xref: /kernel/linux/linux-6.6/arch/parisc/mm/init.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *  linux/arch/parisc/mm/init.c
4 *
5 *  Copyright (C) 1995	Linus Torvalds
6 *  Copyright 1999 SuSE GmbH
7 *    changed by Philipp Rumpf
8 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
9 *  Copyright 2004 Randolph Chung (tausq@debian.org)
10 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
11 *
12 */
13
14
15#include <linux/module.h>
16#include <linux/mm.h>
17#include <linux/memblock.h>
18#include <linux/gfp.h>
19#include <linux/delay.h>
20#include <linux/init.h>
21#include <linux/initrd.h>
22#include <linux/swap.h>
23#include <linux/unistd.h>
24#include <linux/nodemask.h>	/* for node_online_map */
25#include <linux/pagemap.h>	/* for release_pages */
26#include <linux/compat.h>
27
28#include <asm/pgalloc.h>
29#include <asm/tlb.h>
30#include <asm/pdc_chassis.h>
31#include <asm/mmzone.h>
32#include <asm/sections.h>
33#include <asm/msgbuf.h>
34#include <asm/sparsemem.h>
35#include <asm/asm-offsets.h>
36
37extern int  data_start;
38extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
39
40#if CONFIG_PGTABLE_LEVELS == 3
41pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
42#endif
43
44pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
45pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
46
47static struct resource data_resource = {
48	.name	= "Kernel data",
49	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
50};
51
52static struct resource code_resource = {
53	.name	= "Kernel code",
54	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
55};
56
57static struct resource pdcdata_resource = {
58	.name	= "PDC data (Page Zero)",
59	.start	= 0,
60	.end	= 0x9ff,
61	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
62};
63
64static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
65
66/* The following array is initialized from the firmware specific
67 * information retrieved in kernel/inventory.c.
68 */
69
70physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
71int npmem_ranges __initdata;
72
73#ifdef CONFIG_64BIT
74#define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
75#else /* !CONFIG_64BIT */
76#define MAX_MEM         (3584U*1024U*1024U)
77#endif /* !CONFIG_64BIT */
78
79static unsigned long mem_limit __read_mostly = MAX_MEM;
80
81static void __init mem_limit_func(void)
82{
83	char *cp, *end;
84	unsigned long limit;
85
86	/* We need this before __setup() functions are called */
87
88	limit = MAX_MEM;
89	for (cp = boot_command_line; *cp; ) {
90		if (memcmp(cp, "mem=", 4) == 0) {
91			cp += 4;
92			limit = memparse(cp, &end);
93			if (end != cp)
94				break;
95			cp = end;
96		} else {
97			while (*cp != ' ' && *cp)
98				++cp;
99			while (*cp == ' ')
100				++cp;
101		}
102	}
103
104	if (limit < mem_limit)
105		mem_limit = limit;
106}
107
108#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
109
110static void __init setup_bootmem(void)
111{
112	unsigned long mem_max;
113#ifndef CONFIG_SPARSEMEM
114	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
115	int npmem_holes;
116#endif
117	int i, sysram_resource_count;
118
119	disable_sr_hashing(); /* Turn off space register hashing */
120
121	/*
122	 * Sort the ranges. Since the number of ranges is typically
123	 * small, and performance is not an issue here, just do
124	 * a simple insertion sort.
125	 */
126
127	for (i = 1; i < npmem_ranges; i++) {
128		int j;
129
130		for (j = i; j > 0; j--) {
131			if (pmem_ranges[j-1].start_pfn <
132			    pmem_ranges[j].start_pfn) {
133
134				break;
135			}
136			swap(pmem_ranges[j-1], pmem_ranges[j]);
137		}
138	}
139
140#ifndef CONFIG_SPARSEMEM
141	/*
142	 * Throw out ranges that are too far apart (controlled by
143	 * MAX_GAP).
