1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
4
5#include <asm-generic/pgtable-nopmd.h>
6
7/*
8 * The "classic" 32-bit implementation of the PowerPC MMU uses a hash
9 * table containing PTEs, together with a set of 16 segment registers,
10 * to define the virtual to physical address mapping.
11 *
12 * We use the hash table as an extended TLB, i.e. a cache of currently
13 * active mappings.  We maintain a two-level page table tree, much
14 * like that used by the i386, for the sake of the Linux memory
15 * management code.  Low-level assembler code in hash_low_32.S
16 * (procedure hash_page) is responsible for extracting ptes from the
17 * tree and putting them into the hash table when necessary, and
18 * updating the accessed and modified bits in the page table tree.
19 */
20
21#define _PAGE_PRESENT	0x001	/* software: pte contains a translation */
22#define _PAGE_HASHPTE	0x002	/* hash_page has made an HPTE for this pte */
23#define _PAGE_USER	0x004	/* usermode access allowed */
24#define _PAGE_GUARDED	0x008	/* G: prohibit speculative access */
25#define _PAGE_COHERENT	0x010	/* M: enforce memory coherence (SMP systems) */
26#define _PAGE_NO_CACHE	0x020	/* I: cache inhibit */
27#define _PAGE_WRITETHRU	0x040	/* W: cache write-through */
28#define _PAGE_DIRTY	0x080	/* C: page changed */
29#define _PAGE_ACCESSED	0x100	/* R: page referenced */
30#define _PAGE_EXEC	0x200	/* software: exec allowed */
31#define _PAGE_RW	0x400	/* software: user write access allowed */
32#define _PAGE_SPECIAL	0x800	/* software: Special page */
33
34#ifdef CONFIG_PTE_64BIT
35/* We never clear the high word of the pte */
36#define _PTE_NONE_MASK	(0xffffffff00000000ULL | _PAGE_HASHPTE)
37#else
38#define _PTE_NONE_MASK	_PAGE_HASHPTE
39#endif
40
41#define _PMD_PRESENT	0
42#define _PMD_PRESENT_MASK (PAGE_MASK)
43#define _PMD_BAD	(~PAGE_MASK)
44
45/* We borrow the _PAGE_USER bit to store the exclusive marker in swap PTEs. */
46#define _PAGE_SWP_EXCLUSIVE	_PAGE_USER
47
48/* And here we include common definitions */
49
50#define _PAGE_KERNEL_RO		0
51#define _PAGE_KERNEL_ROX	(_PAGE_EXEC)
52#define _PAGE_KERNEL_RW		(_PAGE_DIRTY | _PAGE_RW)
53#define _PAGE_KERNEL_RWX	(_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
54
55#define _PAGE_HPTEFLAGS _PAGE_HASHPTE
56
57#ifndef __ASSEMBLY__
58
59static inline bool pte_user(pte_t pte)
60{
61	return pte_val(pte) & _PAGE_USER;
62}
63#endif /* __ASSEMBLY__ */
64
65/*
66 * Location of the PFN in the PTE. Most 32-bit platforms use the same
67 * as _PAGE_SHIFT here (ie, naturally aligned).
68 * Platform who don't just pre-define the value so we don't override it here.
69 */
70#define PTE_RPN_SHIFT	(PAGE_SHIFT)
71
72/*
73 * The mask covered by the RPN must be a ULL on 32-bit platforms with
74 * 64-bit PTEs.
75 */
76#ifdef CONFIG_PTE_64BIT
77#define PTE_RPN_MASK	(~((1ULL << PTE_RPN_SHIFT) - 1))
78#define MAX_POSSIBLE_PHYSMEM_BITS 36
79#else
80#define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
81#define MAX_POSSIBLE_PHYSMEM_BITS 32
82#endif
83
84/*
85 * _PAGE_CHG_MASK masks of bits that are to be preserved across
86 * pgprot changes.
