162306a36Sopenharmony_ci/* Machine-dependent software floating-point definitions. PPC version. 262306a36Sopenharmony_ci Copyright (C) 1997 Free Software Foundation, Inc. 362306a36Sopenharmony_ci This file is part of the GNU C Library. 462306a36Sopenharmony_ci 562306a36Sopenharmony_ci The GNU C Library is free software; you can redistribute it and/or 662306a36Sopenharmony_ci modify it under the terms of the GNU Library General Public License as 762306a36Sopenharmony_ci published by the Free Software Foundation; either version 2 of the 862306a36Sopenharmony_ci License, or (at your option) any later version. 962306a36Sopenharmony_ci 1062306a36Sopenharmony_ci The GNU C Library is distributed in the hope that it will be useful, 1162306a36Sopenharmony_ci but WITHOUT ANY WARRANTY; without even the implied warranty of 1262306a36Sopenharmony_ci MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 1362306a36Sopenharmony_ci Library General Public License for more details. 1462306a36Sopenharmony_ci 1562306a36Sopenharmony_ci You should have received a copy of the GNU Library General Public 1662306a36Sopenharmony_ci License along with the GNU C Library; see the file COPYING.LIB. If 1762306a36Sopenharmony_ci not, write to the Free Software Foundation, Inc., 1862306a36Sopenharmony_ci 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 1962306a36Sopenharmony_ci 2062306a36Sopenharmony_ci Actually, this is a PPC (32bit) version, written based on the 2162306a36Sopenharmony_ci i386, sparc, and sparc64 versions, by me, 2262306a36Sopenharmony_ci Peter Maydell (pmaydell@chiark.greenend.org.uk). 2362306a36Sopenharmony_ci Comments are by and large also mine, although they may be inaccurate. 2462306a36Sopenharmony_ci 2562306a36Sopenharmony_ci In picking out asm fragments I've gone with the lowest common 2662306a36Sopenharmony_ci denominator, which also happens to be the hardware I have :-> 2762306a36Sopenharmony_ci That is, a SPARC without hardware multiply and divide. 2862306a36Sopenharmony_ci */ 2962306a36Sopenharmony_ci 3062306a36Sopenharmony_ci/* basic word size definitions */ 3162306a36Sopenharmony_ci#define _FP_W_TYPE_SIZE 32 3262306a36Sopenharmony_ci#define _FP_W_TYPE unsigned int 3362306a36Sopenharmony_ci#define _FP_WS_TYPE signed int 3462306a36Sopenharmony_ci#define _FP_I_TYPE int 3562306a36Sopenharmony_ci 3662306a36Sopenharmony_ci#define __ll_B ((UWtype) 1 << (W_TYPE_SIZE / 2)) 3762306a36Sopenharmony_ci#define __ll_lowpart(t) ((UWtype) (t) & (__ll_B - 1)) 3862306a36Sopenharmony_ci#define __ll_highpart(t) ((UWtype) (t) >> (W_TYPE_SIZE / 2)) 3962306a36Sopenharmony_ci 4062306a36Sopenharmony_ci/* You can optionally code some things like addition in asm. For 4162306a36Sopenharmony_ci * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't 4262306a36Sopenharmony_ci * then you get a fragment of C code [if you change an #ifdef 0 4362306a36Sopenharmony_ci * in op-2.h] or a call to add_ssaaaa (see below). 