144	 */
145
146	for (i = 1; i < npmem_ranges; i++) {
147		if (pmem_ranges[i].start_pfn -
148			(pmem_ranges[i-1].start_pfn +
149			 pmem_ranges[i-1].pages) > MAX_GAP) {
150			npmem_ranges = i;
151			printk("Large gap in memory detected (%ld pages). "
152			       "Consider turning on CONFIG_SPARSEMEM\n",
153			       pmem_ranges[i].start_pfn -
154			       (pmem_ranges[i-1].start_pfn +
155			        pmem_ranges[i-1].pages));
156			break;
157		}
158	}
159#endif
160
161	/* Print the memory ranges */
162	pr_info("Memory Ranges:\n");
163
164	for (i = 0; i < npmem_ranges; i++) {
165		struct resource *res = &sysram_resources[i];
166		unsigned long start;
167		unsigned long size;
168
169		size = (pmem_ranges[i].pages << PAGE_SHIFT);
170		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
171		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
172			i, start, start + (size - 1), size >> 20);
173
174		/* request memory resource */
175		res->name = "System RAM";
176		res->start = start;
177		res->end = start + size - 1;
178		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
179		request_resource(&iomem_resource, res);
180	}
181
182	sysram_resource_count = npmem_ranges;
183
184	/*
185	 * For 32 bit kernels we limit the amount of memory we can
186	 * support, in order to preserve enough kernel address space
187	 * for other purposes. For 64 bit kernels we don't normally
188	 * limit the memory, but this mechanism can be used to
189	 * artificially limit the amount of memory (and it is written
190	 * to work with multiple memory ranges).
191	 */
192
193	mem_limit_func();       /* check for "mem=" argument */
194
195	mem_max = 0;
196	for (i = 0; i < npmem_ranges; i++) {
197		unsigned long rsize;
198
199		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
200		if ((mem_max + rsize) > mem_limit) {
201			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
202			if (mem_max == mem_limit)
203				npmem_ranges = i;
204			else {
205				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
206						       - (mem_max >> PAGE_SHIFT);
207				npmem_ranges = i + 1;
208				mem_max = mem_limit;
209			}
210			break;
211		}
212		mem_max += rsize;
213	}
214
215	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
216
217#ifndef CONFIG_SPARSEMEM
218	/* Merge the ranges, keeping track of the holes */
219	{
220		unsigned long end_pfn;
221		unsigned long hole_pages;
222
223		npmem_holes = 0;
224		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
225		for (i = 1; i < npmem_ranges; i++) {
226
227			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
228			if (hole_pages) {
229				pmem_holes[npmem_holes].start_pfn = end_pfn;
230				pmem_holes[npmem_holes++].pages = hole_pages;
231				end_pfn += hole_pages;
232			}
233			end_pfn += pmem_ranges[i].pages;
234		}
235
236		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
237		npmem_ranges = 1;
238	}
239#endif
240
241	/*
242	 * Initialize and free the full range of memory in each range.
243	 */
244
245	max_pfn = 0;
246	for (i = 0; i < npmem_ranges; i++) {
247		unsigned long start_pfn;
248		unsigned long npages;
249		unsigned long start;
250		unsigned long size;
251
252		start_pfn = pmem_ranges[i].start_pfn;
253		npages = pmem_ranges[i].pages;
254
255		start = start_pfn << PAGE_SHIFT;
256		size = npages << PAGE_SHIFT;
257
258		/* add system RAM memblock */
259		memblock_add(start, size);
260
261		if ((start_pfn + npages) > max_pfn)
262			max_pfn = start_pfn + npages;
263	}
264
265	/*
266	 * We can't use memblock top-down allocations because we only
267	 * created the initial mapping up to KERNEL_INITIAL_SIZE in
268	 * the assembly bootup code.
269	 */
270	memblock_set_bottom_up(true);
271
272	/* IOMMU is always used to access "high mem" on those boxes
273	 * that can support enough mem that a PCI device couldn't
274	 * directly DMA to any physical addresses.
275	 * ISA DMA support will need to revisit this.
