1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_NOHASH_64_PGTABLE_H
3#define _ASM_POWERPC_NOHASH_64_PGTABLE_H
4/*
5 * This file contains the functions and defines necessary to modify and use
6 * the ppc64 non-hashed page table.
7 */
8
9#include <linux/sizes.h>
10
11#include <asm/nohash/64/pgtable-4k.h>
12#include <asm/barrier.h>
13#include <asm/asm-const.h>
14
15/*
16 * Size of EA range mapped by our pagetables.
17 */
18#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
19			    PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
20#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
21
22#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
23#define PUD_CACHE_INDEX PUD_INDEX_SIZE
24
25/*
26 * Define the address range of the kernel non-linear virtual area
27 */
28#define KERN_VIRT_START ASM_CONST(0xc000100000000000)
29#define KERN_VIRT_SIZE	ASM_CONST(0x0000100000000000)
30
31/*
32 * The vmalloc space starts at the beginning of that region, and
33 * occupies a quarter of it on Book3E
34 * (we keep a quarter for the virtual memmap)
35 */
36#define VMALLOC_START	KERN_VIRT_START
37#define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 2)
38#define VMALLOC_END	(VMALLOC_START + VMALLOC_SIZE)
39
40/*
41 * The third quarter of the kernel virtual space is used for IO mappings,
42 * it's itself carved into the PIO region (ISA and PHB IO space) and
43 * the ioremap space
44 *
45 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
46 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
47 * IOREMAP_BASE = ISA_IO_BASE + 2G to KERN_IO_START + KERN_IO_SIZE
48 */
49#define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
50#define KERN_IO_SIZE	(KERN_VIRT_SIZE >> 2)
51#define FULL_IO_SIZE	0x80000000ul
52#define  ISA_IO_BASE	(KERN_IO_START)
53#define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
54#define  PHB_IO_BASE	(ISA_IO_END)
55#define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
56#define IOREMAP_BASE	(PHB_IO_END)
57#define IOREMAP_START	(ioremap_bot)
58#define IOREMAP_END	(KERN_IO_START + KERN_IO_SIZE - FIXADDR_SIZE)
59#define FIXADDR_SIZE	SZ_32M
60
61/*
62 * Defines the address of the vmemap area, in its own region on
63 * after the vmalloc space on Book3E
64 */
65#define VMEMMAP_BASE		VMALLOC_END
66#define VMEMMAP_END		KERN_IO_START
67#define vmemmap			((struct page *)VMEMMAP_BASE)
68
69
70/*
71 * Include the PTE bits definitions
72 */
73#include <asm/nohash/pte-e500.h>
74
75#define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
76
77/*
78 * _PAGE_CHG_MASK masks of bits that are to be preserved across
79 * pgprot changes.
80 */
81#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
82
83#define H_PAGE_4K_PFN 0
84
85#ifndef __ASSEMBLY__
86/* pte_clear moved to later in this file */
87
88static inline pte_t pte_mkwrite_novma(pte_t pte)
89{
90	return __pte(pte_val(pte) | _PAGE_RW);
91}
92
93static inline pte_t pte_mkdirty(pte_t pte)
94{
95	return __pte(pte_val(pte) | _PAGE_DIRTY);
96}
97
98static inline pte_t pte_mkyoung(pte_t pte)
99{
100	return __pte(pte_val(pte) | _PAGE_ACCESSED);
101}
102
103static inline pte_t pte_wrprotect(pte_t pte)
104{
105	return __pte(pte_val(pte) & ~_PAGE_RW);
106}
107
108#define PMD_BAD_BITS		(PTE_TABLE_SIZE-1)
109#define PUD_BAD_BITS		(PMD_TABLE_SIZE-1)
110
111static inline void pmd_set(pmd_t *pmdp, unsigned long val)
112{
113	*pmdp = __pmd(val);
114}
115
116static inline void pmd_clear(pmd_t *pmdp)
117{
118	*pmdp = __pmd(0);
119}
120
121static inline pte_t pmd_pte(pmd_t pmd)
122{
123	return __pte(pmd_val(pmd));
124}
125
126#define pmd_none(pmd)		(!pmd_val(pmd))
127#define	pmd_bad(pmd)		(!is_kernel_addr(pmd_val(pmd)) \
128				 || (pmd_val(pmd) & PMD_BAD_BITS))
129#define	pmd_present(pmd)	(!pmd_none(pmd))
130#define pmd_page_vaddr(pmd)	((const void *)(pmd_val(pmd) & ~PMD_MASKED_BITS))
131extern struct page *pmd_page(pmd_t pmd);
132#define pmd_pfn(pmd)		(page_to_pfn(pmd_page(pmd)))
133
134static inline void pud_set(pud_t *pudp, unsigned long val)
135{
136	*pudp = __pud(val);
137}
138
139static inline void pud_clear(pud_t *pudp)
140{
141	*pudp = __pud(0);
142}
143
144#define pud_none(pud)		(!pud_val(pud))
145#define	pud_bad(pud)		(!is_kernel_addr(pud_val(pud)) \
146				 || (pud_val(pud) & PUD_BAD_BITS))
147#define pud_present(pud)	(pud_val(pud) != 0)
148
149static inline pmd_t *pud_pgtable(pud_t pud)
150{
151	return (pmd_t *)(pud_val(pud) & ~PUD_MASKED_BITS);
152}
153
154extern struct page *pud_page(pud_t pud);
155
156static inline pte_t pud_pte(pud_t pud)
157{
158	return __pte(pud_val(pud));
159}
160
161static inline pud_t pte_pud(pte_t pte)
162{
163	return __pud(pte_val(pte));
164}
165#define pud_write(pud)		pte_write(pud_pte(pud))
166#define p4d_write(pgd)		pte_write(p4d_pte(p4d))
167
168static inline void p4d_set(p4d_t *p4dp, unsigned long val)
169{
170	*p4dp = __p4d(val);
171}
172
173/* Atomic PTE updates */
174static inline unsigned long pte_update(struct mm_struct *mm,