4462306a36Sopenharmony_ci * Good places to look for asm fragments to use are gcc and glibc. 4562306a36Sopenharmony_ci * gcc's longlong.h is useful. 4662306a36Sopenharmony_ci */ 4762306a36Sopenharmony_ci 4862306a36Sopenharmony_ci/* We need to know how to multiply and divide. If the host word size 4962306a36Sopenharmony_ci * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which 5062306a36Sopenharmony_ci * codes the multiply with whatever gcc does to 'a * b'. 5162306a36Sopenharmony_ci * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm 5262306a36Sopenharmony_ci * function that can multiply two 1W values and get a 2W result. 5362306a36Sopenharmony_ci * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which 5462306a36Sopenharmony_ci * does bitshifting to avoid overflow. 5562306a36Sopenharmony_ci * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size 5662306a36Sopenharmony_ci * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or 5762306a36Sopenharmony_ci * _FP_DIV_HELP_ldiv (see op-1.h). 5862306a36Sopenharmony_ci * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W). 5962306a36Sopenharmony_ci * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd 6062306a36Sopenharmony_ci * to do this.] 6162306a36Sopenharmony_ci * In general, 'n' is the number of words required to hold the type, 6262306a36Sopenharmony_ci * and 't' is either S, D or Q for single/double/quad. 6362306a36Sopenharmony_ci * -- PMM 6462306a36Sopenharmony_ci */ 6562306a36Sopenharmony_ci/* Example: SPARC64: 6662306a36Sopenharmony_ci * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_imm(S,R,X,Y) 6762306a36Sopenharmony_ci * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm) 6862306a36Sopenharmony_ci * #define _FP_MUL_MEAT_Q(R,X,Y) _FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm) 6962306a36Sopenharmony_ci * 7062306a36Sopenharmony_ci * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm) 7162306a36Sopenharmony_ci * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_1_udiv(D,R,X,Y) 7262306a36Sopenharmony_ci * #define _FP_DIV_MEAT_Q(R,X,Y) _FP_DIV_MEAT_2_udiv_64(Q,R,X,Y) 7362306a36Sopenharmony_ci * 7462306a36Sopenharmony_ci * Example: i386: 7562306a36Sopenharmony_ci * #define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64) 7662306a36Sopenharmony_ci * #define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64) 7762306a36Sopenharmony_ci * 7862306a36Sopenharmony_ci * #define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32) 7962306a36Sopenharmony_ci * #define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv_64(D,R,X,Y) 8062306a36Sopenharmony_ci */ 8162306a36Sopenharmony_ci 8262306a36Sopenharmony_ci#define _FP_MUL_MEAT_S(R,X,Y) _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm) 8362306a36Sopenharmony_ci#define _FP_MUL_MEAT_D(R,X,Y) _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm) 8462306a36Sopenharmony_ci 