (pmd_none(*pmd)) {
753		if (!new_ptep)
754			goto out_unlock;
755		pmd_populate(kvm->mm, pmd, new_ptep);
756		new_ptep = NULL;
757	}
758	ptep = pte_offset_kernel(pmd, gpa);
759	if (pte_present(*ptep)) {
760		/* Check if someone else set the same thing */
761		if (pte_raw(*ptep) == pte_raw(pte)) {
762			ret = 0;
763			goto out_unlock;
764		}
765		/* Valid page here already, add our extra bits */
766		WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) &
767							PTE_BITS_MUST_MATCH);
768		kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0);
769		ret = 0;
770		goto out_unlock;
771	}
772	kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte);
773	if (rmapp && n_rmap)
774		kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap);
775	ret = 0;
776
777 out_unlock:
778	spin_unlock(&kvm->mmu_lock);
779	if (new_pud)
780		pud_free(kvm->mm, new_pud);
781	if (new_pmd)
782		kvmppc_pmd_free(new_pmd);
783	if (new_ptep)
784		kvmppc_pte_free(new_ptep);
785	return ret;
786}
787
788bool kvmppc_hv_handle_set_rc(struct kvm *kvm, bool nested, bool writing,
789			     unsigned long gpa, unsigned int lpid)
790{
791	unsigned long pgflags;
792	unsigned int shift;
793	pte_t *ptep;
794
795	/*
796	 * Need to set an R or C bit in the 2nd-level tables;
797	 * since we are just helping out the hardware here,
798	 * it is sufficient to do what the hardware does.
799	 */
800	pgflags = _PAGE_ACCESSED;
801	if (writing)
802		pgflags |= _PAGE_DIRTY;
803
804	if (nested)
805		ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift);
806	else
807		ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
808
809	if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) {
810		kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift);
811		return true;
812	}
813	return false;
814}
815
816int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu,
817				   unsigned long gpa,
818				   struct kvm_memory_slot *memslot,
819				   bool writing, bool kvm_ro,
820				   pte_t *inserted_pte, unsigned int *levelp)
821{
822	struct kvm *kvm = vcpu->kvm;
823	struct page *page = NULL;
824	unsigned long mmu_seq;
825	unsigned long hva, gfn = gpa >> PAGE_SHIFT;
826	bool upgrade_write = false;
827	bool *upgrade_p = &upgrade_write;
828	pte_t pte, *ptep;
829	unsigned int shift, level;
830	int ret;
831	bool large_enable;
832
833	/* used to check for invalidations in progress */
834	mmu_seq = kvm->mmu_invalidate_seq;
835	smp_rmb();
836
837	/*
838	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
839	 * do it with !atomic && !async, which is how we call it.
840	 * We always ask for write permission since the common case
841	 * is that the page is writable.
842	 */
843	hva = gfn_to_hva_memslot(memslot, gfn);
844	if (!kvm_ro && get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
845		upgrade_write = true;
846	} else {
847		unsigned long pfn;
848
849		/* Call KVM generic code to do the slow-path check */
850		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, false, NULL,
851					   writing, upgrade_p, NULL);
852		if (is_error_noslot_pfn(pfn))
853			return -EFAULT;
854		page = NULL;
855		if (pfn_valid(pfn)) {
856			page = pfn_to_page(pfn);
857			if (PageReserved(page))
858				page = NULL;
859		}
860	}
861
862	/*
863	 * Read the PTE from the process' radix tree and use that
864	 * so we get the shift and attribute bits.
865	 */
866	spin_lock(&kvm->mmu_lock);
867	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
868	pte = __pte(0);
869	if (ptep)
870		pte = READ_ONCE(*ptep);
871	spin_unlock(&kvm->mmu_lock);
872	/*
873	 * If the PTE disappeared temporarily due to a THP
874	 * collapse, just return and let the guest try again.
