1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_NOHASH_32_PGTABLE_H
3#define _ASM_POWERPC_NOHASH_32_PGTABLE_H
4
5#include <asm-generic/pgtable-nopmd.h>
6
7#ifndef __ASSEMBLY__
8#include <linux/sched.h>
9#include <linux/threads.h>
10#include <asm/mmu.h>			/* For sub-arch specific PPC_PIN_SIZE */
11
12#ifdef CONFIG_44x
13extern int icache_44x_need_flush;
14#endif
15
16#endif /* __ASSEMBLY__ */
17
18#define PTE_INDEX_SIZE	PTE_SHIFT
19#define PMD_INDEX_SIZE	0
20#define PUD_INDEX_SIZE	0
21#define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
22
23#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
24#define PUD_CACHE_INDEX	PUD_INDEX_SIZE
25
26#ifndef __ASSEMBLY__
27#define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
28#define PMD_TABLE_SIZE	0
29#define PUD_TABLE_SIZE	0
30#define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
31
32#define PMD_MASKED_BITS (PTE_TABLE_SIZE - 1)
33#endif	/* __ASSEMBLY__ */
34
35#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
36#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
37
38/*
39 * The normal case is that PTEs are 32-bits and we have a 1-page
40 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
41 *
42 * For any >32-bit physical address platform, we can use the following
43 * two level page table layout where the pgdir is 8KB and the MS 13 bits
44 * are an index to the second level table.  The combined pgdir/pmd first
45 * level has 2048 entries and the second level has 512 64-bit PTE entries.
46 * -Matt
47 */
48/* PGDIR_SHIFT determines what a top-level page table entry can map */
49#define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
50#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
51#define PGDIR_MASK	(~(PGDIR_SIZE-1))
52
53/* Bits to mask out from a PGD to get to the PUD page */
54#define PGD_MASKED_BITS		0
55
56#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
57
58#define pte_ERROR(e) \
59	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
60		(unsigned long long)pte_val(e))
61#define pgd_ERROR(e) \
62	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
63
64#ifndef __ASSEMBLY__
65
66int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
67void unmap_kernel_page(unsigned long va);
68
69#endif /* !__ASSEMBLY__ */
70
71
72/*
73 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
74 * value (for now) on others, from where we can start layout kernel
75 * virtual space that goes below PKMAP and FIXMAP
76 */
77#include <asm/fixmap.h>
78
79/*
80 * ioremap_bot starts at that address. Early ioremaps move down from there,
81 * until mem_init() at which point this becomes the top of the vmalloc
82 * and ioremap space
83 */
84#ifdef CONFIG_HIGHMEM
85#define IOREMAP_TOP	PKMAP_BASE
86#else
87#define IOREMAP_TOP	FIXADDR_START
88#endif
89
90/* PPC32 shares vmalloc area with ioremap */
91#define IOREMAP_START	VMALLOC_START
92#define IOREMAP_END	VMALLOC_END
93
94/*
95 * Just any arbitrary offset to the start of the vmalloc VM area: the
96 * current 16MB value just means that there will be a 64MB "hole" after the
97 * physical memory until the kernel virtual memory starts.  That means that
98 * any out-of-bounds memory accesses will hopefully be caught.
99 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
100 * area for the same reason. ;)
101 *
102 * We no longer map larger than phys RAM with the BATs so we don't have
103 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
104 * about clashes between our early calls to ioremap() that start growing down
105 * from IOREMAP_TOP being run into the VM area allocations (growing upwards
106 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
107 * we actually run into our mappings setup in the early boot with the VM
108 * system.  This really does become a problem for machines with good amounts
109 * of RAM.  -- Cort
110 */
111#define VMALLOC_OFFSET (0x1000000) /* 16M */
112#ifdef PPC_PIN_SIZE
113#define VMALLOC_START (((ALIGN((long)high_memory, PPC_PIN_SIZE) + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
114#else
115#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
116#endif
117
118#ifdef CONFIG_KASAN_VMALLOC
119#define VMALLOC_END	ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
120#else
121#define VMALLOC_END	ioremap_bot
122#endif
123
124/*
125 * Bits in a linux-style PTE.  These match the bits in the
126 * (hardware-defined) PowerPC PTE as closely as possible.