8562306a36Sopenharmony_ci#define _FP_DIV_MEAT_S(R,X,Y) _FP_DIV_MEAT_1_udiv_norm(S,R,X,Y) 8662306a36Sopenharmony_ci#define _FP_DIV_MEAT_D(R,X,Y) _FP_DIV_MEAT_2_udiv(D,R,X,Y) 8762306a36Sopenharmony_ci 8862306a36Sopenharmony_ci/* These macros define what NaN looks like. They're supposed to expand to 8962306a36Sopenharmony_ci * a comma-separated set of 32bit unsigned ints that encode NaN. 9062306a36Sopenharmony_ci */ 9162306a36Sopenharmony_ci#define _FP_NANFRAC_S ((_FP_QNANBIT_S << 1) - 1) 9262306a36Sopenharmony_ci#define _FP_NANFRAC_D ((_FP_QNANBIT_D << 1) - 1), -1 9362306a36Sopenharmony_ci#define _FP_NANFRAC_Q ((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1 9462306a36Sopenharmony_ci#define _FP_NANSIGN_S 0 9562306a36Sopenharmony_ci#define _FP_NANSIGN_D 0 9662306a36Sopenharmony_ci#define _FP_NANSIGN_Q 0 9762306a36Sopenharmony_ci 9862306a36Sopenharmony_ci#define _FP_KEEPNANFRACP 1 9962306a36Sopenharmony_ci 10062306a36Sopenharmony_ci#ifdef FP_EX_BOOKE_E500_SPE 10162306a36Sopenharmony_ci#define FP_EX_INEXACT (1 << 21) 10262306a36Sopenharmony_ci#define FP_EX_INVALID (1 << 20) 10362306a36Sopenharmony_ci#define FP_EX_DIVZERO (1 << 19) 10462306a36Sopenharmony_ci#define FP_EX_UNDERFLOW (1 << 18) 10562306a36Sopenharmony_ci#define FP_EX_OVERFLOW (1 << 17) 10662306a36Sopenharmony_ci#define FP_INHIBIT_RESULTS 0 10762306a36Sopenharmony_ci 10862306a36Sopenharmony_ci#define __FPU_FPSCR (current->thread.spefscr) 10962306a36Sopenharmony_ci#define __FPU_ENABLED_EXC \ 11062306a36Sopenharmony_ci({ \ 11162306a36Sopenharmony_ci (__FPU_FPSCR >> 2) & 0x1f; \ 11262306a36Sopenharmony_ci}) 11362306a36Sopenharmony_ci#else 11462306a36Sopenharmony_ci/* Exception flags. We use the bit positions of the appropriate bits 11562306a36Sopenharmony_ci in the FPSCR, which also correspond to the FE_* bits. This makes 11662306a36Sopenharmony_ci everything easier ;-). */ 11762306a36Sopenharmony_ci#define FP_EX_INVALID (1 << (31 - 2)) 11862306a36Sopenharmony_ci#define FP_EX_INVALID_SNAN EFLAG_VXSNAN 11962306a36Sopenharmony_ci#define FP_EX_INVALID_ISI EFLAG_VXISI 12062306a36Sopenharmony_ci#define FP_EX_INVALID_IDI EFLAG_VXIDI 12162306a36Sopenharmony_ci#define FP_EX_INVALID_ZDZ EFLAG_VXZDZ 12262306a36Sopenharmony_ci#define FP_EX_INVALID_IMZ EFLAG_VXIMZ 12362306a36Sopenharmony_ci#define FP_EX_OVERFLOW (1 << (31 - 3)) 12462306a36Sopenharmony_ci#define FP_EX_UNDERFLOW (1 << (31 - 4)) 12562306a36Sopenharmony_ci#define FP_EX_DIVZERO (1 << (31 - 5)) 12662306a36Sopenharmony_ci#define FP_EX_INEXACT (1 << (31 - 6)) 12762306a36Sopenharmony_ci 12862306a36Sopenharmony_ci#define __FPU_FPSCR (current->thread.fp_state.fpscr) 12962306a36Sopenharmony_ci 13062306a36Sopenharmony_ci/* We only actually write to the destination register 13162306a36Sopenharmony_ci * if exceptions signalled (if any) will not trap. 13262306a36Sopenharmony_ci */ 13362306a36Sopenharmony_ci#define __FPU_ENABLED_EXC \ 13462306a36Sopenharmony_ci({ \ 