87 */
88#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
89			 _PAGE_ACCESSED | _PAGE_SPECIAL)
90
91/*
92 * We define 2 sets of base prot bits, one for basic pages (ie,
93 * cacheable kernel and user pages) and one for non cacheable
94 * pages. We always set _PAGE_COHERENT when SMP is enabled or
95 * the processor might need it for DMA coherency.
96 */
97#define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
98#define _PAGE_BASE	(_PAGE_BASE_NC | _PAGE_COHERENT)
99
100/*
101 * Permission masks used to generate the __P and __S table.
102 *
103 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
104 *
105 * Write permissions imply read permissions for now.
106 */
107#define PAGE_NONE	__pgprot(_PAGE_BASE)
108#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
109#define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
110#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
111#define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
112#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
113#define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
114
115/* Permission masks used for kernel mappings */
116#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
117#define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
118#define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE | _PAGE_GUARDED)
119#define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
120#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
121#define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
122
123#define PTE_INDEX_SIZE	PTE_SHIFT
124#define PMD_INDEX_SIZE	0
125#define PUD_INDEX_SIZE	0
126#define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
127
128#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
129#define PUD_CACHE_INDEX	PUD_INDEX_SIZE
130
131#ifndef __ASSEMBLY__
132#define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
133#define PMD_TABLE_SIZE	0
134#define PUD_TABLE_SIZE	0
135#define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
136
137/* Bits to mask out from a PMD to get to the PTE page */
138#define PMD_MASKED_BITS		(PTE_TABLE_SIZE - 1)
139#endif	/* __ASSEMBLY__ */
140
141#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
142#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
143
144/*
145 * The normal case is that PTEs are 32-bits and we have a 1-page
146 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
147 *
148 * For any >32-bit physical address platform, we can use the following
149 * two level page table layout where the pgdir is 8KB and the MS 13 bits
150 * are an index to the second level table.  The combined pgdir/pmd first
151 * level has 2048 entries and the second level has 512 64-bit PTE entries.
152 * -Matt
153 */
154/* PGDIR_SHIFT determines what a top-level page table entry can map */
155#define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
156#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
157#define PGDIR_MASK	(~(PGDIR_SIZE-1))
158
159#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
160
161#ifndef __ASSEMBLY__
162
163int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
164void unmap_kernel_page(unsigned long va);
165
166#endif /* !__ASSEMBLY__ */
167
168/*
169 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
170 * value (for now) on others, from where we can start layout kernel
171 * virtual space that goes below PKMAP and FIXMAP
172 */
173#include <asm/fixmap.h>
174
175/*
176 * ioremap_bot starts at that address. Early ioremaps move down from there,
177 * until mem_init() at which point this becomes the top of the vmalloc
178 * and ioremap space
179 */
180#ifdef CONFIG_HIGHMEM
181#define IOREMAP_TOP	PKMAP_BASE
182#else
183#define IOREMAP_TOP	FIXADDR_START
184#endif
185
186/* PPC32 shares vmalloc area with ioremap */
187#define IOREMAP_START	VMALLOC_START
188#define IOREMAP_END	VMALLOC_END
189
190/*
191 * Just any arbitrary offset to the start of the vmalloc VM area: the
192 * current 16MB value just means that there will be a 64MB "hole" after the
193 * physical memory until the kernel virtual memory starts.  That means that
194 * any out-of-bounds memory accesses will hopefully be caught.
195 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
196 * area for the same reason. ;)
197 *
198 * We no longer map larger than phys RAM with the BATs so we don't have
199 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
200 * about clashes between our early calls to ioremap() that start growing down
201 * from ioremap_base being run into the VM area allocations (growing upwards
202 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
203 * we actually run into our mappings setup in the early boot with the VM
204 * system.  This really does become a problem for machines with good amounts
205 * of RAM.  -- Cort
206 */
207#define VMALLOC_OFFSET (0x1000000) /* 16M */
208
209#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
210
211#ifdef CONFIG_KASAN_VMALLOC
212#define VMALLOC_END	ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
213#else
214#define VMALLOC_END	ioremap_bot
215#endif
216
217#define MODULES_END	ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
218#define MODULES_VADDR	(MODULES_END - SZ_256M)
219
220#ifndef __ASSEMBLY__
221#include <linux/sched.h>
222#include <linux/threads.h>
223
224/* Bits to mask out from a PGD to get to the PUD page */
225#define PGD_MASKED_BITS		0
226
227#define pte_ERROR(e) \
228	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
229		(unsigned long long)pte_val(e))
230#define pgd_ERROR(e) \
231	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
232/*
233 * Bits in a linux-style PTE.  These match the bits in the
234 * (hardware-defined) PowerPC PTE as closely as possible.