276	 */
277	max_low_pfn = max_pfn;
278
279	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
280
281#define PDC_CONSOLE_IO_IODC_SIZE 32768
282
283	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
284				PDC_CONSOLE_IO_IODC_SIZE));
285	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
286			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
287
288#ifndef CONFIG_SPARSEMEM
289
290	/* reserve the holes */
291
292	for (i = 0; i < npmem_holes; i++) {
293		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
294				(pmem_holes[i].pages << PAGE_SHIFT));
295	}
296#endif
297
298#ifdef CONFIG_BLK_DEV_INITRD
299	if (initrd_start) {
300		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
301		if (__pa(initrd_start) < mem_max) {
302			unsigned long initrd_reserve;
303
304			if (__pa(initrd_end) > mem_max) {
305				initrd_reserve = mem_max - __pa(initrd_start);
306			} else {
307				initrd_reserve = initrd_end - initrd_start;
308			}
309			initrd_below_start_ok = 1;
310			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
311
312			memblock_reserve(__pa(initrd_start), initrd_reserve);
313		}
314	}
315#endif
316
317	data_resource.start =  virt_to_phys(&data_start);
318	data_resource.end = virt_to_phys(_end) - 1;
319	code_resource.start = virt_to_phys(_text);
320	code_resource.end = virt_to_phys(&data_start)-1;
321
322	/* We don't know which region the kernel will be in, so try
323	 * all of them.
324	 */
325	for (i = 0; i < sysram_resource_count; i++) {
326		struct resource *res = &sysram_resources[i];
327		request_resource(res, &code_resource);
328		request_resource(res, &data_resource);
329	}
330	request_resource(&sysram_resources[0], &pdcdata_resource);
331
332	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
333	pdc_pdt_init();
334
335	memblock_allow_resize();
336	memblock_dump_all();
337}
338
339static bool kernel_set_to_readonly;
340
341static void __ref map_pages(unsigned long start_vaddr,
342			    unsigned long start_paddr, unsigned long size,
343			    pgprot_t pgprot, int force)
344{
345	pmd_t *pmd;
346	pte_t *pg_table;
347	unsigned long end_paddr;
348	unsigned long start_pmd;
349	unsigned long start_pte;
350	unsigned long tmp1;
351	unsigned long tmp2;
352	unsigned long address;
353	unsigned long vaddr;
354	unsigned long ro_start;
355	unsigned long ro_end;
356	unsigned long kernel_start, kernel_end;
357
358	ro_start = __pa((unsigned long)_text);
359	ro_end   = __pa((unsigned long)&data_start);
360	kernel_start = __pa((unsigned long)&__init_begin);
361	kernel_end  = __pa((unsigned long)&_end);
362
363	end_paddr = start_paddr + size;
364
365	/* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
366	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
367	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
368
369	address = start_paddr;
370	vaddr = start_vaddr;
371	while (address < end_paddr) {
372		pgd_t *pgd = pgd_offset_k(vaddr);
373		p4d_t *p4d = p4d_offset(pgd, vaddr);
374		pud_t *pud = pud_offset(p4d, vaddr);
375
376#if CONFIG_PGTABLE_LEVELS == 3
377		if (pud_none(*pud)) {
378			pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
379					     PAGE_SIZE << PMD_TABLE_ORDER);
380			if (!pmd)
381				panic("pmd allocation failed.\n");
382			pud_populate(NULL, pud, pmd);
383		}
384#endif
385
386		pmd = pmd_offset(pud, vaddr);
387		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
388			if (pmd_none(*pmd)) {
389				pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
390				if (!pg_table)
391					panic("page table allocation failed\n");
392				pmd_populate_kernel(NULL, pmd, pg_table);
393			}
394
395			pg_table = pte_offset_kernel(pmd, vaddr);
396			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
397				pte_t pte;
398				pgprot_t prot;
399				bool huge = false;
400
401				if (force) {
402					prot = pgprot;
403				} else if (address < kernel_start || address >= kernel_end) {
404					/* outside kernel memory */
405					prot = PAGE_KERNEL;
406				} else if (!kernel_set_to_readonly) {
407					/* still initializing, allow writing to RO memory */
408					prot = PAGE_KERNEL_RWX;
409					huge = true;
410				} else if (address >= ro_start) {
411					/* Code (ro) and Data areas */
412					prot = (address < ro_end) ?