13562306a36Sopenharmony_ci (__FPU_FPSCR >> 3) & 0x1f; \ 13662306a36Sopenharmony_ci}) 13762306a36Sopenharmony_ci 13862306a36Sopenharmony_ci#endif 13962306a36Sopenharmony_ci 14062306a36Sopenharmony_ci/* 14162306a36Sopenharmony_ci * If one NaN is signaling and the other is not, 14262306a36Sopenharmony_ci * we choose that one, otherwise we choose X. 14362306a36Sopenharmony_ci */ 14462306a36Sopenharmony_ci#define _FP_CHOOSENAN(fs, wc, R, X, Y, OP) \ 14562306a36Sopenharmony_ci do { \ 14662306a36Sopenharmony_ci if ((_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs) \ 14762306a36Sopenharmony_ci && !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \ 14862306a36Sopenharmony_ci { \ 14962306a36Sopenharmony_ci R##_s = X##_s; \ 15062306a36Sopenharmony_ci _FP_FRAC_COPY_##wc(R,X); \ 15162306a36Sopenharmony_ci } \ 15262306a36Sopenharmony_ci else \ 15362306a36Sopenharmony_ci { \ 15462306a36Sopenharmony_ci R##_s = Y##_s; \ 15562306a36Sopenharmony_ci _FP_FRAC_COPY_##wc(R,Y); \ 15662306a36Sopenharmony_ci } \ 15762306a36Sopenharmony_ci R##_c = FP_CLS_NAN; \ 15862306a36Sopenharmony_ci } while (0) 15962306a36Sopenharmony_ci 16062306a36Sopenharmony_ci 16162306a36Sopenharmony_ci#include <linux/kernel.h> 16262306a36Sopenharmony_ci#include <linux/sched.h> 16362306a36Sopenharmony_ci 16462306a36Sopenharmony_ci#define __FPU_TRAP_P(bits) \ 16562306a36Sopenharmony_ci ((__FPU_ENABLED_EXC & (bits)) != 0) 16662306a36Sopenharmony_ci 16762306a36Sopenharmony_ci#define __FP_PACK_S(val,X) \ 16862306a36Sopenharmony_ci({ int __exc = _FP_PACK_CANONICAL(S,1,X); \ 16962306a36Sopenharmony_ci if(!__exc || !__FPU_TRAP_P(__exc)) \ 17062306a36Sopenharmony_ci _FP_PACK_RAW_1_P(S,val,X); \ 17162306a36Sopenharmony_ci __exc; \ 17262306a36Sopenharmony_ci}) 17362306a36Sopenharmony_ci 17462306a36Sopenharmony_ci#define __FP_PACK_D(val,X) \ 17562306a36Sopenharmony_ci do { \ 17662306a36Sopenharmony_ci _FP_PACK_CANONICAL(D, 2, X); \ 17762306a36Sopenharmony_ci if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) \ 17862306a36Sopenharmony_ci _FP_PACK_RAW_2_P(D, val, X); \ 17962306a36Sopenharmony_ci } while (0) 18062306a36Sopenharmony_ci 18162306a36Sopenharmony_ci#define __FP_PACK_DS(val,X) \ 18262306a36Sopenharmony_ci do { \ 18362306a36Sopenharmony_ci FP_DECL_S(__X); \ 18462306a36Sopenharmony_ci FP_CONV(S, D, 1, 2, __X, X); \ 18562306a36Sopenharmony_ci _FP_PACK_CANONICAL(S, 1, __X); \ 18662306a36Sopenharmony_ci if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) { \ 18762306a36Sopenharmony_ci _FP_UNPACK_CANONICAL(S, 1, __X); \ 18862306a36Sopenharmony_ci FP_CONV(D, S, 2, 1, X, __X); \ 18962306a36Sopenharmony_ci _FP_PACK_CANONICAL(D, 2, X); \ 19062306a36Sopenharmony_ci if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) \ 19162306a36Sopenharmony_ci _FP_PACK_RAW_2_P(D, val, X); \ 19262306a36Sopenharmony_ci } \ 19362306a36Sopenharmony_ci } while (0) 19462306a36Sopenharmony_ci 19562306a36Sopenharmony_ci/* Obtain