235 */
236
237#define pte_clear(mm, addr, ptep) \
238	do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
239
240#define pmd_none(pmd)		(!pmd_val(pmd))
241#define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
242#define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
243static inline void pmd_clear(pmd_t *pmdp)
244{
245	*pmdp = __pmd(0);
246}
247
248
249/*
250 * When flushing the tlb entry for a page, we also need to flush the hash
251 * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
252 */
253extern int flush_hash_pages(unsigned context, unsigned long va,
254			    unsigned long pmdval, int count);
255
256/* Add an HPTE to the hash table */
257extern void add_hash_page(unsigned context, unsigned long va,
258			  unsigned long pmdval);
259
260/* Flush an entry from the TLB/hash table */
261static inline void flush_hash_entry(struct mm_struct *mm, pte_t *ptep, unsigned long addr)
262{
263	if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
264		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
265
266		flush_hash_pages(mm->context.id, addr, ptephys, 1);
267	}
268}
269
270/*
271 * PTE updates. This function is called whenever an existing
272 * valid PTE is updated. This does -not- include set_pte_at()
273 * which nowadays only sets a new PTE.
274 *
275 * Depending on the type of MMU, we may need to use atomic updates
276 * and the PTE may be either 32 or 64 bit wide. In the later case,
277 * when using atomic updates, only the low part of the PTE is
278 * accessed atomically.
279 */
280static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
281				     unsigned long clr, unsigned long set, int huge)
282{
283	pte_basic_t old;
284
285	if (mmu_has_feature(MMU_FTR_HPTE_TABLE)) {
286		unsigned long tmp;
287
288		asm volatile(
289#ifndef CONFIG_PTE_64BIT
290	"1:	lwarx	%0, 0, %3\n"
291	"	andc	%1, %0, %4\n"
292#else
293	"1:	lwarx	%L0, 0, %3\n"
294	"	lwz	%0, -4(%3)\n"
295	"	andc	%1, %L0, %4\n"
296#endif
297	"	or	%1, %1, %5\n"
298	"	stwcx.	%1, 0, %3\n"
299	"	bne-	1b"
300		: "=&r" (old), "=&r" (tmp), "=m" (*p)
301#ifndef CONFIG_PTE_64BIT
302		: "r" (p),
303#else
304		: "b" ((unsigned long)(p) + 4),
305#endif
306		  "r" (clr), "r" (set), "m" (*p)
307		: "cc" );
308	} else {
309		old = pte_val(*p);
310
311		*p = __pte((old & ~(pte_basic_t)clr) | set);
312	}
313
314	return old;
315}
316
317/*
318 * 2.6 calls this without flushing the TLB entry; this is wrong
319 * for our hash-based implementation, we fix that up here.
320 */
321#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
322static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
323					      unsigned long addr, pte_t *ptep)
324{
325	unsigned long old;
326	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
327	if (old & _PAGE_HASHPTE)
328		flush_hash_entry(mm, ptep, addr);
329
330	return (old & _PAGE_ACCESSED) != 0;
331}
332#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
333	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
334
335#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
336static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
337				       pte_t *ptep)
338{
339	return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
340}
341
342#define __HAVE_ARCH_PTEP_SET_WRPROTECT
343static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
344				      pte_t *ptep)
345{
346	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
347}
348
349static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
350					   pte_t *ptep, pte_t entry,
351					   unsigned long address,
352					   int psize)
353{
354	unsigned long set = pte_val(entry) &
355		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
356
357	pte_update(vma->vm_mm, address, ptep, 0, set, 0);
358
359	flush_tlb_page(vma, address);
360}
361
362#define __HAVE_ARCH_PTE_SAME
363#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
364
365#define pmd_pfn(pmd)		(pmd_val(pmd) >> PAGE_SHIFT)
366#define pmd_page(pmd)		pfn_to_page(pmd_pfn(pmd))
367
368/*
369 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
370 * are !pte_none() && !pte_present().