875	 */
876	if (!pte_present(pte)) {
877		if (page)
878			put_page(page);
879		return RESUME_GUEST;
880	}
881
882	/* If we're logging dirty pages, always map single pages */
883	large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES);
884
885	/* Get pte level from shift/size */
886	if (large_enable && shift == PUD_SHIFT &&
887	    (gpa & (PUD_SIZE - PAGE_SIZE)) ==
888	    (hva & (PUD_SIZE - PAGE_SIZE))) {
889		level = 2;
890	} else if (large_enable && shift == PMD_SHIFT &&
891		   (gpa & (PMD_SIZE - PAGE_SIZE)) ==
892		   (hva & (PMD_SIZE - PAGE_SIZE))) {
893		level = 1;
894	} else {
895		level = 0;
896		if (shift > PAGE_SHIFT) {
897			/*
898			 * If the pte maps more than one page, bring over
899			 * bits from the virtual address to get the real
900			 * address of the specific single page we want.
901			 */
902			unsigned long rpnmask = (1ul << shift) - PAGE_SIZE;
903			pte = __pte(pte_val(pte) | (hva & rpnmask));
904		}
905	}
906
907	pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED);
908	if (writing || upgrade_write) {
909		if (pte_val(pte) & _PAGE_WRITE)
910			pte = __pte(pte_val(pte) | _PAGE_DIRTY);
911	} else {
912		pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY));
913	}
914
915	/* Allocate space in the tree and write the PTE */
916	ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level,
917				mmu_seq, kvm->arch.lpid, NULL, NULL);
918	if (inserted_pte)
919		*inserted_pte = pte;
920	if (levelp)
921		*levelp = level;
922
923	if (page) {
924		if (!ret && (pte_val(pte) & _PAGE_WRITE))
925			set_page_dirty_lock(page);
926		put_page(page);
927	}
928
929	/* Increment number of large pages if we (successfully) inserted one */
930	if (!ret) {
931		if (level == 1)
932			kvm->stat.num_2M_pages++;
933		else if (level == 2)
934			kvm->stat.num_1G_pages++;
935	}
936
937	return ret;
938}
939
940int kvmppc_book3s_radix_page_fault(struct kvm_vcpu *vcpu,
941				   unsigned long ea, unsigned long dsisr)
942{
943	struct kvm *kvm = vcpu->kvm;
944	unsigned long gpa, gfn;
945	struct kvm_memory_slot *memslot;
946	long ret;
947	bool writing = !!(dsisr & DSISR_ISSTORE);
948	bool kvm_ro = false;
949
950	/* Check for unusual errors */
951	if (dsisr & DSISR_UNSUPP_MMU) {
952		pr_err("KVM: Got unsupported MMU fault\n");
953		return -EFAULT;
954	}
955	if (dsisr & DSISR_BADACCESS) {
956		/* Reflect to the guest as DSI */
957		pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr);
958		kvmppc_core_queue_data_storage(vcpu,
959				kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
960				ea, dsisr);
961		return RESUME_GUEST;
962	}
963
964	/* Translate the logical address */
965	gpa = vcpu->arch.fault_gpa & ~0xfffUL;
966	gpa &= ~0xF000000000000000ul;
967	gfn = gpa >> PAGE_SHIFT;
968	if (!(dsisr & DSISR_PRTABLE_FAULT))
969		gpa |= ea & 0xfff;
970
971	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
972		return kvmppc_send_page_to_uv(kvm, gfn);
973
974	/* Get the corresponding memslot */
975	memslot = gfn_to_memslot(kvm, gfn);
976
977	/* No memslot means it's an emulated MMIO region */
978	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) {
979		if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS |
980			     DSISR_SET_RC)) {
981			/*
982			 * Bad address in guest page table tree, or other
983			 * unusual error - reflect it to the guest as DSI.