413						PAGE_KERNEL_EXEC : PAGE_KERNEL;
414					huge = true;
415				} else {
416					prot = PAGE_KERNEL;
417				}
418
419				pte = __mk_pte(address, prot);
420				if (huge)
421					pte = pte_mkhuge(pte);
422
423				if (address >= end_paddr)
424					break;
425
426				set_pte(pg_table, pte);
427
428				address += PAGE_SIZE;
429				vaddr += PAGE_SIZE;
430			}
431			start_pte = 0;
432
433			if (address >= end_paddr)
434			    break;
435		}
436		start_pmd = 0;
437	}
438}
439
440void __init set_kernel_text_rw(int enable_read_write)
441{
442	unsigned long start = (unsigned long) __init_begin;
443	unsigned long end   = (unsigned long) &data_start;
444
445	map_pages(start, __pa(start), end-start,
446		PAGE_KERNEL_RWX, enable_read_write ? 1:0);
447
448	/* force the kernel to see the new page table entries */
449	flush_cache_all();
450	flush_tlb_all();
451}
452
453void free_initmem(void)
454{
455	unsigned long init_begin = (unsigned long)__init_begin;
456	unsigned long init_end = (unsigned long)__init_end;
457	unsigned long kernel_end  = (unsigned long)&_end;
458
459	/* Remap kernel text and data, but do not touch init section yet. */
460	kernel_set_to_readonly = true;
461	map_pages(init_end, __pa(init_end), kernel_end - init_end,
462		  PAGE_KERNEL, 0);
463
464	/* The init text pages are marked R-X.  We have to
465	 * flush the icache and mark them RW-
466	 *
467	 * Do a dummy remap of the data section first (the data
468	 * section is already PAGE_KERNEL) to pull in the TLB entries
469	 * for map_kernel */
470	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
471		  PAGE_KERNEL_RWX, 1);
472	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
473	 * map_pages */
474	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
475		  PAGE_KERNEL, 1);
476
477	/* force the kernel to see the new TLB entries */
478	__flush_tlb_range(0, init_begin, kernel_end);
479
480	/* finally dump all the instructions which were cached, since the
481	 * pages are no-longer executable */
482	flush_icache_range(init_begin, init_end);
483
484	free_initmem_default(POISON_FREE_INITMEM);
485
486	/* set up a new led state on systems shipped LED State panel */
487	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
488}
489
490
491#ifdef CONFIG_STRICT_KERNEL_RWX
492void mark_rodata_ro(void)
493{
494	/* rodata memory was already mapped with KERNEL_RO access rights by
495           pagetable_init() and map_pages(). No need to do additional stuff here */
496	unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
497
498	pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
499}
500#endif
501
502
503/*
504 * Just an arbitrary offset to serve as a "hole" between mapping areas
505 * (between top of physical memory and a potential pcxl dma mapping
506 * area, and below the vmalloc mapping area).
507 *
508 * The current 32K value just means that there will be a 32K "hole"
509 * between mapping areas. That means that  any out-of-bounds memory
510 * accesses will hopefully be caught. The vmalloc() routines leaves
511 * a hole of 4kB between each vmalloced area for the same reason.
512 */
513
514 /* Leave room for gateway page expansion */
515#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
516#error KERNEL_MAP_START is in gateway reserved region
517#endif
518#define MAP_START (KERNEL_MAP_START)
519
520#define VM_MAP_OFFSET  (32*1024)
521#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
522				     & ~(VM_MAP_OFFSET-1)))
523
524void *parisc_vmalloc_start __ro_after_init;
525EXPORT_SYMBOL(parisc_vmalloc_start);
526
527void __init mem_init(void)
528{
529	/* Do sanity checks on IPC (compat) structures */
530	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
531#ifndef CONFIG_64BIT
532	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
533	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
534	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
535#endif
536#ifdef CONFIG_COMPAT
537	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
538	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
539	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
540	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
541#endif
542
543	/* Do sanity checks on page table constants */
544	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
545	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
546	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
547	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
548			> BITS_PER_LONG);
549#if CONFIG_PGTABLE_LEVELS == 3
550	BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
551#else
552	BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
553#endif
554
555#ifdef CONFIG_64BIT
556	/* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */
557	BUILD_BUG_ON(__PAGE_OFFSET >= 0x80000000);
558	BUILD_BUG_ON(TMPALIAS_MAP_START >= 0x80000000);
559#endif
560
561	high_memory = __va((max_pfn << PAGE_SHIFT));
562	set_max_mapnr(max_low_pfn);
563	memblock_free_all();
564
565#ifdef CONFIG_PA11
566	if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
567		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
568		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
569						+ PCXL_DMA_MAP_SIZE);
570	} else
571#endif
572		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
573
574#if 0
575	/*
576	 * Do not expose the virtual kernel memory layout to userspace.
