1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5#include <asm-generic/pgtable-nop4d.h>
6
7#ifndef __ASSEMBLY__
8#include <linux/mmdebug.h>
9#include <linux/bug.h>
10#include <linux/sizes.h>
11#endif
12
13/*
14 * Common bits between hash and Radix page table
15 */
16
17#define _PAGE_EXEC		0x00001 /* execute permission */
18#define _PAGE_WRITE		0x00002 /* write access allowed */
19#define _PAGE_READ		0x00004	/* read access allowed */
20#define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
21#define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
22#define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
23#define _PAGE_SAO		0x00010 /* Strong access order */
24#define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
25#define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
26#define _PAGE_DIRTY		0x00080 /* C: page changed */
27#define _PAGE_ACCESSED		0x00100 /* R: page referenced */
28/*
29 * Software bits
30 */
31#define _RPAGE_SW0		0x2000000000000000UL
32#define _RPAGE_SW1		0x00800
33#define _RPAGE_SW2		0x00400
34#define _RPAGE_SW3		0x00200
35#define _RPAGE_RSV1		0x00040UL
36
37#define _RPAGE_PKEY_BIT4	0x1000000000000000UL
38#define _RPAGE_PKEY_BIT3	0x0800000000000000UL
39#define _RPAGE_PKEY_BIT2	0x0400000000000000UL
40#define _RPAGE_PKEY_BIT1	0x0200000000000000UL
41#define _RPAGE_PKEY_BIT0	0x0100000000000000UL
42
43#define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
44#define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
45/*
46 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
47 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
48 * differentiate between two use a SW field when invalidating.
49 *
50 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
51 *
52 * This is used only when _PAGE_PRESENT is cleared.
53 */
54#define _PAGE_INVALID		_RPAGE_SW0
55
56/*
57 * Top and bottom bits of RPN which can be used by hash
58 * translation mode, because we expect them to be zero
59 * otherwise.
60 */
61#define _RPAGE_RPN0		0x01000
62#define _RPAGE_RPN1		0x02000
63#define _RPAGE_RPN43		0x0080000000000000UL
64#define _RPAGE_RPN42		0x0040000000000000UL
65#define _RPAGE_RPN41		0x0020000000000000UL
66
67/* Max physical address bit as per radix table */
68#define _RPAGE_PA_MAX		56
69
70/*
71 * Max physical address bit we will use for now.
72 *
73 * This is mostly a hardware limitation and for now Power9 has
74 * a 51 bit limit.
75 *
76 * This is different from the number of physical bit required to address
77 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
78 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
79 * number of sections we can support (SECTIONS_SHIFT).
80 *
81 * This is different from Radix page table limitation above and
82 * should always be less than that. The limit is done such that
83 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
84 * for hash linux page table specific bits.
85 *
86 * In order to be compatible with future hardware generations we keep
87 * some offsets and limit this for now to 53
88 */
89#define _PAGE_PA_MAX		53
90
91#define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
92#define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
93#define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
94
95/*
96 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
97 * Instead of fixing all of them, add an alternate define which
98 * maps CI pte mapping.
99 */
100#define _PAGE_NO_CACHE		_PAGE_TOLERANT
101/*
102 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
103 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
104 * and every thing below PAGE_SHIFT;
105 */
106#define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
107#define PTE_RPN_SHIFT	PAGE_SHIFT
108/*
109 * set of bits not changed in pmd_modify. Even though we have hash specific bits
110 * in here, on radix we expect them to be zero.
111 */
112#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
113			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
114			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
115/*
116 * user access blocked by key
117 */
118#define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
119#define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
120#define _PAGE_KERNEL_ROX	 (_PAGE_PRIVILEGED | _PAGE_READ | _PAGE_EXEC)
121#define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
122/*
123 * _PAGE_CHG_MASK masks of bits that are to be preserved across
124 * pgprot changes
125 */
126#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
127			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
128			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
129
130/*
131 * We define 2 sets of base prot bits, one for basic pages (ie,
132 * cacheable kernel and user pages) and one for non cacheable
133 * pages. We always set _PAGE_COHERENT when SMP is enabled or
134 * the processor might need it for DMA coherency.
135 */
136#define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
137#define _PAGE_BASE	(_PAGE_BASE_NC)
138
139/* Permission masks used to generate the __P and __S table,
140 *
141 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142 *
143 * Write permissions imply read permissions for now (we could make write-only
144 * pages on BookE but we don't bother for now). Execute permission control is
145 * possible on platforms that define _PAGE_EXEC
146 */
147#define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
148#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
149#define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
150#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
151#define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
153#define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154/* Radix only, Hash uses PAGE_READONLY_X + execute-only pkey instead */
155#define PAGE_EXECONLY	__pgprot(_PAGE_BASE | _PAGE_EXEC)
156
157/* Permission masks used for kernel mappings */
158#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
159#define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_TOLERANT)
160#define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NON_IDEMPOTENT)
161#define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
162#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
163#define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
164
165#ifndef __ASSEMBLY__
166/*
167 * page table defines
168 */
169extern unsigned long __pte_index_size;
170extern unsigned long __pmd_index_size;
171extern unsigned long __pud_index_size;
172extern unsigned long __pgd_index_size;
173extern unsigned long __pud_cache_index;
174#define PTE_INDEX_SIZE  __pte_index_size
175#define PMD_INDEX_SIZE  __pmd_index_size
176#define PUD_INDEX_SIZE  __pud_index_size
177#define PGD_INDEX_SIZE  __pgd_index_size
178/* pmd table use page table fragments */
179#define PMD_CACHE_INDEX  0
180#define PUD_CACHE_INDEX __pud_cache_index
181/*
182 * Because of use of pte fragments and THP, size of page table
183 * are not always derived out of index size above.