984			 */
985			kvmppc_core_queue_data_storage(vcpu,
986					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
987					ea, dsisr);
988			return RESUME_GUEST;
989		}
990		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing);
991	}
992
993	if (memslot->flags & KVM_MEM_READONLY) {
994		if (writing) {
995			/* give the guest a DSI */
996			kvmppc_core_queue_data_storage(vcpu,
997					kvmppc_get_msr(vcpu) & SRR1_PREFIXED,
998					ea, DSISR_ISSTORE | DSISR_PROTFAULT);
999			return RESUME_GUEST;
1000		}
1001		kvm_ro = true;
1002	}
1003
1004	/* Failed to set the reference/change bits */
1005	if (dsisr & DSISR_SET_RC) {
1006		spin_lock(&kvm->mmu_lock);
1007		if (kvmppc_hv_handle_set_rc(kvm, false, writing,
1008					    gpa, kvm->arch.lpid))
1009			dsisr &= ~DSISR_SET_RC;
1010		spin_unlock(&kvm->mmu_lock);
1011
1012		if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE |
1013			       DSISR_PROTFAULT | DSISR_SET_RC)))
1014			return RESUME_GUEST;
1015	}
1016
1017	/* Try to insert a pte */
1018	ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing,
1019					     kvm_ro, NULL, NULL);
1020
1021	if (ret == 0 || ret == -EAGAIN)
1022		ret = RESUME_GUEST;
1023	return ret;
1024}
1025
1026/* Called with kvm->mmu_lock held */
1027void kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1028		     unsigned long gfn)
1029{
1030	pte_t *ptep;
1031	unsigned long gpa = gfn << PAGE_SHIFT;
1032	unsigned int shift;
1033
1034	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) {
1035		uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT);
1036		return;
1037	}
1038
1039	ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1040	if (ptep && pte_present(*ptep))
1041		kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
1042				 kvm->arch.lpid);
1043}
1044
1045/* Called with kvm->mmu_lock held */
1046bool kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1047		   unsigned long gfn)
1048{
1049	pte_t *ptep;
1050	unsigned long gpa = gfn << PAGE_SHIFT;
1051	unsigned int shift;
1052	bool ref = false;
1053	unsigned long old, *rmapp;
1054
1055	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1056		return ref;
1057
1058	ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1059	if (ptep && pte_present(*ptep) && pte_young(*ptep)) {
1060		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0,
1061					      gpa, shift);
1062		/* XXX need to flush tlb here? */
1063		/* Also clear bit in ptes in shadow pgtable for nested guests */
1064		rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1065		kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0,
1066					       old & PTE_RPN_MASK,
1067					       1UL << shift);
1068		ref = true;
1069	}
1070	return ref;
1071}
1072
1073/* Called with kvm->mmu_lock held */
1074bool kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot,
1075			unsigned long gfn)
1076
1077{
1078	pte_t *ptep;
1079	unsigned long gpa = gfn << PAGE_SHIFT;
1080	unsigned int shift;
1081	bool ref = false;
1082
1083	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1084		return ref;
1085
1086	ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1087	if (ptep && pte_present(*ptep) && pte_young(*ptep))
1088		ref = true;
1089	return ref;
1090}
1091
1092/* Returns the number of PAGE_SIZE pages that are dirty */
1093static int kvm_radix_test_clear_dirty(struct kvm *kvm,
1094				struct kvm_memory_slot *memslot, int pagenum)
1095{
1096	unsigned long gfn = memslot->base_gfn + pagenum;
1097	unsigned long gpa = gfn << PAGE_SHIFT;
1098	pte_t *ptep, pte;
1099	unsigned int shift;
1100	int ret = 0;
1101	unsigned long old, *rmapp;
1102
1103	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1104		return ret;
1105
1106	/*
1107	 * For performance reasons we don't hold kvm->mmu_lock while walking the
1108	 * partition scoped table.
1109	 */
1110	ptep = find_kvm_secondary_pte_unlocked(kvm, gpa, &shift);
1111	if (!ptep)
1112		return 0;
1113
1114	pte = READ_ONCE(*ptep);
1115	if (pte_present(pte) && pte_dirty(pte)) {
1116		spin_lock(&kvm->mmu_lock);
1117		/*
1118		 * Recheck the pte again
1119		 */
1120		if (pte_val(pte) != pte_val(*ptep)) {
1121			/*
1122			 * We have KVM_MEM_LOG_DIRTY_PAGES enabled. Hence we can
1123			 * only find PAGE_SIZE pte entries here. We can continue
1124			 * to use the pte addr returned by above page table
1125			 * walk.