the current rounding mode. */ 19662306a36Sopenharmony_ci#define FP_ROUNDMODE \ 19762306a36Sopenharmony_ci({ \ 19862306a36Sopenharmony_ci __FPU_FPSCR & 0x3; \ 19962306a36Sopenharmony_ci}) 20062306a36Sopenharmony_ci 20162306a36Sopenharmony_ci/* the asm fragments go here: all these are taken from glibc-2.0.5's 20262306a36Sopenharmony_ci * stdlib/longlong.h 20362306a36Sopenharmony_ci */ 20462306a36Sopenharmony_ci 20562306a36Sopenharmony_ci#include <linux/types.h> 20662306a36Sopenharmony_ci#include <asm/byteorder.h> 20762306a36Sopenharmony_ci 20862306a36Sopenharmony_ci/* add_ssaaaa is used in op-2.h and should be equivalent to 20962306a36Sopenharmony_ci * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al)) 21062306a36Sopenharmony_ci * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1, 21162306a36Sopenharmony_ci * high_addend_2, low_addend_2) adds two UWtype integers, composed by 21262306a36Sopenharmony_ci * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2 21362306a36Sopenharmony_ci * respectively. The result is placed in HIGH_SUM and LOW_SUM. Overflow 21462306a36Sopenharmony_ci * (i.e. carry out) is not stored anywhere, and is lost. 21562306a36Sopenharmony_ci */ 21662306a36Sopenharmony_ci#define add_ssaaaa(sh, sl, ah, al, bh, bl) \ 21762306a36Sopenharmony_ci do { \ 21862306a36Sopenharmony_ci if (__builtin_constant_p (bh) && (bh) == 0) \ 21962306a36Sopenharmony_ci __asm__ ("add%I4c %1,%3,%4\n\taddze %0,%2" \ 22062306a36Sopenharmony_ci : "=r" (sh), "=&r" (sl) : "r" (ah), "%r" (al), "rI" (bl));\ 22162306a36Sopenharmony_ci else if (__builtin_constant_p (bh) && (bh) == ~(USItype) 0) \ 22262306a36Sopenharmony_ci __asm__ ("add%I4c %1,%3,%4\n\taddme %0,%2" \ 22362306a36Sopenharmony_ci : "=r" (sh), "=&r" (sl) : "r" (ah), "%r" (al), "rI" (bl));\ 22462306a36Sopenharmony_ci else \ 22562306a36Sopenharmony_ci __asm__ ("add%I5c %1,%4,%5\n\tadde %0,%2,%3" \ 22662306a36Sopenharmony_ci : "=r" (sh), "=&r" (sl) \ 22762306a36Sopenharmony_ci : "%r" (ah), "r" (bh), "%r" (al), "rI" (bl)); \ 22862306a36Sopenharmony_ci } while (0) 22962306a36Sopenharmony_ci 23062306a36Sopenharmony_ci/* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to 23162306a36Sopenharmony_ci * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al)) 23262306a36Sopenharmony_ci * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend, 23362306a36Sopenharmony_ci * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers, 23462306a36Sopenharmony_ci * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and 23562306a36Sopenharmony_ci * LOW_SUBTRAHEND_2 respectively. The result is placed in HIGH_DIFFERENCE 23662306a36Sopenharmony_ci * and LOW_DIFFERENCE. Overflow (i.e. carry out) is not stored anywhere, 23762306a36Sopenharmony_ci * and is lost. 23862306a36Sopenharmony_ci */ 23962306a36Sopenharmony_ci#define sub_ddmmss(sh, sl, ah, al, bh, bl) \ 24062306a36Sopenharmony_ci do { \ 24162306a36Sopenharmony_ci