127 */
128
129#if defined(CONFIG_40x)
130#include <asm/nohash/32/pte-40x.h>
131#elif defined(CONFIG_44x)
132#include <asm/nohash/32/pte-44x.h>
133#elif defined(CONFIG_PPC_85xx) && defined(CONFIG_PTE_64BIT)
134#include <asm/nohash/pte-e500.h>
135#elif defined(CONFIG_PPC_85xx)
136#include <asm/nohash/32/pte-85xx.h>
137#elif defined(CONFIG_PPC_8xx)
138#include <asm/nohash/32/pte-8xx.h>
139#endif
140
141/*
142 * Location of the PFN in the PTE. Most 32-bit platforms use the same
143 * as _PAGE_SHIFT here (ie, naturally aligned).
144 * Platform who don't just pre-define the value so we don't override it here.
145 */
146#ifndef PTE_RPN_SHIFT
147#define PTE_RPN_SHIFT	(PAGE_SHIFT)
148#endif
149
150/*
151 * The mask covered by the RPN must be a ULL on 32-bit platforms with
152 * 64-bit PTEs.
153 */
154#if defined(CONFIG_PPC32) && defined(CONFIG_PTE_64BIT)
155#define PTE_RPN_MASK	(~((1ULL << PTE_RPN_SHIFT) - 1))
156#define MAX_POSSIBLE_PHYSMEM_BITS 36
157#else
158#define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
159#define MAX_POSSIBLE_PHYSMEM_BITS 32
160#endif
161
162/*
163 * _PAGE_CHG_MASK masks of bits that are to be preserved across
164 * pgprot changes.
165 */
166#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL)
167
168#ifndef __ASSEMBLY__
169
170#define pte_clear(mm, addr, ptep) \
171	do { pte_update(mm, addr, ptep, ~0, 0, 0); } while (0)
172
173#ifndef pte_mkwrite_novma
174static inline pte_t pte_mkwrite_novma(pte_t pte)
175{
176	return __pte(pte_val(pte) | _PAGE_RW);
177}
178#endif
179
180static inline pte_t pte_mkdirty(pte_t pte)
181{
182	return __pte(pte_val(pte) | _PAGE_DIRTY);
183}
184
185static inline pte_t pte_mkyoung(pte_t pte)
186{
187	return __pte(pte_val(pte) | _PAGE_ACCESSED);
188}
189
190#ifndef pte_wrprotect
191static inline pte_t pte_wrprotect(pte_t pte)
192{
193	return __pte(pte_val(pte) & ~_PAGE_RW);
194}
195#endif
196
197#ifndef pte_mkexec
198static inline pte_t pte_mkexec(pte_t pte)
199{
200	return __pte(pte_val(pte) | _PAGE_EXEC);
201}
202#endif
203
204#define pmd_none(pmd)		(!pmd_val(pmd))
205#define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
206#define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
207static inline void pmd_clear(pmd_t *pmdp)
208{
209	*pmdp = __pmd(0);
210}
211
212/*
213 * PTE updates. This function is called whenever an existing
214 * valid PTE is updated. This does -not- include set_pte_at()
215 * which nowadays only sets a new PTE.
216 *
217 * Depending on the type of MMU, we may need to use atomic updates
218 * and the PTE may be either 32 or 64 bit wide. In the later case,
219 * when using atomic updates, only the low part of the PTE is
220 * accessed atomically.
221 *
222 * In addition, on 44x, we also maintain a global flag indicating
223 * that an executable user mapping was modified, which is needed
224 * to properly flush the virtually tagged instruction cache of
225 * those implementations.
226 *
227 * On the 8xx, the page tables are a bit special. For 16k pages, we have
228 * 4 identical entries. For 512k pages, we have 128 entries as if it was
229 * 4k pages, but they are flagged as 512k pages for the hardware.
230 * For other page sizes, we have a single entry in the table.