184 */
185extern unsigned long __pte_table_size;
186extern unsigned long __pmd_table_size;
187extern unsigned long __pud_table_size;
188extern unsigned long __pgd_table_size;
189#define PTE_TABLE_SIZE	__pte_table_size
190#define PMD_TABLE_SIZE	__pmd_table_size
191#define PUD_TABLE_SIZE	__pud_table_size
192#define PGD_TABLE_SIZE	__pgd_table_size
193
194extern unsigned long __pmd_val_bits;
195extern unsigned long __pud_val_bits;
196extern unsigned long __pgd_val_bits;
197#define PMD_VAL_BITS	__pmd_val_bits
198#define PUD_VAL_BITS	__pud_val_bits
199#define PGD_VAL_BITS	__pgd_val_bits
200
201extern unsigned long __pte_frag_nr;
202#define PTE_FRAG_NR __pte_frag_nr
203extern unsigned long __pte_frag_size_shift;
204#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
205#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
206
207extern unsigned long __pmd_frag_nr;
208#define PMD_FRAG_NR __pmd_frag_nr
209extern unsigned long __pmd_frag_size_shift;
210#define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
211#define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
212
213#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
214#define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
215#define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
216#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
217
218#define MAX_PTRS_PER_PTE ((H_PTRS_PER_PTE > R_PTRS_PER_PTE) ? H_PTRS_PER_PTE : R_PTRS_PER_PTE)
219#define MAX_PTRS_PER_PMD ((H_PTRS_PER_PMD > R_PTRS_PER_PMD) ? H_PTRS_PER_PMD : R_PTRS_PER_PMD)
220#define MAX_PTRS_PER_PUD ((H_PTRS_PER_PUD > R_PTRS_PER_PUD) ? H_PTRS_PER_PUD : R_PTRS_PER_PUD)
221#define MAX_PTRS_PER_PGD	(1 << (H_PGD_INDEX_SIZE > RADIX_PGD_INDEX_SIZE ? \
222				       H_PGD_INDEX_SIZE : RADIX_PGD_INDEX_SIZE))
223
224/* PMD_SHIFT determines what a second-level page table entry can map */
225#define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
226#define PMD_SIZE	(1UL << PMD_SHIFT)
227#define PMD_MASK	(~(PMD_SIZE-1))
228
229/* PUD_SHIFT determines what a third-level page table entry can map */
230#define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
231#define PUD_SIZE	(1UL << PUD_SHIFT)
232#define PUD_MASK	(~(PUD_SIZE-1))
233
234/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
235#define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
236#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
237#define PGDIR_MASK	(~(PGDIR_SIZE-1))
238
239/* Bits to mask out from a PMD to get to the PTE page */
240#define PMD_MASKED_BITS		0xc0000000000000ffUL
241/* Bits to mask out from a PUD to get to the PMD page */
242#define PUD_MASKED_BITS		0xc0000000000000ffUL
243/* Bits to mask out from a PGD to get to the PUD page */
244#define P4D_MASKED_BITS		0xc0000000000000ffUL
245
246/*
247 * Used as an indicator for rcu callback functions
248 */
249enum pgtable_index {
250	PTE_INDEX = 0,
251	PMD_INDEX,
252	PUD_INDEX,
253	PGD_INDEX,
254	/*
255	 * Below are used with 4k page size and hugetlb
256	 */
257	HTLB_16M_INDEX,
258	HTLB_16G_INDEX,
259};
260
261extern unsigned long __vmalloc_start;
262extern unsigned long __vmalloc_end;
263#define VMALLOC_START	__vmalloc_start
264#define VMALLOC_END	__vmalloc_end
265
266static inline unsigned int ioremap_max_order(void)
267{
268	if (radix_enabled())
269		return PUD_SHIFT;
270	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
271}
272#define IOREMAP_MAX_ORDER ioremap_max_order()
273
274extern unsigned long __kernel_virt_start;
275extern unsigned long __kernel_io_start;
276extern unsigned long __kernel_io_end;
277#define KERN_VIRT_START __kernel_virt_start
278#define KERN_IO_START  __kernel_io_start
279#define KERN_IO_END __kernel_io_end
280
281extern struct page *vmemmap;
282extern unsigned long pci_io_base;
283#endif /* __ASSEMBLY__ */
284
285#include <asm/book3s/64/hash.h>
286#include <asm/book3s/64/radix.h>
287
288#if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
289#define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
290#else
291#define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
292#endif
293
294
295#ifdef CONFIG_PPC_64K_PAGES
296#include <asm/book3s/64/pgtable-64k.h>
297#else
298#include <asm/book3s/64/pgtable-4k.h>
299#endif
300
301#include <asm/barrier.h>
302/*
303 * IO space itself carved into the PIO region (ISA and PHB IO space) and
304 * the ioremap space
305 *
306 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
307 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
308 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
309 */
310#define FULL_IO_SIZE	0x80000000ul
311#define  ISA_IO_BASE	(KERN_IO_START)
312#define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
313#define  PHB_IO_BASE	(ISA_IO_END)
314#define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
315#define IOREMAP_BASE	(PHB_IO_END)
316#define IOREMAP_START	(ioremap_bot)
317#define IOREMAP_END	(KERN_IO_END - FIXADDR_SIZE)
318#define FIXADDR_SIZE	SZ_32M
319
320#ifndef __ASSEMBLY__
321
322/*
323 * This is the default implementation of various PTE accessors, it's
324 * used in all cases except Book3S with 64K pages where we have a
325 * concept of sub-pages
326 */
327#ifndef __real_pte
328
329#define __real_pte(e, p, o)		((real_pte_t){(e)})
330#define __rpte_to_pte(r)	((r).pte)
331#define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
332
333#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
334	do {							         \
335		index = 0;					         \
336		shift = mmu_psize_defs[psize].shift;		         \
337
338#define pte_iterate_hashed_end() } while(0)
339
340/*
341 * We expect this to be called only for user addresses or kernel virtual
342 * addresses other than the linear mapping.