371 *
372 * Format of swap PTEs (32bit PTEs):
373 *
374 *                         1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
375 *   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
376 *   <----------------- offset --------------------> < type -> E H P
377 *
378 *   E is the exclusive marker that is not stored in swap entries.
379 *   _PAGE_PRESENT (P) and __PAGE_HASHPTE (H) must be 0.
380 *
381 * For 64bit PTEs, the offset is extended by 32bit.
382 */
383#define __swp_type(entry)		((entry).val & 0x1f)
384#define __swp_offset(entry)		((entry).val >> 5)
385#define __swp_entry(type, offset)	((swp_entry_t) { ((type) & 0x1f) | ((offset) << 5) })
386#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
387#define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
388
389static inline int pte_swp_exclusive(pte_t pte)
390{
391	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
392}
393
394static inline pte_t pte_swp_mkexclusive(pte_t pte)
395{
396	return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
397}
398
399static inline pte_t pte_swp_clear_exclusive(pte_t pte)
400{
401	return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
402}
403
404/* Generic accessors to PTE bits */
405static inline int pte_write(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_RW);}
406static inline int pte_read(pte_t pte)		{ return 1; }
407static inline int pte_dirty(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_DIRTY); }
408static inline int pte_young(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_ACCESSED); }
409static inline int pte_special(pte_t pte)	{ return !!(pte_val(pte) & _PAGE_SPECIAL); }
410static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
411static inline bool pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; }
412
413static inline int pte_present(pte_t pte)
414{
415	return pte_val(pte) & _PAGE_PRESENT;
416}
417
418static inline bool pte_hw_valid(pte_t pte)
419{
420	return pte_val(pte) & _PAGE_PRESENT;
421}
422
423static inline bool pte_hashpte(pte_t pte)
424{
425	return !!(pte_val(pte) & _PAGE_HASHPTE);
426}
427
428static inline bool pte_ci(pte_t pte)
429{
430	return !!(pte_val(pte) & _PAGE_NO_CACHE);
431}
432
433/*
434 * We only find page table entry in the last level
435 * Hence no need for other accessors
436 */
437#define pte_access_permitted pte_access_permitted
438static inline bool pte_access_permitted(pte_t pte, bool write)
439{
440	/*
441	 * A read-only access is controlled by _PAGE_USER bit.
442	 * We have _PAGE_READ set for WRITE and EXECUTE
443	 */
444	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
445		return false;
446
447	if (write && !pte_write(pte))
448		return false;
449
450	return true;
451}
452
453/* Conversion functions: convert a page and protection to a page entry,
454 * and a page entry and page directory to the page they refer to.
455 *
456 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
457 * long for now.