231 */
232#ifdef CONFIG_PPC_8xx
233static pmd_t *pmd_off(struct mm_struct *mm, unsigned long addr);
234static int hugepd_ok(hugepd_t hpd);
235
236static int number_of_cells_per_pte(pmd_t *pmd, pte_basic_t val, int huge)
237{
238	if (!huge)
239		return PAGE_SIZE / SZ_4K;
240	else if (hugepd_ok(*((hugepd_t *)pmd)))
241		return 1;
242	else if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !(val & _PAGE_HUGE))
243		return SZ_16K / SZ_4K;
244	else
245		return SZ_512K / SZ_4K;
246}
247
248static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
249				     unsigned long clr, unsigned long set, int huge)
250{
251	pte_basic_t *entry = (pte_basic_t *)p;
252	pte_basic_t old = pte_val(*p);
253	pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
254	int num, i;
255	pmd_t *pmd = pmd_off(mm, addr);
256
257	num = number_of_cells_per_pte(pmd, new, huge);
258
259	for (i = 0; i < num; i += PAGE_SIZE / SZ_4K, new += PAGE_SIZE) {
260		*entry++ = new;
261		if (IS_ENABLED(CONFIG_PPC_16K_PAGES) && num != 1) {
262			*entry++ = new;
263			*entry++ = new;
264			*entry++ = new;
265		}
266	}
267
268	return old;
269}
270
271#ifdef CONFIG_PPC_16K_PAGES
272#define ptep_get ptep_get
273static inline pte_t ptep_get(pte_t *ptep)
274{
275	pte_basic_t val = READ_ONCE(ptep->pte);
276	pte_t pte = {val, val, val, val};
277
278	return pte;
279}
280#endif /* CONFIG_PPC_16K_PAGES */
281
282#else
283static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
284				     unsigned long clr, unsigned long set, int huge)
285{
286	pte_basic_t old = pte_val(*p);
287	pte_basic_t new = (old & ~(pte_basic_t)clr) | set;
288
289	*p = __pte(new);
290
291#ifdef CONFIG_44x
292	if ((old & _PAGE_USER) && (old & _PAGE_EXEC))
293		icache_44x_need_flush = 1;
294#endif
295	return old;
296}
297#endif
298
299#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
300static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
301					      unsigned long addr, pte_t *ptep)
302{
303	unsigned long old;
304	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
305	return (old & _PAGE_ACCESSED) != 0;
306}
307#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
308	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
309
310#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
311static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
312				       pte_t *ptep)
313{
314	return __pte(pte_update(mm, addr, ptep, ~0, 0, 0));
315}
316
317#define __HAVE_ARCH_PTEP_SET_WRPROTECT
318#ifndef ptep_set_wrprotect
319static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
320				      pte_t *ptep)
321{
322	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
323}
324#endif
325
326#ifndef __ptep_set_access_flags
327static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
328					   pte_t *ptep, pte_t entry,
329					   unsigned long address,
330					   int psize)
331{
332	unsigned long set = pte_val(entry) &
333			    (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
334	int huge = psize > mmu_virtual_psize ? 1 : 0;
335
336	pte_update(vma->vm_mm, address, ptep, 0, set, huge);
337
338	flush_tlb_page(vma, address);
339}
340#endif
341
342static inline int pte_young(pte_t pte)
343{
344	return pte_val(pte) & _PAGE_ACCESSED;
345}
346
347/*
348 * Note that on Book E processors, the pmd contains the kernel virtual
349 * (lowmem) address of the pte page.  The physical address is less useful
350 * because everything runs with translation enabled (even the TLB miss
351 * handler).  On everything else the pmd contains the physical address
352 * of the pte page.  -- paulus
353 */
354#ifndef CONFIG_BOOKE
355#define pmd_pfn(pmd)		(pmd_val(pmd) >> PAGE_SHIFT)
356#else
357#define pmd_page_vaddr(pmd)	\
358	((const void *)(pmd_val(pmd) & ~(PTE_TABLE_SIZE - 1)))
359#define pmd_pfn(pmd)		(__pa(pmd_val(pmd)) >> PAGE_SHIFT)
360#endif
361
362#define pmd_page(pmd)		pfn_to_page(pmd_pfn(pmd))
363
364/*
365 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
366 * are !pte_none() && !pte_present().
367 *
368 * Format of swap PTEs (32bit PTEs):
369 *
370 *                         1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
371 *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
372 *   <------------------ offset -------------------> < type -> E 0 0
373 *
374 * E is the exclusive marker that is not stored in swap entries.
375 *
376 * For 64bit PTEs, the offset is extended by 32bit.
377 */
378#define __swp_type(entry)		((entry).val & 0x1f)
379#define __swp_offset(entry)		((entry).val >> 5)
380#define __swp_entry(type, offset)	((swp_entry_t) { ((type) & 0x1f) | ((offset) << 5) })
381#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
382#define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
383
384/* We borrow LSB 2 to store the exclusive marker in swap PTEs. */
385#define _PAGE_SWP_EXCLUSIVE	0x000004
386
387#endif /* !__ASSEMBLY__ */
388
389#endif /* __ASM_POWERPC_NOHASH_32_PGTABLE_H */
390