577	 * But keep code for debugging purposes.
578	 */
579	printk("virtual kernel memory layout:\n"
580	       "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
581	       "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
582	       "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
583	       "       .init : 0x%px - 0x%px   (%4ld kB)\n"
584	       "       .data : 0x%px - 0x%px   (%4ld kB)\n"
585	       "       .text : 0x%px - 0x%px   (%4ld kB)\n",
586
587	       (void*)VMALLOC_START, (void*)VMALLOC_END,
588	       (VMALLOC_END - VMALLOC_START) >> 20,
589
590	       (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
591	       (unsigned long)(FIXMAP_SIZE / 1024),
592
593	       __va(0), high_memory,
594	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
595
596	       __init_begin, __init_end,
597	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
598
599	       _etext, _edata,
600	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
601
602	       _text, _etext,
603	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
604#endif
605}
606
607unsigned long *empty_zero_page __ro_after_init;
608EXPORT_SYMBOL(empty_zero_page);
609
610/*
611 * pagetable_init() sets up the page tables
612 *
613 * Note that gateway_init() places the Linux gateway page at page 0.
614 * Since gateway pages cannot be dereferenced this has the desirable
615 * side effect of trapping those pesky NULL-reference errors in the
616 * kernel.
617 */
618static void __init pagetable_init(void)
619{
620	int range;
621
622	/* Map each physical memory range to its kernel vaddr */
623
624	for (range = 0; range < npmem_ranges; range++) {
625		unsigned long start_paddr;
626		unsigned long size;
627
628		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
629		size = pmem_ranges[range].pages << PAGE_SHIFT;
630
631		map_pages((unsigned long)__va(start_paddr), start_paddr,
632			  size, PAGE_KERNEL, 0);
633	}
634
635#ifdef CONFIG_BLK_DEV_INITRD
636	if (initrd_end && initrd_end > mem_limit) {
637		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
638		map_pages(initrd_start, __pa(initrd_start),
639			  initrd_end - initrd_start, PAGE_KERNEL, 0);
640	}
641#endif
642
643	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
644	if (!empty_zero_page)
645		panic("zero page allocation failed.\n");
646
647}
648
649static void __init gateway_init(void)
650{
651	unsigned long linux_gateway_page_addr;
652	/* FIXME: This is 'const' in order to trick the compiler
653	   into not treating it as DP-relative data. */
654	extern void * const linux_gateway_page;
655
656	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
657
658	/*
659	 * Setup Linux Gateway page.
660	 *
661	 * The Linux gateway page will reside in kernel space (on virtual
662	 * page 0), so it doesn't need to be aliased into user space.
663	 */
664
665	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
666		  PAGE_SIZE, PAGE_GATEWAY, 1);
667}
668
669static void __init fixmap_init(void)
670{
671	unsigned long addr = FIXMAP_START;
672	unsigned long end = FIXMAP_START + FIXMAP_SIZE;
673	pgd_t *pgd = pgd_offset_k(addr);
674	p4d_t *p4d = p4d_offset(pgd, addr);
675	pud_t *pud = pud_offset(p4d, addr);
676	pmd_t *pmd;
677
678	BUILD_BUG_ON(FIXMAP_SIZE > PMD_SIZE);
679
680#if CONFIG_PGTABLE_LEVELS == 3
681	if (pud_none(*pud)) {
682		pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
683				     PAGE_SIZE << PMD_TABLE_ORDER);
684		if (!pmd)
685			panic("fixmap: pmd allocation failed.\n");