175				       unsigned long addr,
176				       pte_t *ptep, unsigned long clr,
177				       unsigned long set,
178				       int huge)
179{
180	unsigned long old = pte_val(*ptep);
181	*ptep = __pte((old & ~clr) | set);
182
183	/* huge pages use the old page table lock */
184	if (!huge)
185		assert_pte_locked(mm, addr);
186
187	return old;
188}
189
190static inline int pte_young(pte_t pte)
191{
192	return pte_val(pte) & _PAGE_ACCESSED;
193}
194
195static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
196					      unsigned long addr, pte_t *ptep)
197{
198	unsigned long old;
199
200	if (!pte_young(*ptep))
201		return 0;
202	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
203	return (old & _PAGE_ACCESSED) != 0;
204}
205#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
206#define ptep_test_and_clear_young(__vma, __addr, __ptep)		   \
207({									   \
208	int __r;							   \
209	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
210	__r;								   \
211})
212
213#define __HAVE_ARCH_PTEP_SET_WRPROTECT
214static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
215				      pte_t *ptep)
216{
217
218	if ((pte_val(*ptep) & _PAGE_RW) == 0)
219		return;
220
221	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
222}
223
224#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
225static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
226					   unsigned long addr, pte_t *ptep)
227{
228	if ((pte_val(*ptep) & _PAGE_RW) == 0)
229		return;
230
231	pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
232}
233
234#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
235#define ptep_clear_flush_young(__vma, __address, __ptep)		\
236({									\
237	int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
238						  __ptep);		\
239	__young;							\
240})
241
242#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
243static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
244				       unsigned long addr, pte_t *ptep)
245{
246	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
247	return __pte(old);
248}
249
250static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
251			     pte_t * ptep)
252{
253	pte_update(mm, addr, ptep, ~0UL, 0, 0);
254}
255
256
257/* Set the dirty and/or accessed bits atomically in a linux PTE */
258static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
259					   pte_t *ptep, pte_t entry,
260					   unsigned long address,
261					   int psize)
262{
263	unsigned long bits = pte_val(entry) &
264		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
265
266	unsigned long old = pte_val(*ptep);
267	*ptep = __pte(old | bits);
268
269	flush_tlb_page(vma, address);
270}
271
272#define pte_ERROR(e) \
273	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
274#define pmd_ERROR(e) \
275	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
276#define pgd_ERROR(e) \
277	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
278
279/*
280 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
281 * are !pte_none() && !pte_present().
282 *
283 * Format of swap PTEs:
284 *
285 *                         1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
286 *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
287 *   <-------------------------- offset ----------------------------
288 *
289 *   3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6 6 6 6
290 *   2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
291 *   --------------> <----------- zero ------------> E < type -> 0 0
292 *
293 * E is the exclusive marker that is not stored in swap entries.
294 */
295#define MAX_SWAPFILES_CHECK() do { \
296	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
297	} while (0)
298
299#define SWP_TYPE_BITS 5
300#define __swp_type(x)		(((x).val >> 2) \
301				& ((1UL << SWP_TYPE_BITS) - 1))
302#define __swp_offset(x)		((x).val >> PTE_RPN_SHIFT)
303#define __swp_entry(type, offset)	((swp_entry_t) { \
304					(((type) & 0x1f) << 2) \
305					| ((offset) << PTE_RPN_SHIFT) })
306
307#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val((pte)) })
308#define __swp_entry_to_pte(x)		__pte((x).val)
309
310/* We borrow MSB 56 (LSB 7) to store the exclusive marker in swap PTEs. */
311#define _PAGE_SWP_EXCLUSIVE	0x80
312
313int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot);
314void unmap_kernel_page(unsigned long va);
315extern int __meminit vmemmap_create_mapping(unsigned long start,
316					    unsigned long page_size,
317					    unsigned long phys);
318extern void vmemmap_remove_mapping(unsigned long start,
319				   unsigned long page_size);
320void __patch_exception(int exc, unsigned long addr);
321#define patch_exception(exc, name) do { \
322	extern unsigned int name; \
323	__patch_exception((exc), (unsigned long)&name); \
324} while (0)
325
326#endif /* __ASSEMBLY__ */
327
328#endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */
329