1126			 */
1127			if (!pte_present(*ptep) || !pte_dirty(*ptep)) {
1128				spin_unlock(&kvm->mmu_lock);
1129				return 0;
1130			}
1131		}
1132
1133		ret = 1;
1134		VM_BUG_ON(shift);
1135		old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0,
1136					      gpa, shift);
1137		kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid);
1138		/* Also clear bit in ptes in shadow pgtable for nested guests */
1139		rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1140		kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0,
1141					       old & PTE_RPN_MASK,
1142					       1UL << shift);
1143		spin_unlock(&kvm->mmu_lock);
1144	}
1145	return ret;
1146}
1147
1148long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm,
1149			struct kvm_memory_slot *memslot, unsigned long *map)
1150{
1151	unsigned long i, j;
1152	int npages;
1153
1154	for (i = 0; i < memslot->npages; i = j) {
1155		npages = kvm_radix_test_clear_dirty(kvm, memslot, i);
1156
1157		/*
1158		 * Note that if npages > 0 then i must be a multiple of npages,
1159		 * since huge pages are only used to back the guest at guest
1160		 * real addresses that are a multiple of their size.
1161		 * Since we have at most one PTE covering any given guest
1162		 * real address, if npages > 1 we can skip to i + npages.
1163		 */
1164		j = i + 1;
1165		if (npages) {
1166			set_dirty_bits(map, i, npages);
1167			j = i + npages;
1168		}
1169	}
1170	return 0;
1171}
1172
1173void kvmppc_radix_flush_memslot(struct kvm *kvm,
1174				const struct kvm_memory_slot *memslot)
1175{
1176	unsigned long n;
1177	pte_t *ptep;
1178	unsigned long gpa;
1179	unsigned int shift;
1180
1181	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START)
1182		kvmppc_uvmem_drop_pages(memslot, kvm, true);
1183
1184	if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE)
1185		return;
1186
1187	gpa = memslot->base_gfn << PAGE_SHIFT;
1188	spin_lock(&kvm->mmu_lock);
1189	for (n = memslot->npages; n; --n) {
1190		ptep = find_kvm_secondary_pte(kvm, gpa, &shift);
1191		if (ptep && pte_present(*ptep))
1192			kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot,
1193					 kvm->arch.lpid);
1194		gpa += PAGE_SIZE;
1195	}
1196	/*
1197	 * Increase the mmu notifier sequence number to prevent any page
1198	 * fault that read the memslot earlier from writing a PTE.
1199	 */
1200	kvm->mmu_invalidate_seq++;
1201	spin_unlock(&kvm->mmu_lock);
1202}
1203
1204static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info,
1205				 int psize, int *indexp)
1206{
1207	if (!mmu_psize_defs[psize].shift)
1208		return;
1209	info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift |
1210		(mmu_psize_defs[psize].ap << 29);
1211	++(*indexp);
1212}
1213
1214int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info)
1215{
1216	int i;
1217
1218	if (!radix_enabled())
1219		return -EINVAL;
1220	memset(info, 0, sizeof(*info));
1221
1222	/* 4k page size */
1223	info->geometries[0].page_shift = 12;
1224	info->geometries[0].level_bits[0] = 9;
1225	for (i = 1; i < 4; ++i)
1226		info->geometries[0].level_bits[i] = p9_supported_radix_bits[i];
1227	/* 64k page size */
1228	info->geometries[1].page_shift = 16;