458 */
459static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
460{
461	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
462		     pgprot_val(pgprot));
463}
464
465/* Generic modifiers for PTE bits */
466static inline pte_t pte_wrprotect(pte_t pte)
467{
468	return __pte(pte_val(pte) & ~_PAGE_RW);
469}
470
471static inline pte_t pte_exprotect(pte_t pte)
472{
473	return __pte(pte_val(pte) & ~_PAGE_EXEC);
474}
475
476static inline pte_t pte_mkclean(pte_t pte)
477{
478	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
479}
480
481static inline pte_t pte_mkold(pte_t pte)
482{
483	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
484}
485
486static inline pte_t pte_mkexec(pte_t pte)
487{
488	return __pte(pte_val(pte) | _PAGE_EXEC);
489}
490
491static inline pte_t pte_mkpte(pte_t pte)
492{
493	return pte;
494}
495
496static inline pte_t pte_mkwrite_novma(pte_t pte)
497{
498	return __pte(pte_val(pte) | _PAGE_RW);
499}
500
501static inline pte_t pte_mkdirty(pte_t pte)
502{
503	return __pte(pte_val(pte) | _PAGE_DIRTY);
504}
505
506static inline pte_t pte_mkyoung(pte_t pte)
507{
508	return __pte(pte_val(pte) | _PAGE_ACCESSED);
509}
510
511static inline pte_t pte_mkspecial(pte_t pte)
512{
513	return __pte(pte_val(pte) | _PAGE_SPECIAL);
514}
515
516static inline pte_t pte_mkhuge(pte_t pte)
517{
518	return pte;
519}
520
521static inline pte_t pte_mkprivileged(pte_t pte)
522{
523	return __pte(pte_val(pte) & ~_PAGE_USER);
524}
525
526static inline pte_t pte_mkuser(pte_t pte)
527{
528	return __pte(pte_val(pte) | _PAGE_USER);
529}
530
531static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
532{
533	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
534}
535
536
537
538/* This low level function performs the actual PTE insertion
539 * Setting the PTE depends on the MMU type and other factors.
540 *
541 * First case is 32-bit in UP mode with 32-bit PTEs, we need to preserve
542 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
543 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
544 * and see we need to keep track that this PTE needs invalidating.
545 *
546 * Second case is 32-bit with 64-bit PTE.  In this case, we
547 * can just store as long as we do the two halves in the right order
548 * with a barrier in between. This is possible because we take care,
549 * in the hash code, to pre-invalidate if the PTE was already hashed,
550 * which synchronizes us with any concurrent invalidation.
551 * In the percpu case, we fallback to the simple update preserving
552 * the hash bits (ie, same as the non-SMP case).
553 *
554 * Third case is 32-bit in SMP mode with 32-bit PTEs. We use the
555 * helper pte_update() which does an atomic update. We need to do that
556 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
557 * per-CPU PTE such as a kmap_atomic, we also do a simple update preserving
558 * the hash bits instead.
559 */
560static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
561				pte_t *ptep, pte_t pte, int percpu)
562{
563	if ((!IS_ENABLED(CONFIG_SMP) && !IS_ENABLED(CONFIG_PTE_64BIT)) || percpu) {
564		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE) |
565			      (pte_val(pte) & ~_PAGE_HASHPTE));
566	} else if (IS_ENABLED(CONFIG_PTE_64BIT)) {
567		if (pte_val(*ptep) & _PAGE_HASHPTE)
568			flush_hash_entry(mm, ptep, addr);
569
570		asm volatile("stw%X0 %2,%0; eieio; stw%X1 %L2,%1" :
571			     "=m" (*ptep), "=m" (*((unsigned char *)ptep+4)) :
572			     "r" (pte) : "memory");
573	} else {
574		pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
575	}
576}
577
578/*
579 * Macro to mark a page protection value as "uncacheable".
580 */
581
582#define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
583			 _PAGE_WRITETHRU)
584
585#define pgprot_noncached pgprot_noncached
586static inline pgprot_t pgprot_noncached(pgprot_t prot)
587{
588	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
589			_PAGE_NO_CACHE | _PAGE_GUARDED);
590}
591
592#define pgprot_noncached_wc pgprot_noncached_wc
593static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
594{
595	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
596			_PAGE_NO_CACHE);
597}
598
599#define pgprot_cached pgprot_cached
600static inline pgprot_t pgprot_cached(pgprot_t prot)
601{
602	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
603			_PAGE_COHERENT);
604}
605
606#define pgprot_cached_wthru pgprot_cached_wthru
607static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
608{
609	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
610			_PAGE_COHERENT | _PAGE_WRITETHRU);
611}
612
613#define pgprot_cached_noncoherent pgprot_cached_noncoherent
614static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
615{
616	return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
617}
618
619#define pgprot_writecombine pgprot_writecombine
620static inline pgprot_t pgprot_writecombine(pgprot_t prot)
621{
622	return pgprot_noncached_wc(prot);
623}
624
625#endif /* !__ASSEMBLY__ */
626
627#endif /*  _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
628