if (__builtin_constant_p (ah) && (ah) == 0) \ 24262306a36Sopenharmony_ci __asm__ ("subf%I3c %1,%4,%3\n\tsubfze %0,%2" \ 24362306a36Sopenharmony_ci : "=r" (sh), "=&r" (sl) : "r" (bh), "rI" (al), "r" (bl));\ 24462306a36Sopenharmony_ci else if (__builtin_constant_p (ah) && (ah) == ~(USItype) 0) \ 24562306a36Sopenharmony_ci __asm__ ("subf%I3c %1,%4,%3\n\tsubfme %0,%2" \ 24662306a36Sopenharmony_ci : "=r" (sh), "=&r" (sl) : "r" (bh), "rI" (al), "r" (bl));\ 24762306a36Sopenharmony_ci else if (__builtin_constant_p (bh) && (bh) == 0) \ 24862306a36Sopenharmony_ci __asm__ ("subf%I3c %1,%4,%3\n\taddme %0,%2" \ 24962306a36Sopenharmony_ci : "=r" (sh), "=&r" (sl) : "r" (ah), "rI" (al), "r" (bl));\ 25062306a36Sopenharmony_ci else if (__builtin_constant_p (bh) && (bh) == ~(USItype) 0) \ 25162306a36Sopenharmony_ci __asm__ ("subf%I3c %1,%4,%3\n\taddze %0,%2" \ 25262306a36Sopenharmony_ci : "=r" (sh), "=&r" (sl) : "r" (ah), "rI" (al), "r" (bl));\ 25362306a36Sopenharmony_ci else \ 25462306a36Sopenharmony_ci __asm__ ("subf%I4c %1,%5,%4\n\tsubfe %0,%3,%2" \ 25562306a36Sopenharmony_ci : "=r" (sh), "=&r" (sl) \ 25662306a36Sopenharmony_ci : "r" (ah), "r" (bh), "rI" (al), "r" (bl)); \ 25762306a36Sopenharmony_ci } while (0) 25862306a36Sopenharmony_ci 25962306a36Sopenharmony_ci/* asm fragments for mul and div */ 26062306a36Sopenharmony_ci 26162306a36Sopenharmony_ci/* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two 26262306a36Sopenharmony_ci * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype 26362306a36Sopenharmony_ci * word product in HIGH_PROD and LOW_PROD. 26462306a36Sopenharmony_ci */ 26562306a36Sopenharmony_ci#define umul_ppmm(ph, pl, m0, m1) \ 26662306a36Sopenharmony_ci do { \ 26762306a36Sopenharmony_ci USItype __m0 = (m0), __m1 = (m1); \ 26862306a36Sopenharmony_ci __asm__ ("mulhwu %0,%1,%2" : "=r" (ph) : "%r" (m0), "r" (m1)); \ 26962306a36Sopenharmony_ci (pl) = __m0 * __m1; \ 27062306a36Sopenharmony_ci } while (0) 27162306a36Sopenharmony_ci 27262306a36Sopenharmony_ci/* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator, 27362306a36Sopenharmony_ci * denominator) divides a UDWtype, composed by the UWtype integers 27462306a36Sopenharmony_ci * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient 27562306a36Sopenharmony_ci * in QUOTIENT and the remainder in REMAINDER. HIGH_NUMERATOR must be less 27662306a36Sopenharmony_ci * than DENOMINATOR for correct operation. If, in addition, the most 27762306a36Sopenharmony_ci * significant bit of DENOMINATOR must be 1, then the pre-processor symbol 27862306a36Sopenharmony_ci * UDIV_NEEDS_NORMALIZATION is defined to 1. 