686		pud_populate(NULL, pud, pmd);
687	}
688#endif
689
690	pmd = pmd_offset(pud, addr);
691	do {
692		pte_t *pte = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
693		if (!pte)
694			panic("fixmap: pte allocation failed.\n");
695
696		pmd_populate_kernel(&init_mm, pmd, pte);
697
698		addr += PAGE_SIZE;
699	} while (addr < end);
700}
701
702static void __init parisc_bootmem_free(void)
703{
704	unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
705
706	max_zone_pfn[0] = memblock_end_of_DRAM();
707
708	free_area_init(max_zone_pfn);
709}
710
711void __init paging_init(void)
712{
713	setup_bootmem();
714	pagetable_init();
715	gateway_init();
716	fixmap_init();
717	flush_cache_all_local(); /* start with known state */
718	flush_tlb_all_local(NULL);
719
720	sparse_init();
721	parisc_bootmem_free();
722}
723
724static void alloc_btlb(unsigned long start, unsigned long end, int *slot,
725			unsigned long entry_info)
726{
727	const int slot_max = btlb_info.fixed_range_info.num_comb;
728	int min_num_pages = btlb_info.min_size;
729	unsigned long size;
730
731	/* map at minimum 4 pages */
732	if (min_num_pages < 4)
733		min_num_pages = 4;
734
735	size = HUGEPAGE_SIZE;
736	while (start < end && *slot < slot_max && size >= PAGE_SIZE) {
737		/* starting address must have same alignment as size! */
738		/* if correctly aligned and fits in double size, increase */
739		if (((start & (2 * size - 1)) == 0) &&
740		    (end - start) >= (2 * size)) {
741			size <<= 1;
742			continue;
743		}
744		/* if current size alignment is too big, try smaller size */
745		if ((start & (size - 1)) != 0) {
746			size >>= 1;
747			continue;
748		}
749		if ((end - start) >= size) {
750			if ((size >> PAGE_SHIFT) >= min_num_pages)
751				pdc_btlb_insert(start >> PAGE_SHIFT, __pa(start) >> PAGE_SHIFT,
752					size >> PAGE_SHIFT, entry_info, *slot);
753			(*slot)++;
754			start += size;
755			continue;
756		}
757		size /= 2;
758		continue;
759	}
760}
761
762void btlb_init_per_cpu(void)
763{
764	unsigned long s, t, e;
765	int slot;
766
767	/* BTLBs are not available on 64-bit CPUs */
768	if (IS_ENABLED(CONFIG_PA20))
769		return;
770	else if (pdc_btlb_info(&btlb_info) < 0) {
771		memset(&btlb_info, 0, sizeof btlb_info);
772	}
773
774	/* insert BLTLBs for code and data segments */
775	s = (uintptr_t) dereference_function_descriptor(&_stext);
776	e = (uintptr_t) dereference_function_descriptor(&_etext);
777	t = (uintptr_t) dereference_function_descriptor(&_sdata);
778	BUG_ON(t != e);
779
780	/* code segments */
781	slot = 0;
782	alloc_btlb(s, e, &slot, 0x13800000);
783
784	/* sanity check */
785	t = (uintptr_t) dereference_function_descriptor(&_edata);
786	e = (uintptr_t) dereference_function_descriptor(&__bss_start);
787	BUG_ON(t != e);
788
789	/* data segments */
790	s = (uintptr_t) dereference_function_descriptor(&_sdata);
791	e = (uintptr_t) dereference_function_descriptor(&__bss_stop);
792	alloc_btlb(s, e, &slot, 0x11800000);
793}
794
795#ifdef CONFIG_PA20
796
797/*
798 * Currently, all PA20 chips have 18 bit protection IDs, which is the
799 * limiting factor (space ids are 32 bits).
800 */
801
802#define NR_SPACE_IDS 262144
803
804#else
805
806/*
807 * Currently we have a one-to-one relationship between space IDs and
808 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
809 * support 15 bit protection IDs, so that is the limiting factor.
810 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
811 * probably not worth the effort for a special case here.