343 */
344#define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
345
346#endif /* __real_pte */
347
348static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
349				       pte_t *ptep, unsigned long clr,
350				       unsigned long set, int huge)
351{
352	if (radix_enabled())
353		return radix__pte_update(mm, addr, ptep, clr, set, huge);
354	return hash__pte_update(mm, addr, ptep, clr, set, huge);
355}
356/*
357 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
358 * We currently remove entries from the hashtable regardless of whether
359 * the entry was young or dirty.
360 *
361 * We should be more intelligent about this but for the moment we override
362 * these functions and force a tlb flush unconditionally
363 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
364 * function for both hash and radix.
365 */
366static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
367					      unsigned long addr, pte_t *ptep)
368{
369	unsigned long old;
370
371	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
372		return 0;
373	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
374	return (old & _PAGE_ACCESSED) != 0;
375}
376
377#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
378#define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
379({								\
380	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
381})
382
383/*
384 * On Book3S CPUs, clearing the accessed bit without a TLB flush
385 * doesn't cause data corruption. [ It could cause incorrect
386 * page aging and the (mistaken) reclaim of hot pages, but the
387 * chance of that should be relatively low. ]
388 *
389 * So as a performance optimization don't flush the TLB when
390 * clearing the accessed bit, it will eventually be flushed by
391 * a context switch or a VM operation anyway. [ In the rare
392 * event of it not getting flushed for a long time the delay
393 * shouldn't really matter because there's no real memory
394 * pressure for swapout to react to. ]
395 *
396 * Note: this optimisation also exists in pte_needs_flush() and
397 * huge_pmd_needs_flush().
398 */
399#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
400#define ptep_clear_flush_young ptep_test_and_clear_young
401
402#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
403#define pmdp_clear_flush_young pmdp_test_and_clear_young
404
405static inline int pte_write(pte_t pte)
406{
407	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
408}
409
410static inline int pte_read(pte_t pte)
411{
412	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
413}
414
415#define __HAVE_ARCH_PTEP_SET_WRPROTECT
416static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
417				      pte_t *ptep)
418{
419	if (pte_write(*ptep))
420		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
421}
422
423#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
424static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
425					   unsigned long addr, pte_t *ptep)
426{
427	if (pte_write(*ptep))
428		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
429}
430
431#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
432static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
433				       unsigned long addr, pte_t *ptep)
434{
435	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
436	return __pte(old);
437}
438
439#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
440static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
441					    unsigned long addr,
442					    pte_t *ptep, int full)
443{
444	if (full && radix_enabled()) {
445		/*
446		 * We know that this is a full mm pte clear and
447		 * hence can be sure there is no parallel set_pte.
448		 */
449		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
450	}
451	return ptep_get_and_clear(mm, addr, ptep);
452}
453
454
455static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
456			     pte_t * ptep)
457{
458	pte_update(mm, addr, ptep, ~0UL, 0, 0);
459}
460
461static inline int pte_dirty(pte_t pte)
462{
463	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
464}
465
466static inline int pte_young(pte_t pte)
467{
468	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
469}
470
471static inline int pte_special(pte_t pte)
472{
473	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
474}
475
476static inline bool pte_exec(pte_t pte)
477{
478	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
479}
480
481
482#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
483static inline bool pte_soft_dirty(pte_t pte)
484{
485	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
486}
487
488static inline pte_t pte_mksoft_dirty(pte_t pte)
489{
490	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
491}
492
493static inline pte_t pte_clear_soft_dirty(pte_t pte)
494{
495	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
496}
497#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
498
499#ifdef CONFIG_NUMA_BALANCING
500static inline int pte_protnone(pte_t pte)
501{
502	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
503		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
504}
505#endif /* CONFIG_NUMA_BALANCING */
506
507static inline bool pte_hw_valid(pte_t pte)
508{
509	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
510		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
511}
512
513static inline int pte_present(pte_t pte)
514{
515	/*
516	 * A pte is considerent present if _PAGE_PRESENT is set.
517	 * We also need to consider the pte present which is marked
518	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
519	 * if we find _PAGE_PRESENT cleared.