1229	for (i = 0; i < 4; ++i)
1230		info->geometries[1].level_bits[i] = p9_supported_radix_bits[i];
1231
1232	i = 0;
1233	add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i);
1234	add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i);
1235	add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i);
1236	add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i);
1237
1238	return 0;
1239}
1240
1241int kvmppc_init_vm_radix(struct kvm *kvm)
1242{
1243	kvm->arch.pgtable = pgd_alloc(kvm->mm);
1244	if (!kvm->arch.pgtable)
1245		return -ENOMEM;
1246	return 0;
1247}
1248
1249static void pte_ctor(void *addr)
1250{
1251	memset(addr, 0, RADIX_PTE_TABLE_SIZE);
1252}
1253
1254static void pmd_ctor(void *addr)
1255{
1256	memset(addr, 0, RADIX_PMD_TABLE_SIZE);
1257}
1258
1259struct debugfs_radix_state {
1260	struct kvm	*kvm;
1261	struct mutex	mutex;
1262	unsigned long	gpa;
1263	int		lpid;
1264	int		chars_left;
1265	int		buf_index;
1266	char		buf[128];
1267	u8		hdr;
1268};
1269
1270static int debugfs_radix_open(struct inode *inode, struct file *file)
1271{
1272	struct kvm *kvm = inode->i_private;
1273	struct debugfs_radix_state *p;
1274
1275	p = kzalloc(sizeof(*p), GFP_KERNEL);
1276	if (!p)
1277		return -ENOMEM;
1278
1279	kvm_get_kvm(kvm);
1280	p->kvm = kvm;
1281	mutex_init(&p->mutex);
1282	file->private_data = p;
1283
1284	return nonseekable_open(inode, file);
1285}
1286
1287static int debugfs_radix_release(struct inode *inode, struct file *file)
1288{
1289	struct debugfs_radix_state *p = file->private_data;
1290
1291	kvm_put_kvm(p->kvm);
1292	kfree(p);
1293	return 0;
1294}
1295
1296static ssize_t debugfs_radix_read(struct file *file, char __user *buf,
1297				 size_t len, loff_t *ppos)
1298{
1299	struct debugfs_radix_state *p = file->private_data;
1300	ssize_t ret, r;
1301	unsigned long n;
1302	struct kvm *kvm;
1303	unsigned long gpa;
1304	pgd_t *pgt;
1305	struct kvm_nested_guest *nested;
1306	pgd_t *pgdp;
1307	p4d_t p4d, *p4dp;
1308	pud_t pud, *pudp;
1309	pmd_t pmd, *pmdp;
1310	pte_t *ptep;
1311	int shift;
1312	unsigned long pte;
1313
1314	kvm = p->kvm;
1315	if (!kvm_is_radix(kvm))
1316		return 0;
1317
1318	ret = mutex_lock_interruptible(&p->mutex);
1319	if (ret)
1320		return ret;
1321
1322	if (p->chars_left) {
1323		n = p->chars_left;
1324		if (n > len)
1325			n = len;
1326		r = copy_to_user(buf, p->buf + p->buf_index, n);
1327		n -= r;
1328		p->chars_left -= n;
1329		p->buf_index += n;
1330		buf += n;
1331		len -= n;
1332		ret = n;
1333		if (r) {
1334			if (!n)
1335				ret = -EFAULT;
1336			goto out;
1337		}
1338	}
1339
1340	gpa = p->gpa;
1341	nested = NULL;
1342	pgt = NULL;
1343	while (len != 0 && p->lpid >= 0) {
1344		if (gpa >= RADIX_PGTABLE_RANGE) {
1345			gpa = 0;
1346			pgt = NULL;
1347			if (nested) {
1348				kvmhv_put_nested(nested);
1349				nested = NULL;
1350			}
1351			p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid);
1352			p->hdr = 0;
1353			if (p->lpid < 0)
1354				break;
1355		}
1356		if (!pgt) {
1357			if (p->lpid == 0) {
1358				pgt = kvm->arch.pgtable;
1359			} else {
1360				nested = kvmhv_get_nested(kvm, p->lpid, false);
1361				if (!nested) {
1362					gpa = RADIX_PGTABLE_RANGE;
1363					continue;