812 */
813
814#define NR_SPACE_IDS 32768
815
816#endif  /* !CONFIG_PA20 */
817
818#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
819#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
820
821static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
822static unsigned long dirty_space_id[SID_ARRAY_SIZE];
823static unsigned long space_id_index;
824static unsigned long free_space_ids = NR_SPACE_IDS - 1;
825static unsigned long dirty_space_ids;
826
827static DEFINE_SPINLOCK(sid_lock);
828
829unsigned long alloc_sid(void)
830{
831	unsigned long index;
832
833	spin_lock(&sid_lock);
834
835	if (free_space_ids == 0) {
836		if (dirty_space_ids != 0) {
837			spin_unlock(&sid_lock);
838			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
839			spin_lock(&sid_lock);
840		}
841		BUG_ON(free_space_ids == 0);
842	}
843
844	free_space_ids--;
845
846	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
847	space_id[BIT_WORD(index)] |= BIT_MASK(index);
848	space_id_index = index;
849
850	spin_unlock(&sid_lock);
851
852	return index << SPACEID_SHIFT;
853}
854
855void free_sid(unsigned long spaceid)
856{
857	unsigned long index = spaceid >> SPACEID_SHIFT;
858	unsigned long *dirty_space_offset, mask;
859
860	dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
861	mask = BIT_MASK(index);
862
863	spin_lock(&sid_lock);
864
865	BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
866
867	*dirty_space_offset |= mask;
868	dirty_space_ids++;
869
870	spin_unlock(&sid_lock);
871}
872
873
874#ifdef CONFIG_SMP
875static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
876{
877	int i;
878
879	/* NOTE: sid_lock must be held upon entry */
880
881	*ndirtyptr = dirty_space_ids;
882	if (dirty_space_ids != 0) {
883	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
884		dirty_array[i] = dirty_space_id[i];
885		dirty_space_id[i] = 0;
886	    }
887	    dirty_space_ids = 0;
888	}
889
890	return;
891}
892
893static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
894{
895	int i;
896
897	/* NOTE: sid_lock must be held upon entry */
898
899	if (ndirty != 0) {
900		for (i = 0; i < SID_ARRAY_SIZE; i++) {
901			space_id[i] ^= dirty_array[i];
902		}
903
904		free_space_ids += ndirty;
905		space_id_index = 0;
906	}
907}
908
909#else /* CONFIG_SMP */
910
911static void recycle_sids(void)
912{
913	int i;
914
915	/* NOTE: sid_lock must be held upon entry */
916
917	if (dirty_space_ids != 0) {
918		for (i = 0; i < SID_ARRAY_SIZE; i++) {
919			space_id[i] ^= dirty_space_id[i];
920			dirty_space_id[i] = 0;
921		}
922
923		free_space_ids += dirty_space_ids;
924		dirty_space_ids = 0;
925		space_id_index = 0;
926	}
927}
928#endif
929
930/*
931 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
932 * purged, we can safely reuse the space ids that were released but
933 * not flushed from the tlb.
934 */
935
936#ifdef CONFIG_SMP
937
938static unsigned long recycle_ndirty;
939static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
940static unsigned int recycle_inuse;
941
942void flush_tlb_all(void)
943{
944	int do_recycle;
945
946	do_recycle = 0;
947	spin_lock(&sid_lock);
948	__inc_irq_stat(irq_tlb_count);
949	if (dirty_space_ids > RECYCLE_THRESHOLD) {
950	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
951	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
952	    recycle_inuse++;
953	    do_recycle++;
954	}
955	spin_unlock(&sid_lock);
956	on_each_cpu(flush_tlb_all_local, NULL, 1);
957	if (do_recycle) {
958	    spin_lock(&sid_lock);
959	    recycle_sids(recycle_ndirty,recycle_dirty_array);
960	    recycle_inuse = 0;
961	    spin_unlock(&sid_lock);
962	}
963}
964#else
965void flush_tlb_all(void)
966{
967	spin_lock(&sid_lock);
968	__inc_irq_stat(irq_tlb_count);
969	flush_tlb_all_local(NULL);
970	recycle_sids();
971	spin_unlock(&sid_lock);
972}
973#endif
974
975static const pgprot_t protection_map[16] = {
976	[VM_NONE]					= PAGE_NONE,
977	[VM_READ]					= PAGE_READONLY,
978	[VM_WRITE]					= PAGE_NONE,
979	[VM_WRITE | VM_READ]				= PAGE_READONLY,
980	[VM_EXEC]					= PAGE_EXECREAD,
981	[VM_EXEC | VM_READ]				= PAGE_EXECREAD,
982	[VM_EXEC | VM_WRITE]				= PAGE_EXECREAD,
983	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_EXECREAD,
984	[VM_SHARED]					= PAGE_NONE,
985	[VM_SHARED | VM_READ]				= PAGE_READONLY,
986	[VM_SHARED | VM_WRITE]				= PAGE_WRITEONLY,
987	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
988	[VM_SHARED | VM_EXEC]				= PAGE_EXECREAD,
989	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_EXECREAD,
990	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_RWX,
991	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_RWX
992};
993DECLARE_VM_GET_PAGE_PROT
994