520	 */
521
522	if (pte_hw_valid(pte))
523		return true;
524	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
525		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
526}
527
528#ifdef CONFIG_PPC_MEM_KEYS
529extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
530#else
531static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
532{
533	return true;
534}
535#endif /* CONFIG_PPC_MEM_KEYS */
536
537static inline bool pte_user(pte_t pte)
538{
539	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
540}
541
542#define pte_access_permitted pte_access_permitted
543static inline bool pte_access_permitted(pte_t pte, bool write)
544{
545	/*
546	 * _PAGE_READ is needed for any access and will be
547	 * cleared for PROT_NONE
548	 */
549	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
550		return false;
551
552	if (write && !pte_write(pte))
553		return false;
554
555	return arch_pte_access_permitted(pte_val(pte), write, 0);
556}
557
558/*
559 * Conversion functions: convert a page and protection to a page entry,
560 * and a page entry and page directory to the page they refer to.
561 *
562 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
563 * long for now.
564 */
565static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
566{
567	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
568	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
569
570	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
571}
572
573/* Generic modifiers for PTE bits */
574static inline pte_t pte_wrprotect(pte_t pte)
575{
576	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
577}
578
579static inline pte_t pte_exprotect(pte_t pte)
580{
581	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
582}
583
584static inline pte_t pte_mkclean(pte_t pte)
585{
586	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
587}
588
589static inline pte_t pte_mkold(pte_t pte)
590{
591	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
592}
593
594static inline pte_t pte_mkexec(pte_t pte)
595{
596	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
597}
598
599static inline pte_t pte_mkwrite_novma(pte_t pte)
600{
601	/*
602	 * write implies read, hence set both
603	 */
604	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
605}
606
607static inline pte_t pte_mkdirty(pte_t pte)
608{
609	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
610}
611
612static inline pte_t pte_mkyoung(pte_t pte)
613{
614	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
615}
616
617static inline pte_t pte_mkspecial(pte_t pte)
618{
619	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
620}
621
622static inline pte_t pte_mkhuge(pte_t pte)
623{
624	return pte;
625}
626
627static inline pte_t pte_mkdevmap(pte_t pte)
628{
629	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
630}
631
632static inline pte_t pte_mkprivileged(pte_t pte)
633{
634	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
635}
636
637static inline pte_t pte_mkuser(pte_t pte)
638{
639	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
640}
641
642/*
643 * This is potentially called with a pmd as the argument, in which case it's not
644 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
645 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
646 * use in page directory entries (ie. non-ptes).
647 */
648static inline int pte_devmap(pte_t pte)
649{
650	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
651
652	return (pte_raw(pte) & mask) == mask;
653}
654
655static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
656{
657	/* FIXME!! check whether this need to be a conditional */
658	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
659			 cpu_to_be64(pgprot_val(newprot)));
660}
661
662/* Encode and de-code a swap entry */
663#define MAX_SWAPFILES_CHECK() do { \
664	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
665	/*							\
666	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
667	 * We filter HPTEFLAGS on set_pte.			\
668	 */							\
669	BUILD_BUG_ON(_PAGE_HPTEFLAGS & SWP_TYPE_MASK); \
670	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
671	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_EXCLUSIVE);	\
672	} while (0)
673
674#define SWP_TYPE_BITS 5
675#define SWP_TYPE_MASK		((1UL << SWP_TYPE_BITS) - 1)
676#define __swp_type(x)		((x).val & SWP_TYPE_MASK)
677#define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
678#define __swp_entry(type, offset)	((swp_entry_t) { \
679				(type) | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
680/*
681 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
682 * swap type and offset we get from swap and convert that to pte to find a
683 * matching pte in linux page table.
684 * Clear bits not found in swap entries here.
685 */
686#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
687#define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
688#define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
689#define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
690
691#ifdef CONFIG_MEM_SOFT_DIRTY
692#define _PAGE_SWP_SOFT_DIRTY	_PAGE_SOFT_DIRTY
693#else
694#define _PAGE_SWP_SOFT_DIRTY	0UL
695#endif /* CONFIG_MEM_SOFT_DIRTY */
696
697#define _PAGE_SWP_EXCLUSIVE	_PAGE_NON_IDEMPOTENT
698
699#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
700static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
701{
702	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
703}
704
705static inline bool pte_swp_soft_dirty(pte_t pte)
706{
707	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
708}
709
710static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
711{
712	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
713}
714#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
715
716static inline pte_t pte_swp_mkexclusive(pte_t pte)
717{
718	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
719}
720
721static inline int pte_swp_exclusive(pte_t pte)
722{
723	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_EXCLUSIVE));
724}
725
726static inline pte_t pte_swp_clear_exclusive(pte_t pte)
727{
728	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_EXCLUSIVE));
729}
730
731static inline bool check_pte_access(unsigned long access, unsigned long ptev)
732{
733	/*
734	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
735	 */
736	if (access & ~ptev)
737		return false;
738	/*
739	 * This check for access to privilege space
740	 */
741	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
742		return false;
743
744	return true;
745}
746/*
747 * Generic functions with hash/radix callbacks
748 */
749
750static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
751					   pte_t *ptep, pte_t entry,
752					   unsigned long address,
753					   int psize)
754{
755	if (radix_enabled())
756		return radix__ptep_set_access_flags(vma, ptep, entry,
757						    address, psize);
758	return hash__ptep_set_access_flags(ptep, entry);
759}
760
761#define __HAVE_ARCH_PTE_SAME
762static inline int pte_same(pte_t pte_a, pte_t pte_b)
763{
764	if (radix_enabled())
765		return radix__pte_same(pte_a, pte_b);
766	return hash__pte_same(pte_a, pte_b);
767}
768
769static inline int pte_none(pte_t pte)
770{
771	if (radix_enabled())
772		return radix__pte_none(pte);
773	return hash__pte_none(pte);
774}
775
776static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
777				pte_t *ptep, pte_t pte, int percpu)
778{
779
780	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
781	/*
782	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
783	 * in all the callers.