1364				}
1365				pgt = nested->shadow_pgtable;
1366			}
1367		}
1368		n = 0;
1369		if (!p->hdr) {
1370			if (p->lpid > 0)
1371				n = scnprintf(p->buf, sizeof(p->buf),
1372					      "\nNested LPID %d: ", p->lpid);
1373			n += scnprintf(p->buf + n, sizeof(p->buf) - n,
1374				      "pgdir: %lx\n", (unsigned long)pgt);
1375			p->hdr = 1;
1376			goto copy;
1377		}
1378
1379		pgdp = pgt + pgd_index(gpa);
1380		p4dp = p4d_offset(pgdp, gpa);
1381		p4d = READ_ONCE(*p4dp);
1382		if (!(p4d_val(p4d) & _PAGE_PRESENT)) {
1383			gpa = (gpa & P4D_MASK) + P4D_SIZE;
1384			continue;
1385		}
1386
1387		pudp = pud_offset(&p4d, gpa);
1388		pud = READ_ONCE(*pudp);
1389		if (!(pud_val(pud) & _PAGE_PRESENT)) {
1390			gpa = (gpa & PUD_MASK) + PUD_SIZE;
1391			continue;
1392		}
1393		if (pud_val(pud) & _PAGE_PTE) {
1394			pte = pud_val(pud);
1395			shift = PUD_SHIFT;
1396			goto leaf;
1397		}
1398
1399		pmdp = pmd_offset(&pud, gpa);
1400		pmd = READ_ONCE(*pmdp);
1401		if (!(pmd_val(pmd) & _PAGE_PRESENT)) {
1402			gpa = (gpa & PMD_MASK) + PMD_SIZE;
1403			continue;
1404		}
1405		if (pmd_val(pmd) & _PAGE_PTE) {
1406			pte = pmd_val(pmd);
1407			shift = PMD_SHIFT;
1408			goto leaf;
1409		}
1410
1411		ptep = pte_offset_kernel(&pmd, gpa);
1412		pte = pte_val(READ_ONCE(*ptep));
1413		if (!(pte & _PAGE_PRESENT)) {
1414			gpa += PAGE_SIZE;
1415			continue;
1416		}
1417		shift = PAGE_SHIFT;
1418	leaf:
1419		n = scnprintf(p->buf, sizeof(p->buf),
1420			      " %lx: %lx %d\n", gpa, pte, shift);
1421		gpa += 1ul << shift;
1422	copy:
1423		p->chars_left = n;
1424		if (n > len)
1425			n = len;
1426		r = copy_to_user(buf, p->buf, n);
1427		n -= r;
1428		p->chars_left -= n;
1429		p->buf_index = n;
1430		buf += n;
1431		len -= n;
1432		ret += n;
1433		if (r) {
1434			if (!ret)
1435				ret = -EFAULT;
1436			break;
1437		}
1438	}
1439	p->gpa = gpa;
1440	if (nested)
1441		kvmhv_put_nested(nested);
1442
1443 out:
1444	mutex_unlock(&p->mutex);
1445	return ret;
1446}
1447
1448static ssize_t debugfs_radix_write(struct file *file, const char __user *buf,
1449			   size_t len, loff_t *ppos)
1450{
1451	return -EACCES;
1452}
1453
1454static const struct file_operations debugfs_radix_fops = {
1455	.owner	 = THIS_MODULE,
1456	.open	 = debugfs_radix_open,
1457	.release = debugfs_radix_release,
1458	.read	 = debugfs_radix_read,
1459	.write	 = debugfs_radix_write,
1460	.llseek	 = generic_file_llseek,
1461};
1462
1463void kvmhv_radix_debugfs_init(struct kvm *kvm)
1464{
1465	debugfs_create_file("radix", 0400, kvm->debugfs_dentry, kvm,
1466			    &debugfs_radix_fops);
1467}
1468
1469int kvmppc_radix_init(void)
1470{
1471	unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE;
1472
1473	kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor);
1474	if (!kvm_pte_cache)
1475		return -ENOMEM;
1476
1477	size = sizeof(void *) << RADIX_PMD_INDEX_SIZE;
1478
1479	kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor);
1480	if (!kvm_pmd_cache) {
1481		kmem_cache_destroy(kvm_pte_cache);
1482		return -ENOMEM;
1483	}
1484
1485	return 0;
1486}
1487
1488void kvmppc_radix_exit(void)
1489{
1490	kmem_cache_destroy(kvm_pte_cache);
1491	kmem_cache_destroy(kvm_pmd_cache);
1492}
1493