27962306a36Sopenharmony_ci */ 28062306a36Sopenharmony_ci#define udiv_qrnnd(q, r, n1, n0, d) \ 28162306a36Sopenharmony_ci do { \ 28262306a36Sopenharmony_ci UWtype __d1, __d0, __q1, __q0; \ 28362306a36Sopenharmony_ci UWtype __r1, __r0, __m; \ 28462306a36Sopenharmony_ci __d1 = __ll_highpart (d); \ 28562306a36Sopenharmony_ci __d0 = __ll_lowpart (d); \ 28662306a36Sopenharmony_ci \ 28762306a36Sopenharmony_ci __r1 = (n1) % __d1; \ 28862306a36Sopenharmony_ci __q1 = (n1) / __d1; \ 28962306a36Sopenharmony_ci __m = (UWtype) __q1 * __d0; \ 29062306a36Sopenharmony_ci __r1 = __r1 * __ll_B | __ll_highpart (n0); \ 29162306a36Sopenharmony_ci if (__r1 < __m) \ 29262306a36Sopenharmony_ci { \ 29362306a36Sopenharmony_ci __q1--, __r1 += (d); \ 29462306a36Sopenharmony_ci if (__r1 >= (d)) /* i.e. we didn't get carry when adding to __r1 */\ 29562306a36Sopenharmony_ci if (__r1 < __m) \ 29662306a36Sopenharmony_ci __q1--, __r1 += (d); \ 29762306a36Sopenharmony_ci } \ 29862306a36Sopenharmony_ci __r1 -= __m; \ 29962306a36Sopenharmony_ci \ 30062306a36Sopenharmony_ci __r0 = __r1 % __d1; \ 30162306a36Sopenharmony_ci __q0 = __r1 / __d1; \ 30262306a36Sopenharmony_ci __m = (UWtype) __q0 * __d0; \ 30362306a36Sopenharmony_ci __r0 = __r0 * __ll_B | __ll_lowpart (n0); \ 30462306a36Sopenharmony_ci if (__r0 < __m) \ 30562306a36Sopenharmony_ci { \ 30662306a36Sopenharmony_ci __q0--, __r0 += (d); \ 30762306a36Sopenharmony_ci if (__r0 >= (d)) \ 30862306a36Sopenharmony_ci if (__r0 < __m) \ 30962306a36Sopenharmony_ci __q0--, __r0 += (d); \ 31062306a36Sopenharmony_ci } \ 31162306a36Sopenharmony_ci __r0 -= __m; \ 31262306a36Sopenharmony_ci \ 31362306a36Sopenharmony_ci (q) = (UWtype) __q1 * __ll_B | __q0; \ 31462306a36Sopenharmony_ci (r) = __r0; \ 31562306a36Sopenharmony_ci } while (0) 31662306a36Sopenharmony_ci 31762306a36Sopenharmony_ci#define UDIV_NEEDS_NORMALIZATION 1 31862306a36Sopenharmony_ci 31962306a36Sopenharmony_ci#define abort() \ 32062306a36Sopenharmony_ci return 0 32162306a36Sopenharmony_ci 32262306a36Sopenharmony_ci#ifdef __BIG_ENDIAN 32362306a36Sopenharmony_ci#define __BYTE_ORDER __BIG_ENDIAN 32462306a36Sopenharmony_ci#else 32562306a36Sopenharmony_ci#define __BYTE_ORDER __LITTLE_ENDIAN 32662306a36Sopenharmony_ci#endif 32762306a36Sopenharmony_ci 32862306a36Sopenharmony_ci/* Exception flags. */ 32962306a36Sopenharmony_ci#define EFLAG_INVALID (1 << (31 - 2)) 33062306a36Sopenharmony_ci#define EFLAG_OVERFLOW (1 << (31 - 3)) 33162306a36Sopenharmony_ci#define EFLAG_UNDERFLOW (1 << (31 - 4)) 33262306a36Sopenharmony_ci#define EFLAG_DIVZERO (1 << (31 - 5)) 33362306a36Sopenharmony_ci#define EFLAG_INEXACT (1 << (31 - 6)) 33462306a36Sopenharmony_ci 33562306a36Sopenharmony_ci#define EFLAG_VXSNAN (1 << (31 - 7)) 33662306a36Sopenharmony_ci#define EFLAG_VXISI (1 << (31 - 8)) 33762306a36Sopenharmony_ci#define EFLAG_VXIDI (1 << (31 - 9)) 33862306a36Sopenharmony_ci#define EFLAG_VXZDZ (1 << (31 - 10)) 33962306a36Sopenharmony_ci#define EFLAG_VXIMZ (1 << (31 - 11)) 34062306a36Sopenharmony_ci#define EFLAG_VXVC (1 << (31 - 12)) 34162306a36Sopenharmony_ci#define EFLAG_VXSOFT (1 << (31 - 21)) 34262306a36Sopenharmony_ci#define EFLAG_VXSQRT (1 << (31 - 22)) 34362306a36Sopenharmony_ci#define EFLAG_VXCVI (1 << (31 - 23)) 344