784	 */
785	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
786
787	if (radix_enabled())
788		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
789	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
790}
791
792#define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
793
794#define pgprot_noncached pgprot_noncached
795static inline pgprot_t pgprot_noncached(pgprot_t prot)
796{
797	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
798			_PAGE_NON_IDEMPOTENT);
799}
800
801#define pgprot_noncached_wc pgprot_noncached_wc
802static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
803{
804	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
805			_PAGE_TOLERANT);
806}
807
808#define pgprot_cached pgprot_cached
809static inline pgprot_t pgprot_cached(pgprot_t prot)
810{
811	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
812}
813
814#define pgprot_writecombine pgprot_writecombine
815static inline pgprot_t pgprot_writecombine(pgprot_t prot)
816{
817	return pgprot_noncached_wc(prot);
818}
819/*
820 * check a pte mapping have cache inhibited property
821 */
822static inline bool pte_ci(pte_t pte)
823{
824	__be64 pte_v = pte_raw(pte);
825
826	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
827	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
828		return true;
829	return false;
830}
831
832static inline void pmd_clear(pmd_t *pmdp)
833{
834	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
835		/*
836		 * Don't use this if we can possibly have a hash page table
837		 * entry mapping this.
838		 */
839		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
840	}
841	*pmdp = __pmd(0);
842}
843
844static inline int pmd_none(pmd_t pmd)
845{
846	return !pmd_raw(pmd);
847}
848
849static inline int pmd_present(pmd_t pmd)
850{
851	/*
852	 * A pmd is considerent present if _PAGE_PRESENT is set.
853	 * We also need to consider the pmd present which is marked
854	 * invalid during a split. Hence we look for _PAGE_INVALID
855	 * if we find _PAGE_PRESENT cleared.
856	 */
857	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
858		return true;
859
860	return false;
861}
862
863static inline int pmd_is_serializing(pmd_t pmd)
864{
865	/*
866	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
867	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
868	 *
869	 * This condition may also occur when flushing a pmd while flushing
870	 * it (see ptep_modify_prot_start), so callers must ensure this
871	 * case is fine as well.
872	 */
873	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
874						cpu_to_be64(_PAGE_INVALID))
875		return true;
876
877	return false;
878}
879
880static inline int pmd_bad(pmd_t pmd)
881{
882	if (radix_enabled())
883		return radix__pmd_bad(pmd);
884	return hash__pmd_bad(pmd);
885}
886
887static inline void pud_clear(pud_t *pudp)
888{
889	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
890		/*
891		 * Don't use this if we can possibly have a hash page table
892		 * entry mapping this.
893		 */
894		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
895	}
896	*pudp = __pud(0);
897}
898
899static inline int pud_none(pud_t pud)
900{
901	return !pud_raw(pud);
902}
903
904static inline int pud_present(pud_t pud)
905{
906	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
907}
908
909extern struct page *pud_page(pud_t pud);
910extern struct page *pmd_page(pmd_t pmd);
911static inline pte_t pud_pte(pud_t pud)
912{
913	return __pte_raw(pud_raw(pud));
914}
915
916static inline pud_t pte_pud(pte_t pte)
917{
918	return __pud_raw(pte_raw(pte));
919}
920
921static inline pte_t *pudp_ptep(pud_t *pud)
922{
923	return (pte_t *)pud;
924}
925
926#define pud_pfn(pud)		pte_pfn(pud_pte(pud))
927#define pud_dirty(pud)		pte_dirty(pud_pte(pud))
928#define pud_young(pud)		pte_young(pud_pte(pud))
929#define pud_mkold(pud)		pte_pud(pte_mkold(pud_pte(pud)))
930#define pud_wrprotect(pud)	pte_pud(pte_wrprotect(pud_pte(pud)))
931#define pud_mkdirty(pud)	pte_pud(pte_mkdirty(pud_pte(pud)))
932#define pud_mkclean(pud)	pte_pud(pte_mkclean(pud_pte(pud)))
933#define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
934#define pud_mkwrite(pud)	pte_pud(pte_mkwrite_novma(pud_pte(pud)))
935#define pud_write(pud)		pte_write(pud_pte(pud))
936
937#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
938#define pud_soft_dirty(pmd)    pte_soft_dirty(pud_pte(pud))
939#define pud_mksoft_dirty(pmd)  pte_pud(pte_mksoft_dirty(pud_pte(pud)))
940#define pud_clear_soft_dirty(pmd) pte_pud(pte_clear_soft_dirty(pud_pte(pud)))
941#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
942
943static inline int pud_bad(pud_t pud)
944{
945	if (radix_enabled())
946		return radix__pud_bad(pud);
947	return hash__pud_bad(pud);
948}
949
950#define pud_access_permitted pud_access_permitted
951static inline bool pud_access_permitted(pud_t pud, bool write)
952{
953	return pte_access_permitted(pud_pte(pud), write);
954}
955
956#define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
957static inline __be64 p4d_raw(p4d_t x)
958{
959	return pgd_raw(x.pgd);
960}
961
962#define p4d_write(p4d)		pte_write(p4d_pte(p4d))
963
964static inline void p4d_clear(p4d_t *p4dp)
965{
966	*p4dp = __p4d(0);
967}
968
969static inline int p4d_none(p4d_t p4d)
970{
971	return !p4d_raw(p4d);
972}
973
974static inline int p4d_present(p4d_t p4d)
975{
976	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
977}
978
979static inline pte_t p4d_pte(p4d_t p4d)
980{
981	return __pte_raw(p4d_raw(p4d));
982}
983
984static inline p4d_t pte_p4d(pte_t pte)
985{
986	return __p4d_raw(pte_raw(pte));
987}
988
989static inline int p4d_bad(p4d_t p4d)
990{
991	if (radix_enabled())
992		return radix__p4d_bad(p4d);
993	return hash__p4d_bad(p4d);
994}
995
996#define p4d_access_permitted p4d_access_permitted
997static inline bool p4d_access_permitted(p4d_t p4d, bool write)
998{
999	return pte_access_permitted(p4d_pte(p4d), write);
1000}
1001
1002extern struct page *p4d_page(p4d_t p4d);
1003
1004/* Pointers in the page table tree are physical addresses */
1005#define __pgtable_ptr_val(ptr)	__pa(ptr)
1006
1007static inline pud_t *p4d_pgtable(p4d_t p4d)
1008{
1009	return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
1010}
1011
1012static inline pmd_t *pud_pgtable(pud_t pud)
1013{
1014	return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
1015}
1016
1017#define pte_ERROR(e) \
1018	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1019#define pmd_ERROR(e) \
1020	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1021#define pud_ERROR(e) \
1022	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1023#define pgd_ERROR(e) \
1024	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1025
1026static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1027{
1028	if (radix_enabled()) {
1029#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1030		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1031		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1032#endif
1033		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1034	}
1035	return hash__map_kernel_page(ea, pa, prot);
1036}
1037
1038void unmap_kernel_page(unsigned long va);
1039
1040static inline int __meminit vmemmap_create_mapping(unsigned long start,
1041						   unsigned long page_size,
1042						   unsigned long phys)
1043{
1044	if (radix_enabled())
1045		return radix__vmemmap_create_mapping(start, page_size, phys);
1046	return hash__vmemmap_create_mapping(start, page_size, phys);
1047}
1048
1049#ifdef CONFIG_MEMORY_HOTPLUG
1050static inline void vmemmap_remove_mapping(unsigned long start,
1051					  unsigned long page_size)
1052{
1053	if (radix_enabled())
1054		return radix__vmemmap_remove_mapping(start, page_size);
1055	return hash__vmemmap_remove_mapping(start, page_size);
1056}
1057#endif
1058
1059#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
1060static inline void __kernel_map_pages(struct page *page, int numpages, int enable)
1061{
1062	if (radix_enabled())
1063		radix__kernel_map_pages(page, numpages, enable);
1064	else
1065		hash__kernel_map_pages(page, numpages, enable);
1066}
1067#endif
1068
1069static inline pte_t pmd_pte(pmd_t pmd)
1070{
1071	return __pte_raw(pmd_raw(pmd));
1072}
1073
1074static inline pmd_t pte_pmd(pte_t pte)
1075{
1076	return __pmd_raw(pte_raw(pte));
1077}
1078
1079static inline pte_t *pmdp_ptep(pmd_t *pmd)
1080{
1081	return (pte_t *)pmd;
1082}
1083#define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1084#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1085#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1086#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1087#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1088#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1089#define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1090#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1091#define pmd_mkwrite_novma(pmd)	pte_pmd(pte_mkwrite_novma(pmd_pte(pmd)))
1092
1093#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1094#define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1095#define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1096#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1097
1098#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1099#define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1100#define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1101#define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1102#endif
1103#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1104
1105#ifdef CONFIG_NUMA_BALANCING
1106static inline int pmd_protnone(pmd_t pmd)
1107{
1108	return pte_protnone(pmd_pte(pmd));
1109}
1110#endif /* CONFIG_NUMA_BALANCING */
1111
1112#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1113
1114#define pmd_access_permitted pmd_access_permitted
1115static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1116{
1117	/*
1118	 * pmdp_invalidate sets this combination (which is not caught by
1119	 * !pte_present() check in pte_access_permitted), to prevent
1120	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1121	 * synchronisation.
1122	 *
1123	 * This also catches the case where the PTE's hardware PRESENT bit is
1124	 * cleared while TLB is flushed, which is suboptimal but should not
1125	 * be frequent.
1126	 */
1127	if (pmd_is_serializing(pmd))
1128		return false;
1129
1130	return pte_access_permitted(pmd_pte(pmd), write);
1131}
1132
1133#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1134extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1135extern pud_t pfn_pud(unsigned long pfn, pgprot_t pgprot);
1136extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1137extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1138extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1139		       pmd_t *pmdp, pmd_t pmd);
1140extern void set_pud_at(struct mm_struct *mm, unsigned long addr,
1141		       pud_t *pudp, pud_t pud);
1142
1143static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1144					unsigned long addr, pmd_t *pmd)
1145{
1146}
1147
1148static inline void update_mmu_cache_pud(struct vm_area_struct *vma,
1149					unsigned long addr, pud_t *pud)
1150{
1151}
1152
1153extern int hash__has_transparent_hugepage(void);
1154static inline int has_transparent_hugepage(void)
1155{
1156	if (radix_enabled())
1157		return radix__has_transparent_hugepage();
1158	return hash__has_transparent_hugepage();
1159}
1160#define has_transparent_hugepage has_transparent_hugepage
1161
1162static inline int has_transparent_pud_hugepage(void)
1163{
1164	if (radix_enabled())
1165		return radix__has_transparent_pud_hugepage();
1166	return 0;
1167}
1168#define has_transparent_pud_hugepage has_transparent_pud_hugepage
1169
1170static inline unsigned long
1171pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1172		    unsigned long clr, unsigned long set)
1173{
1174	if (radix_enabled())
1175		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1176	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1177}
1178
1179static inline unsigned long
1180pud_hugepage_update(struct mm_struct *mm, unsigned long addr, pud_t *pudp,
1181		    unsigned long clr, unsigned long set)
1182{
1183	if (radix_enabled())
1184		return radix__pud_hugepage_update(mm, addr, pudp, clr, set);
1185	BUG();
1186	return pud_val(*pudp);
1187}
1188
1189/*
1190 * returns true for pmd migration entries, THP, devmap, hugetlb
1191 * But compile time dependent on THP config
1192 */
1193static inline int pmd_large(pmd_t pmd)
1194{
1195	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1196}
1197
1198static inline int pud_large(pud_t pud)
1199{
1200	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1201}
1202
1203/*
1204 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1205 * the below will work for radix too
1206 */
1207static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1208					      unsigned long addr, pmd_t *pmdp)
1209{
1210	unsigned long old;
1211
1212	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1213		return 0;
1214	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1215	return ((old & _PAGE_ACCESSED) != 0);
1216}
1217
1218static inline int __pudp_test_and_clear_young(struct mm_struct *mm,
1219					      unsigned long addr, pud_t *pudp)
1220{
1221	unsigned long old;
1222
1223	if ((pud_raw(*pudp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1224		return 0;
1225	old = pud_hugepage_update(mm, addr, pudp, _PAGE_ACCESSED, 0);
1226	return ((old & _PAGE_ACCESSED) != 0);
1227}
1228
1229#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1230static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1231				      pmd_t *pmdp)
1232{
1233	if (pmd_write(*pmdp))
1234		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1235}
1236
1237#define __HAVE_ARCH_PUDP_SET_WRPROTECT
1238static inline void pudp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1239				      pud_t *pudp)
1240{
1241	if (pud_write(*pudp))
1242		pud_hugepage_update(mm, addr, pudp, _PAGE_WRITE, 0);
1243}
1244
1245/*
1246 * Only returns true for a THP. False for pmd migration entry.
1247 * We also need to return true when we come across a pte that
1248 * in between a thp split. While splitting THP, we mark the pmd
1249 * invalid (pmdp_invalidate()) before we set it with pte page
1250 * address. A pmd_trans_huge() check against a pmd entry during that time
1251 * should return true.
1252 * We should not call this on a hugetlb entry. We should check for HugeTLB
1253 * entry using vma->vm_flags
1254 * The page table walk rule is explained in Documentation/mm/transhuge.rst
1255 */
1256static inline int pmd_trans_huge(pmd_t pmd)
1257{
1258	if (!pmd_present(pmd))
1259		return false;
1260
1261	if (radix_enabled())
1262		return radix__pmd_trans_huge(pmd);
1263	return hash__pmd_trans_huge(pmd);
1264}
1265
1266static inline int pud_trans_huge(pud_t pud)
1267{
1268	if (!pud_present(pud))
1269		return false;
1270
1271	if (radix_enabled())
1272		return radix__pud_trans_huge(pud);
1273	return 0;
1274}
1275
1276
1277#define __HAVE_ARCH_PMD_SAME
1278static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1279{
1280	if (radix_enabled())
1281		return radix__pmd_same(pmd_a, pmd_b);
1282	return hash__pmd_same(pmd_a, pmd_b);
1283}
1284
1285#define pud_same pud_same
1286static inline int pud_same(pud_t pud_a, pud_t pud_b)
1287{
1288	if (radix_enabled())
1289		return radix__pud_same(pud_a, pud_b);
1290	return hash__pud_same(pud_a, pud_b);
1291}
1292
1293
1294static inline pmd_t __pmd_mkhuge(pmd_t pmd)
1295{
1296	if (radix_enabled())
1297		return radix__pmd_mkhuge(pmd);
1298	return hash__pmd_mkhuge(pmd);
1299}
1300
1301static inline pud_t __pud_mkhuge(pud_t pud)
1302{
1303	if (radix_enabled())
1304		return radix__pud_mkhuge(pud);
1305	BUG();
1306	return pud;
1307}
1308
1309/*
1310 * pfn_pmd return a pmd_t that can be used as pmd pte entry.
1311 */
1312static inline pmd_t pmd_mkhuge(pmd_t pmd)
1313{
1314#ifdef CONFIG_DEBUG_VM
1315	if (radix_enabled())
1316		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)) == 0);
1317	else
1318		WARN_ON((pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE)) !=
1319			cpu_to_be64(_PAGE_PTE | H_PAGE_THP_HUGE));
1320#endif
1321	return pmd;
1322}
1323
1324static inline pud_t pud_mkhuge(pud_t pud)
1325{
1326#ifdef CONFIG_DEBUG_VM
1327	if (radix_enabled())
1328		WARN_ON((pud_raw(pud) & cpu_to_be64(_PAGE_PTE)) == 0);
1329	else
1330		WARN_ON(1);
1331#endif
1332	return pud;
1333}
1334
1335
1336#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1337extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1338				 unsigned long address, pmd_t *pmdp,
1339				 pmd_t entry, int dirty);
1340#define __HAVE_ARCH_PUDP_SET_ACCESS_FLAGS
1341extern int pudp_set_access_flags(struct vm_area_struct *vma,
1342				 unsigned long address, pud_t *pudp,
1343				 pud_t entry, int dirty);
1344
1345#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1346extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1347				     unsigned long address, pmd_t *pmdp);
1348#define __HAVE_ARCH_PUDP_TEST_AND_CLEAR_YOUNG
1349extern int pudp_test_and_clear_young(struct vm_area_struct *vma,
1350				     unsigned long address, pud_t *pudp);
1351
1352
1353#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1354static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1355					    unsigned long addr, pmd_t *pmdp)
1356{
1357	if (radix_enabled())
1358		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1359	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1360}
1361
1362#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
1363static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
1364					    unsigned long addr, pud_t *pudp)
1365{
1366	if (radix_enabled())
1367		return radix__pudp_huge_get_and_clear(mm, addr, pudp);
1368	BUG();
1369	return *pudp;
1370}
1371
1372static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1373					unsigned long address, pmd_t *pmdp)
1374{
1375	if (radix_enabled())
1376		return radix__pmdp_collapse_flush(vma, address, pmdp);
1377	return hash__pmdp_collapse_flush(vma, address, pmdp);
1378}
1379#define pmdp_collapse_flush pmdp_collapse_flush
1380
1381#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1382pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1383				   unsigned long addr,
1384				   pmd_t *pmdp, int full);
1385
1386#define __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
1387pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
1388				   unsigned long addr,
1389				   pud_t *pudp, int full);
1390
1391#define __HAVE_ARCH_PGTABLE_DEPOSIT
1392static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1393					      pmd_t *pmdp, pgtable_t pgtable)
1394{
1395	if (radix_enabled())
1396		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1397	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1398}
1399
1400#define __HAVE_ARCH_PGTABLE_WITHDRAW
1401static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1402						    pmd_t *pmdp)
1403{
1404	if (radix_enabled())
1405		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1406	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1407}
1408
1409#define __HAVE_ARCH_PMDP_INVALIDATE
1410extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1411			     pmd_t *pmdp);
1412
1413#define pmd_move_must_withdraw pmd_move_must_withdraw
1414struct spinlock;
1415extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1416				  struct spinlock *old_pmd_ptl,
1417				  struct vm_area_struct *vma);
1418/*
1419 * Hash translation mode use the deposited table to store hash pte
1420 * slot information.
1421 */
1422#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1423static inline bool arch_needs_pgtable_deposit(void)
1424{
1425	if (radix_enabled())
1426		return false;
1427	return true;
1428}
1429extern void serialize_against_pte_lookup(struct mm_struct *mm);
1430
1431
1432static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1433{
1434	if (radix_enabled())
1435		return radix__pmd_mkdevmap(pmd);
1436	return hash__pmd_mkdevmap(pmd);
1437}
1438
1439static inline pud_t pud_mkdevmap(pud_t pud)
1440{
1441	if (radix_enabled())
1442		return radix__pud_mkdevmap(pud);
1443	BUG();
1444	return pud;
1445}
1446
1447static inline int pmd_devmap(pmd_t pmd)
1448{
1449	return pte_devmap(pmd_pte(pmd));
1450}
1451
1452static inline int pud_devmap(pud_t pud)
1453{
1454	return pte_devmap(pud_pte(pud));
1455}
1456
1457static inline int pgd_devmap(pgd_t pgd)
1458{
1459	return 0;
1460}
1461#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1462
1463#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1464pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1465void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1466			     pte_t *, pte_t, pte_t);
1467
1468/*
1469 * Returns true for a R -> RW upgrade of pte
1470 */
1471static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1472{
1473	if (!(old_val & _PAGE_READ))
1474		return false;
1475
1476	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1477		return true;
1478
1479	return false;
1480}
1481
1482/*
1483 * Like pmd_huge() and pmd_large(), but works regardless of config options
1484 */
1485#define pmd_is_leaf pmd_is_leaf
1486#define pmd_leaf pmd_is_leaf
1487static inline bool pmd_is_leaf(pmd_t pmd)
1488{
1489	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1490}
1491
1492#define pud_is_leaf pud_is_leaf
1493#define pud_leaf pud_is_leaf
1494static inline bool pud_is_leaf(pud_t pud)
1495{
1496	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1497}
1498
1499#endif /* __ASSEMBLY__ */
1500#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1501